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Abstract
This paper investigates the conditions under which diagonal sentences can be taken
to constitute paradigmatic cases of self-reference. We put forward well-motivated
constraints on the diagonal operator and the coding apparatus which separate
paradigmatic self-referential sentences, for instance obtained via Gödel’s diagonal-
ization method, from accidental diagonal sentences. In particular, we show that
these constraints successfully exclude refutable Henkin sentences, as constructed by
Kreisel.
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1 Self-Reference and Diagonalization

1.1 Diagonal Sentences

It is common to talk about theGödel sentence, theHenkin sentence, the liar sentence,
and other allegedly self-referential sentences. We take these labels as abbreviations
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of definite descriptions of sentences: By “the Gödel sentence” we mean the sentence
stating its own unprovability, by “theHenkin sentence” the sentence asserting its own
provability, by “the liar sentence” the sentence stating its own falsity, and so on.

In each case, it is obvious that the definite article is incorrect. In the case of “the
Gödel sentence”, it is obvious that there are many different ways of defining an
unprovability predicate ¬Bew(x) from which the Gödel sentence is constructed. The
formula Bew(x) will depend on the particular theory and its language, the chosen
Gödel coding, and then on how the provability predicate is defined relative to that
coding. The problems of choosing a reasonable coding relative to the theory under
consideration and then defining a suitable provability predicate relative to the coding
and theory are well-known, thoroughly studied, and increasingly better understood.

When logicians talk about the Gödel sentence, they often assume that a language
and a sound theory (or family of theories) have been fixed, and a “natural” provability
predicate has been been chosen. They often assume that this ensures that Bew(x)

satisfies the Löb derivability conditions. The usual justification for speaking about
the Gödel sentence is then that all diagonal or fixed-point sentences of ¬Bew(x) are
provably equivalent. That is, if � is some suitable system of arithmetic, � � ϕ1 ↔
¬Bew(�ϕ1�) and � � ϕ2 ↔ ¬Bew(�ϕ2�) imply � � ϕ1 ↔ ϕ2. Moreover, all
these sentences are provably equivalent to the consistency statement for �. Provable
equivalence, however, is a very coarse grained kind of equivalence, too coarse grained
for justifying the definite article in “the Gödel sentence”.

Finding a diagonal sentence of ¬Bew(x) is not trivial, and this might give the
impression that these diagonal sentences are all mere trivial variations of each other.
However, this is not the case. Whether a sentence is a diagonal sentence of ¬Bew(x)

is not decidable. In fact, the set of diagonal sentences of any formula is undecidable
[10, observation 2.2]. Of course, the provable equivalence of all diagonal sentences
of ¬Bew(x) means that we do not have to distinguish between them as long as we
are only interested in their provability, and their properties analyzable in standard
(propositional) provability logic. However, if this is taken as justification for talking
about the Gödel, one could also talk about the theorem of Peano arithmetic, as there
is only one such theorem up to provable equivalence.

In the case of “the Henkin sentence”, the problems are more blatant: By Löb’s
theorem all diagonal sentences of the provability predicate are provable and thus
provably equivalent with each other and the theorem of Peano arithmetic. Clearly,
they are not just trivial variations of each other, and the definite description “the
Henkin sentence” cannot apply to them.

If formulas other than provability predicates satisfying the Löb conditions are con-
sidered, the definite article is even less plausible, because diagonal sentences of a
given formula may behave in very different ways and, in particular, fail to be provably
equivalent. For instance, we can look at the truth teller sentence constructed from the
�n-truth predicate Tr�n(x) for some n ≥ 1. The formula Tr�n(x) itself is a �n for-
mula. Applying some canonical diagonalization procedure to Tr�n(x) thus yields a
�n-sentence (see [10] for a more detailed discussion). The point of a truth predicate
for a class C of sentences is that all sentences in C are fixed-point sentences. 0 = 0
and 0 = 1 will be diagonal sentences of any partial truth predicate Tr�n(x). Thus,
if we are interested in the question whether the �n-truth teller sentence is provable,
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refutable, or independent for a given n, we have to ask about very specific diagonal
sentences – in contrast to the case of Gödel and Henkin sentences with a provability
predicate satisfying the Löb conditions.

1.2 Self-Reference

In the case of �n-truth we cannot dodge the question of what the truth teller sentence
is by proving a general theorem about all diagonal sentences of the �n-truth pred-
icate, because all �n-sentences are fixed-points, and some will be provable, while
others are not. The same applies to provability for which the Löb derivability con-
ditions may fail. These provability predicates need not be highly contrived: We can
consider cut-free provability or Rosser provability. We may consider further formulas
expressing other properties, possibly formulated in proper extensions of the language
of arithmetic with a primitive truth or necessity predicate, for instance.

We do not expect that we can narrow down the class of diagonal sentence until
only one sentence is left that deserves to be called “the sentence asserting its own P ”,
where P is the property expressed by the formula. However, we may still hope to
be able to narrow down the class so that all remaining sentences behave in the same
way. We may even hope to narrow down the class for some formulas to a point where
all remaining sentences are so similar (given certain restrictive choices) that we are
warranted to use the singular and talk about the sentence asserting its own P .

Perhaps we will never be able to arrive at a suitable class of sentences, but rather
realize that the status of the sentences depends on accidental choices in the coding or
the definition of the formula in some haphazard way. In other cases we may arrive
at a fairly stable result, although we may not be as lucky as in the case of canonical
provability with the Löb conditions where all diagonal sentences behave in the same
way; but we may be able to establish a result that applies to a sufficiently interesting
class of diagonal sentences.

In the case of the formula ∃y SS0 × y = x expressing that x is even, for instance,
there is little hope to obtain a stable result about sentences stating their even parity.
Even the status of diagonal sentences obtained in some canonical way will depend
on the coding and the method of diagonalization in a haphazard way. “Metathe-
oretic” properties such as provability and truth will generally yield more stable
results. By metatheoretic properties we mean here properties expressible in some
non-arithmetized metatheory such as the theories described in [9]; but we do not
attempt here to make this distinction sharp.

Continuing to ask about self-referential sentences, even if the equivalence of all
fixed-points fails, can lead to important insights. Ironically, the most striking example
is the discussion that leads up to the discovery of Löb’s theorem. Kreisel [16] replied
to Henkin’s [13] question: “[. . . ] the answer to Henkin’s question depends on which
formula is used to ‘express’ the notion of provability in �”. Kreisel regretted that
he did not keep asking. Löb, in contrast, continued asking and proved his celebrated
theorem [18] by imposing further restrictions on the formula expressing provability.
Hence, by specifying such restrictions on how a property may be expressed and how
self-reference is obtained, one can achieve definitely noteworthy results.
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In the present paper we do not delve into the intricacies of what it means for a for-
mula of arithmetic to express some property P and ask on which diagonal sentences
we should focus, once a formula expressing P is given. These fixed-point sentences
should be self-referential.

Defining what it means for a sentence to be self-referential is notoriously diffi-
cult. Self-reference may be thought to be reducible to aboutness by the following
definition: A sentence is self-referential if, and only if it is about itself. But then pre-
sumably the sentence ∀x x = x is self referential because it states the self-identity of
everything, including the sentence itself. Halbach and Leigh [9] and Picollo [20] pro-
vide more comments on self-reference via quantification.1 Following [10] and [12],
we consider only self-reference via a closed term. That is, to be self-referential, more
precisely to ascribe a property to itself, that sentence must contain a closed term that
refers to that sentence.2

Before we provide a precise definition of self-reference via terms, some techni-
cal preliminaries are in order. Let L0 contain the logical symbols =, ¬,∧, ∀ together
with the constant symbol 0, the unary function symbol S and the binary function
symbols + and ×. Let L be an effective extension of L0 that contains a function
symbol for each p.r. function, which may also contain further constants, functions
symbols or predicates which we do not specify explicitly. Let� be a consistent recur-
sive enumerable L-theory which contains R together with all true identities of closed
L-terms.

The name of a string in L is given by a numbering and a numeral function.
We call an injective and effective function which maps L-expressions to numbers
a numbering. We write # for standard numberings. We call an injective function
ν : ω → ClTerm that maps each number to a closed term of L which has the same
value a numeral function. A numbering α and a numeral function ν induce a nam-
ing function �−�, which is the composition ν ◦ α. In order to make α and ν explicit,
we also sometimes write �ϕ�α,ν for �ϕ�. If ν is the standard numeral function, i.e.,
ν(n) = n for all n ∈ ω, we sometimes also write �ϕ�α . Finally, ≡ denotes syntactic
identity between expressions.

Definition 1.1 (Kreisel–Henkin Criterion for Self-Reference) Under a specific cod-
ing, a sentence says of itself that it has the property expressed by the formula ϕ(x),
if it is of the form ϕ(t) where t is a closed term that satisfies the following condition,

� � t = �ϕ(t)�

1Perhaps different forms of self-reference via quantification are somehow reducible to self-reference via
a closed term. In standard first-order logic, quantifiers range over the entire domain, and restrictions are
expressed in Frege’s way with connectives. Frege’s insight that the binary quantifiers of syllogistic logic
are expressible with a unary quantifier makes the notion of aboutness difficult to capture. Here we remain
agnostic about self-reference via quantification and concentrate on the Kreisel–Henkin criterion below.
2For discussions and applications of the criterion see [9–11].
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Therefore, if t refers to ϕ(t), that is, if it has the code of ϕ(t) as its value, � will
prove t = �ϕ(t)�. Of course, � � t = �ϕ(t)� implies � � ϕ(t) ↔ ϕ(�ϕ(t)�) and
ϕ(t) is thus also a diagonal sentence of ϕ(x).

We say that a sentence has the Kreisel–Henkin property if, and only if it is of the
form ϕ(t) and ascribes to itself the property expressed by ϕ(x) in the sense of the
Kreisel–Henkin criterion. We also call such term t a fixed-point term of ϕ(x).

2 Accidental Self-Reference

In the presence of suitable function symbols, Gödel’s diagonalization method enables
us to find a suitable closed term tϕ for each ϕ(x) such that � � tϕ = �ϕ(tϕ)�.
“Suitability” needs to be understood relative to the coding scheme used. However,
instead of using a systematic method for arriving at diagonal sentences that satisfy the
Kreisel–Henkin criterion, for any given ϕ(x), we could also try a brute force method
by enumerating all closed terms of the language and browse through them until we
have found the first term tϕ with � � tϕ = �ϕ(tϕ)�.

We may strike it lucky and the first tϕ could be one that would have been generated
by a systematic method; but we could also stumble upon some diagonal sentence
with the Kreisel–Henkin property “accidentally”. We could rig the game and set up
the coding in such a way that there is an easy to find tϕ . We can even use numerals
S · · · S0 as the only closed terms and use the coding schema from [26]. The question
is whether all these diagonal sentences with the Kreisel–Henkin property are all also
obtainable with the usual Gödel diagonal or some similar systematic method and, if
there are other such diagonal sentences whether they differ in their properties from
the diagonal sentences obtained by some reasonable systematic method.

Let us call a fixed-point sentence not obtained by systematic method an accidental
diagonal sentence. Of course, this is not (yet) a precise definition, and we have given
no evidence that there are indeed any accidental diagonal sentences.3 Before trying to
make the distinction between accidental and non-accidental diagonal sentences pre-
cise, we provide examples of clearly accidental fixed-point sentences that behave in
ways that are very different from those of generated by the usual systematic methods.

If we ask about the�n-truth teller or theHenkin sentence, we will select a sentence
for the diagonal sentences of a given predicate that ascribe to themselves the relevant
property by the Kreisel–Henkin criterion. But wemay then still be left with accidental
and non-accidental diagonal sentences with rather different properties. In this case
we would select those obtained by some systematic method and not the accidental
diagonal sentences. If there is the �n-truth teller or the Henkin sentence it will have
been arrived at by a systematic method not by some quirk in the coding or some
clever trick that works not generally, but only for the predicate in question.

Accidental diagonal sentences may satisfy the Kreisel–Henkin criterion because
of some very specific feature of the formula that is being diagonalized. An accidental

3Carnap [6] distinguished between accidental and functional self-reference. We are using “accidental” in
a different, but related sense.
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diagonal sentence may be chosen in a very ad hoc way to obtain a specific result.
However, if we ask about self-referential sentences such as truth teller sentences, we
are more interested in knowing the properties of diagonal sentences that have been
constructed in a straightforward way and not in those obtained by some trickery.

In this paper we do not attempt to provide a thorough defence for preferring non-
accidental fixed-point sentences. Before one can enter this discussion, we need to
show that it is possible to come up with a precise distinction; we also need to provide
examples of accidental diagonal sentences with the Kreisel–Henkin property that
behave differently from all non-accidental ones.

First we provide some examples of accidental diagonal sentences taken from the
literature. The first example is Kreisel’s [16] refutable Henkin sentence.4 Of course,
Kreisel had to employ a deviant provability predicate. He claimed that whether the
Henkin sentence is provable or not depends on the way provability is expressed.
However, it also depends on how the formula expressing provability is diagonalized.
Only accidental diagonal sentences of Kreisel’s provability predicate are refutable;
those obtained in a systematic and uniformway are provable, as we are going to show.

Observation 2.1 Let Bew(x) be a provability predicate that weakly represents prov-
able sentences, viz. for any sentence ψ , � � ψ iff � � Bew(�ψ�). Let t be a term
satisfying the Kreisel–Henkin criterion with respect to the formula x �= x ∧ Bew(x),
i.e.,

� � t = �t �= t ∧ Bew(t)�.
Define another predicate BewK(x) to be the following one

BewK(x) :≡ x �= t ∧ Bew(x).

Then BewK(x) also weakly represents provability, and BewK(t) is a refutable
sentence stating its own provability with respect to the Kreisel–Henkin criterion.

Proof We show that � � ϕ iff � � BewK(�ϕ�) by distinguishing two cases. If
ϕ �≡ t �= t ∧ Bew(t), then � � �ϕ� �= t . Hence,

� � BewK(�ϕ�) iff � � Bew(�ϕ�).

The claim then follows from the fact that Bew(x) weakly represents provable sen-
tences. If ϕ ≡ t �= t ∧ Bew(t), we have � � ¬ϕ and � � ¬BewK(�ϕ�). Thus,
BewK(x) also weakly represents provability.

According to the definition, BewK(t) ≡ t �= t ∧Bew(t) , hence by the assumption

� � t = �BewK(t)�.
This shows that t is also a fixed-point term with respect to BewK(x), and obviously
BewK(t) is refutable.

4Kreisel’s provability predicate was different, and the version here is due to Henkin, who was the referee
for Kreisel’s paper.
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Intuitively, the deviant Henkin sentence BewK(t) is not the result of some system-
atic fixed-point construction. Rather, t is already contained in Bew(x) and “happens”
to be its fixed-point term [11, p. 701].

