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Abstract
This paper focuses on the categoricity of arithmetic and determinacy of arithmetical
truth. Several ‘internal’ categoricity results have been discussed in the recent literature.
Against the background of the philosophical position called internalism, we propose
and investigate truth-theoretic versions of internal categoricity based on a primitive
truth predicate. We argue for the compatibility of a primitive truth predicate with
internalism and provide a novel argument for (and proof of) a truth-theoretic version
of internal categoricity and internal determinacy with some positive properties.

Keywords Categoricity · Internalism · Axiomatic truth · Intolerance · Determinacy

1 Introduction

Philosophers of mathematics often have strong intuitions about arithmetic: arithmetic
is usually accepted to be about a particular subject matter, the natural numbers. One
usually speaks of the natural numbers indicating, informally, a certain uniqueness.
Additionally, in most cases, arithmetical truth is accepted as determinate (at least) in
the following sense: for any arithmetical statement, ϕ, either ϕ is true or its negation
is. Dedekind’s categoricity theorem for arithmetic has been employed as evidence
to support the intuition of uniqueness. According to a model-theoretic, ‘external’
reading,1 the categoricity theoremshows that all fullmodels of second-order arithmetic
are isomorphic.

1 Although the external reading of Dedekind’s theorem is the most frequent, there are alternative readings
as explained in [19, Section 1, p.7].
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Recently, an alternative approach to the questions of uniqueness and determinacy
gained some attention. This approach focuses on so-called ‘internal’ versions of cat-
egoricity by avoiding model-theoretic notions. This internal approach promises to
provide a new, interesting route to answer the philosophical questions of the unique-
ness of the natural numbers and of determinacy of truth. The two main approaches
for our discussion are given in [22] as well as [23] and more recently in [4]. Parsons’
approach to internal categoricity is based on an open-ended conception of arithmetic
and employs first-order arithmetical theories only.On the other hand,Button andWalsh
prefer a second-order version based on pure second-order logic. Both of these variants
have complications: whereas the first-order approach lacks expressive resources, the
presuppositions of the second-order approach are unreasonably excessive.

Our purpose in this paper is to provide an improved version of internal categoricity
arguments incorporating a primitive notion of truth. The main application will be on
questions of determinacy as discussed by Parsons, and thereforewe focus on first-order
approaches. The main objective of our approach is to overcome some of the problem-
atic issues of the first-order, Parsons-style approach. Additionally, we will argue that
our version of internal categoricity circumvents some difficulties with respect to the
second-order approach. The novelty of our approach lies in the introduction of a prim-
itive truth predicate. In our truth-theoretic approach, the primitive, axiomatic notion of
truth is going to expand the expressive resources given by first-order means, allowing
to recover part of the second-order resources in a first-order setting.

The paper is structured as follows: Section 2 is divided into two parts: the first part
introduces internalism, and in particular, it focuses on Parsons internalist position and
strategy. The second part surveys two versions of internal categoricity (relevant for
our investigation) and discusses their virtues and drawbacks: a version in pure second-
order logic and a version over a first-order arithmetical theory. Section3 discusses
the issue of uniqueness and determinacy of arithmetic within the context of Parsons’
strategy. In particular, it focuses on the role played by both first and second-order
approaches for the question of uniqueness and determinacy. In Section 4, we propose
our approach to (and argument for) the internal categoricity of arithmetic and the
determinacy of arithmetical truth. Our strategy is to adopt an axiomatic theory of truth.
Section4 aims to circumvent the drawbacks of the first-order approach (discussed in
Sections 2 and 3). We do so by providing several truth-theoretic results (these are
going to be our Propositions 1, 2 and 3). In the remainder of this article, we evaluate
and discuss our results and address some possible questions and worries.

2 Internalism and Categoricity

Internalist approaches to categoricity aim to avoid themodel-theoretic notions involved
in the external formulation ofDedekind’sTheorem.When focusing on the case of arith-
metic, internalist approaches try to avoid the problem of capturing the ‘full’ models
by not talking about models at all and try to capture the relevant form of uniqueness
in a formal framework internally.

Internalist approaches avoid the notion of a model altogether because, despite the
external reading’s apparent attractiveness, its applicability to support the uniqueness
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thesis has been criticised by several authors for different reasons.2 To circumvent some
of the putative issues with external approaches to categoricity, philosophers have been
proposing alternative, ‘internal’ versions of Dedekind’s theorem. Although a clear
and uniform demarcation of ‘the’ internalist position has not been provided yet, the
distinction between ‘internal’ and ‘external’ approaches has some characteristic fea-
tures.3 Although internalist ideas are present already in works by Putnam and Parsons,
the terminology has only been recently introduced in the discussion of internal cate-
goricity theorems.4 For our investigation, it is sufficient to present the core internalist
tenet: the rejection of meta-theoretical, semantic notions, and importantly, the notions
of a model and satisfaction, to understand the notion of structure.

Button and Walsh formulate the position of ‘internalism’, in contrast to what they
call a ‘modelist’ position that uses model-theory to explicate structures. They sum-
marise their internalist positionwith the slogan ‘metamathematics without semantics!’
[4, p. 227]. Therefore, internalism gives precedence to deductivemethods:metamathe-
matics ‘should be undertakenwithin the logical framework of [the] very theories under
investigation’. Button and Walsh carry out their proposal within the formal proof sys-
tem of second-order logic, also called CA (to be introduced in Section 2.1).5 Their
internalism includes the rejection of semantic ascent in the form of a ‘language-object
satisfaction relation’ [4, p. 226].

Parsons’ approach shares some basic tenets, such as the rejection ofmodel-theoretic
tools in foundational investigations of arithmetic. This is motivated by the conviction
that ‘the idea of the natural numbers is more elementary than that of set’ [23, p. 274].
Parsons aims to clarify the uniqueness claim for the natural numbers in the setting
of communication:6 he considers two mathematicians, Kurt and Michael, who both
accept first-order arithmetic, and askswhether theymust agree on arithmetical claims.7

In order to argue for agreement, Parsons intends to employ a first-order categoricity
theorem. Importantly, Parsons is interested in answering the question of agreement
presupposing that the two mathematicians do not accept resources stronger than first-
order arithmetic:

2 For example, [4, pp. 159-60] suggest that employing the external reading of the theorem is question-
begging. [24, p. 481] and [2] argue that the external reading is not immune from the so-called ‘just more
theory’ argument. Notably, the putative issues with the external reading concern the understanding of ‘full’
in full second-order models. See also [23, §48] and [3, sections 3.3, 3.4] for further details and discussion
of these issues. See [3, p. 291] for more pointers to the literature.
3 This distinction is reminiscent of the distinction between internal and external questions [6]. Moreover,
[2] points out that internalism is also inspired by [24]. An investigation of the ‘history’ of internalism would
exceed the scope of this article and is also not relevant for this investigation.
4 Core ideas of internalism are present in [24] and in [22], [23, p. 112] although Parsons focuses more
specifically on the categoricity of arithmetic. Similar ideas in the context of set theory have been discussed
by [17] and [20]. The term ‘internal categoricity’ is used by [28], but it can already be found earlier in [31].
5 For a presentation of this system, see [4, p. 34]
6 Parsons refers to [9] as motivation.
7 Field describes this agreement claim as the so-called intermediate claim (IC): Any two people who accept
schematic arithmetic must regard each other’s theories as equivalent [12, Chapter 12, p. 357]
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What Parsons needs, then, is a categoricity theorem for arithmetic that relies on
no resources beyond what’s available to Kurt himself, no resources beyond those
of number theory itself—what might be called a pure categoricity argument. [19,
p. 28]

Despite the differences between the second-order and first-order approaches, we
take the shared rejection of external, model-theoretic means to characterise arithmeti-
cal structures (for foundational purposes) as the starting point of our investigation.
For establishing a uniqueness claim for arithmetic, we intend to stay within the log-
ical framework under investigation, i.e. following Parsons, a first-order arithmetical
framework. Of course, to have any hope to be successful in doing so, internalism
must provide an understanding of an arithmetical structure not relying on external,
model-theoretic tools.

Internalism intends to make sense of arithmetical structures without invoking
semantic, language-object relations, such as satisfaction. According to a (second-order
version of) internalism, being an arithmetical interpretation is understood employing a
triple of elementswith a one-place property, a first-order element, and a one-place func-
tion. This is expressed via an object-linguistic statement of the respective language

PA(N , Sc, 0). (1)

In the second-order case, PA(N , Sc, 0) is the conjunction of the second-order axioms
of arithmetic. It is formulated in the pure language of second-order logic, so that
‘N ’,‘0’,‘Sc’ are parameters of the right kind replacing the constants in a standard
axiomatisation of PA2 as for example stated in [26, p. 4] or [4, p. 29]. In the context of
the pure second-order logic internalist approach, the claim that (1) holds means that
it is provable in the deductive system of second-order logic CA.

We refer to these statements, such as (1), as internal interpretations, whereas [4] call
them ‘internal structures’, in order to contrast them with the ‘external’ understanding
of structures. Externalism spells out what it means to be an arithmetical interpretation
by providing a model M = (M, SM, 0M) for the signature {S, 0}, satisfying PA2:

(M, SM, 0M) |� PA2 (2)

That is, the external approach spells out arithmetical structures employing a satisfac-
tion relation between the triple (M, SM, 0M) andPA2. Here, satisfaction is understood
as a semantic, language-object relation. Following this understanding of structure, we
can see that the externalist has a strong, semantic understanding ofwhat an arithmetical
interpretation is.

