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Abstract
In standard Bayesian probability revision, the adoption of full beliefs (propositions
with probability 1) is irreversible. Once an agent has full belief in a proposition, no
subsequent revision can remove that belief. This is an unrealistic feature, and it also
makes probability revision incompatible with belief change theory, which focuses on
how the set of full beliefs is modified through both additions and retractions. This
problem in probability theory can be solved in a model that (i) lets the codomain
of the probability function be a hyperreal-valued rather than the real-valued closed
interval [0, 1], and (ii) identifies the full beliefs as the propositions whose probability
is either 1 or infinitesimally smaller than 1. In this model, changes in the probability
function will result in changes in the set of full beliefs (belief set), which constitutes
a submodel that can be conceived as the “tip of the iceberg” within the larger model
that also contains beliefs on lower levels of probability. The patterns of change in the
set of full beliefs in this modified Bayesian model coincides with the corresponding
pattern in a slightly modified version of AGM revision, which is commonly conceived
as the gold standard of (dichotomous) belief change. The modification only concerns
the marginal case of revision by an inconsistent input sentence. These results show
that probability revision and dichotomous belief change can be unified in one and the
same framework, or – if we so wish – that belief change theory can be subsumed under
a modified version of probability revision that allows for iterated change and for the
removal of full beliefs.

Keywords Bayesianism · Probability revision · Infinitesimal probabilities ·
Belief revision · AGM model

1 Introduction

One of the major problems in formal epistemology is the difficulty involved in com-
bining standard probabilistic representations of belief with standard representations
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of full beliefs. The set of sentences to which a probability function assigns the prob-
ability 1 is logically closed, and it can therefore be taken as a representation of the
set of full beliefs, also called the “belief set”. This set is usually assumed to contain
both the logically and analytically true statements and those empirical statements that
are fully believed. Typically, the empirical statements in which we have full belief are
so highly probable that we see no reason to doubt them, but there is still a possibility
that reasons to doubt or reject them may arise at some later point in time. Having
empirical full beliefs, not only probabilistic ones, reduces the cognitive burden, since
full beliefs form the basis for deductive reasoning, which is much less cumbersome
than probabilistic reasoning [17, 20, 29].

However, probability theory has difficulties in representing such provisional contin-
gent full beliefs. In the standard Bayesian framework for the revision of probabilities,
the adoption of full beliefs is an irreversible process. If we revise a probability function
p by a sentence a with p(a) > 0, then the outcome is a new probability function p′ such
that p′(a) = 1, i.e., a is a full belief, and that for all sentences e, p′(e) = p(a&e)/p(a).
Revision of p′ by¬a is not defined, i.e. not possible, since the new probability function
p′′ would have to satisfy the condition that p′′(e) = p′(¬a&e)/p′(¬a) for all e, thus
having a zero-valued denominator. The same applies to revision by any sentence b that
logically implies ¬a. Therefore, in a series of probability revisions, we continually
accumulate more and more beliefs with probability 1, but we cannot ever downgrade
any belief from that level to a lower degree of probability. We can call this the accumu-
lation problem. It is a highly implausible feature of the standard probabilistic model
of the dynamics of beliefs.

Since the 1980s, increasingly sophisticated models of full beliefs have been devel-
oped in the tradition of belief change theory (also called belief revision theory). (For
an overview, see [8].) Contrary to probabilistic models, these models treat belief as a
dichotomous phenomenon rather than one that comes in degrees. Their operations of
revision can both add new items to the belief set and remove old items from it. For
instance, a belief set that contains a can be revised by ¬a, resulting in a new belief
set that contains ¬a instead of a. Thus, contrary to probability theory, belief change
theory does not suffer from the accumulation problem.

The accumulation problem of probability revision is a problem in its own right,
which can be discussed and addressed without comparisons with belief change the-
ory. However, the comparison with belief change theory serves well to highlight the
problem, since this theory is largely devoted to representing something that standard
probability theory cannot at all represent – namely repeated changes of the set of full
beliefs, in which old beliefs are lost and new beliefs replace them. Therefore, it is
an appropriate benchmark for a solution of the accumulation problem that it should
provide us with a framework for probability revision, in which the pattern of revisions
of the set of full beliefs coincides with a reasonable account of belief change, as pro-
pounded in belief change theory. In such a framework, (dichotomous) belief change
will be the tip of an iceberg, i.e., a partial picture of a larger system in which changes
of lower degrees of belief are also included.1 To the extent that such a structure can

1 Lin and Kelly [29] described this as the problem of finding an operation of belief change that tracks
Bayesian conditionalization.
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be constructed, the two previously competing formal representations of the dynamics
of belief can be unified – or, if we so wish, belief change theory, which focuses exclu-
sively on the full beliefs, can be subsumed under a modified version of probability
theory, which includes not only full beliefs but also beliefs held to all other possible
degrees than the maximal one.

One possible approach to the accumulation problem is to leave the standard frame-
work of probability revision unchanged, but straighten up the interpretation of full
beliefs, so that probability 1 is only assigned to sentences that are logically or analyti-
cally true. Such a strict interpretation of unit probabilitywas recommended for instance
by Richard Jeffrey, who proposed (for other reasons) that a scientist “should refrain
from accepting or rejecting hypotheses”, and instead provide “a single probability for
the hypothesis (whereupon each makes his own decision based on the utilities peculiar
to his problem)” [23, p. 245]. From a purely formal point of view, this proposal solves
the accumulation problem. If the set {e | p(e) = 1} consists exclusively of beliefs
which the agent can never have valid reasons to give up, then the accumulation of
such beliefs is essentially problem-free. However, this solution comes at a high price.
In our actual epistemic dealings, we commonly believe fully in claims that we con-
sider to be “certain enough”, although new unexpected information could potentially
make us give them up. The scientific corpus is a collective compilation of such cur-
rently undoubted but yet doubtable claims, and in our everyday lives we similarly take
much for granted that could in fact be wrong. A belief set that only contains logical
and analytical truths would make our reasoning more complicated and burdensome
than one that also contains those empirical statements that are deemed to be “certain
enough” for our purposes [17]. The literature on belief change provides ample evi-
dence that the patterns of change in a belief set containing currently undoubted (but not
undoubtable) contingent sentences are both philosophically interesting and practically
important. An accurate model of human belief systems should not exclude this type of
beliefs.2

Therefore, it makes sense to look for a modified probability framework in which
full beliefs can be retracted when new information gives us reason to do so. In [18, 19],
it was shown that this can be achieved by (i) letting the codomain of the probability
function be a hyperreal-valued rather than the real-valued closed interval [0, 1], and
(ii) letting the belief set be the set of all sentences whose probability is either 1 or
infinitesimally smaller than 1. Such sets are logically closed. These relatively small
changes in the traditional framework are sufficient to ensure that full beliefs can be
removed from the belief set, thus solving the accumulation problem.

In [18, 19], these changes were combined with other changes in the stan-
dard framework, aimed at transferring the distinction between update and revision
(knowledge-adding and change-recording operations) from belief change theory to
probability theory, and clarifying how observational data influence the probabilities

2 See [20] for a more extensive account of the role of provisional full beliefs in human belief systems. –
Gärdenfors [10, pp. 23 and 38] refers to the elements of the belief set as being subject to “no doubt”, “not
a serious possibility”, having “probability 1”, and being “accepted as certain”. These descriptions are not
synonymous. The first two of them are in line with practice in the belief revision literature.
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assigned to underlying hypotheses or theories about the world. In the present contri-
bution, we put these further changes aside, and focus on the basic task outlined above,
namely to combine probability theory and belief change theory in one and the same
framework. We are going to show how this can be done in a way that satisfies the
benchmark set up above. We will present a model of probability revision containing
a belief set. Revisions of probabilities give rise to changes in the belief set, and these
changes exhibit plausible patterns that can be expressed in the style of belief change
theory. Furthermore, the two theories connected in this way are very close to the
standard models, respectively, in probability theory and belief change theory. We will
connect standard probability theory, with the two modifications (i) and (ii) presented
above, with a variant of the standard AGM theory of belief change [1], differing from
the latter only in how it deals with a controversial limiting case.

It should be emphasized that infinitesimals are used here for modelling purposes.
It is not suggested that humans assign infinitesimal probabilities to propositions, only
that a model using infinitesimals provides an adequate structure that corresponds in
useful and interesting ways to our patterns of belief change. It would be possible to
build a new structure for that purpose, but the use of a well-known and thoroughly
investigated mathematical structure has considerable advantages.

There is a fairly large literature on infinitesimal and hyperreal probabilities. Most
commonly, infinitesimal probabilities have been used to ensure that all elements of an
infinite domain (event space) receive non-zero probability. For instance, a fair lottery
with an infinite number of tickets can be modelled by assigning the same infinitesimal
probability to all tickets [4, 38, 38]. For an overview, see [5]. Here, we will instead use
propositions with infinitesimal probabilities as “memory tracks” of beliefs that have
been given up. This usage was proposed by [37].3 The identification of the set of full
beliefs with the set of propositions whose probability is infinitesimally close to 1 can
be found in [38].

Section 2 provides the formal preliminaries needed for this investigation. The new
framework, combining probability revision with dichotomous belief change, is pre-
sented in Section 3, which also provides an axiomatic characterization of the new,
probability-linked belief change operation. In Section 4, this operation is compared
both to the original AGM revision and to a slightly modified version of it that never
collapses into inconsistency. In Section 5, the new approach is compared to other
formal approaches that allow for revision (conditionalization) of a probability func-
tion by an input (antecedent) with probability 0. All formal proof are deferred to an
appendix.

2 Formal Preliminaries

Sentences, i.e., elements of the language that express propositions, are represented
by lowercase letters (a, b, . . .), and sets of sentences by capital letters (A, B, . . .).

3 Skyrms assumed that Bayesian update would be used. As he admitted, memories of what one believed
when holding a to be true would then be “wiped out” in an update by ¬a [37, p. 161].
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The object language L is formed from a finite number of atomic sentences with the
usual truth-functional connectives: negation (¬), conjunction (&), disjunction (∨),
implication (→), and equivalence (↔). � is a tautology and ⊥ a logically contradictory
sentence.