We can start from a provability predicate Bew(x) satisfying the Löb derivability
conditions. It is not hard to see that applying the usual canonical diagonalization
method yields a term s distinct from t and that the resulting Henkin sentence BewK(s)

is provable [10, observation 4.1].
We can generalize the above method of obtaining fixed-point sentences:

Observation 2.2 Let ϕ(x) be a formula with one designated free variable x. Suppose
there are n (marked) free occurrences of x in ϕ (n ≥ 1). Given any fixed-point term
t of ϕ, i.e.

� � t = �ϕ(t)�,

and given any proper subset S ⊂ {1, 2, . . . , n}, let ϕt
S be the formula obtained by

substituting the i-th occurrence of the free variable x in ϕ by t , for every i ∈ S

(ϕt
∅ ≡ ϕ). Then t is also a fixed-point term of ϕt

S .

Proof Since S is a proper subset, ϕt
S still contains at least one free occurrences of x,

hence is still a formula with the only free variable x. Now according to our definition
it is easy to see that

ϕ(t) ≡ ϕt
S(t).

This in particular means that the codes of ϕt
S(t) and ϕ(t) coincide. Since t satisfies

the Kreisel–Henkin criterion with respect to ϕ(x), we also have

� � t = �ϕt
S(t)�.

Hence, t is also a fixed-point term of ϕt
S(x).

Kreisel’s original refutable Henkin sentence in [16] – not Henkin’s simplified
version BewK(t) above – can be obtained from this observation with n = 2.

Observation 2.2 has some crucial implications about whether the Kreisel–Henkin
criterion alone can be used as a sufficient condition for genuine self-reference. Firstly,
if for different subsets S the formula ϕt

S expresses different syntactical properties,
then according to the Kreisel–Henkin criterion the formula ϕ(t) self-ascribes sev-
eral different properties. The number of different proper subsets, or in other words
the number of different self-ascribing properties, is equal to 2n − 1, which grows
exponentially. Secondly, for most proper subsets S, if we apply the usual diagonal
construction directly to the formula ϕt

S , we in general obtain a closed term tS differ-
ent from t . The two sentences ϕt

S(tS) and ϕt
S(t) will not be provably equivalent in

general as well. In this sense, ϕ(t) would be an accidental fixed-point for most of
these formulas ϕt

S .
We now introduce examples of accidental diagonal sentences which result from

contrived codings. In particular, we provide a counterpart of Observation 2.1 on
the level of Gödel numberings. That is, by suitably tweaking the coding, we obtain
a deviant provability predicate such that the fixed-point property of the resulting
Henkin sentence is directly implemented into the coding. As in the case of Kreisel’s
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provability predicate above, only accidental diagonal sentences thus obtained are
refutable, while those constructed in a systematic and uniform manner are provable.

Observation 2.3 Let # be a standard numbering such that each #-code is positive
and even. Let Bew(x) be a provability predicate that weakly represents provabil-
ity, i.e., for every sentence ψ , � � ψ iff � � Bew(�ψ�#). We assume that
� � ¬Bew(n), for each odd n (e.g., this holds for Feferman’s [5] standard prov-

ability predicate). Let˜1 :≡ S0 and ˜m + 1 :≡ (m̃ + S0). Let m be the smallest odd
number such that m does not occur in Bew(m̃).5

We now change our old standard numbering # by defining a new numbering α as
follows

α(χ) :=
{

m if χ ≡ Bew(m̃);
#χ otherwise.

Then Bew(x) weakly represents provability relative to α, i.e., the set of α-codes of �-
theorems. Moreover, Bew(m̃) is a refutable sentence which states its own provability
with respect to the Kreisel–Henkin criterion.

Intuitively, the refutable Henkin sentence Bew(m̃) is accidental. For its fixed-point
term m̃ is not obtained by a systematic method, but rather by a contrived numbering
which is specifically tailored for this purpose. Even if Bew(x) is a canonical prov-
ability predicate w.r.t. the numbering #, Bew(x) does not satisfy Löb’s conditions
w.r.t. the numbering α.6 As in the case above, assume that Bew(x) satisfies Löb’s
conditions w.r.t. the numbering #. Let s be a fixed-point term of Bew(x) which is
obtained by the usual canonical diagonalization method relative to the coding α. That
is, � � Bew(s) ↔ Bew(�Bew(s)�α). It is then easy to see that s is different to m̃,
and hence that Bew(s) is a provable Henkin sentence.

Numberings which are designed to immediately provide fixed-points with the
Kreisel–Henkin property are sometimes said to have “built-in diagonalization.
Paradigmatic examples of such numberings are so-called self-referential number-
ings” [8, definition 3.3]. It is to be expected that results about axiomatic theories of
truth are most stable, because the axioms are formulated relative to a fixed coding,
while defined notions such as the usual provability predicate are highly relative to
the coding. Heck [12, p. 14ff] showed that even axiomatic theories of truth are sensi-
tive to the chosen coding (and the language). Again, one has to be very careful about
what an axiomatic truth theory is, independently of a fixed coding. In semantic, non-
classical theories of truth, [2] had already observed sensitivities to the codings. See
also [22, Section 2.2] and [8, Section 9] for more recent examples of intensionality
with respect to truth theories which result from numberings which have built-in diag-
onalization. Whether all numberings with built-in diagonalization yield accidental
fixed-points is a delicate question which we will briefly address in Section 8.2.

5Here we could choose n instead of m̃, for any odd n. The particular choice of m̃ will only be relevant in
Section 8.2.
6This follows from Löb’s theorem, which also holds for the contrived numbering α [7, section 4.2].
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Plan of the Paper The main goal of this paper is to make the distinction between acci-
dental and non-accidental fixed-points precise. The basic idea is that non-accidental
fixed-points are constructed in a uniform way. A precise notion of uniformity is
introduced in Section 3, where we also show that the canonical fixed-point con-
structions found in the literature are uniform in our sense. In the remainder of the
paper, we examine the extent to which the uniformity constraint rules out accidental
fixed-points.

We start with Kreisel’s construction as a paradigmatic case of an accidental fixed-
point. According to our analysis, this fixed-point construction is accidental since
Kreisel’s provability predicate BewK(x) already contains its own fixed-point term.
We ask whether, or more generally, under which additional assumptions, the unifor-
mity requirement rules out the possibility that a predicate contains its own fixed-point
term (Question 3.6).

In Section 4, we show that uniformity alone is not sufficient to exclude refutable
Henkin sentences which contain their own fixed-point terms. Rather, accidental
fixed-points can also result from contrived choices of the numbering or the numeral
function. However, in Section 5 we show that Kreisel-like constructions can be
successfully excluded by 1) requiring uniformity of the diagonal operator and 2)
requiring the numbering and the numeral function to induce a non-circularweak nam-
ing relation. As we argue in Section 6, the constraint of well-foundedness, which
implies non-circularity, is natural and well-motivated. This provides a satisfactory
answer to Question 3.6 and completes the main part of the paper.

In Section 7, we introduce a new construction of refutable Henkin sentences which
are accidental, but do not contain their own fixed-point terms. We show that the
constraints of uniformity and the non-circularity of the weak naming relation taken
together do not rule out this construction, but uniformity plus the well-foundedness of
the weak naming relation do. In Section 8, we provide a different metamathematical
context in which the uniformity constraint successfully singles out non-accidental
fixed-points. Moreover, we briefly address the question whether all numberings with
built-in diagonalization yield accidental fixed-points. Finally, in Section 9 we extract
some conclusions.

3 Uniformity

In this section the distinction between accidental and non-accidental is made precise.
The non-accidental fixed-points are obtained in a uniform and systematic way. These
systematic methods can be extracted from the usual textbook proofs of the diagonal
lemma. These methods apply uniformly to all formulas. The precise definition of a
uniform diagonal construction allows us to distinguish the non-accidental fixed-point
constructions, including the usual Gödel’s diagonal method and alike, and the more
accidental ones provided by Kreisel. The use of uniformity to distinguish the two
kinds of fixed-point constructions can be traced back to [11]. But the definition of
uniformity given there is defective, since, according to the definition there, Gödel’s
diagonal construction would not be uniform.

1013Varieties of Self-reference in Metamathematics



It is our task here to give a more adequate definition of uniformity and provide
an extensive study of its implications for self-reference. There are several consider-
ations that motivate and shape our formulation for uniformity below. First of all, as
already mentioned, the intuition for uniformity is that a uniform construction should
not result in a fixed-point depending on very specific syntactical features of the for-
mula it diagonalizes; it should diagonalize all the formulas with a designated free
variable by similar means.

Second of all, since the notion of uniformity is essentially restricting the class of
constructions we are allowed to perform on the syntactical objects, it is natural to
define it in a recursive way: we specify basic operations that are uniform in a very
intuitive sense, and a uniform construction is then a finite composition of all the basic
uniform constructions. Except requiring the basic operations to be intuitively uni-
form, we also want them to be possibly carried out in a syntax theory, e.g. in the sense
of Halbach and Leigh [9]. This reflects our general contemplation on the subject: if
an arithmetic sentence could refer to a syntactical object at all, then when construct-
ing such a sentence we must mimic what we can do in syntax theory. The operations
provided in a syntax theory include substitution, quotation, and concatenation. As
you will soon see, these are indeed the basic constructions we allow, except for a
modification for concatenation, which links to our final motivation.

The final consideration is that we want our defined constructions to always yield
well-defined syntactical objects. This leads us to a typed approach to define unifor-
mity. The unrestricted form of concatenation will not always result in well-formed
formulas or terms, thus we have replaced concatenation with three collections of
well-typed operations, associated with logical connectives, function symbols, and
predicates. We also distinguish operations which only differ with respect to their
domain or codomain, such as the substitution or naming function. As we will see
below, these distinctions will permit a conceptually more refined introduction of the
basic constructions and will lead to technically important results (see Lemma 5.9).

After spelling out all the motives, we now provide the precise formulation of the
notion of uniformity. Since our aim is to analyse sentences that self-ascribe proper-
ties which can be expressed by unary predicates, we restrict ourselves to terms and
formulas with a single (designated) free variable x. Let Fmlx and Termx be the set of
all L-formulas and L-terms respectively which at most contain x as a free variable.
As usual, for any set A and n ≥ 1 let An denote the Cartesian product A × · · · × A

which consists of n factors; A1 will simply be A. We set A0 := 1, where 1 denotes
a designated singleton set, which remains fixed throughout this paper. Let ∗ denote
the unique element of 1, i.e., 1 = {∗}. To be precise, the binary product is not strictly
associative, though (A × B) × C is canonically isomorphic to A × (B × C).

The fact that we have these canonical isomorphisms, and that these isomorphisms
interact in a coherent way, justifies our usual sloppy way of writing A× · · ·×A, and
permits us to freely view An as Am × Al , whenever m + l = n. However, precisely
speaking, we will assume An to be the product A × (· · · (A × (A × A)) · · · ). This
level of precision will only affect the precise form of Definition 3.1 below and the
materials in Section 5 where a more careful treatment is needed. In other places in
this paper, however, we will suppress this level of precision as usual.
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The following meta-linguistic operations will serve as the basic constituents of
uniform constructions:7

(1) Two meta-linguistic substitution functions:

Subf : Fmlx ×Termx → Fmlx,

Subt : Termx ×Termx → Termx .

Given any formula ϕ(x) ∈ Fmlx and any term t (x) ∈ Termx , application of
Subf yields the result of substituting the term t (x) for x in ϕ(x), i.e.,

Subf (ϕ(x), t (x)) ≡ ϕ(t (x)).

Similarly, for any two terms t (x) and s(x), we have

Subt (t (x), s(x)) ≡ t (s(x)).

(2) The naming functions for formulas and terms:8

�−�f : Fmlx → Termx,

�−�t : Termx → Termx .

(3) Given any n-ary logical connective 	 (for quantifiers we only consider ones that
bind x), the meta-linguistic function

	 : Fmlnx → Fmlx,

given by
	(ϕ1(x), · · · , ϕn(x)) ≡ 	(ϕ1(x), · · · , ϕn(x)).

In our language L, 	 ranges over {¬,∧, ∀x}.
(4) Given any n-ary function symbol f of L,9 the meta-linguistic function

f : Termn
x → Termx,

given by
f (t1(x), · · · , tn(x)) ≡ f (t1(x), · · · , tn(x)).

(5) Given any n-ary predicate symbol R of L, the meta-linguistic function

R : Termn
x → Fmlx,

given by
R(t1(x), · · · , tn(x)) ≡ R(t1(x), · · · , tn(x)).

(6) The function which introduces the variable term x,

x : 1 → Termx,

where x sends the unique element ∗ in 1 to the term x.

7It will be evident from the definition below that uniformity applies more generally to a wider range of
languages, which we do not consider in this paper.
8Recall from Section 1.2 that the naming function �−� are induced by a numbering and a numeral function
and can be applied to any string. However, for reasons which will become clear at a later stage of this
paper, it is useful to distinguish naming functions for well-formed formulas and terms respectively (cf.
Section 5). When this distinction is not important or when we consider a naming function for all strings,
we also write �−� as usual, without a subscript.
9We identify constants with 0-ary function symbols.
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While the functions given in (1) and (3)– (6) are fixed, we treat the naming func-
tion �−� as a parameter which has to be specified. To be fully precise and explicit,
we call the above functions basic operations containing �−�. We define uniform
functions based on such a class as follows:

Definition 3.1 Let D be the smallest collection of sets containing 1, Fmlx , Termx

which is closed under binary products. Let A, B be sets in D. A function f : A → B

is called uniform for �−� if it is contained in the smallest class of functions that
includes the following C-basic functions containing �−�:
• each basic operation containing �−�;
• identity functions idFmlx , idTermx on Fmlx and Termx ;
• projection maps π

A,B
1 , π

A,B
2 from A × B to A, B, with A, B ∈ D;10

• a uniquely determined function !A : A → 1, for each A ∈ D;

and which is closed under composition and maps canonically induced by the
Cartesian product structure; that is, we have

• composition of two uniform functions for �−� is uniform for �−�;
• if f : A → B, g : A → C are uniform for �−�, then so is

〈f, g〉 : A → B × C,

which maps a ∈ A to (f (a), g(a)) ∈ B × C.

If we want to be explicit about both the numbering function α and the numeral
function ν that constitute the naming function �−�, we also say a function is uniform
for ν ◦ α. If ν is the standard numeral function that takes n to its numeral n for any
n ∈ ω, then we also omit mentioning it explicitly and say a function is uniform for
α. Of course, if the naming function is implicitly understood as determined by the
context we will often suppress this parameter. In fact, an explicit version will only
play a major role in Section 8.2. Now suppose we have fixed a naming function
�−�. Note that all the other canonically induced functions associated to the Cartesian
product structure are uniform in the above sense. Given any two uniform functions
f : A → B and g : C → D, there is an induced function

f × g = 〈f ◦ π1, g ◦ π2〉 : A × C → B × D,

which is uniform by definition. All identity functions on sets in D are also uniform. A
simple induction on D shows this fact: The identity functions on 1, Fmlx and Termx

are uniform (the identity function on 1 is !1). LetA, B in D be given such that idA, idB

are uniform. The identity function on A × B can be expressed as

idA×B = idA × idB .