It is crucial to see that (1) and (2) are different: in (1) there is no reference to an exter-
nal semantic satisfaction relation, as it is completely expressed object-linguistically.
This is also made explicit by Button and Walsh:

In speaking informally of ‘an arithmetical structure’, here, the internalist is not
aiming to draw attention to some specific object which stands in a language-
object satisfaction relation to some theory. She is not engaging in semantic ascent.
She is simply saying something in a second-order object language, along the
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following lines: some property (a second-order entity), some (first-order) object,
and some function (a second-order entity) collectively behave arithmetically. [4,
p. 226]
Analogously, when considering an arithmetical sentence ϕ, the external approach

spells out the claim that ϕ is satisfied in some arithmetical structure (M, SM, 0M) as
an external semantic language-world relation, in the following manner:

(M, SM, 0M) |� ϕ (3)

Internalism aims at internalising (3) as a deductive consequence of CA:

PA(N , Sc, 0) → ϕ(N , Sc, 0), (4)

where ϕ(N , Sc, 0) is the relativisation of ϕ by the parameters ‘N ’,‘Sc’, ‘0’, i.e. all the
quantifiers in ϕ, a sentence of the language of second-order arithmetic, are restricted to
N , and the parameters uniformly replace the constants in ϕ. In other words, an external
result (and understanding thereof) involves ‘leaving’ a theory’s object-language to
consider its semantics in some model-theoretic meta-language. On the other hand, an
internal result is proved deductively and within the object language.

Although the internalist’s motivation and intentions remain, in the first-order case,
there are some complications due to the limited expressive resources of first-order
logic. For example, in the first-order case, we do not have a finite axiomatisation of
Peano arithmetic, but only a schematic one. This is going to make a difference for the
formulation of the uniqueness claim.

2.1 Categoricity in Pure Second-Order Logic

Button and Walsh [4, p. 228] prove a version of internal categoricity in second-order
logic: they take as the base theory the deductive systemCA of pure second order logic
with unrestricted second-order comprehension as a logical principle:

∃X∀x(x ∈ X ↔ ϕ(x)), (COMP)

i.e. COMP holds for any ϕ in which X does not occur free, formulated in the empty
signature.8 That is, ϕ only contains connectives, two types of quantifiers, variables,
parameters, and the identity sign.9 Within the context provided by internalism, to be an
arithmetical interpretation is expressed as PA(X , f , z), where X is a relation variable,
f is a function variable, and z is an individual variable. PA(X , f , z) is the conjunction
of the following axioms:

z ∈ X ∧ ∀x(x ∈ X → (∃!y(y ∈ X ∧ f (x) = y))) (PA:1)

∀x(x ∈ X → f (x) 	= z) (PA:2)

8 For an exposition of CA see [4, p. 34]
9 See [4, p. 224]
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∀x, y(x ∈ X ∧ y ∈ X → ( f (x) = f (y) → x = y)) (PA:3)

∀Z ⊆ X(z ∈ Z ∧ ∀y(y ∈ X → (y ∈ Z → f (y) ∈ Z))) → X = Z) (PA:4)

Within CA, Button and Walsh formulate the relevant internal isomorphism between
internal arithmetical structures with ISO(X , N , f , z, M, g, w), which is the conjunc-
tion of the following:

∀x∀y((x, y) ∈ X → (x ∈ N ∧ y ∈ M)) (iso:1)
∀x ∈ N ∃!y ∈ M((x, y) ∈ X) (iso:2)
∀y ∈ M ∃!x ∈ N ((x, y) ∈ X) (iso:3)

(z, w) ∈ X ∧ ∀x, y((x, y) ∈ X → ( f (x), g(y)) ∈ X) (iso:4)

Informally, (iso:1)–(iso:4) is understood as the claim that ‘X is an internal isomorphism
between the internal structures N , f , z and M, g, w’. With this notion of internal
isomorphism at hand, Button and Walsh provide the following result:10

Theorem 1 [Button and Walsh] CA proves

∀N f z ∀Mgw(PA(N , f , z) ∧ PA(M, g, w) → ∃X ISO(X , N , f , z, M, g, w))

The idea of the proof is to consider all binary relations that relate the two ‘zero
elements’ of any two internal interpretations, and that are ‘closed under’ the ‘successor’
functions in the relevant way. This is captured by the property of hereditariness defined
by the second-order formula H(Y ):

H(Y ) ↔ ((z, w) ∈ Y ∧ (∀x ∈ N )(∀y ∈ M)[(x, y) ∈ Y → ( f (x), g(y)) ∈ Y ]),

The existence of the least element, i.e. the intersection, of all hereditary relations is
guaranteed by the comprehension principle of CA:

∃X∀x∀y((x, y) ∈ X ↔ ∀Z [H(Z) → (x, y) ∈ Z ]), (†)

This X in (†) satisfies (iso:1), (iso:2), (iso:3) and (iso:4). We want to draw the atten-
tion of the reader to the fact that the instance of comprehension employed for (†) is
impredicative due to the universal second-order quantifier on the right-hand side. This
issue of impredicativity will be relevant later on.

A virtue of Theorem 1 is its generality: one quantifies over all internal arithmetical
structures and shows that all such internal structures are isomorphic. There is another
sense inwhich this theorem is quite general, for it does not depend on any specific arith-
metical language. Let us be explicit: although, as one can see, PA(X , f , z) reminds
us of a finite axiomatisation of second-order arithmetic PA2, we should note that in
these descriptions (of the internal arithmeticalstructures) of the form PA(X , f , z), no

10 For the statement of the theorem, see [4, p. 228]: and the details of the proof see [4, Section 10.B]. The
proof is basically an internalisation of the proof given by [25, Theorem 4.10] and is quite similar to the
proof of the internal categoricity of second-order arithmetic provided by [30, Theorem 1]
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fixed arithmetical vocabulary is either mentioned or used; these internal arithmetical
structures are formulated in the language of pure second-order logic and therefore
characterised by purely ‘logical’ properties modulo CA. As Button and Walsh point
out, the focus on deductions in pure logic might lead to an unwanted interpreta-
tion of internalism as a form of if-thenism. Button and Walsh explicitly deny such a
reading:

That impression is simply wrong. Unlike if-thenists, internalists affirm PAint

[internalised Peano arithmetic] unconditionally. [4, p. 236]11

Additionally, philosophers have expressedworries concerning the use of impredica-
tive comprehension in the second-order approach. In particular, as also [19, p. 29] point
out, Theorem 1 is not satisfactory from the perspective of Parsons’ project. Moreover,
[19] suggest that the pure second-order approach is not transparent in an informative
sense: the ‘bridge principles’ between the internal arithmetical structures needed for
the wanted categoricity are ‘hidden’ within the strong comprehension principles of
CA. It is important to note that unrestricted comprehension is built into the logic to
obtain the result in the form of a logical theorem. Finally, one might think, follow-
ing [20], that the machinery of second-order logic with impredicative comprehension
might be too ‘extravagant’. The following section briefly surveys and discusses a first-
order version of the categoricity theorem. As we will show, the first-order approach
has its disadvantages. Therefore, one of our main aims of Section 4 is to provide a
more acceptable, less extravagant and predicative version of Theorem 1, which – we
believe – is more acceptable from the perspective of Parsons’ project, that we will
discuss in the next section. Additionally, we will argue that our approach improves on
the first-order categoricity theorem.

2.2 Categoricity in First-Order Arithmetic

According to Parsons, ‘Dedekind’s theorem is essentially first-order’ [23, §49, p. 281].
The idea behind his claim is that for the construction of the isomorphism it is suffi-
cient to rely on a suitable form of recursion. The standard form of recursion for a
fixed vocabulary is not sufficient, and therefore, in order to allow for induction and
recursion to be applicable to a wider range, Parsons and others have opted for an
open-ended understanding of schematic theories.12 Such an open-ended conception
of arithmetic does not settle on a fixed first-order arithmetical theory, and allows for
suitable language expansions by ‘definite’ predicates that are then allowed within the
induction schema.

It is illustrative to briefly present Parsons’ argument in [23]. Suppose (with Parsons)
that our language contains twoarithmetical internal structures representedby the triples
(Ni , Si , 0i ) and (N j , S j , 0 j ), where Ni ,N j aresortal predicates, Si , S j unary function

11 Concerning the question of whether internalism is an if-thenism, there seems to be tension in the use of
pure CA and the acceptance of PAint . This question deserves separate attention and exceeds the scope of
this article.
12 For such approaches involving an open-ended conception, see [17, 20] and [22, 23].
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symbols and 0i and 0 j constants. The idea is now to define a function f from Ni into
N j by recursion on 0i and Si such that the following holds:

f (0i ) = 0 j ; ∀x(Ni (x) → [ f (Si (x)) = S j ( f (x))]) (∗)

By relying on open-ended induction for both domains one can prove the injectivity
and surjectivity of f .13 Parsons is not fully explicit in his formulation. Some of the
technical details have been made explicit in [19] and [29]. For our discussion we
present a more detailed sketch.

One considers a first order language Li j
A (A for arithmetical) with a signature

(Ni , Si , 0i ,+i ,×i ,N j , S j , 0 j ,+ j ,× j ) containing two primitive arithmetical vocab-
ularies. The theory PAi ∪PA j is then Peano arithmetic in the language Li j

A , where full

induction is formulated for formulas ϕ of the mixed language Li j
A for both number

properties Ni as well as N j , i.e.