A Tarskian consequence operation Cn expresses the logic. It satisfies the standard
conditions: inclusion (A ⊆ Cn(A)), monotony (If A ⊆ B, then Cn(A) ⊆ Cn(B))
and iteration (Cn(A) = Cn(Cn(A))). Furthermore, Cn is supraclassical (if a follows
from A by classical truth-functional logic, then a ∈ Cn(A)) and satisfies the deduction
property (b ∈ Cn(A∪{a}) if and only if a → b ∈ Cn(A)). Since L is finite, Cn is also
compact (if a ∈ Cn(A) then there is a finite subset A′ of A such that a ∈ Cn(A′)).
Cn(∅) is the set of tautologies. A � a is an alternative notation for a ∈ Cn(A) and
� a for a ∈ Cn(∅).

A set A of sentences is a (consistent) belief set if and only if it is consistent and
logically closed, i.e., A = Cn(A) �= Cn({⊥}). K denotes a belief set. The conjunction
of all elements of a finite set A of sentences is denoted &A, and their disjunction is
denoted

∨
A. For any finite set A of sentences, numb(A) is the number of logically

non-equivalent elements of A. For all sets A of sentences and all sentences a, the
remainder set A⊥a is the set of maximal subsets of A not implying a. Thus, L⊥⊥
is the set of maximal consistent subsets of L. For any sentence a ∈ L, ‖a‖ = {X ∈
L⊥⊥ | a ∈ X}.

The letters s, t, u, v, x, y, and z represent hyperreal numbers (which may be real).
The letters δ and ε represent numbers that are either 0 or infinitesimal.4 The standard
(real) part of a finite hyperreal number s is denoted st(s), and the following abbrevia-
tions are used:

s ≈ t if and only if st(s) = st(t)
s �≈ t if and only if st(s) �= st(t)
s � t if and only if st(s) < st(t)

p is a hyperreal-valued probability function on L. �p� is the set of sentences whose
probability according to p is at most infinitesimally smaller than 1, i.e., �p� = {e ∈
L | p(e) ≈ 1}. Importantly, �p� is a belief set, i.e. �p� = Cn(�p�) [18].

Standard notation in probability theory is rather opaque in its representation of
probability revision. The outcome of revising a probability function p by an input
sentence a is a new probability function, but there is no special notation for the new
function that keeps track of its origin in p and a. This can be remedied by taking over a
notational practice from belief change theory: The new function will be denoted p ★ a.
For additional clarity, boldface brackets will be used around composite probability
functions. Thus, (((p ★ a)))(d) denotes the probability assigned to d by the probability
function obtained by revising p by a.

4 See [25] or [26] for an accessible introduction to hyperreal numbers or [18] p. 1024 for a very brief
introduction to finite hyperreal numbers.
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3 Hyperreal Bayesian Probability Revision and its Sentential Top

A straightforward approach to the revision of hyperreal probabilities would be to apply
the same Bayesian rule as for standard (real) probabilities:

(((p ★ a)))(d) =
⎧
⎨

⎩

p(d) if p(a) = 0

p(d | a) = p(a&d)

p(a)
if p(a) �= 0

(1)

But this would lead to the loss of more and more possibilities when revising, since
(((p ★ a1 ★ a2 ★ . . . ★ an)))(a1) = 1 whenever p(a1) �= 0. In other words, the accu-
mulation problem has not been solved. This can be remedied by applying Jeffrey
conditionalization [24, pp. 164-183] and leaving an infinitesimal probability to the
beliefs that have been given up:

(((p ★ δa)))(d)=
⎧
⎨

⎩

p(d) if p(a)=0 or p(a)=1

(1−δ) × p(a&d)

p(a)
+δ× p(¬a&d)

p(¬a)
if 0 �= p(a) �=1

(2)

If we only perform a single revision, then it makes no difference in the resulting belief
set if we revise according to Eqs. 1 or 2.

OBSERVATION 1 Let p be a probability function. Let ★ ′ be the operation of revision
on p defined in Eq. 1, and ★ δ the operation of revision on p defined in Eq. 2, for
some δ with 0 ≤ δ ≈ 0. Then it holds for all sentences a in the domain of p that
�p ★ ′a� = �p ★ δa�.

However, in a series of two or more revisions, the difference between the two
approaches can be momentous. For instance, in the series p ★ ′a ★ ′¬a, the second
operation has to be performed according to the first clause of Eq. 1, which means that
¬a is not assimilated, and p ★ ′a ★ ′¬a = p ★ ′a. In contrast, the second operation
in the series p ★ δ1a ★ δ2¬a follows the second clause of Eq. 2, and if δ1 �= 0 �= δ2,
then ¬a is assimilated. The infinitesimal probabilities that Eq. 2 assigns to ¬a and to
sentences implying ¬a serve as retrievable memories of what it means to believe in
¬a. Retaining such memories after adopting the provisional full belief a is essential
for solving the accumulation problem. We will therefore use Eq. (2), although iterated
revisions will not be further investigated in this article.

DEFINITION 1 Let p be a hyperreal probability function on a language L that is closed
under truth-functional operations. The hyperreal Bayesian revision based on p is the
operation ★ such that for all a, d ∈ L and all δ with 0 ≤ δ ≈ 0:

(((p ★ δa)))(d)=
⎧
⎨

⎩

p(d) if p(a)=0 or p(a)=1

(1 − δ)× p(a&d)

p(a)
+δ× p(¬a&d)

p(¬a)
if 0 �= p(a) �= 1
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Each hyperreal probability function p is associated with a belief set, �p�. Changes in p
give rise to changes in the associated belief set. Therefore, we can derive a sentential
revision5 ∗ on �p� from the probability revision ★ δ on p:

DEFINITION 2 Let ∗ be a sentential revision on a belief set K in a language L. Then ∗
is a hyperreal Bayesian top revision on K if and only if there is a hyperreal Bayesian
revision ★ , based on a probability function p on L, and some δ with 0 ≤ δ ≈ 0, such
that �p� = K and that �p ★ δa� = K ∗ a for all a ∈ L .

In the axiomatic characterization of the operation introduced in Definition 2, we will
have use for ring systems, a framework for (dichotomous) belief change that is a
variation of the sphere systems commonly used in belief change theory.6

DEFINITION 3 Let L be a finite language and K a consistent belief set in L. A (finite)
ring system around K is a sequence 〈R0, . . . ,Rn〉 of subsets of L⊥⊥, such that
K = ⋂

R0 and that if 0 ≤ k < m ≤ n, then Rk ∩ Rm = ∅.

DEFINITION 4 Let 〈R0, . . . ,Rn〉 be a ring system. Then:
R(a) = Rk iff

⋂
Rm � ¬a for all m < k, and

⋂
Rk � ¬a

In other words,R(a) is the first element in the sequence 〈R0, . . . ,Rn〉 that has some
element containing a.

DEFINITION 5 Let K be a consistent belief set, and let 〈R0, . . . ,Rn〉 be a ring system
such that K = ⋂

R0. The ring-based revision on K that is based on 〈R0, . . . ,Rn〉 is
the sentential operation ∗ such that:

(1) If ¬a ∈ ⋂
(R0 ∪ · · · ∪ Rn), then K ∗ a = K, and

(2) otherwise, K ∗ a = ⋂
(‖a‖ ∩ R(a)).

As can be seen from clause (1) of Definition 5, the limiting case when the input
sentence a is not true in any of the maximal sets represented in the model is treated
in different ways in ring systems and sphere systems. In ring systems, K ∗ a = K in
this case, whereas in sphere systems, K ∗ a = Cn({⊥}). It should also be noted that
since our definition of ring systems does not require thatR0 ∪ · · · ∪Rn = L⊥⊥, the
limiting case can cover a larger part of the potential input sentences than in a sphere
system.

We are now ready for the main theorem of this contribution, namely an axiomatic
characterization of hyperreal Bayesian top revisions:

THEOREM 1 Let K be a consistent belief set in a finite language L, and let ∗ be a
sentential operation on K . The following three conditions are equivalent:

(1) ∗ is a hyperreal Bayesian top revision on K .
(2) ∗ is a ring-based revision on K .

5 A sentential operation on a belief set K is an operation ◦ such that for all sentences a, K ◦ a is a belief
set.
6 Sphere systems were introduced in [11]. For a brief introduction see [8] pp. 25-31, and for a more in-depth
introduction, [15] pp. 220-228 and 294-304. For a previous version of ring systems, see [16] p. 201.
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(3) ∗ satisfies the axioms:

K ∗ a = Cn(K ∗ a) (closure)
Either a ∈ K ∗ a or K ∗ a = K (relative success)
If ¬b /∈ K ∗ a, then b ∈ K ∗ b (strong regularity)
K ∗ a ⊆ Cn(K ∪ {a}) (inclusion)
K ∗ a � ⊥ (strong consistency)
If � a1 ↔ a2, then K ∗ a1 = K ∗ a2 (extensionality)
If ¬a /∈ K, then Cn(K ∪ {a}) ⊆ K ∗ a (vacuity)
K ∗ (a ∨ b) is either K ∗ a, K ∗ b, or (K ∗ a)∩ (K ∗ b) (disjunctive factoring)

4 A Comparison with AGM and AGMC

Since AGM revision is usually considered to be the gold standard in belief change
theory, a comparison of hyperreal Bayesian top revision with AGM revision is of
particular interest.7 AGMrevision can be characterized inmultipleways [8, pp. 17-40].
For comparisons with other operations, axiomatic characterizations are particularly
useful. A characterization using the following eight axioms was reported already in
the original presentation of the AGM model [1]:

K ∗ a = Cn(K ∗ a) (closure)
a ∈ K ∗ a (success)
K ∗ a ⊆ Cn(K ∪ {a}) (inclusion)
If a � ⊥, then K ∗ a � ⊥ (consistency)
If � a1 ↔ a2, then K ∗ a1 = K ∗ a2 (extensionality)
If ¬a /∈ K , then Cn(K ∪ {a}) ⊆ K ∗ a (vacuity)
K ∗ (a1&a2) ⊆ Cn((K ∗ a1) ∪ {a2}) (superexpansion)
If ¬a2 /∈ K ∗ a1, then (K ∗ a1) ∪ {a2} ⊆ K ∗ (a1&a2) (subexpansion)

The first six of these postulates are called “basic” and the remaining two “supple-
mentary”. In the presence of the six basic postulates, the combination of the two
supplementary postulates is equivalent with disjunctive factoring. (This was shown
by Hans Rott, and first reported by Gärdenfors [10]). In what follows, we will use
the equivalent characterization in terms of the six basic postulates and disjunctive
factoring.