10When there is no possible confusion about the domain of the considered projection map, we will simply
write π1, π2 without explicitly mentioning the domain.
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Hence, idA×B is uniform. The associators, or the canonically induced isomorphisms
from (A × B) × C to A × (B × C) are uniform:

aA,B,C = 〈πA,B
1 ◦ π

A×B,C
1 , 〈πA,B

2 ◦ π
A×B,C
1 , π

A×B,C
2 〉〉.

So are the canonical isomorphisms between A, A × 1 and 1 × A:

rA = π1 : A × 1 → A, lA = π2 : 1 × A → A.

The inverses of these canonical isomorphisms are uniform as well, which we leave
for the readers to check. Since all these canonical maps are uniform, we are free to
use them in the remaining parts of this paper, and we will usually not mention them
explicitly as we usually do when dealing with Cartesian products, except in Section 5
where more careful treatment is needed.

Importantly, all functions belonging to the C-basic class do not make any distinc-
tion on the initial input, and obtain results in an intuitively uniformway. The recursive
definition of uniformity above then captures this intuitive sense of uniformity. This
finally leads us to the definition of a uniform diagonal operator. Given a function u

with codomain Fmlx or Termx , we say u is closed if im u ⊆ Sent or im u ⊆ ClTerm,
where im u denotes the image of u and Sent and ClTerm denote the set of sentences
and closed terms respectively. For example, both �−�f and �−�t are closed.

Definition 3.2 A diagonal operator d is a closed meta-linguistic function of type

d : Fmlx → Termx,

such that for every formula ϕ ∈ Fmlx , the closed term dϕ satisfies the Kreisel–
Henkin criterion with respect to ϕ, i.e.,

� � dϕ = �ϕ(dϕ)�.

A uniform diagonal operator is a diagonal operator which is uniform (for some
naming function) in the sense of Definition 3.1.

Note that the definition of a diagonal operator depends on the chosen coding and
the interpretation of the language. Since we only consider theories which prove all
true identity statements of closed terms, instead of requiring that the the identity
dϕ = �ϕ(dϕ)� is provable in �, we could equivalently require that dϕ = �ϕ(dϕ)�
is true with respect to the given interpretation.

Remark 3.3 In this paper we focus on self-reference via a term, but the definition of
uniformity we gave can also be applied to study “weak” diagonal sentences that do
not satisfy the Kreisel–Henkin condition and thus to languages lacking the required
(or indeed any) function symbols. In particular, we can define the uniformity of such
a weak diagonal operator d ′ : Fmlx → Fmlx along similar lines. For instance, the
diagonal operator which underlies the diagonal lemma introduced in [3, §35] will of
course be uniform.
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We now show that the canonical diagonalization methods found in the literature
are uniform. More specifically, we show that Gödel’s standard diagonal construc-
tion (which can be found e.g. in Smoryński [23]), Jeroslow’s [15] diagonal operator
and some further methods of diagonalization are all uniform. We thereby hope to
convince the reader that our definition sufficiently captures the intuitive sense of a
uniform diagonal construction.

3.1 Gödel’s Construction

Let subG be the function symbol representing the primitive recursive function that
takes (the code of) a formula ϕ(x) and (the code of) an expression e, and outputs (the
code of) the formula obtained by substituting �e� for x in ϕ(x), i.e.,

� � subG(�ϕ(x)�, �e�) = �ϕ(�e�)�.
By definition we can prove

� � subG(�ϕ(subG(x, x))�, �ϕ(subG(x, x))�) =
�ϕ(subG(�ϕ(subG(x, x))�, �ϕ(subG(x, x))�))�.

This shows that subG(�ϕ(subG(x, x))�, �ϕ(subG(x, x))�) is a term satisfying the
Kreisel–Henkin criterion with respect to ϕ(x). The function dG that when applied
to ϕ(x) outputs subG(�ϕ(subG(x, x))�, �ϕ(subG(x, x))�) is uniform. Here is an
explicit construction: First, note that by using the meta-linguistic function subG, we
can construct the term subG(x, x):

1 Termx ×Termx Termx .
〈x,x〉 subG

Let subG(x, x) now denote this composition, i.e., set

subG(x, x) := subG ◦ 〈x, x〉 : 1 → Termx .

The following diagram provides a composite map that gives us dG:

Fmlx Fmlx ×1 Fmlx ×Termx Fmlx

Termx Termx ×Termx Termx

�−�f

r−1
Fmlx id×subG(x,x) Subf

〈id,id〉 subG

If we unwrap the definition and follow the arrows of the diagram, we obtain for
any input ϕ(x) ∈ Fmlx the following sequence of constructions

ϕ(x) �→ (ϕ(x), ∗) �→ (ϕ(x), subG(x, x)) �→ ϕ(subG(x, x))

�→ �ϕ(subG(x, x))� �→ (�ϕ(subG(x, x))�, �ϕ(subG(x, x))�)

�→ subG(�ϕ(subG(x, x))�, �ϕ(subG(x, x))�).

The last step of this sequence delivers the desired fixed-point term dG(ϕ(x)) for ϕ(x).
This shows that the usual Gödel construction is uniform.
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3.2 Jeroslow’s Diagonal Operator

We now reconstruct Jeroslow’s [15] diagonalization method as a uniform diagonal
operator. To begin with, we observe that there is a binary function symbol subJ

satisfying the following property

� � subJ (�ϕ(x)�, �t (x)�) = �ϕ(t (�t (x)�))�,

for any formula ϕ(x) and any term t (x) both with free variable x. In other words,
subJ represents the primitive recursive function which maps (the code of) a formula
ϕ(x) and (the code of) a term t (x) to (the code of) ϕ(t (�t (x)�)). Hence, for any ϕ(x)

and t (x) we have

� � subJ (�ϕ(x)�, �t (x)�) = �ϕ(t (�t (x)�))�.
We conclude

� � subJ (�ϕ(x)�, �subJ (�ϕ(x)�, x)�) =
�ϕ(subJ (�ϕ(x)�, �subJ (�ϕ(x)�, x)�))�.

This implies that the term subJ (�ϕ(x)�, �subJ (�ϕ(x)�, x)�) satisfies the Kreisel–
Henkin criterion with respect to ϕ. Let dJ denote Jeroslow’s diagonal operator which
maps ϕ(x) to this term. The following diagram shows that dJ is uniform:11

Fmlx Fmlx ×1 Fmlx ×Fmlx ×Termx

Term3
x Termx ×Termx

�−�f × �−�f × id

Termx

subJ

× Termx

Termx

r−1
Fmlx 〈id,id〉×x̄

id×subGJ id×�−�t

Starting with ϕ(x) and chasing the arrows in the diagram above, results in the
following sequence of constructions:

ϕ(x) �→ (ϕ(x), ∗) �→ (ϕ(x), ϕ(x), x) �→ (�ϕ(x)�, �ϕ(x)�, x)

�→ (�ϕ(x)�, subJ (�ϕ(x)�, x)) �→ (�ϕ(x)�, �subJ (�ϕ(x)�, x)�)

�→ subJ (�ϕ(x)�, �subJ (�ϕ(x)�, x)�).

Once again, the last step of this sequence delivers the desired fixed-point term
dJ (ϕ(x)) for ϕ(x). Hence, the diagonal operator dJ is uniform.

Note that the construction of dJ is based on the basic functions �−�f , �−�t

and subJ . In particular, we have not used Subf or Subt , while the construction of
Gödel’s diagonal operator requires the use of Subf . This is reflected in the resulting

11We have implicitly used associators in the diagramme to make the composite maps well-defined.
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fixed-point terms: dJ (ϕ) only contain names of ϕ(x), but not of expressions of the
form ϕ(s) with s �≡ x, while dG(ϕ) contains a name of ϕ(sub(x, x)), which requires
the substitution of a term in ϕ(x).

3.3 Other Uniform Diagonal Constructions

In addition to the usual canonical diagonal constructions, our framework is suffi-
ciently robust to also accommodate several variants thereof, which intuitively qualify
as uniform.

Example 3.4 We can slightly tweak Gödel’s construction to obtain a uniform diag-
onal operator which contains a “dummy” conjunct. Let �−� be based on some
standard numbering #. Let Sub∧ be a primitive recursive function that satisfies the
following condition:

Sub∧(#ϕ(x),#χ) =
{

#ψ(�χ�) if ϕ(x) ≡ ψ(x) ∧ x = x;
#ϕ(�χ�) otherwise.

Let sub∧ be a binary function symbol that represents Sub∧. Let dA be a diagonal
operator which maps a formula ϕ(x) to the term

sub∧(�ϕ(sub∧(x, x)) ∧ x = x�, sub∧(�ϕ(sub∧(x, x)) ∧ x = x�)).

By definition of sub∧, we have

� � sub∧(�ϕ(sub∧(x, x)) ∧ x = x�, �ϕ(sub∧(x, x)) ∧ x = x�) =
�ϕ(sub∧(�ϕ(sub∧(x, x)) ∧ x = x�, �ϕ(sub∧(x, x)) ∧ x = x�))�.

Hence, dA is a diagonal operator. Moreover, it is easy to see that dA is uniform. dA

can be given by adding to the construction of dG the operation = which yields the
formula x = x, and ∧ which yields the conjunction of ϕ(sub∧(x, x)) and the formula
x = x. Variations of dA involving other connectives or expressions other than x = x

can be introduced along similar lines.

Example 3.5 Our notion of uniformity also subsumes the original definition of
uniformity introduced in [11]. This definition relies on a function symbol such that

� � ˙d(�ϕ�) = �ϕ(˙d(�ϕ�))�,

for every ϕ ∈ Fmlx . Let now dB be a diagonal operator which is uniform in the sense
of [11], i.e., for every ϕ ∈ Fmlx ,

dBϕ ≡ ˙d(�ϕ�).

If our language contains such a function symbol ˙d, then dB is also uniform in the
sense of Definition 3.2. We close by showing how such a function symbol can be
specified. First, we fix a unary function symbol f (other than S) of our language. Let
F denote the primitive recursive function given by

F(#ϕ(x)) := #ϕ(f (�ϕ�)).
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We now possibly change our base theory � to �f such that F is represented by the
function symbol f in our language – at least on all relevant formulae (see Section 4
for a more precise formulation). We then have for every ϕ ∈ Fmlx ,

�f � f (�ϕ�) = �ϕ(f (�ϕ�))�.
This provides us with a uniform diagonal construction for theory �f .

The initial motivation for uniformity, as introduced in [11, pp. 700], is to pro-
vide a condition on self-referential sentences with the Kreisel–Henkin property that
is satisfied by fixed-point sentences obtained in a systematic, “canonical” way, but
not by contrived fixed-points. We have shown above that the canonical fixed-point
constructions are uniform. Now we turn to the question to what extent uniformity
can rule out deviant fixed-point constructions, such as the refutable Henkin sentences
constructed by Kreisel and variations and generalizations thereof as in Observation
2.2 and examples below. In particular, if ϕ(t) satisfies the Kreisel–Henkin criterion
and some natural assumptions are made, uniformity should rule out the possibility
that the self-referential term t occurs already in the formula ϕ(x), as it does in the
refutable Henkin sentence above. Thus, the usefulness of uniformity depends on the
answer to the following question:

Question 3.6 Let ϕ(x) be a formula and d be a uniform diagonal operator. Under which
assumptions can we rule out the possibility that the term d(ϕ(x)) occurs in ϕ(x)?

It will be shown that a natural assumption on the naming function is sufficient to
eliminate this possibility. However, we first show that extra assumptions are required
and that d(ϕ(x)) can occur in ϕ(x), even if d is uniform, in a carefully chosen theory
w.r.t. some specifically tailored numbering and numeral functions.

4 Uniform Kreisel-Like Constructions

To establish our claim that Question 3.6 cannot be trivially answered and some
assumption is required, we construct a provability predicate Bew	(x) such that

Bew	(x) ≡ x �= d(Bew	(x)) ∧ Bew(x), (1)

where d is a uniform diagonal operator and Bew(x) is a given provability predicate
weakly representing provability. The application of d to Bew	(x) results in the term
d(Bew	(x)), which occurs in Bew	(x) itself.

Clearly, the resulting self-referential sentence Bew	(d(Bew	(x))), i.e.,

d(Bew	(x)) �= d(Bew	(x)) ∧ Bew(d(Bew	(x))),

is refutable. Hence, using the same reasoning towards Observation 2.1, Bew	(x) is a
provability predicate and Bew	(d(Bew	(x))) is a refutable Henkin sentence.

The construction of the provability predicate Bew	(x) relies on some self-
referential trickery. This is because Bew	(x) contains the term d(Bew	(x)) which
depends on the definition of Bew	(x) itself. In order to make the definition of
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Bew	(x) explicit, let d be a uniform diagonal operator which serves as a parameter.
We define a meta-linguistic operator kd : Fmlx → Fmlx which maps a given formula
ϕ(x) to the formula

x �= d(ϕ) ∧ Bew(x).

Any meta-linguistic fixed-point of kd will serve as the desired provability predicate.
This is because every fixed-point Bew	(x) of kd remains unchanged with regard to
application of kd and thus satisfies Eq. 1:

Bew	(x) ≡ kd(Bew	(x)) ≡ x �= d(Bew	(x)) ∧ Bew(x).

As it turns out, whether or not fixed-points of kd exist crucially depends on specific
features of the naming function and the interpretation of our language.

In what follows we need to be more precise with the exact way our language L
extends L0. Let L be the result of adding a k+1-ary function symbol f k

n for each
n, k ∈ ω, to L0. For simplicity, we assume that L does not contain any further non-
logical symbols. Let Pr denote the set of primitive recursive functions. We call an
interpretation I of L standard, if

(1) I interprets the symbols of L0 as usual;
(2) I(f k

n ) is a k+1-ary function in Pr, for every k, n ∈ ω;
(3) each k+1-ary function in Pr is represented by some f k

n in L by I.
In particular, if I is standard then it interprets the domain as ω. Thus, standard inter-
pretations differ only with respect to the p.r. functions they assign to a given function
symbol.

If I is standard, we use Basic(I) to denote the deductive closure of the theory R
extended with all I-true identities of the form t = n, where t is a closed term and n ∈ ω.
In general, different standard interpretations I yield different theories Basic(I).

Recall that the definition of a diagonal operator depends on the numbering and the
interpretation of the language. Moreover, we defined uniformity relative to a given
naming function. The following definition makes this explicit:

Definition 4.1 Let α be a numbering, ν a numeral function and I be a standard
interpretation.