ϕ(0i ) ∧ ∀x(Ni (x) → (ϕ(x) → ϕ(Si (x)))) → ∀x(Ni (x) → ϕ(x)) (INDi )

ϕ(0 j ) ∧ ∀x(N j (x) → (ϕ(x) → ϕ(S j (x)))) → ∀x(N j (x) → ϕ(x)) (IND j )

In contrast to the second-order case the additional function symbols for addition and
multiplication are necessary.Moreover, the existence of the isomorphism is established
by a witnessing formula rather than an explicit existential claim. ISOi∼= j (χ) is the
conjunction of the following:

∀x∀y(χ(x, y) → (Ni (x) ∧ N j (y))) (iso:1)

∀x(Ni (x) → ∃!y(N j (y) ∧ χ(x, y)) (iso:2)
∀y(N j (y) → ∃!x(Ni (x) ∧ χ(x, y)) (iso:3)

χ(0i , 0 j ) ∧ ∀x, y(χ(x, y) → χ(Si (x), S j (y))) (iso:4)

∀x, y, z, x ′, y′(χ(x, x ′) ∧ χ(y, y′) ∧ χ(x +i y, z) → z = x ′ + j y′) (iso:5)
∀x, y, z, x ′, y′(χ(x, x ′) ∧ χ(y, y′) ∧ χ(x ×i y, z) → z = x ′ × j y′) (iso:6)

In order to establish the isomorphism, a function f : Ni → N j satisfying (∗) is
used. With this, one can establish in PAi ∪ PA j the injectivity of f by (INDi ) and
its surjectivity by (IND j ). The properties of the isomorphism are then easy to prove.
Then, one can state the categoricity theorem as follows:

Theorem 2 (Maddy, Väänänen) There is a formula χ , such that

PA ∪ PAi ∪ PA j � ISOi∼= j (χ)

The theorem is formulated with an additional version of PA. For the proof sketch to
be complete, it only remains to establish the existence of the function f by recursion.

13 For Parsons’ sketch see [23, pp. 281-2]
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Naturally one would like to use formulas from the expanded arithmetical language
Li j

A to witness the existence of the functions by primitive recursion as for example
in [13, Theorem 1.54]. The difficulty in doing so is that a coding of finite sequences
for objects from both domains is required, and unfortunately, such a coding is not
directly available.14 The problem is that arithmetical functions are usually employed
in a standard coding of finite sequences of natural numbers. However, whereaswe have
functions+i ,×i on the numbers inNi and+ j ,× j onN j , we have no function reaching
between the two ‘domains’, i.e. allowing for inputs fromboth. To circumvent this issue,
one can for instance allow for an additional overarching system of natural numbers
PA with signature (0, 1,+,×), as in [19, Theorem 9]. Informally, the idea there is to
enable the ‘bridging’ coding by assuming that both domains are already included in
an overarching domain of natural numbers N , i.e. Ni ⊆ N and N j ⊆ N .15 With this
assumption in place, one can use a standard coding of the overarching theory PA to
code finite sequences of numbers of both sorts. In order to establish the existence of the
witnessing formula for the function f defined by primitive recursion,�1-induction for
the expanded language, i.e. containing all three arithmetical vocabularies, suffices.16

Since first-order PA is not finitely axiomatisable, Theorem 2 cannot be stated as a
logical theorem: the first-order version cannot state the isomorphism as a conditional
statement, with the internal structures in the antecedent; the assumptions must be
stated in the form of theories, such as PAi ∪ PA j . As we have discussed, additional
bridging principles, such as the distinguished PA, are necessary to obtain the wanted
theorem. As the sketch of the proof indicates, only �1-induction is used, such that
I�1 seems sufficient for the syntactical bridging principles. How these principles are
made explicit depends on the understanding of open-ended schematic theories. In
the second-order version, the ‘bridging principles’ are implicit in the impredicative
comprehension principles of CA.

By comparison with the second-order version of categoricity of the previous sub-
section, Theorem 2 faces some limitations. In contrast to the second-order version
that quantifies over all internal interpretations, the first-order version is restricted to a
schematic statement for two arbitrary arithmetical interpretations. An additional lim-
itation of the first-order approach is that it is not possible to prove the existence of
the wanted isomorphism explicitly. Due to these difficulties, the first-order version
lacks the generality of the second-order version. When focusing on the questions of
determinacy and agreement (to be introduced in the next section), we believe that the
first-order approach is worth to be further explored, despite the mentioned difficulties.

3 Uniqueness, Determinacy, Agreement

Now that the two relevant versions of internal categoricity have been introduced we
take a step back and discuss these results in more detail.

14 [19, p. 32] show that otherwise a counter-model based on Ehrenfeucht-Fraïssé games is constructable.
15 Compare [19, p. 35] for a similar remark about this.
16 Analternative strategy is sketched in [10], employing aparticular versionof open-ended theories allowing
for a more general form of recursion. An alternative proof is to be found in [29, Theorem 14.]
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Both versions of the categoricity theorems have been employed to underpin a
uniqueness claim for the natural numbers. Following Parsons, it is promising to take
uniqueness in the context of communication as reaching a form of agreement between
different speakers.17 Parsons considers two mathematicians, Kurt and Michael, who
accept respectively a copy of first-order arithmetic. Parsons intends to argue for
agreement about arithmetical statements employing a first-order, internal categoricity
theorem. One question deserving more attention in Parsons’ discussion is the follow-
ing: how exactly is internal categoricity able to imply agreement?

Button and Walsh provide an answer to this question by relying on a corollary of
their second-order version of categoricity, labelled intolerance.18 Intolerance entails
that for any arithmetical sentence ϕ, ϕ is evaluated in the same way across all internal
structures: deviations are not tolerated. In this sense, intolerance is an internal version
of elementary equivalence.

Remember thatButton andWalsh areworking in a pure second-order logical setting.
The language L2 expands the first-order language by predicate-variables X ,Y , Z and
function-variables p, q and their respective second-order quantifiers ∀X and ∃Y .
Theorem 3 (Button and Walsh) For any ϕ ∈ L2, CA proves

ISO(R, N , f , z, M, g, w) → [ϕ(N , f , z) ↔ ϕ(M, g, w)]
The proof is by induction on the complexity of ϕ. Although we allow for additional
parameters (first and second-order) in the formulaϕweomitted them in the formulation
of the theorem for better readability.19

From the internalist’s perspective, the theorem states that ‘no object-language devi-
ation between internal-structures is tolerated’ [4, p. 232]. In other words, two internal
structures must evaluate all arithmetical sentences uniformly. When considering the
question of agreement, one can see that Theorem 3 provides a reasonable version
of agreement between agents (accepting respectively an internal structure) given that
they share the logical system of CA.20

Button and Walsh do not stop at Theorem 3, and argue for the following corollary
as the wanted version of intolerance:

Corollary 1 For any second-order formula ϕ whose only free variables are N , f , z,
and whose quantifiers are restricted to N, CA proves:

∀N∀ f ∀z (PA(N , f , z) → ϕ(N , f , z)) ∨ ∀N∀ f ∀z (PA(N , f , z) → ¬ϕ(N , f , z))

The argument for this corollary is simple. Informally, if we assume the negation of
the left disjunct, then classically, this is nothing but the claim that there is an internal

17 See for [23, §48] Related questions could be of broader interest. One of the problems according to
McGee is the ‘doxological’ problem [20] of ensuring that our mathematical terms manage to refer to a
unique concept or structure.
18 Button andWalsh also discuss how internal categoricity obviously fails to ‘pin down the natural numbers’
[4, p. 231] when structures are understood externally. However, this is not a problem for our investigation,
since we are focusing on internalism.
19 For a proof of Theorem 3 see [4, p. 245]
20 For a discussion see [2, p. 180]
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structure, such that ¬ϕ. By Theorem 3, this implies that in all internal structures ¬ϕ

holds.21 For the remainder of the article, in our discussion intolerance, we focus on
Theorem 3. The reason is that we think that this already contains the interesting fact
that deviations are not tolerated, and this points towards agreement.

Button and Walsh ‘commend second-order logic [...] to Parsons, as a clean route to
achieving his philosophical ends’ [4, p. 241]. The main advantage of the second-order
logic approach according to [4, p.240] is that it allows one to formulate these relevant
results in a ‘crisp manner, without any threat of semantic ascent’.

Despite the apparent attractiveness of Button and Walsh’s suggestion, there are
several reasons for Parsons to be hesitant in adopting such a second-order approach
for his purposes. When discussing the use of second-order logic, Parsons claims the
following:

[It] would raise a question whether second-order quantifiers, in particular their
use to define new predicates as in second-order logic, can have a definite sense.
The implication of our earlier discussions of second-order logic is that any such
sense that would license impredicative logic must derive from the concept of
set. That such second-order logic is not forced on us at this point is shown by
the fact that a mathematics that assumes the concept of natural number but from
there on is entirely predicative is perfectly coherent. [23, §47, p. 270]

The quoted passage points towards two issues: first of all, Parsons seems to be
worried that the employment of second-order logic to provide agreement might be
in some sense circular or question-begging; Parsons thinks that an adequate under-
standing of impredicative second-order logic, specifically comprehension, requires an
understanding of the concept of set, which is – in Parsons’ view – not as basic, or pri-
mary, as the concept of the natural numbers itself.22 So, when providing an argument
for agreement about arithmetical statements, it would be question-begging to assume
an understanding that already significantly exceeds our understanding of the natural
numbers.