As can be seen from the postulate strong consistency in Theorem 1 and the success
postulate of AGM, hyperreal Bayesian top revision is not an AGM revision. However,
this difference refers to the limiting case of revision by a logical contradiction. It
follows from success and closure that in AGM revision, K ∗ ⊥ = Cn({⊥}). This is
a problematic feature of AGM revision, since the operation is intended to represent
a rational pattern of belief revision, and acquiring beliefs in all propositions that are

7 Relations between AGM and probabilities have been subject to several studies. [9] and [30] investigated
connections between AGM postulates and changes in the top of a (real-valued) probability function under
Bayesian update. [29] studied the relationship between AGM revision and changes in the set of beliefs
supported by the Lockean thesis that result from Bayesian updates. They reported an impossibility theorem
that puts limits to that relationship. Further results relating to the Lockean thesis have been reported in [28,
pp. 159–229], [34, 36].
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expressible in the language is certainly not a rational epistemic behaviour. It would
seem much more rational for an epistemic agent just to reject a logically inconsistent
input. Given the purpose of belief revision, it is therefore justified to investigate a
minimally modified version of AGM revision, differing from the original operation
only in how it treats this limiting case. We will call this system “consistent AGM” and
denote it AGMC .

DEFINITION 6 Let ∗′ be a sentential operation on a consistent belief set K . Then ∗′
is an AGMC revision (consistent AGM revision) on K if and only if there is an AGM
operation ∗ on K such that:

(a) K ∗′ a = K ∗ a if a � ⊥, and
(b) K ∗′ a = K if a � ⊥.

OBSERVATION 2 A sentential operation ∗ on a consistent belief set K is an AGMC

revision if and only if it satisfies:

K ∗ a = Cn(K ∗ a) (closure)
If a � ⊥, then a ∈ K ∗ a (consistent success)
Either a ∈ K ∗ a or K ∗ a = K (relative success)
K ∗ a ⊆ Cn(K ∪ {a}) (inclusion)
K ∗ a � ⊥ (strong consistency)
If � a1 ↔ a2, then K ∗ a1 = K ∗ a2 (extensionality)
If ¬a /∈ K, then Cn(K ∪ {a}) ⊆ K ∗ a (vacuity)
K ∗ (a ∨ b) is either K ∗ a, K ∗ b, or K ∗ a ∩ K ∗ b (disjunctive factoring)

As compared to the AGM postulates (in the variant with disjunctive factoring instead
of superexpansion and subexpansion), to characterize AGMC we have strengthened
consistency to strong consistency, replaced success by two of its weakenings, consis-
tent success and relative success, and left the other postulates unchanged.

AGMC is a special case of hyperreal Bayesian top revision, which we characterized
in Theorem 1:

OBSERVATION 3 Let ∗ be a sentential operation on a consistent belief set K . The
following three conditions are equivalent:

(1) ∗ is a hyperreal Bayesian top revision on K that satisfies consistent success.
(2) ∗ is a hyperreal Bayesian top revision on K , based on a probability function p

such that if a � ⊥, then p(a) �= 0.
(3) ∗ is an AGMC revision.

Clause (2) of Observation 3 requires that p assigns probability zero only to logical
contradictions, and consequently, unit probability only to logical truths. This means
that no contingent sentence can be irretrievably lost or irreversibly included in the belief
set. This property of the belief system is also encoded in the postulates of consistent
success and strong consistency, which together ensure that if a is not a logical truth,
then it can be removed from K through revision by ¬a. (If � a, then ¬a � ⊥, thus
¬a ∈ K ∗¬a, and since K ∗¬a � ⊥, we have a /∈ K ∗¬a.) Thus, this operation does
not have the accumulation problem discussed in Section 2.
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1544 S.O. Hansson

In the Introduction, we set forth the task of combining probability revision and
(dichotomous) belief revision in one and the same framework, such that the pattern of
changes in full beliefs resulting from probability revision (the changes on the tip of
the changing iceberg) coincides with a reasonable account of changes of full beliefs
expressible in the style of belief change theory. Observation 3 is a proof of concept,
showing that this can be done, and that it can be done with fairly small modifications
of the two theories that have been reconciled. In probability theory, we have extended
the codomain of the probability function to finite hyperreal numbers, and included
sentences with probabilities infinitesimally close to 1 in the belief set. In belief change
theory, we have only adjusted the standard AGM theory in the limiting case of revision
by an inconsistent sentence. This adjustment can be justified independently of our
present endeavour, since this limiting case is a weak point of AGM theory.

5 Discussion

Two other approaches than infinitesimal probabilities have been proposed to avoid the
accumulation of permanent full beliefs that results from Bayesian updates of proba-
bilities: primitive dyadic probabilities and lexicographic probabilities.

A primitive dyadic (“conditional”) probability function is a function p̈ with the
real-valued codomain [0, 1], interpretated such that p̈(b, a) is the probability of b,
conditional on a. It is a generalization of a monadic real-valued probability function
p, such that p(b) = p̈(b, �) for all b. Revision of a dyadic probability function p̈
by a proposition a gives rise to a new monadic probability function p ★ a such that
(((p ★ a)))(b) = p̈(b, a) for all b. The associated set of full beliefs is {b | p̈(b, a) = 1}.
This works even if p(a) = p̈(a, �) = 0. Such dyadic functions have often been called
“Popper functions”.8 For an overview, see [32].

A major problem with this approach is that although revision of p̈ by a results in a
newmonadic probability function p ★ a such that (((p ★ a)))(b) = p̈(b, a) for all b, it does
not provide a new dyadic probability function with which additional updates can be
made ([2] p. 585; cf. [30] p. 98).9 McGee ([33] pp. 181-183) showed that the formula
p̈(b, a) = st(p(a&b)/p(a)) constitutes a bridge between a primitive dyadic, real-
valued probability function p̈ and a monadic hyperreal probabilty function p. Through
this formula, every hyperreal probability function p gives rise to a dyadic function p̈
that satisfies standard axioms for such functions, and conversely. This result provides a
connection between dyadic and hyperreal probability functions, but it does not provide
a mechanism for iterated change of primitive dyadic probabilities.

Lexicographic probabilities are obtained with an n-tuple of real-valued proba-
bility functions, 〈p0, p1, . . . , pn〉 with n > 1. When we revise (conditionalize) by
a, the outcome is obtained by conditionalizing the first probability function pk in

8 Arló-Costa and Parikh [3] p. 117 criticized this terminology.
9 One possibility would be to let (((p̈∗a∗b)))(c, �) = p̈(c, a&b) for all c ([30] p. 98 and [32] p. 130). However,
this construction has implausible properties, such as that that (((p̈ ∗ a ∗ ¬a)))(c, �) = (((p̈ ∗ ¬a ∗ a)))(c, �) for
all a and c.
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〈p0, p1, . . . , pn〉 that assigns a non-zero probability to a. This construction was intro-
duced by Blume, Brandenburger, and Dekel [6, 7].

There is a close correspondence between lexicographic sequences and hyperreal
probabilities [13]. This can be seen by comparing the sequence 〈p0, p1, . . . , pn〉 with
the sum ε0 ×p0(· )+ ε1 ×p1(· )+· · ·+ εn ×pn(· ). Provided that pk(a) �= 0, the term
εk ×pk(a) is infinitely larger than all its successors, which amounts to a lexicographic
priority.10 However, just like primitive dyadic probabilities, lexicographic probabilities
have a problem with repeated change. After revising by a, we obtain a new monadic
probability function, but not a plausible new lexicographic sequence that can be used
for a new revision. The standard proposal for a new lexicographic sequence after
revision by a is obtained by removing all elements from the original sequence that
gave a probability zero ([12] p. 115; [13] p. 158). This removes any information (such
as memories) that the epistemic agent may have of what it means to believe ¬a.

In contrast to these two proposals, primitive dyadic probabilities and lexicographic
probabilities, the model with hyperreal probabilities presented here has no problem
with repeated change. The outcome of a revision of a hyperreal probability function p
by a is a new hyperreal probability function p ★ δa that can again be revised. As shown
elsewhere, the tip-of-the-iceberg part of such repeated revision satisfies the standard
axioms for iterated change that have been proposed in the belief change literature
[21]. The use of infinitesimals to model an epistemic agent’s memories of discarded
but retrievable beliefs is a promising approach that should be further investigated.

Appendix: Proofs

DEFINITION 7 [35] pp.88-89; [14] pp. 46-47 Let ε̄ be a hyperreal number such that
0 < nε̄ < 1 for all positive integers n. F is the set of fractions of the form

s0 × ε̄0 + s1 × ε̄1 + s2 × ε̄2 + · · · + sk × ε̄k

t0 × ε̄0 + t1 × ε̄1 + t2 × ε̄2 + · · · + tn × ε̄n

within the closed hyperreal interval [0, 1], such that s0, . . . , sk and t0, . . . , tn are
finite series of real numbers and at least one of t0, . . . , tn is non-zero.

POSTULATE 1 Probability functions have the codomain F.

DEFINITION 8 [19] A hyperreal number y ∈ F is an infinitesimal of the first order (in
F) if and only if 0 �= y ≈ 0 but there is no z ∈ F such that 0 �= z ≈ 0 and y/z ≈ 0.

An infinitesimal y ∈ F is an infinitesimal of the nth order, for some n > 1, if and
only if:

(1) There is a series z1, . . . , zn−1 of non-zero elements of F, such that z1 ≈ 0,
zk/zk−1 ≈ 0 whenever 1 < k ≤ n − 1 and y/zn−1 ≈ 0, and

(2) There is no series z′1, . . . , z′n of non-zero elements ofF, such that z′1 ≈ 0, z′k/z′k−1 ≈
0 whenever 1 < k ≤ n and y/z′n ≈ 0.

An infinitesimal is finite-ordered if and only if it is of the nth order for some positive
integer n.

10 More precisely, if k < m, then either εm × pm (a) = 0 or εm × pm (a)/εk × pk (a) is infinitesimal.
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LEMMA 1 ε̄ is a first-order infinitesimal.