(1) We say that d is a diagonal operator with respect to α and I if d is a closed
meta-linguistic function of type

d : Fmlx → Termx,

such that for each ϕ ∈ Fmlx , the I-value of closed term dϕ is the α-code of
ϕ(dϕ).

(2) We say that d is uniform diagonal operator with respect to α, ν and I if d is
a diagonal operator with respect to α and I and d is uniform for the naming
function ν ◦ α.
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According to the next lemma, a fixed-point term d(ϕ(x)) can occur in ϕ(x) for
some particular numberings and standard interpretations, even if d is uniform.

Lemma 4.2 There is a numbering α, a numeral function ν, a standard interpretation
I, a uniform diagonal operator d with respect to α, ν and I and there are formulas
Bew(x), Bew	(x) which weakly represent Basic(I) such that

Bew	(x) ≡ kd(Bew	(x)) ≡ x �= d(Bew	(x)) ∧ Bew(x).

We sketch two straight-forward constructions of provability predicates Bew	(x)

and Bew†(x) which both satisfy the conditions of Lemma 4.2. Recall that the uniform
diagonal operator dB introduced in Example 3.5 maps each formula ϕ(x) to the fixed
point term ˙d(�ϕ(x)�).

Our first construction is based on a peculiar choice of the numbering:

First Proof Sketch Let Bew	(x) be the formula

x �= ˙d(0) ∧ Bew(x),

where Bew(x) weakly represents Basic(I). Given a standard numbering # (such that
each code is positive), let α be a new numbering which assigns 0 to Bew	(x) and #ϕ

to every other expression ϕ. Hence, 0 ≡ �Bew	(x)�α . Therefore, the fixed-point term
of Bew	(x), based on the operator dB and the numbering α, simply is ˙d(0). That is,

˙d(0) ≡ dB(Bew	(x)). Hence,

Bew	(x) ≡ x �= dB(Bew	(x)) ∧ Bew(x).

Instead of using a contrived numbering, our second construction is based on an
peculiar choice of the numeral function:

Second Proof Sketch Let Bew†(x) be the formula

x �= ˙d(c) ∧ Bew(x),

where c is some fresh constant symbol and Bew(x) weakly represents Basic(I).
We choose I such that c denotes (the code of) Bew†(x). Moreover, let ν be the
numeral function which maps the code of Bew†(x) to c and each other number to its
standard numeral. According to these choices, c is the ν-name of Bew†(x), that is,
c ≡ �Bew†(x)�ν . Therefore, the fixed-point term of Bew†(x), based on the operator
dB and the numeral function ν, simply is ˙d(c). That is, ˙d(c) ≡ dB(Bew†(x)). Hence,

Bew†(x) ≡ x �= dB(Bew†(x)) ∧ Bew(x).

Remark 4.3 The vigilant reader will complain that our constructions contain subtle
but persistent circles. In the second construction, we defined the provability pred-
icate Bew(x), and therefore also Bew†(x), in dependency of the interpretation I.
But I in turn depends on the choice of Bew†(x). In other words, we assume with-
out proof that such an interpretation and provability predicates exist. Similarly, in
the first construction we defined the provability predicate Bew(x), and therefore also
Bew	(x), in dependency of I. But the interpretation I in turn depends on Bew	(x).
This is because the function symbol ˙d represents the function mapping the α-code
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of Bew	(x) (i.e., the number 0) to the α-code of Bew	(˙d(Bew	(x))), which of course
depends on Bew	(x).

As we show in the Appendix B, we can use the recursion theorem to provide the
missing details, thereby turning our proof sketches into rigorous arguments. See B.1
and B.2 for explicit and detailed constructions of Bew	(x) and Bew†(x) respectively.
Inspection of these constructions reveals that they rely on circular features of some of
the involved formalisation choices. In particular, both constructions yield provability
predicates which contain their own names: The predicate Bew	(x) contains its own
α-name 0, while Bew†(x) contains its own ν-name c.

5 Circularity of Naming

In the previous section we have given examples of formulas ϕ(x) that already con-
tain d(ϕ(x)), even if d is a uniform diagonal operator. However, our examples rely
either on contrived numeral functions or codings. In Question 3.6 we asked which
additional assumptions can be made to rule out the possibility that the diagonal term
d(ϕ(x)) occurs already in the formula ϕ(x) which is diagonalized. Remark 4.3 hints
at a possible answer: If we rule out the deviant numeral functions and codings, or
more specifically, if the naming function does not exhibit any circular features, we
may hope it will provide us with the additional natural assumptions we are seek-
ing. To make this precise, we define a binary relation on the set of expressions. This
relation will play an essential role in the formulation of an answer to Question 3.6.

Definition 5.1 Let � denote the subexpression relation and let �−� be a naming
function. Let � be the binary relation on L-expressions given by e � e′ iff there
exists an expression e′′ such that

e � e′′ & �e′′� � e′.

We call� the weak naming relation for �−� and say that an expression e is weakly
named in e′ if e � e′.12 In order to make the dependency of � on the underlying
naming function explicit, we sometimes write ��−� or �α,ν for the weak naming
relation for �−� = ν ◦ α. If ν is the standard numeral function we also simply write
�α instead of �α,ν . Finally, let �∗ denote the transitive closure of �.

The following useful facts follow immediately from Definition 5.1

Fact 5.2 The weak naming relation is both left-downward and right-upward closed
with respect to the subexpression relation. That is, if e � e′, then e′ � e′′ implies
e � e′′, and e′′ � e implies e′′ � e′.

Fact 5.3 If e �∗ e′, then there is a subexpression t � e′ such that t is a closed term
and e �∗ t .

12The symbol � denotes a slightly different relation in [9]. There, � is defined by setting e � e′ iff
�e� � e′. In our terminology, this may be called a strong naming relation. Caveat lector!
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The � relation allows us to formalise what we mean by circularity of naming
functions. What we will show is the following: If � does not exhibits any loops, viz.
if its transitive closure �∗ is irreflexive, then it suffices to yield a possitive answer to
Question 3.6.

To prove this, our strategy is to first inspect the meta-linguistic properties of a
fixed-point term obtained from uniform constructions, and our strategy is to first
provide a more systematic study of the structure of uniform functions. It is evident
from Definition 3.1 that every uniform operation can be constructed by successively
composing C-basic functions together with canonical maps of the Cartesian product
structure. To make this intuition precise, we introduce a representation system for
constructions of uniform functions. Such development will allow us to prove, by
induction and case distinction, Lemma 5.11, according to which all diagonal terms
obtained uniformly share a particular meta-linguistic feature. This lemma directly
implies our main result, viz. Proposition 5.12.

We start by using a term algebra to represent uniform functions. Let (Bn)n∈ω be
a fixed bijective (and effective, if you prefer) enumeration of all C-basic functions,
and let UniFct be the set of all uniform functions.

Definition 5.4 Let � be the signature that contains constant symbols bn for each
n ∈ ω, and two binary function symbols � and �. Let T� denote the term algebra
generated over � (with no variables). We recursively define a subsetR ⊂ T� and an
evaluation function ev : R → UniFct:

• bn ∈ R and ev(bn) = Bn, for any n ∈ ω;
• If p, q ∈ R and dom(ev(p)) = dom(ev(q)), then �(p, q) ∈ R and

ev(�(p, q)) = 〈ev(p), ev(q)〉;

• If dom(ev(p)) = cod(ev(q)), then �(p, q) ∈ R and

ev(�(p, q)) = ev(p) ◦ ev(q);
where dom(f ) and cod(f ) denotes the domain and codomain of a function, respec-
tively. We call a term r ∈ R a representation of a uniform function u if ev(r) = u.

Obviously, terms in R are well-typed, and in what follows we simply use
dom(r), cod(r) to denote dom(ev(r)), cod(ev(r)), respectively. We also call a term
r ∈ R closed (resp. basic) if ev(r) is closed (resp. basic).

Since the codomain of all our basic operations is either Fmlx or Termx , the
following fact is immediate:

Fact 5.5 If r ∈ R and cod(r) = A × B, then r must be of the form �(p, q).

From the definition of uniformity and representation of uniform functions, it is
easy to see that ev : R → UniFct is surjective, which means every uniform function
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has some representation. But ev is not injective. Suppose that ev(bm) = idFmlx and
ev(bn) = π

Fmlx ,Fmlx
1 . Then

ev(bm) = idFmlx = ev(�(bn, �(bm, bm))),

which shows that both bm and �(bn, �(bm, bm)) are representations of idFmlx . This
example shows that some representations contain redundant information which is
irrelevant to the actual uniform function it represents. To reduce such redundancies,
we define a reduction process for terms in R:

Definition 5.6 The reduction relation is the smallest binary relation −→ ⊆ R × R
satisfying the following clauses: for every p, q, r ∈ R,

(1) if ev(r) = idA and �(r, p), �(q, r) ∈ R then

�(r, p) −→ p, �(q, r) −→ q;
(2) if ev(bm) = !A and �(bm, p) ∈ R, then

�(bm, p) −→ bn,

where bn is the unique constant that ev(bn) = !A ◦ ev(p) = !dom(p);
(3) if ev(bm), ev(bn) are projections maps from A × B to A, B respectively and if

�(bm, �(p, q)), �(bn, �(p, q)), �(�(bm, p), �(bn, p)) ∈ R, then

�(bm, �(p, q)) −→ p, �(bn, �(p, q)) −→ q,

�(�(bm, p), �(bn, p)) −→ p;
(4) if r ∈ R is closed, bi represents either Subf or Subt , �(bi, �(r, p)) ∈ R, then

�(bi, �(r, p)) −→ r;
(5) if �(�(p, q), r) ∈ R, then

�(�(p, q), r) −→ �(p, �(q, r));
(6) if r contains a subterm p and p −→ q, then r −→ r ′ where r ′ is the result of

substituting this particular occurrence of p with q in r .

It is easy to verify that we have a well-defined notion of reduction among terms in
R, i.e. if p ∈ R and p −→ q, then q must also be a term in R. Let −→∗ denote the
transitive closure of −→. Clearly, the function that a term p ∈ R represents remains
invariant under the reduction process. Thus, if p −→∗ q then ev(p) = ev(q).

We say a representation p is reduced if there is no other q ∈ R such that p −→ q.
By clause (6), if p ∈ R is reduced then so is every subterm of p. The following holds
for the reduction process we have described above:

Fact 5.7 Given any term r ∈ R, successive application of reduction to r will always
yield a reduced representation after finitely many steps.
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Proof All the clauses of the reduction relation do not increase the length of terms,
where only (5) does not strictly decrease the length. Hence, we only need to verify
that (5) does not generate an infinite chain of reductions, which is clearly the case.

Hence, without any loss of generality, we can work only with reduced repre-
sentations of a uniform function. Note that even though the reduction process is
terminating, it does not necessarily enjoy unique normalisation. That is, a representa-
tion may give rise to different reduced representations, and the same uniform function
may have different reduced representations.13

With reduced representations, we may commence studying the behavior of uni-
form functions. For our purpose, we are mainly concerned with those whose
codomain is Fmlx or Termx . The following is a simple observation which will be
used later:

Fact 5.8 Given a reduced r ∈ R such that cod(r) is either Fmlx or Termx , then it is
either a constant bn for some n ∈ ω, or of the form �(bm, q) for some m ∈ ω such
that bm is basic.

Proof Suppose r is a composite term. Since r is reduced and cod(r) is not a binary
product, we have r = �(bm, q) for some m ∈ ω. Clearly, ev(bm) cannot be
idFmlx , idTermx or !A for any A ∈ D. Moreover, ev(bm) cannot be a projection; oth-
erwise, cod(q) would be a binary product and by Fact 5.5 it would be of the form
�(q1, q2). This would imply that �(bm, q) is not reduced. Hence, r has the form
�(bm, q) with bm basic.

This fact holds essentially because the codomains of all our basic functions are
not multiple products of Fmlx or Termx , hence if the codomain of a reduced rep-
resentation is a single multiple of Fmlx or Termx , the final composite cannot be a
projection.

Uniform diagonalization operators are of type Fmlx → Termx . The following
lemma shows that any such operator must involve an essential use of the function
�−�f . This is simply because the uniformity constraint does not allow any other way
to obtain a function of such type.

Lemma 5.9 Let u : Fmlx → Termx be a uniform function, and suppose bn rep-
resents �−�f . If u is not a constant function then bn appears in every reduced
representation of u.

Proof Suppose r ∈ R is a reduced term representing u. We show by induction on the
complexity of terms that if r does not contain bn then ev(r) is a constant function.

13It is possible to extend the reduction rules such that we obtain unique normalisation. The current rules
suffice for our purpose in this paper.
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Suppose r is bm for somem ∈ ω. There is no C-basic function other than �−�f that is
of type Fmlx → Termx , hence the base case is closed. For the inductive step suppose
r is a composite term. By Fact 5.8 r is of the form �(bm, q) with bm basic. From
the codomain of ev(bm) and the fact that m �= n we conclude that bm must represent
Subt , �−�t , f or x. Also, q is reduced and does not contain bn. The domains of these
basic functions are all of the form Termk

x , for k ∈ ω. If k = 0, then ev(r) is obviously
constant. If k = 1, then ev(q) : Fmlx → Termx . By induction hypothesis ev(q) is
constant, and so is ev(r). Finally, if k ≥ 2, then according to our choice of the product
structure and by Fact 5.5, q must be of the form �(q1, �(q2, · · ·�(qk−1, qk) · · · )), where
every qi is reduced, does not contain bn and ev(qi) : Fmlx → Termx . By induction
hypothesis again, every ev(qi) is constant, and so is ev(r).

Note that diagonal operators are not constant functions. Hence, according to this
lemma, all the uniform diagonal constructions provided in Section 3 include the func-
tion �−�f . Note that the constructions of Gödel’s diagonal operator and the two
examples presented in Example 3.4 and Example 3.5 do not employ the function
�−�t ; while Jeroslow’s operator does. Hence, Lemma 5.9 in particular shows that, at
least in the context of uniform diagonalization, the function �−�f is more fundamen-
tal than the function �−�t . This is one of the reasons why we explicitly distinguish
these two naming functions.

Uniform functions also preserve the occurrence of free variables. The following
lemma shows that, if a uniform function u takes some open formula ϕ(x) to a closed
(resp. open) expression, then the value of every open formula is a closed (resp. open)
expression:

Lemma 5.10 For each uniform function u of type Fmlx → Fmlx or Fmlx → Termx ,
if u is not closed then for every formula ϕ(x) with x freely occurring in ϕ, also u(ϕ)

contains x as a free variable.

Proof Let r ∈ R be a reduced representation of u. We prove the claim by induction
on the complexity of r . For the base case suppose r is some constant bm. If u has
type Fmlx → Fmlx then ev(bm) = idFmlx , which satisfies the condition. If u has
type Fmlx → Termx , the only C-basic function with the right type is �−�f , which
is closed. For the inductive step we can assume by Fact 5.8 that r is of the form
�(bm, q) with bm being basic.