The second issue of Parsons concerns the claim that impredicative second-order
logic is not necessary for an understanding of the natural number concept along the
lines of Parsons’ explanation in his [23, § 48]. This is in line with his restriction to a
first-order framework within his broader motivation.23

The sceptical remarks towards impredicative second-order comprehension lead nat-
urally to the question of whether we can minimize the background assumptions. Since
the comprehension applied in the second-order arguments is impredicative we could
ask whether a proof by predicative means is possible.24 Whereas �1

1-comprehension

21 Assuming classical reasoning the argument is simple as it stands. However, in the context of questions of
determinacy it might be interesting to reconsider the role of classical principles such as the law of excluded
middle.
22 In [23, §48 p. 274] it is claimed that ‘it is commonplace in the foundations of mathematics that the idea
of natural number is more elementary than that of set’.
23 In [19, p. 28] Parsons’ restriction to a first-order arithmetical framework is understood as in the spirit of
‘purity’ of methods. See for instance [8].
24 Although the result in [27] is clearly predicative, it fails to be fully general due to the assumption that
the natural number properties are contained in N. We will discuss this issue later.
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(with parameters) appears to be sufficient for the second-order categoricity and intol-
erance results it is not known to us whether the assumptions could be weakened to
something predicatively acceptable, such as �1

1-comprehension.25

One of the advantages of the pure second-order version is its clarity concerning
the tools employed. The boundary between pure second-order logic and mathematical
theory is clear enough to provide ‘crisp’ results, such as Theorems 1 and 3. However,
there is an additionalworry regarding the applicability of the pure second-order version
of categoricity to the case of agreement. Although Theorem 1 is a purely logical
statement, Button andWalsh intend to apply it to Parsons’ scenario. They refrain from
an interpretation of their approach as a form of if-thenism, and claim that arithmetic
is endorsed. It is unclear to us how this is achieved in the pure second-order logic
setting. A possibility for the second-order proponent is of course to simply transfer the
antecedent into an assumed arithmetical theory in addition to the logical axioms. With
such a move the if-thenist interpretation is avoided, but also the purported advantages
over the first-order version are lost. On the one hand, in order to apply this approach
to Parsons’ scenario, one would have to reformulate the theorems schematically, that
is, for two given theories, and therefore would lose their purported generality. On the
other hand, the clear restriction to a purely logical framework is no longer present. We
think that these remarks provide additional reasons for further inquiry into suitable
first-order approaches to categoricity.

However, sticking with a first-order approach welcomes an additional challenge:
since first-order logic alone is insufficient for such purposes, the restriction to first-
order frameworks necessitates the employment of additional means, in this case
theories. Ideally, one would prefer to rely only on resources that do not exceed what is
accessible to Parsons’ mathematicians, Kurt andMichael. For Parsons’ understanding,
it is clear that first-order arithmetical resources, in the form of Peano arithmetic, are
unproblematic. However, it is well-known that first-order arithmetic alone is insuffi-
cient to provide the wanted results.

For a first-order internalist approach to succeed, one must extend the range of
available resources. Obviously not all possible additional resources are suited for
Parsons’ purposes. For instance, reintroducing strong comprehension principles via
an impredicative set theory would violate his internalist picture. It is an additional
challenge for an internalist in the spirit of Parsons to provide a reasonable boundary
for theories that are close enough to first-order arithmetic to be acceptable. Deciding
these questions also depends on an interpretation of ‘wanted results’. We have seen
that in the second-order version we have a general result of intolerance. General in
the sense that we quantify over all internal structures. In contrast to this generality,
the first-order version of internal categoricity can only be stated schematically for two
given internal arithmetical structures. An arithmetical first-order version of intolerance
could be formulated along the following lines:

PA ∪ PAi ∪ PAi � ϕi ↔ ϕ j (+)

25 In [4, p. 247] Theorem 10.5 answers the question for ‘weak’ predicative comprehension principles
allowing only second-order parameters negatively.
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In this case, we are not able to quantify over all internal structures, but we can only
formulate the result schematically over two internal structures given by PAi and PA j .
This formulation of intolerance is prima facie less general than its counterpart in pure
second-order logic. With respect to this issue, Button and Walsh argue that ‘lacking
second-order resources, it is not immediately clearwhat general result we are supposed
to be pointed to, by considering the specific interaction between Kurt andMichael’ [4,
p. 240]. We think that a first-order approach cannot reach a result exactly as general as
the one in pure second-order logic. However, following Button andWalsh’s challenge,
a desideratum for an adequate first-order version could be to regain some generality,
possibly ‘close enough’ to the generality of the second-order version, but within the
bounds of a predicatively acceptable framework.

Additionally, the first-order version of intolerance fails to be general from the
perspective of agreement for the following reason: the statement of intolerance (+)
is given ‘locally’, in the sense that, for any fixed ϕ, Kurt and Michael are going to
agree about ϕ, modulo the relativisation to i, j . The statement (+) does not quantify
over the arithmetical sentences ϕ. By inspection of Theorem 3, it is clear that even the
pure second-order version encounters a similar issue.

Amore fundamental worry concerning the overall feasibility of Parsons’ agreement
strategy has been raised in [12]. The issue addresses the justification for the underlying
assumptions employed in the argument for agreement and charges Parsons’ strategy
of being question-begging. Field argued that employing an open-ended conception of
arithmetic is only sufficient forKurt to show that his numbers canbemapped injectively
into Michael’s.26 In contrast, to establish the surjectivity of such a mapping, further
assumptions need to be in place. And these further assumptions are – according to
Field – question-begging.27 Parsons acknowledges the problem as based on a version
involving some form of ‘radical translation’ betweenKurt andMichael, but argues that
the problem is no longer pressing if one assumes that Kurt can expand his language
in the appropriate sense. For the sake of this investigation we will be charitable about
Parsons’ strategy and follow his suggestion.28 Field’s criticism is important, and the
assumptionof anoverarching arithmetical theory in thefirst-order case deserves further
discussion. We think that making these assumptions as explicit as possible is essential
to further the discussion on this issue.

In the next section, we will introduce a notion of primitive truth with the aim to
circumvent some of the expressive limitations of the first-order approach (discussed
in Sections 2.2 and 3) to categoricity and intolerance.

4 Internal Categoricity and Truth

In this section, we introduce a primitive notion of truth by extending our arithmetical
theories to an axiomatic theory of truth. The blueprint will be a typed Tarskian compo-

26 See [12, Chapter 12, Postscript].
27 Button and Walsh also discuss Field’s worry in [4, p. 241].
28 We think that Field’s worry is important in general, but not essential for this investigation. To adjudicate
the issue between Field and Parsons would exceed the scope of this article.
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sitional theory of truth, known in the literature as CT.29 It is well-known that the use
of a truth predicate improves the expressiveness of the underlying base systems. Truth
theories are able to mimic some forms of comprehension and therefore it appears not
implausible that the truth predicate could be a useful device for our purposes.30

The main aim of this section is to provide a first-order version of categoricity that
is able to overcome some of the limitations of Theorem 2: we improve on the first-
order version of categoricity by expanding the isomorphism to include truth itself.
We show that the isomorphism can be lifted from the two given internal arithmetical
interpretations to their respective concepts of truth (Proposition 1). After that, we
show that employing a truth predicate allows us to prove the isomorphism as an
existential claim (Proposition 2). The remainder of this section, Section 4.4, focuses
on providing a more general version of categoricity and intolerance. For this, we adopt
an asymmetric framework: one distinguished arithmetical structure is taken as given,
whereas the alternative structures are represented via an arbitrary sortal predicate P
that plays a role similar to a second-order parameter. With Proposition 3 we show
that for an arbitrary alternative internal arithmetical structure, we can always find an
isomorphism to our distinguished structure. Finally, this allows us to provide a more
general version of intolerance (Corollary 2) and to establish a stronger, uniformversion
of agreement.

4.1 Technical Preliminaries and Conventions

In this section,we expand the first-order arithmetical categoricity theorem to the setting
of theories of truth. In order to do this, we will expand our mixed arithmetical theory
of arithmetic PAi ∪PA j (Section 2.2) by two compositional theories of truth. The lan-
guage of our theory contains, like in the arithmetical case, a distinguished arithmetical
vocabulary, as well as two arithmetical vocabularies i, j , which are now expanded by
two additional truth predicates Ti , T j . In the informal intended reading, the expres-
sion ‘Ti (t)’ states the truth of the sentence ϕ from the arithmetical language indexed
by i , where t is a term denoting ϕ. The intended reading of the expression ‘T j (t)’
is analogous. For concreteness we distinguish between the following signatures:
SIGA := {0, S,+,×}; SIGi

A := {Ni , 0i , Si ,+i ,×i }; SIG j
A := {N j , 0 j , S j ,+ j ,× j }.

Our mixed language Li j
Ti j

is based on the union of the three signatures with the
additional truth predicates and a finite set SYN of additional function and predicate
symbols representing primitive recursive syntactic sets and functions (to be stated
explicitly in the following). We will be working in the following signature:

SIGi j
T := SIGA ∪ SIGi

A ∪ SIG j
A ∪ {Ti , T j } ∪ SYN.

The intended range of the truth predicate Ti (respectively T j ) are the sentences of the
arithmetical sub-language Li

A based on SIGi
A (respectively L j

A based on SIG j
A). The

distinguished arithmetical language LA is based on SIGA.

29 See for example [14, Chapter 8, p. 63] for an introduction to this topic.
30 For example, CT interprets ACA a second-order systems of arithmetic based on arithmetical compre-
hension. See for [14, Chapter 8.6].
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In order to have suitable means to make these restrictions precise we assume that
our vocabulary contains suitable predicate and function symbols representing primitive
recursive syntactic operations.31 In the usual setting of arithmetic, i.e. for theories con-
taining I�1, language expansion by function symbols for primitive recursive functions
is unproblematic.32 With our additional assumption of an overarching syntax theory
it is possible to do the same now for restricted parts of the language. We assume a
standard Gödelnumbering #, identifying symbols of both signatures SIGi

A ∪ SIG j
A

with our distinguished numbers.
So we allow for the following predicates for k ∈ {i, j} in SYN: a predicate symbol

ctk(x), representing the decidable set of closed terms of the language Lk
A; a predicate

symbol formk(x), representing the decidable set of formulas of the language Lk
A,

and a predicate symbol sentk(x), representing the decidable set of sentences of the
language Lk

A. We also include function symbols for primitive recursive term and
formula building operations in SYN. We use a standard convention employing a dot
to indicate the representation: for example ¬. (x) represents the primitive recursive
function that takes the Gödelnumber of a formula ϕ and returns the Gödelnumber
of its negation ¬ϕ. Similar for =. (x, y), N.

k, ∧. (x, y) and ∀. (x, y). We abuse the
notation and use the more intuitive (x =. y) for =. (x, y), and analogous for the other
function symbols. Similarly, we have for k ∈ {i, j} the representation of the term
building functions S.

k , +. k ,×. k .
Additionally we allow for the following special function symbols in SYN: for

k ∈ {i, j} the function symbol numk(x) represents the primitive recursive function,
that takes a distinguished number and returns the Gödelnumber of its k-numeral. The
k-numerals are the numerals build up from 0k and Sk , so for example n j is short for
S j ...S j
︸ ︷︷ ︸

n−times

0 j . Moreover, we also have the function symbols sub(x, y, z) representing the

primitive recursive substitution function that for the inputs of the Gödelnumbers of
a formula #ϕ, a variable #x and a term #t , outputs the Gödelnumber of the result of
uniformly substituting all occurrences of the variable x in ϕ by t , i.e. #ϕ(x/t). Finally,
we also allow for a valuation function symbol val(x) that represents the function that
for the input #t for a closed terms t , returns t itself. For example if we have ni , then

val(#(ni )) = ni .
We frequently make use of relativisations ϕi , where ϕi is to be understood as the

result of substituting in the formula ϕ from LA the respective vocabulary by its i-
counterparts and relativising all quantifiers to Ni . We make use of the relativisation
ϕ j analogously.