PROOF OF LEMMA 1: Clearly, 0 �= ε̄ ≈ 0. It remains to show that there is no
z ∈ F with 0 �= z ≈ 0 and ε̄/z ≈ 0. Suppose to the contrary that there is such a
z. According to Definition 7, there is some positive real number s and some positive
integer k such that (s × ε̄k)/z ≈ 1, thus (ε̄/z) × s × ε̄k−1 ≈ 1, contrary to ε̄/z ≈ 0.
This contradiction concludes the proof. �

LEMMA 2 If x ∈ F and 0 �= x ≈ 0, then x is finite-ordered.

PROOF OF LEMMA 2: Let su be the first non-zero coefficient in the numerator of
x and tv the first non-zero coefficient in its denominator. It follows from 0 ≈ x that
v < u. Dividing both numerator and denominator by ε̄v , we obtain:

x = su × ε̄u−v + su+1 × ε̄u−v+1 + · · · + sk × ε̄k

tv × ε̄0 + tv+1 × ε̄1 + · · · + tn × ε̄n
≈ su

tv
× ε̄u−v

If u − v = 1, then x is a first-order infinitesimal. If u − v > 1, then x is an
infinitesimal of order u − v. �

LEMMA 3 If y and y′ are both positive nth order infinitesimals, then 0 � y/y′.

PROOF OF LEMMA 3: Suppose that this is not the case. Then y/y′ ≈ 0, and we
have a series:

z1 ≈ 0, z2/z1 ≈ 0,…y′/zn−1 ≈ 0, y/y′ ≈ 0
so that y is of at least (n + 1)th order, contrary to the assumption. �

LEMMA 4 If L is finite and p(a) �= 0, then
p(a) ≈ ∑{p(&X) | a ∈ X ∈ L⊥⊥ and 0 � p(&X)/p(a)}.
PROOF OF LEMMA 4: Let p(a) �= 0. Then:
p(a) = ∑{p(&X) | a ∈ X ∈ L⊥⊥}
1 = ∑{p(&X)/p(a) | a ∈ X ∈ L⊥⊥} since p(a) �= 0
1 ≈ ∑{p(&X)/p(a) | a ∈ X ∈ L⊥⊥ and 0 � p(&X)/p(a)}

a finite number of infinitesimal or zero terms removed
p(a) ≈ ∑{p(&X) | a ∈ X ∈ L⊥⊥ and 0 � p(&X)/p(a)} �

LEMMA 5 Let K be a consistent belief set and ∗ a sentential operation on K . If ∗
satisfies relative success and vacuity, then it satisfies:

If K � K ∗ a, then K ∪ (K ∗ a) � ⊥ (consistent expansion, [22] p. 1583)

PROOF OF LEMMA 5: Let K � K ∗ a. First suppose that a /∈ K ∗ a. Then due to
relative success, K = K ∗ a, contrary to K � K ∗ a. Thus a ∈ K ∗ a. It follows from
vacuity and K � K ∗ a that ¬a ∈ K . We can conclude from ¬a ∈ K and a ∈ K ∗ a
that K ∪ (K ∗ a) � ⊥. �

LEMMA 6 Let K be a consistent belief set and ∗ a sentential operation on K . If ∗
satisfies relative success, inclusion, and vacuity, then it satisfies:

K ∗ � = K
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PROOF OF LEMMA 6: It follows from inclusion that K ∗ � ⊆ Cn(K ), and the
logical closure of K yields K ∗ � ⊆ K .

Suppose that K � K ∗�.Consistent expansion (Lemma 5) yields K ∪(K ∗�) � ⊥.
It then follows from K ∗ � ⊆ K , which we have just proved, that K � ⊥, contrary to
our assumption. This contradiction concludes the proof that K ∗ � = K . �

LEMMA 7 Let ∗ be a sentential operation on the consistent belief set K in a finite
language L, and let ∗ satisfy closure and strong consistency. If X ∈ L⊥⊥ and
&X ∈ K ∗ &X, then K ∗ &X = X.

PROOF OF LEMMA 7: It follows from &X ∈ K ∗ &X and closure that X ⊆
K ∗ &X . Since all proper supersets of X are inconsistent, strong consistency yields
K ∗ &X = X . �

LEMMA 8 Let ∗ be a sentential operation on the consistent belief set K in a finite
language L, and let ∗ satisfy closure, strong consistency, strong regularity, exten-
sionality and disjunctive factoring. Furthermore, let {X1, . . . , Xn} ⊆ L⊥⊥, let
&Xk ∈ K ∗ &Xk for all Xk ∈ {X1, . . . , Xn}, and let it hold for all elements Xk

and Xm of {X1, . . . , Xn} that K ∗ (&Xk ∨ &Xm) ⊆ K ∗ &Xk. Then:
K ∗ (&X1 ∨ · · · ∨ &Xn) = (K ∗ &X1) ∩ · · · ∩ (K ∗ &Xn)

PROOF OF LEMMA 8: The proof will be inductive. In the base case, n = 2,
consider the set {X1, X2} ∈ L⊥⊥. Due to the conditions of the lemma, K ∗ (&X1 ∨
&X2) ⊆ (K ∗ &X1) ∩ (K ∗ &X2). For the other direction, strong consistency yields
¬(&X1 ∨ &X2) /∈ K ∗ &X1, and due to strong regularity, (&X1 ∨ &X2) ∈ K ∗
(&X1 ∨ &X2). Since Cn({&X1 ∨ &X2}) = X1 ∩ X2, it follows from closure that
X1 ∩ X2 ⊆ K ∗ (&X1 ∨ &X2), and Lemma 7 yields (K ∗ &X1) ∩ (K ∗ &X2) ⊆
K ∗ (&X1 ∨ &X2).

In the induction step, n > 2, we use extensionality, disjunctive factoring, the
induction hypothesis, and Lemma 7 twice. First, we use them to conclude that one of
the following three conditions holds:

(1) K ∗ (&X1 ∨ · · ·∨&Xn+1) = K ∗ (&X1 ∨ · · ·∨&Xn) = (K ∗&X1)∩ · · · ∩ (K ∗
&Xn) = X1 ∩ · · · ∩ Xn

(2) K ∗ (&X1 ∨ · · · ∨ &Xn+1) = K ∗ &Xn+1 = Xn+1
(3) K ∗ (&X1 ∨ · · · ∨ &Xn+1) = (K ∗ (&X1 ∨ · · · ∨ &Xn)) ∩ (K ∗ &Xn+1) =

X1 ∩ · · · ∩ Xn+1

Next we conclude in the same way that one of the following three conditions holds:

(4) K ∗ (&X1 ∨ · · · ∨ &Xn+1) = K ∗ &X1 = X1
(5) K ∗ (&X1 ∨ · · · ∨ &Xn+1) = K ∗ (&X2 ∨ · · · ∨ &Xn+1) = (K ∗ &X2) ∩ · · · ∩

(K ∗ &Xn+1) = X2 ∩ · · · ∩ Xn+1
(6) K ∗ (&X1 ∨ · · · ∨ &Xn+1) = (K ∗ &X1) ∩ (K ∗ (&X2 ∨ · · · ∨ &Xn+1)) =

X1 ∩ · · · ∩ Xn+1

It holds for all Xk, Xm ∈ {X1, . . . , Xn+1} that if Xk �= Xm , then Xk � ¬&Xm .
Therefore, the only way in which it can be true both that (1), (2) or (3) holds, and also
that (4), (5) or (6) holds, is that (3) and (6) hold. Thus, K ∗ (&X1 ∨ · · · ∨ &Xn+1) =
(K ∗ &X1) ∩ · · · ∩ (K ∗ &Xn+1). �

123



1548 S.O. Hansson

PROOF OF OBSERVATION 1: Equation (1) is equivalent with the following:

(((p ★ a′)))(d) =
⎧
⎨

⎩

p(d) if p(a) = 0 or p(a) = 1

p(d | a) = p(a&d)

p(a)
if 0 �= p(a) �= 1

(1’)

Since the first clause of equation (1’) coincides with the first clause of equation (2),
we only have to prove the case represented by the second clause of the two equations:

d ∈ �p ★ δa� iff (1 − δ) × p(a&d)

p(a)
+ δ × p(¬a&d)

p(¬a)
≈ 1 Equation (2)

iff
p(a&d)

p(a)
≈ 1 Two infinitesimal terms removed

iff d ∈ �p ★ ′a� Equation (1’)�
PROOF OF THEOREM 1: The proof of the theorem consists of four parts. Part I

takes us from a hyperreal Bayesian top revision on a given belief set K to a ring-based
revision on K . Part II takes us from a ring-based revision on K to a hyperreal Bayesian
top revision on K . Part III takes us from a ring-based revision to the axioms, and Part
IV from the axioms to a ring-based revision.

PART I, FROM A HYPERREAL BAYESIAN TOP REVISION TO A RING-BASED
REVISION
Construction of the ring system: Let p be a hyperreal probability function and ∗ the
hyperreal Bayesian top revision on the belief set K that it gives rise to according to
Definition 2. Then K = �p�.

LetR = {X ∈ L⊥⊥ | p(&X) �= 0}. It follows from Postulate 1 and Lemma 2 that
for all X ∈ L⊥⊥, p(&X), either 0 � p(&X) or p(&X) is a finite-ordered infinites-
imal. We can therefore construct a sequence 〈R0, . . . ,Rn〉 such that R0 consists of
the elements X of R such that 0 � p(&X), and each Rk with 0 < k consists of the
elements of X whose conjunctions have a probability that is an infinitesimal of the kth

order.
Let ∗̄ be the operation of revision that is based on 〈R0, . . . ,Rn〉 according to

Definition 5. We need to verify that 〈R0, . . . ,Rn〉 is a ring system around K and that
∗ and ∗̄ coincide.