If u : Fmlx → Fmlx is not closed, then ev(bm) is Subf , 	, where 	 is not ∀x, or R

with ar(R) ≥ 1. We check the claim for each of these cases:

(1) If ev(bm) = Subf , then by Fact 5.5 q must be of the form �(q1, q2), with
ev(q1) : Fmlx → Fmlx , ev(q2) : Fmlx → Termx . Since ev(r) is not closed,
both ev(q1) and ev(q2) are not closed. By the induction hypothesis, ev(q1)(ϕ)

and ev(q2)(ϕ) are a formula ϕ1(x) and a term t2(x) respectively, both with a
free variable x. Hence, ϕ1(t2(x)) contains x as a free variable.

(2) If ev(bm) is 	 for 	 either being ¬ or ∧, then either ev(q) : Fmlx → Fmlx
or q = �(q1, q2), where ev(q1), ev(q2) : Fmlx → Fmlx . For the former case,
ev(q) cannot be closed. For the latter case, at least one of ev(qi) is not closed.
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By induction hypothesis, ev(q)(ϕ) or ev(qi)(ϕ) contains x as a free variable,
and hence so does ev(r)(ϕ).

(3) The case for ev(bm) = R with ar(R) ≥ 1 proceeds similarly to (2), with the
minor difference that here q is of the form �(q1, · · ·�(qk−1, qk) · · · ), if ar(R) = k.

The case where u : Fmlx → Termx is completely similar. Here, ev(bm) is Subt , f

with ar(f ) ≥ 1, or x, and a proof by case distinction proceeds in almost the same
manner as shown above.

The above proof is a bit tedious, since it relies on an induction with several case
distinctions. But the statement of Lemma 5.10 should be expected, since each C-
basic function either preserves the existence of free variables, or it maps anything to
closed expressions; composition does not change this fact.

With all these preliminary work, we can finally show the following result about
uniform diagonalization: If d(ϕ(x)) is the result of uniform diagonalization, then it
weakly names an expression, which weakly names an expression . . . , which weakly
names an expression of the form ϕ(s):

Lemma 5.11 Let d be a uniform diagonal operator. Then for every formula ϕ(x) ∈
Fmlx that contains a free variable x, there is a term s such that

ϕ(s) �∗ d(ϕ(x)).

The idea behind Lemma 5.11 is very simple. Intuitively, we may view a reduced
representation r of a uniform diagonal operator d as an instruction for carrying out
the diagonalization process for each formula ϕ(x). We have shown in Lemma 5.9
that d must make an essential use of the function �−�f . Before that use, what we
may essentially do is to construct terms and substitute them into ϕ(x), which results
in a formula of the form ϕ(s) for some term s. Moreover, we may combine ϕ(s) with
other formulas using connectives to form a longer expression, which we temporarily
denote asψ . Note that ϕ(s) � ψ , hence, after applying �−�f , we have ϕ(s) �∗ �ψ�.
Note that �ψ� is a closed term, which means that we can only substitute it into other
expressions, but not the other way around. This implies that further applications of
other basic functions to �ψ� would retain the�∗-relation with ϕ(s), which is exactly
what we want.

Of course, to make this rough proof sketch precise, it requires a rigorous argument.
Since the detailed proof is quite tedious and technical, we omit is here. Its structure
resembles the proof of Lemma 5.10, where we also need an induction together with
several case distinctions. The enthusiastic reader can find the proof in full detail in
Appendix A.

We can now formulate an answer to our Question 3.6: To make it impossible for
d(ϕ(x)) to occur in ϕ(x) for a uniform diagonal operator d, it is sufficient to rule out
loops in the weak naming relation or, equivalently to demand that �∗ is irreflexive.
We maintain that this assumption on �∗ is natural. The usual Gödel codings and
numeral functions make �∗ irreflexive.
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Proposition 5.12 Let �∗ be irreflexive. Then for every uniform diagonal operator d

and formula ϕ(x), the fixed-point term d(ϕ(x)) cannot occur in ϕ(x).

Proof Assume that there is a uniform diagonal operator d such that d(ϕ(x)) occurs
in ϕ(x). By Lemma 5.11, there exists a term s such that ϕ(s) �∗ d(ϕ(x)). Since
d(ϕ(x)) is a subterm of ϕ(s), we obtain d(ϕ(x)) �∗ d(ϕ(x)) by Fact 5.2. Hence, �∗
is not irreflexive.

Recall that the deviant Henkin sentences introduced in Section 4 are based on
provability predicates Bew	(x) which satisfy condition Eq. 1, i.e.,

Bew	(x) ≡ x �= d(Bew	(x)) ∧ Bew(x).

It follows immediately from Proposition 5.12 that every predicate Bew	(x) satisfying
this condition involves circular weak naming relations.

Remark 5.13 While the construction of Bew	(x) in B.1 employs a canonical numeral
function, namely, standard numerals, the circularity of the weak naming relation
results from a contrived choice of the numbering. To further analyse this situation,
we say that a numbering α is monotonic if for any expressions e, e′, e � e′ implies
α(e) ≤ α(e′). Clearly, the numbering function α used to construct Bew	(x) in B.1
is not monotonic. Can we do better and base this construction on a monotonic num-
bering instead of α? We note that this is not possible. In order to see this, we call a
numbering α strongly monotonic for ν-numerals, if

α(e) < α(�e�α,ν), for all expressions e.

We observe that every monotonic numbering is strongly monotonic for standard
numerals (see also [8, Section 6]). Moreover, if α is strongly monotonic for
ν-numerals, then the weak naming relation �α,ν induced by α and ν is well-founded.
In particular, the relation �α,ν∗ cannot be circular. Hence, by Proposition 5.12 we
cannot construct a uniform diagonal operator d and a provability predicate Bew	(x)

satisfying Eq. 1, whenever we use a numbering α and a numeral function ν such that
α is strongly monotonic for ν-numerals.

As we have seen in B.2, the circularity of the weak naming relation can also result
from a non-standard numeral function, even if we fix a standard monotonic number-
ing. Hence, an answer to Question 3.6 involves a constraint on the numbering and the
numeral function. Of course, this is precisely what we do in Proposition 5.12 when
we require the irreflexivity of �∗.

We have said that the constraint of non-circularity is natural. The next section
will provide more detailed conceptual and philosophical grounds on which this
requirement can be based.

6 Quotation and theWell-Foundedness of Naming

A naming function maps every expression e to a closed term �e�, which serves as
its name. Since we work in an arithmetical framework, a naming function consists
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of a Gödel numbering and a numeral function. Except for requiring effectiveness,
thus far we have not placed any constraints on numberings and numeral functions.
Gödel numerals are often conceived of as arithmetical counterparts of quotational
names. However, there are codings and numeral functions that make it very implau-
sible to think of these numerals as quotations. In this section, we introduce precise
constraints that single out certain coding schemata and numeral functions as adequate
counterparts of quotation devices.

In order to do so, we conceive of arithmetical naming functions as particular
instances of string-theoretical naming devices. Let A be an alphabet and let A∗
denote the set of finite strings over A including the empty string ε. For strings e, f

in A∗, let ef denote the result of concatenating e with f . Let E ⊆ A∗ be a set
of expressions. We call any injective function N : E → E a string-theoretical nam-
ing function for E . For example, let A consist of English letters together with a pair
of single quotation marks. The function Q which maps each string s ∈ A∗ to its
proper quotation ‘s’ is a canonical example of a string-theoretical naming function
for A∗.14 Let �−� : Termx ∪Fmlx → ClTerm be a naming function as introduced in
Section 3, i.e., �−� is the composition of a numbering and a numeral function. Then
�−� can be also conceived of as a string-theoretical naming function. For example,
Q and �−� name the letter “x” by the strings “ ‘x’ ” and “�x�” respectively.

In the philosophical literature, �−� is often viewed as an arithmetical proxy of
the quotation function Q. Heck [12, pp. 27], for example, takes the “disquotation”
schema T (�ϕ�) ↔ ϕ to be an arithmetical formalisation of the informal schema ‘S’
is true iff S (see also [24, pp. 156]). On this view, it is plausible to require that �−�
satisfies certain quotation-like features. In particular, we require that ��−� behaves
similarly to the weak naming relation induced by quotation. In order to make this
precise, we first generalize Definition 5.1 to string-theoretical naming functions.

Definition 6.1 Let N be a string-theoretical naming function for E . We say that an
expression e ∈ E is weakly named in e′ by N , in symbols: e �N e′, if there exists
another expression e′′ ∈ E such that e � e′′ and N(e′′) � e′. We also call �N the
weak naming relation for N . Let �N∗ denote the transitive closure of �N .

Clearly, Fact 5.2 also holds in the more general setting. The following useful
observation follows from the above definition and Fact 5.2.

Fact 6.2 Let N be a string-theoretical naming function for E . If �N is ill-founded,
then there is a sequence (fi)i∈ω of elements in N(E) such that fi+1 �N fi , for each
i ∈ ω.

14For the sake of better readability, we usually omit (meta-linguistic) quotation symbols when there is no
confusion. That is, we write “ ‘s’ ” instead of “ ‘s’ ” (or, more precisely, “ ‘ ”s“ ’ ”). In order to avoid
confusion, we use the convention that single quotation marks “ ‘ ” and “ ’ ” are part of the object language
and double quotation marks “ “ ” and “ ” ” are part of the metalanguage.
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Since each quotation properly contains its named expression, no quotation q can
denote an expression containing q itself. More generally, the weak naming relation
�Q is well-founded. From this observation, we can extract the following necessary
condition for a naming function to mimic or resemble quotation:

Well-Foundedness: Every naming function which resembles quotation induces
a well-founded weak naming relation.

Thus, we can justify the assumption of �∗’s irreflexivity in our answer to Ques-
tion 3.6 with Proposition 5.12 by drawing on the conception of �−� as resembling
quotation.

While proper quotation is perhaps the most common naming function, the specific
method of enclosing expressions by quotation marks is by no means theoretically
essential.15 Alternatively, we may name strings by describing their constituent sym-
bols, e.g. using Tarski’s [24] structural-descriptive names, or by a Kripkean act of
baptism [17, pp. 693]. The reader may wonder to what extend the well-foundedness
requirement depends on the specifics of the quotation function. In other words, can
we maintain the requirement of �’s well-foundedness if we conceive of �−� as
resembling other naming functions different to proper quotation? In the remainder
of this section we show that the well-foundedness criterion can be based on a broad
conception of quotation which encompasses several canonical naming devices found
in the literature.

To delineate this broad conception, consider the expressions “ ‘snow’ ” , “the word
which consists of the following letters: es, en, o, double-u, following one another”,
“the 4354th word of Chants Democratic” and “Jack”. There is an important differ-
ence in the way these expressions serve as names of strings. The first two preserve
the literal information of the named string “snow”, i.e., for each letter of “snow”, they
contain a designated corresponding string. For example, “s” and “es” correspond to
the first letter of “snow” respectively. This preservation of literal information enables
us to read off the designated words from their names. The last two expressions do
not preserve literal information. As opposed to the situation above, their referents
can only be determined by reference to an external source of information or act of
baptism.

In what follows, we confine ourselves to naming devices which preserve literal
information. The following definitions are an attempt to make this precise.

Definition 6.3 Let e, f, g ∈ A∗. We write (e, f ) � g if g contains non-overlapping
occurrences of e and f . More precisely, (e, f ) � g iff there are (possibly empty)
a, b, c ∈ A∗ such that g = aebf c or g = af bec. We call a function G : S × S → S

weakly �-increasing, if (e, f ) � G(e, f ), for all e, f ∈ S.

Definition 6.4 We call a function N ′ : A∗ → A∗ a literal pre-naming function for
A∗, if N ′ can be recursively defined by

• N ′(ε) = L(ε, ε);

15This has been already observed by Tarski [24, pp. 156] and Quine [21, pp. 26].
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• N ′(s) = G(N ′(aπs(1) · · · aπs(n−1)), L(aπs(n), s)), where s ≡ a1 · · · an such that
n > 0 and ai ∈ A for each i ≤ n;

for some function L : (A ∪ {ε}) × A∗ → A∗ \ {ε}, a weakly �-increasing function
G : A∗ × A∗ → A∗ and a function π− which maps each string s ∈ A∗ to a per-
mutation πs of the set {1, . . . , lh(s)}. We also call L a literal function. The second
argument of L serves as a parameter, permitting alphabetical symbols to be named
by L in dependency of the full string in which they occur. If L is defined without
parameters, we sometimes suppress the second argument of L for better readability.

Let E ⊆ A∗ be a set of expressions. We call a function N : E → E a literal nam-
ing function for E , if there is a literal pre-naming function N ′ for A∗ and functions
B, E : E → A∗ such that

N(e) = B(e)N ′(e)E(e), for each e ∈ E .

We also call B(s) and E(s) the begin marker and the end marker of the name N(e)

of e respectively.

This definition accommodates a large class of naming devices found in the
literature:

A. Let A consist of English lower case letters together with a pair of single
quotation marks. Let E be given by

α ::= a | b | c | · · · | z | ‘α’ | αα

The functions Q1,Q2,Q3 : E → E , given by

Q1(a1a2 · · · an) :≡ ‘a1a2 · · · an’

Q2(a1a2 · · · an) :≡ ‘an · · · a2a1’
Q3(a1a2 · · · an) :≡ ‘a1a1a2a2 · · · anan’

are literal naming functions. The literal function of Q3 duplicates the symbol a
to a string aa. For Q2, the family of permutations is non-trivial: for each s with
length k ≥ 2, πs(j) = k + 1 − j , for any 1 ≤ j ≤ k. We can also duplicate or
permute in dependency of whether or not the input string contains a designated
marker:

Q4(a1a2 · · · an) :≡
{

‘a1a1a2a2 · · · anan’ if ai ≡ d, for some i ≤ n;
‘a1a2 · · · an’ otherwise.

Q5(a1a2 · · · an) :≡
{

‘an · · · a2a1’ if ai ≡ d, for some i ≤ n;
‘a1a2 · · · an’ otherwise.

where a1, a2, . . . , an ∈ A, are literal naming functions. Also Q4 and Q5 are
literal naming functions. Note that the definitions of Q4 and Q5 essentially rely
on parameters for L and π− respectively.