4.2 Unique Truth

The aim of this section is to establish the internal categoricity in the theory PA ∪
CTi ∪ CT j . For k ∈ {i, j}, the truth-theoretic axioms of CTk are the conjuction of

31 Such a method is employed in several investigations of axiomatic theories of truth as for example in [5]
and [14].
32 These primitive recursive functions are �1-definable, without increase of quantifier complexity, and
their properties are provable in I�1. See for example [1, p. 88]
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the universal closures of the following:

(CT1k) ctk(x) ∧ ctk(y) → (Tk(x =. y) ↔ valk(x) = valk(y))

(CT2k) sentk(N.
k x) → (Tk(N.

k x) ↔ Nk(valk(x)))

(CT3k) sentk(x) → (Tk(¬. x) ↔ ¬Tk(x))

(CT4k) sentk(x) ∧ sentk(y) → (Tk(x ∧. y) ↔ Tk(x) ∧ Tk(y))

(CT5k) sentk(∀. v x) → (Tk(∀. v x) ↔ ∀y(Tk(sub(x, v,numk(y)))))

(CT6k) Tk(x) → sentk(x)

The theory CTk is then the extension of the arithmetical base theory, given by the
k-relativised axioms ofQ with the schema of induction INDk allowing for formulas ϕ

of our mixed language Li j
T :

ϕ(0k) ∧ ∀x(Nk(x) → (ϕ(x) → ϕ(Sk(x))) → ∀x(Nk(x) → ϕ(x))

So we allow for both truth predicates to appear in both induction principles. The
distinguished theory PA consists of the axioms of Q for the language LA plus the
induction schema on the distinguished numbers, so without any relativisation via
sortal predicates, for formulas ϕ of the mixed arithmetical language Li j

A . Similar to
the case of Theorem 2 it seems plausible that the bridging assumptions can be reduced
to the theory I�1.

We want to expand the isomorphism f of Theorem 2 in a natural way. The iso-
morphism that we want to establish is now expressed by ISOT

i∼= j (χ), which is the
conjunction of (iso:1)–(iso:6) from (Section 2.2) and the additional conjunct:

∀x∀y(senti (x) ∧ sent j (y) ∧ χ(x, y) → (Ti (x) ↔ T j (y))) (iso:7)

In order to have suitable means to carry out the inductive argument we will make use
of the logical complexity of formulas. Since the functions mapping Gödelnumbers
of formulas of the respective languages Lk

A to their logical complexity is primitive
recursive, we assume that we have function symbols lck in our language. We take
lck(t) = 0 if t is not a formula, and lck(t) = 1 if t represents an atomic formula
of Lk

A. The logical complexity of complex formulas is as expected, i.e. the logical
complexity of a conjunction is the maximum of the the logical complexities of each
conjunct plus one, and the logical complexity of a negated formula or a universally
quantified formula is the logical complexity of the formula plus one.

The construction of the witnessing formula for the isomorphism proceeds basi-
cally analogously to the arithmetical first-order case. In order to guarantee that the
isomorphism also preserves the truth set we add some additional properties on our
isomorphism F by identifying the relevant syntactical primitives. We add suitable
additional clauses in the definition of our witnessing formula χ , so that for all syn-
tactical constants e, F(#ei ) = #e j . So with the assumption of our Gödelnumbering
this means for example that F(#0i ) = #0 j . Moreover, we ensure that F preserves the
term-forming operations, i.e. for f (x) = y as short for χ(x, y) representing our F ,
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f commutes with the syntactic operations, for example f (x +. i y) = f (x)+. j f (y).
Then we get the following properties provable in PA ∪ CTi ∪ CT j :

cti (x) → f (vali (x)) = val j ( f (x)) (6)

cti (x) ∧ cti (y) → (vali (x) = vali (y) ↔ val j ( f (x)) = val j ( f (y))) (7)

This suffices to expand our isomorphism to all the syntactical predicates and functions
since the first-order version of the isomorphism establishes that for all ϕ(x) ∈ LA:

∀x(ϕi (x) ↔ ϕ j ( f (x))) (‡)

Moreover, since the formula build-up in both arithmetical languages Li
A and L j

A is
completely parallel, there are primitive recursive functions for the transformation of
ϕi into ϕ j .33 This enables a formulation of χ in such a way that it is closed under
subformulas, again provable in PA ∪ CTi ∪ CT j :

χ(¬. x, ¬. y) → χ(x, y) (8)

χ(x ∧. y, x ′ ∧. y′) → χ(x, x ′) ∧ χ(y, y′) (9)

χ(∀. vx, ∀. vy) → ∀z∀z′χ(sub(x, v,numi (z)), sub(y, v,num j (z′))) (10)

Proposition 1 There is some χ ∈ Li j
T , such that

CTi ∪ CT j ∪ PA � ISOT
i∼= j (χ)

Proof We constructχ as in the proof of Theorem 2witnessing the isomorphism F with
the additional properties on the syntactic part. Then (iso:1)–(iso:6) can be established
as in Theorem 2.

In the following we show the additional (iso:7) arguing in CTi ∪ CT j ∪ PA by
formal induction on the logical complexity of sentences that if Ti (x) then T j ( f (x)).
The induction argument is standard so we only sketch some cases.

(i) If lc(x) = 0, then ¬senti (x) and by (‡) ¬sent j ( f (x)). So, by (CT6i ) (respec-
tively (CT6 j )) there is no equivalence to show.

(ii) If senti (x) and lc(x) = 1, then if x is N.
i (y) for some closed term s. Then

Ti (N.
i (s)) ⇔ Ni (vali (s)) by (CT2i )

⇔ N j (val j ( f (s))) by (‡) and (7)

33 A possibly more elaborate version would employ some disentangled setting as in [18]. In contrast to
that setting, in which bridging principles (so-called ‘coding axioms’) are postulated, in [21] a categoricity
argument to establish a form of intolerance in a second-order setting is provided, in which the bridging
principles are derivable.
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⇔ T j (N.
j ( f (s)) by (CT2 j ).

(iii) If senti (x) and x is ∀. vy for some var(v) with lc(x) = lc(y) + 1, then

Ti (∀. vy) ⇔ ∀z(Ti (sub(y, v,numi (z)))) by (CT5i )

⇔ ∀z(T j ( f (sub(y, v,numi (z))))) by IH and (10)

⇔ T j ( f (∀. vy)) by (CT5 j ) and properties of f

��

4.3 A Unified Theory of Truth

In [4, Chapter 10.5, p. 232] it is suggested that an important consequence of the intoler-
ance theorem is that it allows us to introduce a canonical theory of arithmetic: the idea
is that the equivalence provided by the intolerance theorem is a good reason to aban-
don the (relevant) indices. Our Proposition 1, especially our (iso:7), provides similar
reasons for accepting that the relativisation of the two truth predicates is superfluous
and that one can introduce a canonical theory of truth. In our setting, this means that we
remove the indices and work with a unified theory of truth, i.e. a single truth predicate
that works for both languages.

In order to enable a better readability of the following we introduce some additional
conventions. First of all we will adapt our set of primitive syntactic vocabulary for
the language Li j

A so that we have senti j , cti j . Instead of employing the relativised
quantifiers ∀x(senti j (x) → ...), we are now going to use the more intuitive shorthand
∀�ϕ� to enhance readability, similarly for the existential quantifier.

Moreover, we introduce a convention for the use of variables of different sorts. We
use x, y, z as neutral variables ranging over the full domain, l,m, n for variables rang-
ing overNi andu, v, w for variables rangingoverN j .Wealso introduce an abbreviation
for the substitution function. If ϕ(v1, ..., vh) is a formula with at most h free variables,
then �ϕ(ṁ)� is short for sub(�ϕ�, �v1�,numi (m)). This generalizes to simultaneous
substitution in the expected way. The num j and num cases are analogous. Moreover,
we also allow for mixed substitutions: for instance, �ϕ(ṁ, u̇)� is short for the result
of substituting the mth i-numeral for m and the uth j-numeral for u in ϕ. Finally, we
will also employ the standard pairing function (·, ·) in our distinguished PA. Given
the overarching theory PA, this primitive recursive pairing function is definable and
allows us to pair syntactic objects of both sorts.

The truth theoryCT[PAi j ]∪PA is formulated in the language Li j
T . Similarly to the

previous section, the language Li j
T is build up on the unified signature SIGT, which

is the union of the following signatures: SIGA ∪ SIGi
A ∪ SIG j

A ∪ SYN ∪ {T}. In
contrast to the previous section, here the arithmetical language is expanded with a
single truth predicate T, whose intended range is now the set of sentences from the
mixed arithmetical language Li j

A based on the union of the signatures SIGi
A,SIG

j
A,

SIGA and SYN.

123



Internal Categoricity, Truth and Determinacy 1313

In the following, we will show that this unified theory of truth proves the internal
isomorphism as an existential claim and thereby overcomes one of the prima facie
disadvantages of the first-order strategy.