Verification that 〈R0, . . . ,Rn〉 is a ring system around K : We need to prove that⋂
R0 = K , which is done as follows:
a ∈ K iff a ∈ �p�
iff p(a) ≈ 1
iff

∑{p(&X) | X ∈ ‖a‖} ≈ 1
iff

∑{p(&X) | X ∈ ‖a‖ ∩ R0} ≈ 1
A finite number of infinitesimal terms excluded, namely all p(&X) with

X ∈ ‖a‖ \ R0
iff

∑{p(&X) | X ∈ ‖a‖ ∩ R0} ≈ ∑{p(&X) | X ∈ R}
iff

∑{p(&X) | X ∈ ‖a‖ ∩ R0} ≈ ∑{p(&X) | X ∈ R0}
R \ R0 is finite and the conjunctions of its elements all have infinitesimal

probabilities
iff

∑{p(&X) | X ∈ R0 \ ‖a‖} ≈ 0
iff R0 \ ‖a‖ = ∅ 0 � p(&X) for all X ∈ R0

123



A Basis for AGM Revision in Bayesian Probability Revision 1549

iff R0 ⊆ ‖a‖
iff a ∈ ⋂

R0
Verification that ∗ and ∗̄ coincide: If p(a) = 0, then:
d ∈ K ∗ a
iff d ∈ �p ★ δa� Definition 2
iff d ∈ �p� Definition 1
iff d ∈ K
iff d ∈ K ∗̄a Definition 5, clause 1, ¬a ∈ ⋂

(R0 ∪ · · · ∪ Rn) since p(a) = 0
If p(a) = 1, then we obtain K ∗ a = K in the same way as in the previous case.

It follows from p(a) = 1 that R ⊆ ‖a‖, thus ‖a‖ ∩ R(a) = ‖a‖ ∩ R0 = R0, and
it follows from Definition 5, clause 2, that K ∗̄a = ⋂

R0, thus K ∗̄a = K . Hence,
K ∗ a = K ∗̄a.

In the main case, 0 �= p(a) �= 1, we proceed as follows:
d ∈ K ∗ a
iff d ∈ �p ★ δa� Definition 2
iff (((p ★ δa)))(d) ≈ 1

iff
p(a&d)

p(a)
≈ 1 Definition 1, excluding two infinitesimal terms

iff

∑{p(&X) | X ∈ ‖a&d‖}
∑{p(&X) | X ∈ ‖a‖} ≈ 1

iff

∑{p(&X) | X ∈ ‖a&d‖ ∩ R(a)} + ∑{p(&X) | X ∈ ‖a&d‖ \ R(a)}
∑{p(&X) | X ∈ ‖a‖ ∩ R(a)} + ∑{p(&X) | X ∈ ‖a‖ \ R(a)} ≈ 1

iff

∑{p(&X)/p(a) | X ∈‖a&d‖∩R(a)}+∑{p(&X)/p(a) | X ∈‖a&d‖\R(a)}
∑{p(&X)/p(a) | X ∈‖a‖ ∩ R(a)}+∑{p(&X)/p(a) | X ∈‖a‖\R(a)} ≈ 1

Due to the construction of 〈R0, . . . ,Rn〉 for this proof, 0 � ∑{p(&X)/p(a) |
X ∈ ‖a‖∩R(a)}, whereas∑{p(&X)/p(a) | X ∈ ‖a‖\R(a)} ≈ 0 and consequently∑{p(&X)/p(a) | X ∈ ‖a&d‖ \ R(a)} ≈ 0. We can therefore delete the latter two
parts of the expression, without affecting the standard part of the ratio:

iff

∑{p(&X)/p(a) | X ∈ ‖a&d‖ ∩ R(a)}
∑{p(&X)/p(a) | X ∈ ‖a‖ ∩ R(a)} ≈ 1 Equation (3)

{p(&X)/p(a) | X ∈ ‖a&d‖∩R(a)} is a subset of {p(&X)/p(a) | X ∈ ‖a‖∩R(a)},
and all the elements of the latter set are positive numbers with a non-zero standard
part. Thus Equation 3 holds if and only if:

iff ‖a&d‖ ∩ R(a) = ‖a‖ ∩ R(a)

iff d ∈ ⋂
(‖a‖ ∩ R(a))

iff d ∈ K ∗̄a Definition 5, clause 2
PART II: FROM RING-BASED REVISION TO HYPERREAL BAYESIAN TOP

REVISION
Construction: Let ∗̄ be the ring-based revision on K that is based on the ring system

〈R0, . . . ,Rn〉. (Then K = ⋂
R0.) For each kwith 0 < k ≤ n, let εk be an infinitesimal

of the kth order. Let p be a probability function such that for each X ∈ L⊥⊥:

(1) If X /∈ R0 ∪ · · · ∪ Rn , then p(&X) = 0

(2) If X ∈ Rk and 0 < k, then p(&X) = εk

numb(Rk)

123



1550 S.O. Hansson

(3) If X ∈ R0, then p(&X) = 1 − ∑{εk | 0 < k ≤ n}
numb(R0)

Let ★ be the hyperreal Bayesian revision that is based on p according to
Definition 1, and let ∗ be the hyperreal Bayesian top revision on K that is based
on ★ according to Definition 2. We are going to show that ∗ coincides with ∗̄. There
are four cases.

Verification for p(a) = 0:
d ∈ K ∗ a iff d ∈ �p ★ δa� Definition 2
iff (((p ★ δa)))(d) ≈ 1
iff p(d) ≈ 1 Definition 1, case 1
iff d ∈ �p�
iff d ∈ K Definition 2
iff d ∈ K ∗̄a Definition 5, clause 1
Verification for p(a) = 1: We obtain K ∗ a = K in the same way as in the previous

case. It follows from p(a) = 1 and our construction of p thatR0∪· · ·∪Rn ⊆ ‖a‖, thus
‖a‖ ∩ R(a) = R0. It follows from Definition 5, clause 2, that K ∗̄a = ⋂

R0 = K ,
thus K ∗ a = K ∗̄a.

Verification for 0 � p(a) < 1:
d ∈ K ∗ a iff d ∈ �p ★ δa� Definition 2
iff (((p ★ δa)))(d) ≈ 1

iff
p(a&d)

p(a)
≈ 1 Definition 1, two infinitesimal terms removed

iff p(a&d) ≈ p(a) Since 0 � p(a)

iff ‖a&d‖ ∩ R0 = ‖a‖ ∩ R0 Construction of p
iff d ∈ ⋂

(‖a‖ ∩ R0)

iff d ∈ K ∗̄a Definition 5, clause 2
Verification for 0 < p(a) ≈ 0: We assume that R(a) = Rk . Then εk is the

infinitesimal of the kth order introduced in the construction for this part of the proof.

d ∈ K ∗ a iff
p(a&d)

p(a)
≈ 1 As in the previous case

iff
p(a&d)

∑{p(&X) | X ∈ ‖a‖ ∩ R(a)} + ∑{p(&X) | X ∈ ‖a‖ \ R(a)} ≈ 1

iff
p(a&d)

εk × numb(‖a‖ ∩ R(a))

numb(R(a))
+ ∑{p(&X) | X ∈ ‖a‖ \ R(a)}

≈ 1

iff
p(a&d)/εk

numb(‖a‖ ∩ R(a))

numb(R(a))
+

∑{p(&X) | X ∈ ‖a‖ \ R(a)}
εk

≈ 1

iff
p(a&d)/εk

numb(‖a‖ ∩ R(a))

numb(R(a))

≈1 Infinitesimal term after positive real-valued term deleted

iff

∑{p(&X) | X ∈ ‖a&d‖ ∩ R(a)}
εk

+
∑{p(&X) | X ∈ ‖a&d‖ \ R(a)}

εk
numb(‖a‖ ∩ R(a))

numb(R(a))

≈ 1
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iff

1

εk
× ∑{p(&X) | X ∈ ‖a&d‖ ∩ R(a)}

numb(‖a‖ ∩ R(a))

numb(R(a))

≈ 1

Infinitesimal term removed, the denominator is positive real-valued

iff

1

εk
× εk × numb(‖a&d‖ ∩ R(a))

numb(R(a))

numb(‖a‖ ∩ R(a))

numb(R(a))

≈ 1

iff numb(‖a&d‖ ∩ R(a)) = numb(‖a‖ ∩ R(a))

iff d ∈ ⋂
(‖a‖ ∩ R(a))

iff d ∈ K ∗̄a Definition 5, clause 2
PART III: FROM RING-BASED REVISION TO AXIOMS
Let K be a belief set and 〈R0, . . . ,Rn〉 a ring system according to Definition 3

with K = ⋂
R0, and let ∗ be the revision on K based on that ring system according

to Definition 5.
Closure, K ∗ a = Cn(K ∗ a): Directly from Definition 5.
Relative success, Either a ∈ K ∗ a or K ∗ a = K : Directly from Definition 5.
Strong regularity, If ¬b /∈ K ∗ a, then b ∈ K ∗ b: If ¬b /∈ K ∗ a, then there is some

X ∈ R0 ∪ · · · ∪ Rn such that ¬b /∈ X . It follows from Definition 5 that b ∈ K ∗ b.
Inclusion, K ∗ a ⊆ Cn(K ∪ {a}):
Case 1, a /∈ K ∗ a: Clause (1) of Definition 5 yields K ∗ a = K ⊆ Cn(K ∪ {a}).
Case 2, a ∈ K ∗ a and K � ¬a : Then R(a) = R0. Thus:
K ∗ a = ⋂

(‖a‖ ∩ R0) Definition 5, clause 2
= ⋂{X ∈ L⊥⊥ | a ∈ X and K ⊆ X} K = ⋂

R0

= ⋂{X ∈ L⊥⊥ | Cn(K ∪ {a}) ⊆ X}
= Cn(K ∪ {a})
Case 3, a ∈ K ∗ a and K � ¬a: Then Cn(K ∪ {a}) = Cn({⊥}), thus K ∗ a ⊆

Cn(K ∪ {a}).
Strong consistency, K ∗ a � ⊥: Directly from Definition 5.
Extensionality: If � a1 ↔ a2, then K ∗ a1 = K ∗ a2: Directly from Definition 5.
Vacuity, If ¬a /∈ K, then Cn(K ∪ {a}) ⊆ K ∗ a:
¬a /∈ K
‖a‖ ∩ R0 �= ∅ K = ⋂

R0
K ∗ a = ⋂

(‖a‖ ∩ R0) Definition 5, clause 2
K ∗ a = ⋂{X ∈ L⊥⊥ | K ∪ {a} ⊆ X} K = ⋂

R0
K ∗ a = Cn(K ∪ {a})
Disjunctive factoring, K ∗ (a ∨ b) is either K ∗ a, K ∗ b, or (K ∗ a) ∩ (K ∗ b): Let

R = R0 ∪ · · · ∪ Rn .
Case 1, ¬a ∈ ⋂

R and ¬b ∈ ⋂
R: Then ¬(a ∨ b) ∈ ⋂

R, and if follows from
clause (1) of Definition 5 that K ∗ (a ∨ b) = K ∗ a = K ∗ b = K .