1033Varieties of Self-reference in Metamathematics



B. LetA consist of English lower case letters together with the symbols ′ and ◦. For
any α ∈ A∗, let B(α) be the shortest string of the form ′ · · · ′ ◦ which does not
occur in α. Boolos’ quotation function QB : A∗ → A∗ presented in [1], given by

QB(α) :≡ B(α)αB(α),

is a literal naming function. Here the non-trivial bit lies in the begin markers
and end markers. A variant of Boolos’ construction was communicated to us by
Albert Visser and is given as follows. For any α ∈ A∗, let B(α) :≡◦ ′′ · · · ′ ◦,
where the length of ′′ · · · ′ equals the length of α. The quotation function
QV : A∗ → A∗, given by

QV(α) :≡ B(α)α,

is a literal naming function.
C. We now show that the quotation device introduced by Halbach and Leigh

[9, Chapter 8] can be accommodated in our framework. Let the alphabet AHL
consist of the following symbols (see [9, Definition 8.1]):

(a) variable symbols v1, v2, v3, . . .;
(b) logical connectives and quantifiers;
(c) non-logical symbols, including a unary function symbol q and a binary

function symbol ;
(d) auxiliary symbols ( and );
(e) a quotation constant a, for each symbol introduced in (a)–(d);
(f) a quotation constant 0 for the empty string ε.

Let L be given as follows (without parameters):

• L(ε) :≡ 0;
• L(a) :≡ a, if a was introduced in (a)–(d);
• L(a) :≡ qa, if a is a quotation constant.

Halbach and Leigh’s quotation function QHL : A∗
HL → A∗

HL can now be
recursively defined as follows:

• QHL(e) :≡ L(e), if lh(e) ≤ 1;
• QHL(a1 · · · an) :≡ QHL(a1 · · · an−1)L(an), where n > 1 and ai ∈ AHL

for each i ≤ n;

Hence, QHL is a literal naming function.
D. LetA consist of English lower case letters together with the space character “ ”.

Let E be the set of A-strings without the empty string ε. Let L map ε to the
string “empty” and each letter of A to its ICAO spelling name. For instance, L
maps the letter “b” to the string “bravo” and the space character to the string
“space”. Let G : A∗ × A∗ → A∗ be given by

G(e, f ) :≡
{

f if e ≡ empty;
e “ concatenated with ”f otherwise.
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Let B(s) and E(s) be empty. The resulting structural-descriptive naming device
SD1 which maps any expression a1a2 · · · an to the A-string

L(a1)“ concatenated with” · · · “concatenated with”L(an),

where a1, a2, . . . , an ∈ A, is a literal naming function.
E. Let the alphabet A be given by

α ::= a | b | c | · · · | z | α

Here, α is conceived of as an alphabetical symbol of length 1. The structural-
descriptive naming device SD2 : A∗ → A∗, given by

SD2(a1a2 · · · an) :≡ a1a2 · · · an,

where a1, a2, . . . , an ∈ A, is a literal naming function.
F. Let A = 0, . . . , 9, a, b, . . . , z,“ ” be an ordered alphabet containing the Arabic

numerals, the English lower case letters and the space character “ ”. We specify
a base 37 notation system for ω by using the k-th alphabetical symbol of A as
the base 37 digit for k (with 0 ≤ k < 37). We write (a1 · · · an)37 for the number
with base 37 notation a1 · · · an. For example, since 2 and b are the 2nd and the
11th symbol of A respectively, we have

(2b)37 = 11 + (2 · 37) = 85.

We now order the strings of A∗ using the length-first ordering (αi)i∈ω in which
we enumerate the strings according to increasing length, where the strings of
same length are ordered alphabetically. We have αm ≡ a1 · · · an iff m =
(a1 · · · an)37. The list (αi)i∈ω can be seen as a lexicon for strings over A. We
define a naming function D : A∗ → A∗ by mapping each string a1 · · · an to its
descriptive name

“the word in the lexicon whose index is ”

a1 · · · an“ in base 37 notation”

Clearly, D is a literal naming function.
G. We now transfer the descriptive device D from the previous example to an arith-

metical setting. LetA = a1, . . . , ak be an alphabet for our arithmetical language
L (including parentheses) and let (αi)i∈ω be a length-first ordering of A∗. We
now define for each i ≤ k

Sai :≡ S · · · S
︸ ︷︷ ︸

i-times

Sai
(x) :≡ S · · · S

︸ ︷︷ ︸

i-times

(k × x)

We now define the “efficient” naming function E : A∗ → ClTerm by setting
E(ε) :≡ 0 and

E(a1 · · · an) :≡ San(· · · Sa1(0) · · · ).
Note that the value of E(a1 · · · an) is the number m with a1 · · · an ≡ αm.
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In order to show that E is a literal naming function, we define L (without
parameters) by setting L(ε) :≡ 0 andL(a) :≡ Sa , for a ∈ A. We setG(e, f ) :≡
f (k × e), for e, f ∈ A∗. We then have

E(ε) ≡ L(ε) ≡ 0;
E(a1 · · · an) ≡ L(an)(k × E(a1 · · · an−1))

≡ G(E(a1 · · · an−1), L(an, a1 · · · an)),

where n > 0 and ai ∈ A for each i ≤ n. Hence, E is a literal naming function.
H. Let A be an alphabet for our arithmetical language L and let # : A∗ → ω be

a monotonic numbering, i.e., #e ≤ #e′, for all e, e′ ∈ A∗ with e � e′. We set
G(e, f ) :≡ f e, for e, f ∈ A∗. We define the literal function L by setting

L(a, e) :≡

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�a�# if lh(e) ≤ 1;
S · · · S
︸ ︷︷ ︸

�-times

if e ≡ a1a2 · · · ana for some n ≥ 1 & ∀i ≤ n ai ∈ A

and � = #(a1a2 · · · ana) − #(a1a2 · · · an);
0 otherwise.

Note that � ∈ ω, since # is monotonic. We then have

�e�# ≡ L(e, e), if lh(e) ≤ 1;
�a1 · · · an�# ≡ L(an, a1 · · · an)�a1 · · · an−1�#

≡ G(�a1 · · · an−1�#, L(an, a1 · · · an)),

where n > 1 and ai ∈ A for each i ≤ n. Hence, �·�# is a literal naming func-
tion.16 This shows that every naming function which is based on a monotonic
numbering and standard numerals is a literal naming function.

Note that unique readability is not satisfied by every literal naming function. How-
ever, all of the above examples permit unique readability. We now provide sufficient
conditions for the well-foundedness of weak naming relations.

Lemma 6.5 Let N be a literal naming function for E ⊆ A∗ which satisfies at least
one of the following conditions:

(1) N can be defined using markers B and E such that B(e) �≡ ε or E(e) �≡ ε, for
each e ∈ E;

(2) N can be defined using a literal function L such that L(a, e) �∈ A, for each
a ∈ A and e ∈ A∗;

(3) N can be defined using a well-founded literal function L, i.e., there are no
sequences (ai)i∈ω and (ei)i∈ω of alphabetical symbols and A-strings respec-
tively such that L(ai+1, ei+1) ≡ ai for every i ∈ ω.

(4) N satisfies the following two conditions:

16Inspection of the constructions of E (see 6) and �−�# suggests that the naming function based on
efficient numerals preserves literal information in a more strict sense than in the case of standard numerals.
In particular, the literal function for E can be defined without parameters, while the literal function for
�−�# essentially relies on the surrounding string as a parameter.
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(i) the relation �N restricted to A ∩ im(N) is well-founded;
(ii) for every two N-names e, f ∈ im(N), if e ≺ f then lh(e) + 1 < lh(f ).

Then �N is well-founded.

Proof (1) & (2) follow from the fact that in each case we have lh(N(e)) > lh(e), for
every e ∈ E .

We now show (3). Assume that there is a sequence (ei)i∈ω of expressions of E
such that ei+1 �N ei , for each i ∈ ω. Since ei+1 �N ei implies lh(ei+1) ≤ lh(ei),
there is a number k such that lh(ei+1) = lh(ei), for each i ≥ k. Hence, we have
N(ei+1) ≡ ei , for each i ≥ k. Let N be defined by means of a literal pre-naming
function N ′. We then have

lh(ei+1) ≤ lh(N ′(ei+1)) ≤ lh(N(ei+1)) = lh(ei+1),

for each i ≥ k. Hence, N ′(ei+1) ≡ N(ei+1), for each i ≥ k. We therefore obtain an
infinite sequence (ai)i∈ω of alphabetical symbols of A such that L(ai+1, ei+1) ≡ ai .
Thus, L is ill-founded.

We now show (4). Let N be defined by some literal pre-naming function N ′. We
first show that lh(s) < lh(N ′(s)) for all s ∈ E with lh(s) > 1. Let s ≡ a1 · · · an, for
some n > 1 and a1, . . . , an ∈ A. Let

N ′(s) ≡ G(N ′(aπs(1) · · · aπs(n−1)), L(aπs(n), s)),

where G, L and π− are given as in Definition 6.4. Since G is weakly �-increasing,
we have N ′(aπs(1) · · · aπs(n−1)) ≺ N ′(s). Hence, using (ii), we have

lh(s) = n ≤ lh(N ′(aπs(1) · · · aπs(n−1))) + 1 < lh(N ′(s)).
Now, assume that there is a sequence (ei)i∈ω of expressions of E such that ei+1 �N

ei , for each i ∈ ω. As we have seen in the proof of clause (3), there is a number k such
that lh(ei+1) = lh(ei) and N ′(ei+1) ≡ ei , for each i ≥ k. Since lh(e) < lh(N ′(e))
for all composite expressions e, we have lh(ei) = 1 for each i ≥ k. Hence, there is
a sequence (ai)i∈ω of alphabetical symbols such that ai+1�Nai for each i ∈ ω. But
this contradicts (i).

We observe that all literal naming functions introduced above give rise to well-
founded weak naming relations.

Corollary 6.6 The literal naming functions given in (A)-(H) induce well-founded
weak naming relations.

Proof The functions Q1, Q2, Q3, Q4, Q5, QB, QV and D satisfy clause (1) of Lemma
6.5. The function SD1 satisfies clause (2) of Lemma 6.5. Finally, QHL, SD2, E and
�−�# satisfy clause (3) of Lemma 6.5 (note that 0 ≤ #ε < #0, since # is monotonic).

These examples suggest that the well-foundedness principle is grounded in a rather
robust and general conception of quotation.
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Remark 6.7 Instead of requiring well-foundedness, one may require naming func-
tions which resemble quotation to be strongly monotonic (cf. Section 5). Here, the
essential assumption is that each quotation properly contains its quoted expression (as
strings). It can then be argued that numberings which mimic quotations are required
to code the Gödel numeral of an expression e by a larger number than the expression
e itself (see [8, Section 6] for an elaboration of this view). Note that only the nam-
ing functions Q1, QB, QV and D satisfy this assumption. Hence, the justification of
strong monotonicity seems to require a much more narrow conception of quotation
than in the case of well-foundedness.

Moreover, we immediately obtain the following result from clause (4) of
Lemma 6.5.

Corollary 6.8 Let ClTerm be the set of closed L-terms such that each complex term
is of the form f (u1 . . . uk), where f is a k-ary function symbol. Let E ⊆ A∗ be such
that Termx ∪Fmlx ⊆ E . Let N : E → ClTerm be a literal naming function for E .
Then �N is well-founded iff N(0) �≡ 0.

Remark 6.9 The philosophical significance of the above corollary is limited by the
fact that it depends on subtleties regarding the employed notation system for arith-
metical terms. For example, by Lemma 6.5.4 the corollary also holds if each complex
term is enclosed by parenthesis, or if each function symbol consists of a composite
string. However, we can easily construct a counterexample to Corollary 6.8 if com-
plex terms are of the form f u1 . . . uk , where f is an alphabetical symbol. These
considerations suggest that the choice of the notation system is yet another source of
intensionality in the context of self-reference.

We now return to our study of Kreisel-like constructions of refutable Henkin sen-
tences. In Section 5, we have seen that Kreisel-like fixed-points can be uniformly
constructed with respect to circular naming relations. In the next section we will
introduce another variant of Kreisel-like constructions of refutable Henkin sentences
which are based on an ill-founded but non-circular naming relation. By slightly
generalising our results of Section 5, we will show that the requirements of well-
foundedness of the naming relation, together with uniformity, also rule out this new
variety of deviant fixed-point constructions.

7 Ill-Foundedness Without Circles

Recall that the Kreisel-like Henkin sentences introduced in Section 4 consist of a
provability predicate Bew	(x) of the form

x �= d(Bew	(x)) ∧ Bew(x),

where d is a diagonal operator. That is, Bew	(x) contains its own fixed-point term
d(Bew	(x)). As we have seen in Section 5, if d is uniform then d(Bew	(x)) induces
a circle with regard to the underlying naming relation (Proposition 5.12). Hence, the

1038 B. Grabmayr et al.



constraints of uniformity and non-circularity are sufficient to rule out the refutable
Henkin sentences considered thus far.

However, we can tweak the construction of Bew	(x) such that it no longer contains
its own fixed-point term but still yields refutable Henkin sentences. In order to do so,
we construct an ω-chain of formulas (Bewn(x))n∈ω such that Bewn(x) is of the form

jump(x) �= d(Bewn+1(x)) ∧ Bew(x),

where Bew(x) is some fixed provability predicate and jump represents a function
mapping d(Bewn(x)) to d(Bewn+1(x)), for every n ∈ ω. As in the case of Bew	(x)

above, the Henkin sentence of each provability predicate Bewn(x) is refutable. As
opposed to Bew	(x), however, d(Bewn(x)) is not contained in Bewn(x) itself. Hence,
there are refutable Henkin sentences which are based on provability predicates which
do not contain their own fixed-point terms and thus evade Proposition 5.12:

Lemma 7.1 There is a numbering α, a numeral function ν, a standard interpretation
I, a uniform diagonal operator d with respect to α, ν and I and for each n ∈ ω there
is a formula Bewn(x) such that

(1) Bewn(x) weakly represents Basic(I);
(2) Basic(I) � ¬Bewn(tn);
(3) tn does not occur in Bewn(x);

where tn is the fixed-point term d(Bewn(x)) of Bewn(x) w.r.t. α and I.

Proof The details of the construction sketched above can be found in B.3.

Inspection of the ω-chain (Bewn(x))n∈ω constructed in B.3 shows that the fixed-
point term tn+1 of Bewn+1(x) occurs in Bewn(x), for each n ∈ ω. We now ask under
which additional assumptions we can rule out both Kreisel’s original construction
and its variant based on ω-chains as given above:

Question 7.2 Let d be a uniform diagonal operator and (ϕn(x))n∈ω and (tn)n∈ω

sequences of formulas and closed terms respectively. Under which assumptions can
we rule out the possibility that for every n ∈ ω we have d(ϕn(x)) ≡ tn, where ϕn(x)

contains tm for some m ≥ n.

An answer to Question 7.2 yields also an answer to Question 3.6 by setting
ϕn(x) :≡ ϕ(x) and tn :≡ t , for each n ∈ ω.

We first observe that requiring uniformity together with the non-circularity of the
weak naming relation is not sufficient to rule out the construction of ω-chains of
refutable Henkin sentences as given above:

Lemma 7.3 We can choose the numbering α and the numeral function ν in Lemma
7.1 such that they induce a non-circular weak naming relation �α,ν .