The theory CT[PAi j ] ∪ PA is the extension of the theory PAi ∪ PA j ∪ PA by the
universal closures of the following axioms:

(CT1) ctk(x) ∧ ctk(y) → (T(x =. y) ↔ valk(x) = valk(y))

(CT2) sentk(N.
k(x)) → (T N.

k(x) ↔ Nk(valk(x)))

(CT3) T�¬. ϕ� ↔ ¬T�ϕ�
(CT4) T�ϕ ∧. ψ� ↔ T�ϕ� ∧ T�ψ�
(CT5i ) T�∀. v(N.

i (v)→. ϕ)� ↔ ∀y(Ni (y) → T�sub(ϕ, v,numi (y))�)

(CT5 j ) T�∀. v(N.
j (v)→. ϕ)� ↔ ∀y(N j (y) → T�sub(ϕ, v,num j (y))�)

In the following,we show that the closure of�1-formulas under primitive recursion can
be adapted to the present setting. Recursive functions are definable by �1-formulas.
The primitive recursive functions are provably recursive. With our internal semantic
reflection we can make this explicit as follows: First of all we have �1 characteri-
zations of the classes of formulas such as �1-formulas, i.e. �1(�ϕ�). Second we can
characterise for a formula ϕ to represent a total function F : Ni → N j by funci� j (�ϕ�)

iff ∀n∃!uT(�ϕ(ṅ, u̇)�). For total functions represented by a �1-formula we can also
represent its complement by a �1-formula. The class of �1-total functions from Ni

to N j is then defined as �N
1 (�ϕ�) iff �1(�ϕ�) ∧ funci� j (�ϕ�). It is then possible to lift

the closure of �1 under primitive recursion in the following form:

Lemma 1

CT[PAi j ] ∪ PA ��N
1 (�ψS�) → ∃�ψ�(�N

1 (�ψ�)∧
∀x(T�ψ(#0, ẋ)� ↔ x = (0

i
, 0

j
))∧

∀z(T�ψ( S. (ż), ẋ)� ↔ ∃r(T�ψ(ż, ṙ)� ∧ T�ψS(ṙ , ẋ)�)))

Proof (Sketch) The idea is basically similar to the construction of our formula ψ

in Theorem 2. Given a primitive recursive function F , that maps an ordered pair
(n, u) to (Si (n), S j (u)), for the successor case represented by ψS, there is a primitive
recursive function G represented by ψ , such that G(0) is the ordered pair (0i , 0 j ) and
G(x + 1) = F(G(x)). The semantic ascent and the truth predicate allow us to state
this in the more general form.34 ��

Then ISOi∼= j (�χ�) is the conjunction of the following

∀y∀z(T�χ(ẏ, ż)� → (Ni (y) ∧ N j (z))) (iso:1)

∀n∃!u T�χ(ṅ, u̇)� (iso:2)

∀v∃!m T�χ(v̇, ṁ)� (iso:3)

34 Compare [13], Lemma 1.79. They show that this lemma is also provable in I�1 with a truth predicate
for �1 statements definable in I�1.
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T�χ(0i , 0 j )� ∧ ∀n, u(T�χ(ṅ, u̇)� → T�χ( S.
i (ṅ), S.

j (u̇))�) (iso:4)

∀n,m∀u, v, w(T�χ(ṅ, u̇)�∧ T�χ(ṁ, v̇)�∧ T�χ(ṅ +i
. ṁ, ẇ)� → w = u + j v) (iso:5)

∀n,m∀u, v, w(T�χ(ṅ, u̇)�∧ T�χ(ṁ, v̇)�∧ T�χ(ṅ ×i
. ṁ, ẇ)� → w = u× j v) (iso:6)

The internal semantic reflection provided by the truth predicate allows us to lift the
usual course-of-values recursion for the definition of χ to the construction of the term
�χ�witnessing the existential claim for the isomorphism. Lemma 1 allows us to prove
the following version of categoricity:35

Proposition 2
CT[PAi j ] ∪ PA � ∃�χ� ISOi∼= j (�χ�).

4.4 General Categoricity with Truth

In the previous sections, we considered two arithmetical theories with additional truth
predicates, and employed syntactical ‘bridging’ principles. Although this approach
naturally applies to the setting of communication as intended by Parsons, the assump-
tions (that we made) of an overarching theory of syntax could be challenged.36

There are at least two points of contention for our approach: Firstly, our bridging
principles are formulated in an overarching theory of syntax: this amounts to the
assumption that the two ‘domains’ are subsets of the overarching ‘domain’. Secondly,
the symmetric treatment of PAi and PA j presupposes that the two mathematicians
already share a more general framework.

The following section aims to overcome these issues by adapting our framework to
an asymmetric treatment. In contrast to the symmetric approach,which aims to provide
internal categoricity between two given internal structures using a distinguished, over-
arching theory, the asymmetric approach aims to prove internal categoricity between
our distinguished internal structures and ‘alternative’ ones.

Such an asymmetric treatment has already been used in the reverse mathematics
investigation of categoricity in [27]. The reverse mathematics result establishes that
WKL0 is sufficient to establish an internal categoricity result.37 However, the setting
employed by the reverse mathematics case has an implicit assumption: the alternative
domain is assumed to be contained in the distinguished domain of natural numbers.
For its application to Parsons’ strategy, this assumption faces similar challenges to our
first contention, as the assumption of an overarching theory.38

35 As one of the referees pointed out, it seems possible that for a proof of Proposition 2 and Lemma 1
in isolation, a (suitably modified) partial �1-truth predicate is sufficient, following [13]. However, in the
context of the previous result, Proposition 1, it appears natural to use a primitive truth predicate.
36 [32, Chapter 10.3] for example expresses scepticism towards the philosophical significance of what he
calls the intra-language versions of the categoricity argument. His scepticism is motivated by the worry that
the assumption of an overarching theory might be too strong.
37 For more details aboutWKL0 see [26, p. 35].
38 [4, p. 246] also indicate the importance of this implicit assumption. We should point out that we do
not criticise the mathematical significance of the result. Here we are only interested in the philosophical
application of this result for Parsons’ strategy.
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Similarly to the reverse mathematics case, we will use a primitive set of notions
only for one distinguished internal structure, breaking the symmetry with the previous
cases,whereweworkedwith twogiven arithmetical structures and two sets of primitive
vocabularies.

Under these assumptions, we will provide an additional version of internal cat-
egoricity (Proposition 3) and of intolerance (Corollary 2). Our internal categoricity
result is going to be based on the categoricity result due to [11]. For the bridging
principles, they use a theory of finite sets and classes called EFSC.39 In our approach,
we replace the finite set theory, that is responsible for the bridging principles, with our
expanded theory of arithmetic and truth.40 In the following, we make the assumptions
on the expanded theory explicit.

Weworkwithin a languageLN of first-orderPA, with a predicateN for ‘our’ natural
numbers. The vocabulary LT

N expands LN and is based on the signature SIGT
N :=

SIGA ∪ {N} ∪ {T}. The arithmetical axioms are formulated relativised to this N and
the theory of syntax is standard for our language.

Whereaswe use ourmathematical vocabulary for our usualmathematical discourse,
to talk about our natural numbers, we interpret the ‘alternative’ internal arithmeti-
cal structures by language expansions, mainly due to an arbitrary new predicate P ,
intended to represent the alternative domain. We assume that P and N are disjoint, so
specifically we do not assume that the alternative domain is contained in our distin-
guished domain.

In order to have suitable bridging principles we expand our linguistic repertoire
by allowing for additional syntactic vocabulary, for example a primitive notion of
ordered pair. The language LT

N(P) is then based on the signature SIGT
N(P) := SIGT

N ∪
{P} ∪ SYN+. We again allow for an expansion of predicates, constants and function
symbols. SYN+ contains additional resources (relative to P). We use n,m, ... for
variables ranging over N, and v,w, ... for variables ranging over P , and x, y, ... for
unrestricted quantification.

In the following we explain the additional primitives in SYN+: we have primitive
unary predicates predP (x), constP (x), funcP (x), with the intended interpretation ‘x
is a predicate symbol, whose range is in P’, ‘x is a constant with value in P’, and ‘x is
a function symbol representing a function from P to P’. The intended range of these
additional syntactic objects is the alternative arithmetical structure. Finally, we add a
primitive ternary function symbol appl(n, x, y) to SYN+ with the intended reading
‘the result of applying n-times the syntactical operation x to the syntactical object y’.
In the case that n = 1 we also use the abbreviation appl(x, y). The idea behind the
application function is to allow an enumerationwith our numbers of the applications of
syntactical operations in the expanded language.41 Our syntactic repertoire includes
also predicates representing the syntactic categories of the expanded language. So

39 For the presentation of EFSC, see [11, p. 3-4] Although it is interpretable in ACA0, the interpreted
version is not as interesting as it could be, since by interpreting all objects as elements ofN also the internal
models will be subsets of N. This is a quite similar assumption as in the reverse version that we gave up.
40 It is well known that there is a close connection between adjunctive set theory and concatenation theory,
see for example [7].
41 The introduction of this application function symbol can be challenged. This will be discussed in
Section 5.
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there is a formula ctP (x) that represents the closure of the set of individual constants
under function application, and similarly termP (x), formP (x) and sentP (x).