Case 2, ¬a ∈ ⋂
R and ¬b /∈ ⋂

R: Then it holds for all X ∈ R that (a ∨ b) ∈ X
if and only if b ∈ X , and it follows from Definition 5 that K ∗ (a ∨ b) = K ∗ b.
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Case 3, ¬a /∈ ⋂
R, ¬b /∈ ⋂

R, and R(a) precedes R(b) in the sequence: Then
R(a) = R(a ∨ b), and since ¬b ∈ ⋂

R(a) we have: K ∗ a = ⋂
(‖a‖ ∩ R(a)) =⋂

(‖a ∨ b‖ ∩ R(a)) = ⋂
(‖a ∨ b‖ ∩ R(a ∨ b)) = K ∗ (a ∨ b).

Case4,¬a /∈ ⋂
R,¬b /∈ ⋂

R, andR(a) = R(b): ThenR(a∨b) = R(a) = R(b),
and:

K ∗ (a ∨ b) = ⋂
(‖a ∨ b‖ ∩ R(a ∨ b))

= ⋂
((‖a‖ ∪ ‖b‖) ∩ R(a ∨ b))

= ⋂
((‖a‖ ∩ R(a ∨ b)) ∪ (‖b‖ ∩ R(a ∨ b)))

= ⋂
(‖a‖ ∩ R(a ∨ b)) ∩ ⋂

(‖b‖ ∩ R(a ∨ b))
= ⋂

(‖a‖ ∩ R(a)) ∩ ⋂
(‖b‖ ∩ R(b))

= (K ∗ a) ∩ (K ∗ b)
PART IV: FROM AXIOMS TO RING-BASED REVISION
Part IV.1, construction:
Let ∗ be a sentential operation on the consistent belief set K that satisfies the axioms.

Let
R = {X ∈ L⊥⊥ | &X ∈ K ∗ &X}
Let � (with the strict part �) be the relation on R such that:
X1 � X2 if and only if K ∗ (&X1 ∨ &X2) ⊆ K ∗ X1
Part IV.2, proof that � is complete and transitive:
That� is complete follows directly from disjunctive factoring. We proceed to show

that it is transitive. Let X1 � X2 and X2 � X3. Then K ∗ (&X1 ∨&X2) ⊆ K ∗&X1
and K ∗ (&X2 ∨ &X3) ⊆ K ∗ &X2. It follows from disjunctive factoring that either
K∗(&X1∨&X2∨&X3) ⊆ K∗&X1 or K∗(&X1∨&X2∨&X3) ⊆ K∗(&X2∨&X3).11

Due to our assumption K ∗ (&X2 ∨&X3) ⊆ K ∗&X2, K ∗ (&X1 ∨&X2 ∨&X3) is
either a subset of K ∗&X1 or a subset of K ∗&X2. Due to closure, strong consistency
and Lemma 7, we have K ∗&X1 = X1, K ∗&X2 = X2 and K ∗&X3 = X3, and since
X1, X2, X3 ∈ L⊥⊥, we can conclude that K ∗ (&X1 ∨ &X2 ∨ &X3) �= K ∗ &X3.

It follows from disjunctive factoring and K ∗(&X1∨&X2∨&X3) �= K ∗&X3 that
K ∗ (&X1 ∨&X2 ∨&X3) ⊆ K ∗ (&X1 ∨&X2). Due to our assumption K ∗ (&X1 ∨
&X2) ⊆ K ∗ &X1, we can conclude that K ∗ (&X1 ∨ &X2 ∨ &X3) ⊆ K ∗ &X1.

Next we note that due to disjunctive factoring and extensionality, one of the fol-
lowing three conditions must hold:

(1) K ∗ (&X1 ∨ &X2 ∨ &X3) = K ∗ &X2
(2) K ∗ (&X1 ∨ &X2 ∨ &X3) = K ∗ (&X1 ∨ &X3)

(3) K ∗ (&X1 ∨ &X2 ∨ &X3) = (K ∗ (&X1 ∨ &X3)) ∩ (K ∗ &X2)

Case (1): Since K ∗ (&X1 ∨ &X2 ∨ &X3) ⊆ K ∗ &X1 = X1, K ∗ &X2 = X2 and
X1, X2 ∈ L⊥⊥, this case is impossible.

Case (2): Since K ∗(&X1∨&X2∨&X3) ⊆ K ∗&X1,we obtain K ∗(&X1∨&X3) ⊆
K ∗ &X1, i.e. X1 � X3.

Case (3): Suppose for reductio that K ∗ (&X1 ∨ &X3) = K ∗ &X3. Then:

11 Depending onwhether K ∗(&X1∨&X2∨&X3) is constructed as an abbreviation of K ∗(&X1∨(&X2∨
&X3))or of K∗((&X1∨&X2)∨&X3), extensionality is involved eitherwhenweusedisjunctive factoring to
conclude that K∗(&X1∨&X2∨&X3) is either K∗&X1, K∗(&X2∨&X3)or (K∗&X1)∩K∗(&X2∨&X3)

or when we use it to conclude that K ∗ (&X1 ∨ &X2 ∨ &X3) is either K ∗ (&X1 ∨ &X2), K ∗ &X3, or
K ∗ (&X1 ∨ &X2) ∩ (K ∗ &X3).
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K ∗ (&X1 ∨ &X2 ∨ &X3) = (K ∗ &X3) ∩ (K ∗ &X2)

(K ∗&X3)∩ (K ∗&X2) ⊆ K ∗&X1 Since K ∗ (&X1 ∨&X2 ∨&X3) ⊆ K ∗&X1
X3 ∩ X2 ⊆ X1 Closure, strong consistency and Lemma 7
¬&X1 ∈ X1, Since ¬&X1 ∈ X3 and ¬&X1 ∈ X2

which is impossible. Thus K ∗ (&X1 ∨ &X3) �= K ∗ &X3, and it follows from
disjunctive factoring that K ∗ (&X1 ∨ &X3) ⊆ K ∗ &X1, i.e. X1 � X3.

This concludes the proof that � is transitive.
Part IV.3, the construction continued:
Since � is transitive and complete, we can divide R into �-equivalence classes,
arranged in a sequence 〈R0, . . . ,Rv〉, such that if 0 ≤ k ≤ v and 0 ≤ m ≤ v then
(1) Rk ∩ Rm = ∅ if Rk �= Rm , and (2) Rk � Rm if and only if k ≤ m. Let ∗̂ be the
ring-based operation based on 〈R0, . . . ,Rv〉 according to Definition 5. To complete
the proof we need to show that this is a ring system and that ∗̂ coincides with ∗, or
more precisely that K = ⋂

R0, and that K ∗̂a = K ∗ a for all a ∈ L.
Part IV.4, proof that K = ⋂

R0:
Step 1, proof that if K ⊆ X ∈ L⊥⊥, then X ∈ R: It follows from K ⊆ X ∈ L⊥⊥ that
¬&X /∈ K . Relative success, inclusion, vacuity, and Lemma 6 yield ¬&X /∈ K ∗ �,
strong regularity yields &X ∈ K ∗&X , and our construction ofR in part IV.1 of this
proof yields X ∈ R.

Step 2, proof that if X ,Y ∈ R and K ⊆ X, then X � Y :
K ∗ (&X ∨ &Y ) ⊆ Cn(K ∪ {&X ∨ &Y }) Inclusion
K ∗ (&X ∨ &Y ) ⊆ Cn(K ∪ {&X})
K ∗ (&X ∨ &Y ) ⊆ X Since K ⊆ X
K ∗ (&X ∨ &Y ) ⊆ K ∗ &X Closure, strong consistency, and Lemma 7
X � Y .
Step 3, proof that

⋂
R0 ⊆ K :

{X ∈ R | K ⊆ X} ⊆ R0 Step 2⋂
R0 ⊆ ⋂{X ∈ R | K ⊆ X}

⋂
R0 ⊆ ⋂{X ∈ L⊥⊥ | K ⊆ X} Step 1

⋂
R0 ⊆ K K = ⋂{X ∈ L⊥⊥ | K ⊆ X}

Step 4, proof that K ⊆ ⋂
R0:

We know from Steps 1 and 2 that there is a set {X1, . . . , Xn} ⊆ R0 such that
K = X1 ∩ · · · ∩ Xn . Due to closure, strong consistency, and Lemma 7, K = (K ∗
&X1)∩· · ·∩(K ∗&Xn). It follows from closure, strong consistency, strong regularity,
extensionality, disjunctive factoring and Lemma 8 that K = K ∗ (&X1 ∨ · · · ∨&Xn).
Suppose for contradiction that there is some Y ∈ R0 \ {X1, . . . , Xn}. It follows from
Lemmas 7 and 8 that K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y ) = X1 ∩ · · · ∩ Xn ∩ Y . Thus,
K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y ) is a subset of K . Since it does not contain ¬&Y ,
which is an element of K , we also have K � K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y ). Due
to relative success, vacuity and Lemma 5, consistent expansion holds, and therefore
K ∪ (K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y )) � ⊥, which is impossible since K is consistent
and K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y ) is a subset of K . We can conclude from this
contradiction that R0 \ {X1, . . . , Xn} is empty, thus:

R0 ⊆ {X1, . . . , Xn}⋂{X1, . . . , Xn} ⊆ ⋂
R0
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K ⊆ ⋂
R0

Part IV.5, proof of the identity of ∗̂ and ∗:
In the limiting case when a /∈ K ∗ a, it follows from relative success that K ∗ a = K .
Suppose that there is some X ∈ R with a ∈ X . Due to the construction of R in Part
IV.1,&X ∈ K ∗&X . Due to closure, strong consistency and Lemma 7, X = K ∗&X .
Thus¬a /∈ K ∗&X , and strong regularity yields a ∈ K ∗a, contrary to our assumption
for this case. Thus there is no X ∈ R with a ∈ X , thus ¬a ∈ ⋂

(R0 ∪ · · · ∪ Rv). It
follows from clause 1 of Definition 5 that K ∗̂a = K , i.e. K ∗̂a = K ∗ a.