Proof See B.4.
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However, once we require uniformity together the well-foundedness of the weak
naming relation, deviant Henkin sentences such as constructed above can be suc-
cessfully excluded. More generally, we obtain the following answer to Question
7.2:

Proposition 7.4 Let (ϕn(x))n∈ω and (tn)n∈ω be sequences of formulas and closed
terms respectively. If the �∗ relation induced by the naming function �−� is well-
founded, there is no uniform diagonal operator d such that for every n ∈ ω we have
d(ϕn(x)) ≡ tn, where ϕn(x) contains tm for some m ≥ n.

Proof Let n ∈ ω. We have d(ϕn(x)) ≡ tn, where ϕn(x) contains tm for some m ≥ n.
By Lemma 5.11, there exists a term s such that ϕn(s) �∗ tn. Since tm is a subterm
of the formula ϕn(s), we obtain tm �∗ tn by Fact 5.2. Hence, there is an infinite
subsequence (un)n∈ω of (tn)n∈ω such that

un+1 �∗ un, for each n ∈ ω.

This contradicts our assumption that �∗ is well-founded.

7.1 Limitations

At this point we should stress that the constraints of uniformity and well-foundedness
by no means rule out every deviant construction of a Henkin sentence. After all, in
this paper we have only investigated constraints on the fixed-point operator and the
naming function, while we impose no constraints whatsoever on provability pred-
icates, except that they should weakly represent the set of theorems of the theory.
It is therefore hardly surprising that there exists a contrived provability predicate
whose canonical diagonalization, say via Gödel’s method, yields a refutable Henkin
sentence (see [10, Section 5] for an example).

We conclude this section by providing another concrete example showing that
uniformity and well-foundedness are not be sufficient to rule out every accidental
diagonal sentence. Recall that the Kreisel-like constructions considered in this paper
consist of a provability predicate Bew◦(x) of the form

χ(x) ∧ Bew(x),

where Bew(x) is a provability predicate weakly representing provability and χ(x) is
a formula such that χ(d(Bew◦(x))) is refutable and χ(�ϕ�) is provable for all sen-
tences ϕ which are distinct to Bew◦(d(Bew◦(x))). The conjunct χ of Bew	(x) (see
Section 4) contains its fixed-point term d(Bew	(x)), and the conjunct χ of Bewn(x)

(cf. Section 7) contains the fixed-point term d(Bewn+1(x)) of its subsequent prov-
ability predicate in the given ω-chain. As we have seen, this is precisely the reason
why uniform versions of these constructions force the naming relation to be circular
and ill-founded respectively. We now provide an example of a Kreisel-like construc-
tion which is based on a provability predicate whose conjunct χ does not contain
any fixed-point term. Hence, this construction can be given with respect to a uniform
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diagonal operator d and a well-founded naming relation. To do so, let Bew◦(x) be of
the form

f 0
0 (x) �= 0 ∧ Bew(x),

where Bew(x) is a provability predicate weakly representing provability and f 0
0 rep-

resents the function which maps the code of d(Bew◦(x)) to 0 and each other number
to itself. Clearly, f 0

0 (n) �= 0 is satisfied by all positive numbers n which are not the
code of d(Bew◦(x)). Assuming that sentences all have positive codes, we therefore
obtain a refutable Henkin sentence d(Bew◦(x)) with respect to the uniform diagonal
operator d and a standard naming function.

Finally, we can even construct refutable Henkin sentences without any additional
conjunct (see B.5 for a detailed construction).

8 Applications

In this section, we present various applications of uniformity in distinguishing and
identifying accidental fixed-points constructed by various means in the literature.

8.1 Logical Derivability

We first provide an example of accidental self-reference from a setting closer to nat-
ural language. For a given English sentence ϕ, we may ask about the status of the
sentence that says of itself that it is logically derivable from ϕ. The status of such
sentences depends on how self-reference is obtained:

(1) The sentence (1) is logically derivable from (1).
(2) The sentence (2) is logically derivable from (1).

Clearly, the sentence (1) is true, while (2) is false. In the metamathematical study of
self-reference we would like to rule out diagonal operators which mirror the acciden-
tal self-referential feature of sentence (1). While the KH-property is not sufficient to
rule out such diagonal operators, the requirement of uniformity successfully excludes
metamathematical counterparts of sentence (1).

Let Prα(v)(x) denote Feferman’s [5] provability predicate. For any closed term t

which denotes a sentence, set Bewt (x) :≡ Prv=t (x). That is, Bewt (x) is a standard
provability predicate for the L-theory whose only non-logical axiom is the sentence
whose code is denoted by t .

Lemma 8.1 Let �−� be a well-founded naming function. There is a KH-diagonal
operator d0 and a closed term t such that

(1) t ≡ d0(Bewt (x));
(2) PA � t = �Bewt (t)�
(3) PA � Bewt (d0(Bewt (x)));
(4) PA � ¬Bewt (d(Bewt (x))), for every uniform diagonal operator d.
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Proof We first show (1)-(3). Let t :≡ dJ (Bewx(x)). Hence, � � t = �Bewt (t)�.
Let d0 be a diagonal operator which maps Bewt (x) to t and any other formula of
the form ϕ(x) to dJ (ϕ(x)). Clearly, d0 satisfies the KH-property. Moreover, we have
Bewt (t) � Bewt (t) and hence PA � Bewt (d0(Bewt )).

In order to show (4), let d be any uniform diagonal operator. By Proposition 5.12,
we have t �≡ d(Bewt (x)). Hence, Bewt (t) �� Bewt (d(Bewt (x))). In order to show
that PA � ¬Bewt (d(Bewt (x))), we observe that

PA � ¬Bew∅(t→̇d(Bewt (x)))

and

PA � Bewt (d(Bewt (x))) ↔ Bew∅(t→̇d(Bewt (x))).

8.2 Codings with Built-in Diagonalization

We now turn to the question to what extent uniformity excludes fixed-points which
are obtained by codings with built-in diagonalization. Recall the construction of the
refutable Henkin sentence Bew(m̃) in Observation 2.3. Intuitively, Bew(m̃) is an acci-
dental diagonal sentence since it relies on a numbering which is constructed in a
highly ad hoc fashion. This intuition can be grounded in mathematical facts as fol-
lows. While the employed numbering α together with standard numerals induce a
well-founded naming relation, the fixed-point term m̃ cannot be constructed uni-
formly. Recall that if we do not mention the numeral function in a parameter of
naming function, it means we take the standard numerals.

Lemma 8.2 Let Bew(x), α and m̃ be given as in Observation 2.3.

(1) The naming relation �α is well-founded;
(2) No diagonal operator which maps Bew(x) to m̃ is uniform for α.

Proof The relation �# is well-founded by Corollary 6.6. Using Fact 6.2, it is there-
fore sufficient to show that m ��α m. Assume that m �α m. Then there is a string
e such that m � e and α(e) ≤ m. We have e �≡ Bew(m̃) by definition of m. Hence,
α(e) = #e. But since # is monotonic, we have

m < #m ≤ #e ≤ m,

a contradiction.
Assume now that d is a uniform diagonal operator which maps Bew(x) to m̃. By

Lemma 5.11 there is a term s such that Bew(s) �α∗ d(Bew(x)) ≡ m̃. Since 0 and 1
are not #-codes, there is no string e with �e�α � m̃. Hence Bew(s) �α∗ m̃ cannot be
true.

We now turn to other codings with built-in diagonalization. Let β be a monotonic
numbering of strings such that for each formula ϕ(x) with x free there is a number
nϕ such that nϕ = β(ϕ(nϕ)), where nϕ denotes the efficient numeral of nϕ (e.g., take
β to be the numbering gn1 constructed in [8, Section 5]).
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Clearly, β gives rise to an ill-founded naming relation if we use efficient numerals.
This is because the diagonal sentence ϕ(nϕ) contains its own name nϕ . However, β
together with standard numerals induce a well-founded relation �β. Yet, no diagonal
operator which maps ϕ(x) to nϕ can be uniform for β.

Lemma 8.3

(1) The naming relation �β is well-founded;
(2) The diagonal operator d given by d(ϕ(x)) :≡ nϕ is not uniform for β.

Proof By Corollary 6.6, �β is well-founded. Assume that d is uniform. By Lemma

5.11 there is a term s such that ϕ(s) �β
∗ nϕ . But nϕ does not contain any standard

numeral which is the β-code of any expression. Hence, ϕ(s) �β
∗ nϕ cannot be true.

We close by showing that there is a coding with built-in diagonalization which
induces a well-founded naming relation and yields a uniform diagonal operator. Let
δ be a numbering of the well-formed expressions of L such that for any given ϕ(x)

with x free there is a number nϕ with nϕ = δ(ϕ(x)) and (nϕ)2 = δ(ϕ(nϕ × nϕ)).17

Set �−� = · ◦ δ.

Lemma 8.4

(1) The naming relation ��−� is well-founded;
(2) The diagonal operator d given by d(ϕ(x)) :≡ nϕ × nϕ is uniform for �−�.

Proof In order to show that ��−� is well-founded, it is sufficient to show that for
every expression e and numbers m, n:

e ��−� n and m � e implies m < n.

If the antecedent holds, then there is an expression f such that e � f and �f � � n.
By [8, Lemma 6.10] we have m < δ(m). Since δ is monotonic, we have

m < δ(m) ≤ δ(e) ≤ δ(f ) ≤ n.

Let now any formula ϕ(x) with x free be given. By definition of δ there is a number
nϕ with nϕ = δ(ϕ(x)) and (nϕ)2 = δ(ϕ(nϕ ×nϕ)). Let × be the basic meta-linguistic
operation which maps two terms s, t to s × t . We then have

d(ϕ(x)) ≡ nϕ × nϕ ≡ ×(�ϕ(x)�, �ϕ(x)�).

Hence, d is uniform.

17δ can be obtained by slightly tweaking the construction of the numbering in [8, Section 6.2].
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9 Conclusion

If not all diagonal sentences for a formula expressing a property behave in the same
way, we can exclude those diagonal sentences that are not self-referential by the
Kreisel–Henkin criterion, assuming we are interested in the sentence ascribing P

to themselves. Maybe there is no single such sentence, but any diagonal sentences
ascribing P to itself must be self-referential.

However, self-referential diagonal sentences ascribing provability to themselves
via Kreisel provability predicates still vary in their properties, as they may be prov-
able, refutable, or independent. Refutable Henkin sentences are obtained by plugging
in a specific term into the formula that happens to be a self-referential Henkin sen-
tence in virtue of the cunning construction. If the usual diagonal constructions are
applied to the provability predicate, provable sentences are obtained. If we are inter-
ested in the sentence ascribing provability to itself via this provability predicate it
must be among the provable ones. The refutable ones can only be obtained via a
trick very specific to the provability predicate in question. Thus, we single out those
self-referential diagonal sentences that have been obtained in a uniform way. This is
sufficient to eliminate refutable Henkin sentences, as long as we employ a canonical
coding and numeral function.

Of course, appealing to “canonical” codings and numeral functions is as unsatis-
factory as appealing to “canonical” diagonal sentences. Hence, we replace this vague
condition with a precise condition on the naming relation: Ruling out illfounded
naming relations is then sufficient to obtain only provable Henkin sentences from
Kreisel-style provability predicates. Generally, the well-foundedness of the naming
relation is another constraint for narrowing down the class of diagonal sentences.

We do not not maintain that these constraints are the final word. Section 7.1 con-
tains an example hinting at the need for further constraints. However, in some cases
our constraints suffice to answer the question about the sentence ascribing some
property to itself. Of course, our constrains on diagonal sentences interact with other
constraints on the language, the coding, the axiomatization of the theory, and the for-
mula expressing the property. All these interrelate and there is much scope for future
work.

Appendix A. Proof of Lemma 5.11

We first prove the more general result that for any non-constant uniform function
u : Fmlx → Termx the claim holds. Let r ∈ R be a reduced representation of u.
By Lemma 5.9, it contains bn as a subterm, where ev(bn) = �−�f . We prove by
induction over the complexity of r that ϕ(s) �∗ ev(r)(ϕ), for some term s. For the
base case it is sufficent to check the claim for r = bn, since no other C-basic function
represents a function of the right type. Clearly, we have ϕ(x) � �ϕ(x)�. For the
induction step, again by Fact 5.8 and the fact that ev(r) is not constant, r must be of
the form r = �(bm, q), where ev(bm) is one of the basic functions Subt , �−�f , �−�t
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or f with ar(f ) ≥ 1. We now show by the following case distinction that ϕ(s) �∗
ev(r)(ϕ), for some term s.

(1) If ev(bm) = Subt , then by Fact 5.5 q is of the form , where ev(qi) :
Fmlx → Termx for i = 1, 2. Both q1 and q2 are reduced, and at least one
of ev(q1) and ev(q2) is not a constant function. If ev(q1) is not constant, then
by the induction hypothesis we have ϕ(s) �∗ ev(q1)(ϕ) for some term s. By
Fact 5.3 there is a closed term t � ev(q1)(ϕ) such that ϕ(s) �∗ t ; and since
t � ev(r)(ϕ), this shows ϕ(s) �∗ ev(r)(ϕ). Now suppose ev(q1) is a constant
function. Then ev(q2) must not be constant, and thus by the induction hypothe-
sis ϕ(s) �∗ ev(q2)(ϕ) for some term s. Also, ev(q1) cannot be closed, otherwise
ev(r) would be a constant function. Hence, by Lemma 5.10, ev(q1)(ϕ) contains
a free variable x. This means that ev(q2)(ϕ) � ev(r)(ϕ), and we conclude that
ϕ(s) �∗ ev(r)(ϕ) by Fact 5.2.

(2) If ev(bm) = �−�t , then ev(q) : Fmlx → Termx is a non-constant function. By
induction hypothesis there is a term s such that ϕ(s) �∗ ev(q)(ϕ). We also have
ev(q)(ϕ) � �ev(q)(ϕ)�, hence ϕ(s) �∗ ev(r)(ϕ).

(3) If ev(bm) = f : Termn
x → Termx , then by Fact 5.5, q must be of the form

(if n = 1 we simply have q), with each qi of
type Fmlx → Termx . There is i ≤ n such that qi is not a constant function. By
induction hypothesis, ϕ(s) �∗ ev(qi)(ϕ), for some term s. Since ev(qi)(ϕ) �
ev(r)(ϕ), we obtain ϕ(s) �∗ ev(r)(ϕ) by Fact 5.2.