4.4.1 Peano Systems and CT[P]

We intend to characterise arbitrary arithmetical interpretations, which we call Peano
systems.42 More specifically, we will relativise these system to our parameter P and
therefore say that a P-Peano system (a Peano system relative to P) is a triple (p, a, h),
such that predP (p), constP (a) and funcP (h). The first component is intended to be
a sortal predicate for the range of the quantifiers of the Peano system, the second
component is a constant denoting the zero-element of the Peano system, and the third
component is a one-place function symbol, representing the successor function of
the Peano system. In order to have a suitable form of quantification over terms we
assume that the constant and the function symbol form a systematic naming device
for an alternative internal structure. In the following we list the linguistic part of our
assumptions on a P-Peano system:

constP (x) → termP (x) (L1)

var(x) → termP (x) (L2)

termP (x) ∧ funcP (y) → ∀n(termP (appl(n, x, y))). (L3)

Additionally, we expand the notion of a P-formula, formP , for formulas only con-
taining notions of the expanded language and closed under application of conjunction,
negation and N-restricted quantification and P-restricted quantification.

termP (x) ∧ termP (y) → formP (appl(=. , (x, y))) (L4)

termP (x) ∧ predP (p) → formP (appl(p, x)) (L5)

The usual closure conditions for ¬,∧,∀ are labelled as (L6) - (L8). In order to be
able to formulate our theory of truth, we intend to expand the notion of a numeral and
the value function to P . For this, we assume that all the systems that we consider have
a distinguished constant and a distinguished function symbol.

Then we expand our num function to numP (x). The idea is that the distinguished
constant plays the role of the P-constant symbol (for zero) in the P-Peano system.

The ‘zeroth’ P-numeral, 0
P
, is then this distinguished constant. Moreover, the dis-

tinguished function symbol plays the role of the P-successor function symbol in the
P-Peano system. The P-numeral nP is then the nth application of the distinguished P-
successor function symbol to the distinguished P-constant. Since for the enumeration
of applications of the P-successor function we use our numbers, the function is prim-
itive recursive and is represented by numP (x).

42 This terminology is used in [27].
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For the generalization of our termvaluation function val(x)we assume that every P-
constant has a unique value in P and that this is preserved for P-function applications
on P-closed terms:

∀x(constP (x) → ∃!u(val(x) = u)) (L9)

∀x, y(funcP (x) ∧ ctP (y) → ∃!u(val(appl(x, y)) = u)) (L10)

We can then use the P-numerals to define the value function by recursion. The value

of 0
P
is the unique value of our distinguished constant. The value of n + 1

P
is the

unique value of the distinguished function symbol applied to nP . Additionally, we
assume that for all the objects from the alternative domain there is a P-numeral that
has the number as its value43

∀u∃n(u = val(appl(n, h, a))) (L11)

The uniqueness is guaranteed by the injectivity of the successor function. Then we can
expand the dot notation ẋ in a natural way. If P(u), then u̇ is the unique P-numeral t ,
such that val(t) = u.

Peano systems are usually characterised as triples, consisting of a set, an element of
this set and a function on this set, satisfying three properties: The element is not within
the range of the function, the function is injective and induction holds for all subsets.44

In our setting, the first two properties for Peano systems are stated as follows as (L12):

∃x∃y (constP (x) ∧ funcP (y) ∧ ∀n ≥ 1(val(appl(n, y, x)) 	= val(x))∧
∀z, z′(ctP (z) ∧ ctP (z′) → (val(appl(y, z))=val(appl(y, z′)) → val(z)=val(z′))))

With this we formulate the system CT[P], in the language LT
N(P). It extends first-

order Peano arithmetic with the universal closures of the following axioms, relativised
to P:

ct(x) ∧ ct(y) → (T(x =. y) ↔ val(x) = val(y)) (CT1P)

ctP (x) → (T(appl(p, x)) ↔ P(val(x))) (CT2P)

T�¬. ϕ� ↔ ¬T�ϕ� (CT3P)

T�ϕ ∧. ψ� ↔ T�ϕ� ∧ T�ψ� (CT4P)

∀nT�ϕ(ṅ)� ↔ T�∀. x(N. (x)→. ϕ(x))� (CT5P)

∀uT�ϕ(u̇)� ↔ T�∀. x(appl(p, x)→. ϕ(x))� (CT6P)

43 Similarly to the case in [27] we require an additional assumption to internally state that we can ‘reach’
all elements of P . An alternative strategy would be to assume a new primitive num: function for P .
44 For a presentation of Peano systems in the reverse mathematics case, see [27, Definition 2.1., p. 285]
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A pre-Peano system (p, a, h) is a triple, such that p is a predicate symbol, a is a
distinguished constant and h is a distinguished function symbol, such that

∧

1≤i≤12 Li

holds of these symbols. With the truth predicate andCT[P] in the background we can
now formulate the third property for a P-Peano system:

∀�ϕ�(T�ϕ(a)� ∧ ∀u(T�ϕ(u̇)� → T�ϕ(appl(h, u̇))�)

→ T�∀. x(appl(p, x)→. ϕ(x))�) (L13)

A triple (p, a, h) is a P-Peano system, denoted as PSP (p, a, h), just in case (p, a, h)

is a pre-Peano system satisfying the additional property L13.

4.4.2 The Isomorphism

The aim of this section is to provide the proof of the wanted internal isomorphism
between our internal arithmetical structure and the Peano system relativised to P .

With our naming machinery we can build singleton sets of elements of either N or
P using our num-function, for example with L13 we get

∀u∃�ϕ�∀y(T�ϕ(ẏ)� ↔ y = u).

Important for our case is that we can also simulate ordered pairs of elements of N
and P simultaneously.

∀n∀u∃�ϕ�∀x, y(T�ϕ(ẋ, ẏ)� ↔ x = n ∧ y = u)

This is due to our naming machinery and the fact that our arithmetical syntax theory
and truth theory work for the wider range. Additionally, we can use disjunctions to
mimic the talk about ‘finite’ subsets by adjunction. With this in place we can carry out
a proof in CT[P] by following Feferman and Hellman’s strategy.

The basic task is to define a function from our natural numbers into the domain of
P , s.t. the following holds

f (0) = val(a)

f (S(n)) = val(appl(h, f (n)))
(∗∗)

The proof strategy is to approximate this function by using suitable formulas for ‘finite’
sets of elements of both ‘domains’. We let rec(�ϕ�, h, a, n) be the conjunction of (R1)
- (R3) with

∀m∀w(T�ϕ(ṁ, ẇ)� → m ≤ n) (R1)

∀w(T�ϕ(#0, ẇ)� ↔ w = val(a)) (R2)

∀m < n∀w(T�ϕ( S. ṁ, ẇ)� ↔ ∃u(T�ϕ(ṁ, u̇)� ∧ T�appl(h, u̇)=. ẇ�)) (R3)
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Since our compositional theory works for the expanded language we can as usual
use the commutation of truth with the connectives to show the following:

Lemma 2 ∃�ψ�∀n(T�ψ(�ϕ�, ḣ, ȧ, ṅ)� ↔ rec(�ϕ�, h, a, n))

It is possible to establish standard properties (compare Theorem 3. in [11, p. 8]) of
the predicate rec, such that the following holds:

∀n∃!u∃�ϕ� (rec(�ϕ�, h, a, n) ∧ T�ϕ(ṅ, u̇)�) (!)

Then we define our function f : N → P satisfying (∗) by the following formula

f (n, u) :↔ ∃�ϕ� (rec(�ϕ�, h, a, n) ∧ T�ϕ(ṅ, u̇)�)

Now we can establish the internal categoricity for the relevant notion of isomor-
phism. We let ISON∼=P ( f , (p, h, a)) be the conjuction of the following:

∀n∀v( f (n, v) → (N(n) ∧ P(v))) (iso:1)

∀n∃!u f (n, u) (iso:2)

∀v∃!m f (m, v) (iso:3)

f (0, val(a)) ∧ ∀n, u( f (n, u) → f (S(n), val(appl(h, u̇))) (iso:4)

The isomorphism is established in a similar fashion in [11, Theorem 5.].

Proposition 3

CT[P] � PSP (p, h, a) → ISON∼=P ( f , (p, h, a)))

Proof Wehave (iso:1) by definition of rec. By (!) we have (iso:2) and therefore in order
to simplify the presentation we work in the following with f as a function symbol. By
(R3) we also have (iso:4). What remains to be shown is that f is one-to-one and onto,
(iso:3). For the former we use induction on n in N to show f (n) = f (m) → n = m.

To show surjectivity we employ induction on P as stated in (L13). The idea is to
use it on the subset X of P , such that X = {u ∈ P | ∃n f (n) = u}. In order to apply
(L13) we have to make sure that there is a formula θ , such that T�θ(v̇)� defines X .
We have v ∈ X iff P(v) ∧ ∃n( f (n) = v), which is by definition of f equivalent to
P(v)∧∃n∃�ϕ� (rec(�ϕ�, h, a, n)∧T�ϕ(ṅ, v̇)�). Thenwe can use the �ψ� fromLemma 2
to reformulate it as P(v) ∧ ∃n∃�ϕ� (T�ψ(�ϕ�, ḣ, ȧ, ṅ)� ∧ T�ϕ(ṅ, v̇)�)). Then we can
use the expanded T-biconditionals for P and the commutation axioms to see that there
is a formula θ , such that T�θ(v̇)� is extensionally equivalent to the previous (with the
parameters h, a hidden).

To apply (L13) we show: T�θ(a)� ∧ ∀w(T�θ(ẇ)� → T�θ(appl(h, ẇ))�). The a
case is obvious. In the successor case we assume that for some w we have T�θ(ẇ)�.
By definition of f , f (S(n)) = val(appl(h, f (n))) and so T�θ(appl(h, ẇ))�. Then by
(L13) we have ∀vT�θ(v̇)� establishing the surjectivity of f . ��
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5 Determinacy Reconsidered

The previous section presented our truth-theoretic versions of internal categoricity
based on a primitive notion of truth. It is time to reconsider our original goal and
discuss how and to what degree our approach improves on the first-order, Parsons-
style approach. As we discussed in Sections 2 and 3, the drawbacks of the first-order,
Parsons-style, approach were mainly the following three: as Button and Walsh noted,
first-order approaches seem not to be able to provide a crisp version of the intolerance
theorem, meaning that there is no immediate and direct formulation of a first-order
intolerance theorem.Additionally, the first-order version of internal categoricity seems
to be less general than its second-order counterpart. Finally, in the first-order version,
the existence of the wanted isomorphism was not proved explicitly.