The proof of the main case, a ∈ K ∗ a, is divided into three steps.
Part IV.5.1, first step:
It follows from closure and strong consistency that K ∗ a = ⋂{X ∈ L⊥⊥ | K ∗ a ⊆
X}. It holds for each element X of {X ∈ L⊥a | K ∗ a ⊆ X} that ¬&X /∈ K ∗ a, and
it follows from strong regularity that &X ∈ K ∗ &X , thus X ∈ R. We can conclude
that K ∗ a = ⋂{X ∈ R | K ∗ a ⊆ X}. Let {X ∈ R | K ∗ a ⊆ X} = {X1, . . . , Xn}.

Due to a ∈ K ∗ a and strong consistency, a is a consistent element of L. There
is therefore a subset {Z1, . . . , Zm} of L⊥⊥, such that � a ↔ &(Z1 ∩ · · · ∩ Zm), or
equivalently, � a ↔ (&Z1 ∨· · ·∨&Zm). Due to extensionality, K ∗a = K ∗ (&Z1 ∨
· · · ∨ &Zm).

Next, suppose that {X1, . . . , Xn} � {Z1, . . . , Zm}. More specifically, let Xn /∈
{Z1, . . . Zm}. It follows from a ∈ K ∗ a, extensionality and closure that (&Z1 ∨ · · · ∨
&Zm) ∈ K ∗ (&Z1 ∨ · · · ∨ &Zm). Since each element of {&Z1, . . . ,&Zm} implies
¬&Xn , so does&Z1∨· · ·∨&Zm , and due to closure,¬&Xn ∈ K ∗(&Z1∨· · ·∨&Zm).
However, ¬&Xn /∈ X1 ∩ · · · ∩ Xn . We can conclude from this contradiction that
{X1, . . . , Xn} ⊆ {Z1, . . . , Zm}.

In summary, we have found that there are Z1, . . . , Zm ∈ L⊥⊥ and X1, . . . , Xn ∈
R such that � a ↔ (&Z1 ∨· · ·∨&Zm), {X1, . . . , Xn} ⊆ {Z1, . . . , Zm}, and K ∗a =
K ∗ (&Z1 ∨ · · · ∨ &Zm) = X1 ∩ · · · ∩ Xn .
Part IV.5.2, second step:
In this step, we are going to show that all elements of {X1, . . . , Xn} belong to the
same �-equivalence class. The proof is divided into two cases, depending on whether
{X1, . . . , Xn} is identical to, or a proper subset of, {Z1, . . . , Zm}.
Part IV.5.2.1, first case of the second step, {X1, . . . , Xn} = {Z1, . . . , Zm}:
In this case, K ∗ (&X1 ∨ · · · ∨ &Xn) = X1 ∩ · · · ∩ Xn . If n = 1, we are finished. If
n = 2, we use closure, strong consistency and Lemma 7 to obtain X1 = K ∗&X1 and
X2 = K ∗&X2. It follows that K ∗(&X1∨&X2) ⊆ K ∗&X1 and K ∗(&X1∨&X2) ⊆
K ∗ &X2, i.e. X1 � X2 � X1.

For n > 2, suppose for contradiction that X2 �� X1. Then K ∗ (&X1 ∨ &X2) �

K ∗ &X2, and conjunctive factoring yields K ∗ (&X1 ∨ &X2) = K ∗ &X1. Another
application of conjunctive factoring shows that one of the following three conditions
holds:

(1) K ∗ (&X1 ∨ · · · ∨ &Xn) = K ∗ (&X1 ∨ &X2) = K ∗ &X1
(2) K ∗ (&X1 ∨ · · · ∨ &Xn) = K ∗ (&X3 ∨ · · · ∨ &Xn)

(3) K ∗ (&X1 ∨ · · · ∨&Xn) = (K ∗ (&X1 ∨&X2)) ∩ (K ∗ (&X3 ∨ · · · ∨&Xn)) =
(K&X1) ∩ (K ∗ (&X3 ∨ · · · ∨ &Xn))
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Due to closure, strong consistency, and Lemma 7, ¬&X2 ∈ K ∗&X1. It follows from
&X3 ∈ K ∗ &X3 and strong consistency that ¬(&X3 ∨ · · · ∨ &Xn) /∈ K ∗ &X3.
Strong regularity yields (&X3 ∨ · · · ∨ &Xn) ∈ K ∗ (&X3 ∨ · · · ∨ &Xn), thus due to
closure, ¬&X2 ∈ K ∗ (&X3 ∨ · · · ∨ &Xn). It follows from ¬&X2 ∈ K ∗ &X1 and
¬&X2 ∈ K ∗ (&X3 ∨ · · · ∨ &Xn) that in all three cases (1), (2), and (3), ¬&X2 ∈
K∗(&X1∨· · ·∨&Xn).However, it follows from K∗(&X1∨· · ·∨&Xn) = X1∩· · ·∩Xn

that ¬&X2 /∈ K ∗ (&X1 ∨ · · · ∨&Xn). We can conclude from this contradiction that
X2 � X1.
Part IV.5.2.2, second case of the second step, {X1, . . . , Xn} ⊂ {Z1, . . . , Zm}:
Let {Z1, . . . , Zm} \ {X1, . . . , Xn} = {Y1, . . . ,Yk}. Leaving out the trivial subcase
n = 1, we have two subcases to treat.

Subcase 1, n = 2: We have K ∗ (&X1 ∨ &X2 ∨ &Y1 ∨ · · · ∨ &Yk) = X1 ∩ X2.
Suppose for contradiction that X1 �� X2, i.e. K∗(&X1∨&X2) � K∗&X1.Disjunctive
factoring yields K ∗ (&X1 ∨ &X2) = K ∗ &X2.

Noting that due to extensionality, K ∗ (&X1 ∨ &X2 ∨ &Y1 ∨ · · · ∨ &Yk) = K ∗
((&X1 ∨&X2) ∨ (&X2 ∨&Y1 ∨ · · · ∨&Yk)), we can use extensionality, disjunctive
factoring, and Lemma 7 to conclude that one of the following three conditions holds:

(1) K ∗ (&X1 ∨ &X2 ∨ &Y1 ∨ · · · ∨ &Yk) = K ∗ (&X1 ∨ &X2) = K ∗ &X2 = X2
(2) K ∗ (&X1 ∨ &X2 ∨ &Y1 ∨ · · · ∨ &Yk) = K ∗ (&X2 ∨ &Y1 ∨ · · · ∨ &Yk)
(3) K ∗ (&X1 ∨ &X2 ∨ &Y1 ∨ · · · ∨ &Yk) = (K ∗ (&X1 ∨ &X2)) ∩ (K ∗ (&X2 ∨

&Y1 ∨ · · · ∨ &Yk)) = X2 ∩ (K ∗ (&X2 ∨ &Y1 ∨ · · · ∨ &Yk))

It follows from &X2 ∈ K ∗ &X2 and strong consistency that ¬(&X2 ∨ &Y1 ∨ · · · ∨
&Yk) /∈ K ∗ &X2, thus due to strong regularity, (&X2 ∨ &Y1 ∨ · · · ∨ &Yk) ∈
K ∗(&X2∨&Y1∨· · ·∨&Yk). Due to closure and (&X2∨&Y1∨· · ·∨&Yk) � ¬&X1,
it follows that ¬&X1 ∈ K ∗ (&X2 ∨ &Y1 ∨ · · · ∨ &Yk).

In each of the three cases (1), (2), and (3), it follows from¬&X1 ∈ X2 and¬&X1 ∈
K ∗ (&X2 ∨&Y1 ∨ · · · ∨&Yk) that ¬&X1 ∈ K ∗ (&X1 ∨&X2 ∨&Y1 ∨ · · · ∨&Yk),
contrary to K ∗ (&X1 ∨&X2 ∨&Y1 ∨ · · · ∨&Yk) = X1 ∩ X2. We can conclude from
this contradiction that X1 � X2.

Subcase 2, n > 2:Wehave K∗(&X1∨· · ·∨&Xn∨&Y1∨· · ·∨&Yk) = X1∩· · ·∩Xn .
Suppose for contradiction that X1 �� X2. Just as in the previous case, it follows that
K ∗ (&X1 ∨ &X2) = K ∗ &X2. Due to disjunctive factoring and Lemma 7, one of
the following three conditions holds:

(1) K ∗(&X1∨· · ·∨&Xn∨&Y1∨· · ·∨&Yk) = K ∗(&X1∨&X2) = K ∗&X2 = X2
(2) K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk) = K ∗ (&X3 ∨ · · · ∨&Xn ∨&Y1 ∨

· · · ∨ &Yk)
(3) K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk) = K ∗ (&X1 ∨&X2) ∩ K ∗ (&X3 ∨

· · ·∨&Xn ∨&Y1∨· · ·∨&Yk) = X2∩K ∗ (&X3∨· · ·∨&Xn ∨&Y1∨· · ·∨&Yk)

It follows from &X3 ∈ K ∗ &X3 and strong consistency that ¬(&X3 ∨ · · · ∨ &Xn ∨
&Y1 ∨ · · · ∨ &Yk) /∈ K ∗ &X3, and strong regularity yields (&X3 ∨ · · · ∨ &Xn ∨
&Y1 ∨ · · · ∨ &Yk) ∈ K ∗ (&X3 ∨ · · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk). Due to closure
and (&X3 ∨ · · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk) � ¬&X1, it follows that ¬&X1 ∈
K ∗ (&X3 ∨ · · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk).

In each of the three cases (1), (2), and (3), it follows from¬&X1 ∈ X2 and¬&X1 ∈
K ∗(&X3∨· · ·∨&Xn∨&Y1∨· · ·∨&Yk) that¬&X1 ∈ K ∗(&X1∨· · ·∨&Xn∨&Y1∨
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· · · ∨&Yk), contrary to K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk) = X1 ∩ · · · ∩ Xn .
We can conclude from this contradiction that X1 � X2.
Part IV.5.3, third and final step:
We have shown that for each sentence a ∈ L, there are X1, . . . , Xn ∈ Rt for some
�-equivalence classRt , such that either (1) � a ↔ (&X1 ∨ · · · ∨&Xn) and K ∗ a =
K ∗ (&X1 ∨ · · · ∨ &Xn) = X1 ∩ · · · ∩ Xn , or (2) there are Y1, . . . , Yk ∈ L⊥⊥ such
that � a ↔ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk), and K ∗ a = K ∗ (&X1 ∨ · · · ∨
&Xn ∨ &Y1 ∨ · · · ∨ &Yk) = X1 ∩ · · · ∩ Xn . We are now going to show that in the
latter case, it holds for all X ′ ∈ {X1, . . . , Xn} and Y ′ ∈ {Y1, . . . ,Yk} Y ′ �� X ′. There
are three cases.