Let us start with the complaint that the first-order version lacks a direct and explicit
formulation of an analogue of intolerance. In our truth theoretic case of Section 4.2 it
was possible to establish a truth-theoretic equivalence between arithmetical sentences:

∀x∀y(senti (x) ∧ sent j (y) ∧ χ(x, y) → (Ti (x) ↔ T j (y))) (iso:7)

(iso:7) can be already seen as a first-order formulation of intolerance. Moreover, in
the asymmetric case of Section 4.4, one can also show a truth-theoretic equivalence
between arithmetical sentences �ϕ� and their relativisations �ϕP� to the parameter P:

Corollary 2 Intolerance

CT[P] � PSP (p, h, a) → ∀�ϕ�(sentN(�ϕ�) → (T�ϕ� ↔ T�ϕP�)).

These formulations also witness that in the first-order case, intolerance can be for-
mulated quite naturally.Due to the expressive resources providedby the truth predicate,
intolerance can be stated explicitly, as a sentence of our language, directly expressing
that the truth of arithmetical statements is preserved along different interpretations.
Moreover, there is a sense in which these formulations improve even on the second-
order formulation. As we pointed out in Section 3, Theorem 3 establishes a local,
schematic form of intolerance, for any given arithmetical sentence ϕ. In contrast to
this, our version of intolerance is global: the truth predicate allows us to quantify over
all arithmetical sentences �ϕ�. For this reason, our versions of intolerance are natural
and acceptable from an internalist, Parsons-style perspective.

Turning to the question of generality, we saw that the first-order approach is not as
general as its counterpart in pure second-order logic: using the resources of second-
order logic one can quantify over all internal structures, and this is not possible in a
first-order version. In our truth-theoretic approach, we attempted to overcome some
of the expressive limitations. In Proposition 3 and Corollary 2 we allowed for an
additional parameter P to recover generality. Although P is taken to be the domain of
an arbitrary arithmetical structure, without the means of impredicative second-order
quantification we cannot reach the level of generality of the second-order version.
Even if full quantification seems to be out of reachwithin a Parsons-style approach, our
truth-theoretic approach – involving language expansions with an arbitrary parameter

123



Internal Categoricity, Truth and Determinacy 1321

P – might be as general as one can expect in a predicative arithmetical setting. This
additional first-order constraint also sets us apart from the approach in [11]: although
their results are provided by predicative means, they allow for class variables and
quantifiers. It is not entirely clear whether their use of class quantifiers is acceptable
from a Parsons-style perspective.

Finally, our truth-theoretic approach also improves on the Parsons-style first-order
strategy with respect to the existence claim for the isomorphism: in Proposition 2 we
are able to show the existence of the isomorphism explicitly. This is possible due to
the expressive resources provided by the truth predicate.

We conclude this article by discussing some additional questions and possible
objections to our truth-theoretic approach.

On the face of it there seems to be tension between our approach and a result in [15].
They claim that “the definiteness of the theory of truth for a structure does not follow
as a consequence of the definiteness of the structure in which that truth resides." [15,
p. 26]. So, even if the natural number structure is definite in the sense (exemplified
in their theorem) that two ZFC-models agree on the interpretation of the arithmetical
vocabulary, arithmetical truth remains indeterminate; there is an ‘arithmetical’ state-
ment σ , such that the two models do not agree and assign two different truth values
to σ . This philosophical conclusion is based on their Theorem 1 in [15, p. 5].

From a model-theoretic perspective, the theorem shows that we can expand a PA-
model A with two satisfaction classes S and S′ in an incompatible way, i.e., such
that (A, S) and (A, S′) are models of CT and disagree about the truth of an arbitrary
arithmetical statement σ , such that σ ∈ S and σ /∈ S′.

They draw the following philosophical conclusion:

[T]he definiteness of the theory of truth for a structure does not follow as a
consequence of the definiteness of the structure in which that truth resides.
Even in the case of arithmetic truth and the standard model of arithmetic N,
we claim, it is a philosophical error to deduce that arithmetic truth is definite
just on the basis that the natural numbers themselves and the natural number
structure 〈N,+,×, 0, 1,<〉 is definite. At bottom, our claim is that one does not
get definiteness-of-truth for free from definiteness-of objects and definiteness-
of-structure. [our emphasis] [15, p. 26]

Let us discuss the two emphasised points in the previous passage. The first concerns
the claim that it is a philosophically erroneous inference to conclude the determinacy
of truth from the definiteness of the structure. The technical result of their Theorem 1 is
beyond doubt and supports Hamkins and Yang’s philosophical conclusion, at least for
an external understanding of determinacy and of structures. However, from an internal-
ist understanding of determinacy and arithmetical interpretations, their technical result
does not support an equivalent philosophical conclusion. As our result shows, from
an internalist perspective, the acceptance of (the relevant) axiomatic truth-theoretic
principles implies determinacy of truth – in the form of internalised intolerance exem-
plified by Proposition 1. In our case, the scenario sketched by Hamkins and Yang is
excluded by our expanded induction to include statements of the mixed vocabulary
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and the bridging principles. By doing so, we ensure that the two CT-models agree on
their respective arithmetical truths.45

Hamkins’ and Yang’s picture presupposes expressive resources and distinctions
that are not directly available in an internalist conception. For example the relevant
counterexample σ is a nonstandard sentence and also the models are nonstandard
models of arithmetic and set theory. For the internalist these fine-grained distinctions
are not within the range of interpretations that she is able to discriminate. Parsons and
others have convincingly argued that such distinctions are not within the reach of inter-
nalism.46 For the internalist the models are not given as something external, existing
independently. The internalist can only make sense of these models via descriptions
of the model, as given in the object language. However, once the nonstandard model is
given by a description, via a suitable language expansion for example, the internalist
cannot only recognise the interpretation, but also conceive its inadequacy as a relevant
alternative.

The second point concerns the question of whether we obtain the determinateness
of truth ‘for free’. We admit that the inference is not obtainable without any further
presuppositions, and also that the determinacy of truth is not ‘for free’. We do assume
that a suitable expansion of the range of a truth predicate to an arbitrary P is possible.
However, we should add that it seems plausible (and unsurprising) that categoricity
and determinacy cannot be obtained without any additional resources or bridging
principles, as all versions of categoricity that we discussed employ (implicitly or
explicitly) some additional principles to construct the wanted isomorphism.

Given that there is no determinacy ‘for free’, we believe that the question of
the acceptability of the bridging assumptions becomes essential to evaluate Par-
sons’ project. In contrast to the second-order approach, our bridging assumptions
are less committing than the full impredicative comprehension principles. Addition-
ally, our bridging principles are not ‘hidden’ in the logic, but are made explicit. In
Sections 4.2 and 4.3, we employ bridging principles in form of an overarching theory
of arithmetic together with a syntactical symmetry within the two languages. This
amounts to the assumption that the alternative internal structures ‘live within’ the
overarching structure. A similar assumption is implicit in the reverse mathematics
case. Of course, these assumptions could (and should) be open to further philosoph-
ical scrutiny. In Section 4.4, we tried to weaken these assumptions by allowing the
alternative P to be disjoint from N. In order to obtain the wanted categoricity result,
we relied on the assumption that we can enumerate the alternative P-numerals with
our natural numbers and that the P-numerals suffice for explicating the truth of quanti-
fied P-statements. Although these assumptions are not completely innocent, we think
that they are more acceptable and less committing than the assumptions in place in

45 We should point out that Hamkins and Yang don’t directly argue against internalism. Their argument is
employed in the context of Feferman’s philosophy of mathematics and within his claim that the definiteness
of the natural numbers implies the determinacy of arithmetical truth. For an analysis of Feferman’s argument
the consequences are dependent on an interpretation of Feferman’s conceptual structuralism. It would be
an interesting question to investigate whether Feferman’s conceptual structuralism can be understood as a
form of internalism.
46 Compare Parsons position spelled out in [23, p. 288] but also the discussion in [4, p. 279 f.].
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the second-order approach, especially for the communicative setting considered by
Parsons.

Although our truth-theoretic approach displays some attractive features, one might
worry that the introduction of a truth predicate goes beyond Parsons’ first-order con-
straints. A primitive truth predicate exceeds pure first-order arithmetic, but we think
that in an open-ended conception of arithmetic the notion of truth that we employ
is close enough to be acceptable as part of an arithmetical setting. This is also wit-
nessed by the close connection between theories of truth and predicative subsystems
of second-order arithmetic. Against the worry thatCTmight be unmotivated, we note
that in the open-ended setting there is an alternative strategy. It is possible to start with
weak disquotational truth-theoretic principles and recover the compositional princi-
ples of typed truth via reflection.47

A variation of this worry might question the compatibility of internalism and truth.
One might object that a truth predicate ‘brings back’ the external semantic notions
rejected by internalism. We believe that these worries are misplaced. Introducing a
primitive truth predicate via an axiomatic theory of truth is not only in line with
a Davidsonian conception, but also with a deflationary conception of truth. On a
deflationary conception the main purpose of the truth predicate is expressive and we
follow this understanding. With this we set our approach apart from several other
conceptions, such as the model-theoretic ‘external’, semantic notion of truth-in-a-
structure. It is such a conception that internalism rejects. Internalism does not allow
for a strong form of semantic reflection from a meta-theoretical perspective along the
lines ofmodel-theory.However, it is compatiblewith an object linguistic (deflationary)
truth.

Although a full evaluation of the truth-theoretic approach is not possible at this
early stage, this work provides some important first steps towards a more attractive
picture of internalism, and additional motivation for further work on a Parsons-style
approach to the uniqueness and agreement.
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