Case 1, n = k = 1: Then K ∗ (&X1 ∨ &Y1) = X1. Suppose that Y1 � X1. Since
� is a relation on R (cf. Part IV.1 above), it follows that &Y1 ∈ K ∗ &Y1. Due to
closure, strong consistency and Lemma 7, K ∗ &Y1 = Y1. It therefore follows from
Y1 � X1, i.e. K ∗ (&X1 ∨&Y1) ⊆ K ∗&Y1, that X1 ⊆ Y1, which is impossible since
X1 �= Y1 and X1,Y1 ∈ L⊥⊥. We can conclude that Y1 �� X1.

Case 2, n = 1 and k > 1: Then K ∗ (&X1 ∨ &Y1 ∨ · · · ∨ &Yk) = X1. First let
K ∗ (&X1 ∨ &Y1 ∨ · · · ∨ &Yk) ⊆ K ∗ (&Y2 ∨ · · · ∨ &Yk). Due to relative success,
either (&Y2 ∨ · · · ∨&Yk) ∈ K ∗ (&Y2 ∨ · · · ∨&Yk) or K ∗ (&Y2 ∨ · · · ∨&Yk) = K .
In the former case, it follows from closure and &Y2 ∨ · · · ∨ &Yk � ¬&X1 that
¬&X1 ∈ K ∗(&Y2∨· · ·∨&Yk), contrary to strong consistency and X1 = K ∗(&X1∨
&Y1 ∨ · · · ∨ &Yk) ⊆ K ∗ (&Y2 ∨ · · · ∨ &Yk). Thus, K ∗ (&Y2 ∨ · · · ∨ &Yk) = K ,
thus X1 ⊆ K , thus R0 = {X1} and Y1 �� X1.

Next, let K∗(&X1∨&Y1∨· · ·∨&Yk) � K∗(&Y2∨· · ·∨&Yk).Disjunctive factoring
yields K ∗(&X1∨&Y1∨· · ·∨&Yk) = K ∗(&X1∨&Y1), thus K ∗(&X1∨&Y1) = X1,
thus due to Lemma 7, K ∗ (&X1 ∨ &Y1) � K ∗ &Y1, thus Y1 �� X1.

Case 3, n > 1: Then K ∗ (&X1 ∨ · · ·∨&Xn ∨&Y1 ∨ · · ·∨&Yk) = X1 ∩ · · · ∩ Xn .
Due to extensionality and disjunctive factoring, one of the following conditions holds:

(1) K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk) = K ∗ (&X1 ∨ &Y1)
(2) K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk) = K ∗ (&X2 ∨ · · · ∨&Xn ∨&Y1 ∨

· · · ∨ &Yk)
(3) K ∗ (&X1∨· · ·∨&Xn ∨&Y1∨· · ·∨&Yk) = (K ∗ (&X1∨&Y1))∩ (K ∗ (&X2 ∨

· · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk))

In (1) we note that ¬(&X1 ∨&Y1) /∈ K ∗&X1 due to strong consistency and &X1 ∈
K ∗&X1. It follows from strong regularity that&X1 ∨&Y1 ∈ K ∗ (&X1 ∨&Y1). Due
to closure and&X1 ∨&Y1 � ¬&X2 we obtain ¬&X2 ∈ K ∗ (&X1 ∨&Y1), which is
impossible since K ∗ (&X1 ∨ · · · ∨ &Xn ∨ &Y1 ∨ · · · ∨ &Yk) = X1 ∩ · · · ∩ Xn .

In (2), we similarly obtain ¬&X1 ∈ K ∗ (&X2 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk),
which is impossible since K ∗(&X1∨· · ·∨&Xn ∨&Y1∨· · ·∨&Yk) = X1∩· · ·∩Xn .
Thus this case must also be excluded.

In the remaining case (3), suppose for contradiction that Y1 � X1. Since � is a
relation on R, it follows that Y1 ∈ R and thus &Y1 ∈ K ∗ &Y1. Due to disjunctive
factoring and Y1 � X1, K ∗ (&X1∨&Y1) is equal to either (K ∗&X1)∩ (K ∗&Y1) or
K ∗&Y1. In both cases, it follows from (3) that¬&Y1 /∈ K ∗(&X1∨· · ·∨&Xn∨&Y1∨
· · · ∨&Yk), contrary to K ∗ (&X1 ∨ · · · ∨&Xn ∨&Y1 ∨ · · · ∨&Yk) = X1 ∩ · · · ∩ Xn .
It follows from this contradiction that Y1 �� X1. �
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PROOF OF OBSERVATION 2: Part 1, From construction to postulates. Let ∗ satisfy
the AGM postulates, and let ∗′ be the AGMC operation derived from it according to
Definition 6.

Closure of ∗′ follows from the closure property of ∗ when a � ⊥ and from the
logical closure of K when a � ⊥.

Consistent success of ∗′ follows from the success property of ∗.
Relative success of ∗′ follows from the success property of ∗.
Inclusion of ∗′ follows from the inclusion property of ∗ when a � ⊥. For a � ⊥,

we have K ∗′ a = K ⊆ Cn({⊥}) = Cn(K ∪ {a}).
Strong consistency of ∗′: If a � ⊥, then K ∗′ a � ⊥ follows from the consistency

property of ∗. Otherwise, it follows from the consistency of K .
Extensionality of ∗′: Let � a1 ↔ a2. If a1 � ⊥, then a2 � ⊥, and extensionality

of ∗′ follows from the extensionality property of ∗. If If a1 � ⊥, then a2 � ⊥, and
K ∗′ a1 = K = K ∗′ a2.

Vacuity of ∗′: Let¬a /∈ K . Since K is logically closed, a � ⊥, thus K ∗′ a = K ∗a,
and vacuity of ∗′ follows from the corresponding property of ∗.

Disjunctive factoring of ∗′: Case 1, a � ⊥ and b � ⊥: Then a ∨ b � ⊥, and
K ∗′ (a ∨ b) = K ∗′ a = K ∗′ b = K .

Case 2, a � ⊥ and b � ⊥: Then � a ∨ b ↔ b, and extensionality of ∗′, which was
proved above, yields K ∗′ (a ∨ b) = K ∗′ b.

Case 3, a � ⊥ and b � ⊥: Then a ∨ b � ⊥, and disjunctive factoring of ∗′ follows
from the corresponding property of ∗.

Part 2, from postulates to construction: Let ∗ be an operation on K that satisfies
the AGMC postulates. Let ∗̄ be the operation such that:

(a) If a � ⊥, then K ∗̄a = K ∗ a, and
(b) If a � ⊥, then K ∗̄a = Cn({⊥}),

It follows directly that ∗ is derivable from ∗̄ in the manner of Definition 6. It remains
to show that ∗̄ satisfies the AGM postulates.

Closure of ∗̄ follows from closure of ∗ if a � ⊥ and directly from clause (b) if
a � ⊥.

Success of ∗̄ follows from consistent success of ∗ if a � ⊥ and directly from clause
(b) if a � ⊥.

Inclusion of ∗̄ follows from inclusion of∗ ifa � ⊥. Ifa � ⊥, then K ∗̄a = Cn({⊥}) =
Cn(K ∪ {a}).

Vacuity: Let ¬a /∈ K . Since K is consistent, a � ⊥, and vacuity of ∗̄ follows from
the vacuity of ∗.

Consistency: Let a � ⊥. Then K ∗̄a = K ∗ a. Strong consistency of ∗ yields
K ∗ a � ⊥, thus K ∗̄a � ⊥.

Extensionality: Let � a1 ↔ a2. If a1 � ⊥, then a2 � ⊥, thus K ∗̄a1 = K ∗ a1 and
K ∗̄a2 = K ∗a2. The extensionality of ∗ yields K ∗a1 = K ∗a2, thus K ∗̄a1 = K ∗̄a2.
If a1 � ⊥, then a2 � ⊥, thus K ∗̄a1 = Cn({⊥}) = K ∗̄a2.

Conjunctive factoring: Case 1, a1 � ⊥ and a2 � ⊥. Then a1 ∨ a2 � ⊥, and
K ∗̄a1 = K ∗̄a2 = K ∗̄(a1 ∨ a2) = Cn({⊥}).

Case 2, a1 � ⊥ and a2 � ⊥. Then � a1 ∨ a2 ↔ a2. Extensionality of ∗ yields
K ∗ a2 = K ∗ (a1 ∨ a2), thus K ∗̄a2 = K ∗̄(a1 ∨ a2)
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Case 3, a1 � ⊥ and a2 � ⊥. Then a1∨a2 � ⊥, thus K ∗̄a1 = K ∗a1, K ∗̄a2 = K ∗a2
and K ∗̄(a1∨a2) = K ∗(a1∨a2).Conjunctive factoring for ∗̄ follows from conjunctive
factoring for ∗. �

PROOF OF OBSERVATION 3: From (1) to (2): Let a � ⊥. Consistent success
yields a ∈ K ∗ a, thus according to Definition 2, (((p ★ δa)))(a) ≈ 1, thus according
to Definition 1, p(a) �= 0.

From (2) to (1): Let a � ⊥. Then p(a) �= 0. If p(a) = 1, then it follows from the
first clause of Definition 1 that (((p ★ δa)))(a) = 1, If 0 �= p(a) �= 1, then it follows from
the second clause of the same definition that (((p ★ δa)))(a) ≈ 1. In both cases, it follows
from (((p ★ δa)))(a) ≈ 1 and Definition 2 that a ∈ K ∗ a.

From (1) to (3): With the exception of consistent success, all the axioms character-
izing an AGMC according to Observation 2 were shown in Theorem 1 to be satisfied
by hyperreal Bayesian top revisions.

From (3) to (1): According to Observation 2, AGMC revision satisfies consistent
success and seven of the eight axioms characterizing hyperreal Bayesian top revisions
according to Theorem 1. It remains to show that it satisfies the remaining of these
axioms, namely strong regularity. Let ∗ be an AGMC revision and let ¬b /∈ K ∗ a.
Due to closure, b � ⊥. It follows from consistent success that b ∈ K ∗ b. �
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