(4) Finally, if ev(bm) = �−�f , then ev(q) : Fmlx → Fmlx is a non-constant func-
tion. We now show that ϕ(s) � ev(q)(ϕ) or ϕ(s) �∗ ev(q)(ϕ), for some term
s. In either case, we obtain the desired result, i.e., ϕ(s) �∗ ev(r)(ϕ). We prove
this disjunction by a further local induction over the complexity of q. If q is bl ,
for some l ∈ ω, then we have ϕ(x) � ev(bl)(ϕ). This is because the only C-
basic function of the right type is idFmlx . For the inductive step, it is sufficient to
assume by Fact 5.8 and the fact that ev(q) is not a constant function, that q is of
the form �(bk, q

′) where ev(bk) is Subf , 	 or R with ar(R) ≥ 1. We proceed
by considering each of these cases:

(a) If ev(bk) = Subf , then q ′ must be with ev(q ′
1) : Fmlx → Fmlx

and ev(q ′
2) : Fmlx → Termx . At least one of ev(q ′

1), ev(q ′
2) is not a constant

function. If ev(q ′
1) is not constant, then by the induction hypothesis, we

have ϕ(s) � ev(q ′
1)(ϕ) or ϕ(s) �∗ ev(q ′

1)(ϕ) for some term s. In the
former case, we have ϕ(s[x/ev(q ′

2)(ϕ)]) � ev(r)(ϕ). In the latter case
we conclude ϕ(s) �∗ ev(r)(ϕ) by a similar argument as in (1). Now if
ev(q ′

1) is a constant function, then ev(q ′
2) is not constant and hence ev(q ′

1)

cannot be closed. Then ev(q ′
1)(ϕ) contains a free variable by Lemma 5.10,

and we obtain ev(q ′
2)(ϕ) � ev(r)(ϕ). By the outer induction hypothesis,

ϕ(s) �∗ ev(q ′
2)(ϕ) for some term s. We then conclude ϕ(s) �∗ ev(r)(ϕ)

by another use of Fact 5.2.
(b) If ev(bk) = 	, then q ′ must be (if n = 1 we

simply have q ′), with each q ′
i , ev(q ′

i ) : Fmlx → Fmlx . At least one q ′
i is not
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a constant function. Hence by induction hypothesis ϕ(s) � ev(q ′
i )(ϕ) or

ϕ(s) �∗ ev(q ′
i )(ϕ). Since ev(q ′

i )(ϕ) � ev(q ′)(ϕ), we are done.
(c) The case for ev(bk) = R, where ar(R) ≥ 1, proceeds similarly to (4.b).

The proof is complete since diagonal operators cannot be constant functions.

Appendix B. Uniform Constructions of Deviant Henkin Sentences

This part of the appendix contains several explicit constructions of deviant provability
predicates which yield refutable Henkin sentences. Since all of these constructions
will rely on the recursion theorem, we start by briefly introducing this important
recursion theoretic result.

We start by assigning indices to p.r. functions.18 We write Fa for the p.r. function
with index a. Note that each p.r. function has infinitely many indices. Moreover, the
set of indices is p.r. The following recursion theorem for p.r. functions shows that we
can construct p.r. functions in a self-referential way, by using their indices in their
own definitions.19

Theorem B.1 (Primitive Recursion Theorem) For every k+1-ary p.r. function
G(�x, y), there is an index a such that Fa(�x) = G(�x, a), where �x is a k-tuple of
variables.

In this paper we only consider standard interpretations which are intuitively “effec-
tive” (for a definition of a standard interpretation see Section 4). More precisely, we
require that for every standard interpretation I there is a recursive function which
maps each pair (n, k) of numbers to an index a such that I(f k

n ) = Fa .
Before we provide our constructions we fix some more notation. Let L be given as

in Section 4 and let # be some standard elementary numbering of L such that #e > 0,
for all well-formed expressions e in L. Let P k

i be the projection function which maps
a k + 1-tuple to its i + 1-th component (where i ≤ k).

Let the function I ′ : {f k
n | n �= 0, k �= 0} → Pr be given by

I ′(f k
n ) =

{

Fn if n is the index of a k + 1-ary function;
P k
0 otherwise.

Clearly, I ′ is surjective. For each index a of a unary function, let Ia be the exten-
sion of I ′ by mapping the function symbol f 0

0 to Fa . Each such Ia is a standard
interpretation function of L. We observe:

18See [14, p. 34] or [19, pp. 91]. It is crucial that we only assign indices to p.r. functions via their p.r.
constructions. Note that there are functions which are defined by μ-recursion, but “happen” to be p.r. The
set of indices of p.r. functions which are constructed primitive recursively is p.r., while the set of (partial)
recursive functions which are p.r. is undecidable by Rice’s theorem.
19A proof of this theorem can be found in [14, p. 41].
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Fact B.2 For each index a of a unary function, there is an L0-formula Bewa(x)

which weakly represents Basic(Ia) relative to #. Moreover, there is a p.r. function H

which maps each such a to the #-code of Bewa(x).

We now prove Lemma 4.2 by providing two examples of uniform diagonal opera-
tors which satisfy the fixed-point property of Lemma 4.2. The first example employs
a canonical numeral function, namely, standard numerals, but is based on a contrived
numbering. The second example uses a standard numbering, but relies on an artificial
numeral function. These examples can be developed for all uniform diagonal oper-
ators introduced in this paper. For the sake of simplicity, however, we will base the
exposition on diagonal operators which are particularly suitable.

B.1 First Proof of Lemma 4.2

We base the first construction on the diagonal operator dB introduced in Example
3.5. Similar but slightly more complicated constructions can be given for dG and dJ .

Let J be a unary p.r. function which maps the #-code of ϕ to the #-code of
f 0
0 (�ϕ�#). Let ∧# denote the #-tracking function of ∧, i.e., ∧#(#ϕ,#ψ) = #ϕ ∧ ψ .

Similarly, let Sub# denote the #-tracking function of Subf : Fmlx ×Termx → Fmlx ,
defined in Section 3. Let z be the #-code of the formula

f 0
0 (0) �= f 0

0 (0).

We now define a function G : ω2 → ω by setting

G(p, q) :=

⎧

⎪

⎨

⎪

⎩

Sub#(p, J (p)) if p ∈ #(Fmlx);
∧#(z, Sub#(H(q),#f 0

0 (0))) p = 0;
0 otherwise.

Clearly, G is p.r. Using Theorem B.1, we find an index a such that

Fa(p) = G(p, a), for each p ∈ ω.

We now set
Bew∗(x) :≡ x �= f 0

0 (0) ∧ Bewa(x).

Using the fixed-point property of a, we get

Fa(0) = #(f 0
0 (0) �= f 0

0 (0) ∧ Bewa(f 0
0 (0))) = #(Bew∗(f 0

0 (0))). (2)

We now define a numbering α as follows:

α(ϕ) :=
{

0 if ϕ ≡ Bew∗(x);
#ϕ otherwise.

The numbering α is injective and elementary. Moreover, Bewa(x) also weakly repre-
sents Basic(Ia) relative to α. We set . By Eq. 2 and the fact that ,
we have for each ϕ(x) ∈ Fmlx that

.
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Hence, dB given by is a uniform diagonal operator with respect
to α, standard numerals and Ia (see also Definition 4.1 and Example 3.5). Moreover,
Bew∗(x) is a fixed-point of kdB

, i.e.,

This completes our first proof of Lemma 4.2. Note that while our construction
employs the standard numeral function, the numbering α is contrived. We now show
that if we leave the numeral function unconstrained, we can construct a deviant
provability predicate satisfying Lemma 4.2 for any given standard numbering.

B.2 Second Proof of Lemma 4.2

We base the second construction on Jeroslow’s operator dJ introduced in Section 3.2.
Once again, similar but slightly more complicated constructions can be given for dB

and dG.
Let subJ be f 1

n for some n such that Fn maps the #-codes of ϕ(x) and t (x) to the
#-code of ϕ(t (�t (x)�#). Let z be the #-code of the formula

x �= subJ (f 0
0 (0), �subJ (f 0

0 (0), x)�#).

We now define a function G : ω2 → ω by setting G(p, q) := ∧#(z, H(q)). By
Theorem B.1, there is an index a such that Fa(p) = G(p, a), for all p ∈ ω. We now
define the formula

Bew†(x) :≡ x �= subJ (f 0
0 (0), �subJ (f 0

0 (0), x)�#) ∧ Bewa(x).

Given the fixed-point property of a, we have

Ia(f 0
0 )(0) = #Bew†(x).

Hence, the mapping ν : ω → ClTerm given by

ν(n) :≡
{

f 0
0 (0) if n = #Bew†(x);

n otherwise;

is a numeral function (for Ia). We moreover have that

Basic(Ia) � subJ (�ϕ(x)�#,ν, �t (x)�#,ν) = �ϕ(t (�t (x)�#,ν))�#,ν .

Hence, for each ϕ ∈ Fmlx

Basic(Ia) � dJ (ϕ) = subJ (�ϕ(x)�#,ν, �subJ (�ϕ(x)�#,ν, x)) = �ϕ(dJ (ϕ))�#,ν .

In other words, dJ given by ϕ(x) �→ subJ (�ϕ(x)�#,ν, �subJ (�ϕ(x)�#,ν, x)�) is a
uniform diagonal operator with respect to #, ν and Ia .
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Moreover, Bew†(x) is a fixed-point of kdJ
, i.e., we have

kdJ
(Bew†(x)) ≡ x �= subJ (�Bew†(x)�#,ν, �subJ (�Bew†(x)�#,ν, x)�#,ν)∧Bewa(x)

≡ x �= subJ (f 0
0 (0), �subJ (f 0

0 (0), x)�#) ∧ Bewa(x)

≡ Bew†(x).

This completes our second proof of Lemma 4.2. As opposed to the contrived num-
bering α used in B.1, our second proof works for any given standard numbering.
However, the uniform diagonal operator dJ is based on the contrived numeral
function ν.

B.3 Proof of Lemma 7.1

Let sub be f 1
n for some n such that Fn is the #-tracking function of the substitution

function for formulas. Moreover, let num be f 0
n for some n such that Fn maps every

number to the #-code of its standard numeral. Finally, let be f 0
n for some n such

that Fn maps the #-code of ϕ(x, y) to the #-code of (here we
assume that our indexing of p.r. functions permits this construction). For each index
a, consider the formula20

ϕa(x, y) :≡ f 0
0 (sub(x, num(y))) �= sub(x, num(Sy)) ∧ Bewa(sub(x, num(y))).

Theorem B.1 yields an index a of a unary p.r. function mapping the #-code of
to the #-code of , for each

n ∈ ω. We now set . Hence, we have

Basic(I) � t = �ϕa(t, y)�#.
Therefore,

Basic(I) � ∀y sub(t, num(y)) = sub(�ϕa(t, y)�#, num(y)).

We now set tn :≡ sub(t, num(n)), for each n ∈ ω. Note that tn is not contained in tm,
for n �= m. We can then show in Basic(Ia) that

tn = sub(�ϕa(t, y)�#, num(n))

= sub(�f 0
0 (sub(t, num(y))) �= sub(t, num(Sy)) ∧ Bewa(sub(t, num(y)))�#,

num(n))

= �f 0
0 (sub(t, num(n))) �= sub(t, num(Sn)) ∧ Bewa(sub(t, num(n)))�#

= �f 0
0 (tn) �= tn+1 ∧ Bewa(tn)�#

For each n ∈ ω, we define

Bewn(x) :≡ f 0
0 (x) �= tn+1 ∧ Bewa(x).

We observe:

20This construction is inspired by Picollo’s [20] method of obtaining ω-chains of sentences, each referring
to its subsequent expression.

1049Varieties of Self-reference in Metamathematics



Fact B.3 For each n ∈ ω,

(1) Bewn(x) weakly represents provability in Basic(Ia);
(2) Basic(Ia) � tn = �Bewn(tn)�#;
(3) Basic(Ia) � ¬Bewn(tn).

Finally, Bewn(x) does not contain tn (at least for sensible choices of Bewa(x)).
This completes our proof of Lemma 7.1.

B.4 Proof of Lemma 7.3

Let subJ be given as in Section B.2. Let jump be f 0
n for some n such

that Fn maps the #-code of subJ (f 0
0 (m), �subJ (f 0

0 (m), x)�#) to the #-code of
subJ (f 0

0 (m + 1), �subJ (f 0
0 (m + 1), x)�#), for m ∈ ω. By Theorem B.1, there is an

index a of a unary p.r. function which maps n to the #-code of

jump(x) �= subJ (f 0
0 (n), �subJ (f 0

0 (n), x)�#) ∧ Bewa(x).

For each n ∈ ω, we define the formula

Bewn(x) :≡ jump(x) �= subJ (f 0
0 (n + 1), �subJ (f 0

0 (n + 1), x)�#) ∧ Bewa(x).

Given the fixed-point property of a, we have

Ia(f 0
0 )(n) = #Bewn(x).

Hence, the mapping ν : ω → ClTerm given by

ν(n) :≡
{

f 0
0 (m) if n = #Bewm(x);

n otherwise;

is a numeral function (for Ia). We moreover have that

Basic(Ia) � subJ (�ϕ(x)�#,ν, �t (x)�#,ν) = �ϕ(t (�t (x)�#,ν))�#,ν .

For each n ∈ ω we set tn :≡ subJ (f 0
0 (n), �subJ (f 0

0 (n), x)�#,ν). Recall that dJ is
the uniform diagonal operator which maps any formula ϕ(x) to the term

subJ (�ϕ(x)�#,ν, �subJ (�ϕ(x)�#,ν, x)�#,ν).

Fact B.4 We have tn ≡ dJ (Bewn(x)), for each n ∈ ω.

Proof We have

dJ (Bewn(x)) ≡ subJ (�Bewn(x)�#,ν, �subJ (�Bewn(x)�#,ν, x)�#,ν)

≡ subJ (f 0
0 (n), �subJ (f 0

0 (n), x)�#,ν)

≡ tn.

We observe:
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Fact B.5 For each n ∈ ω,

(1) Bewn(x) weakly represents provability in Basic(Ia);
(2) Basic(Ia) � tn = �Bewn(tn)�#;
(3) Basic(Ia) � ¬Bewn(tn).

Finally, we observe that

· · · �#,ν∗ t2 �#,ν∗ t1 �#,ν∗ t0.

Thus, �#,ν∗ is ill-founded but irreflexive.

B.5 A Henkin SentenceWithout an Additional Conjunct

We now construct a Henkin sentence which is not of the form χ(x) ∧ Bew(x). Let
subJ be given as in Section B.2. We assume that for each index a of a unary function,
Bewa(x) also satisfies Basic(Ia) � ¬Bewa(�ϕ�#), for all non-formulas ϕ. Let H be
a p.r. function which maps each such a to the #-code of Bewa(x) (see Fact B.2). Let
K be a p.r. function which maps each #-code of ϕ to the #-code of �ϕ�#. Let Sub#
denote the #-tracking function of the substitution function Subf defined in Section 3.
Let subJ # denote the #-tracking function of the binary function subJ introduced in
Section 3. Let the function L : ω → ω be given by

L(q) := Sub#(H(q),#f 0
0 (x)).

We define G : ω2 → ω by setting

G(p, q) :=
{

#0 if p = Sub#(L(q), subJ #(K(L(q)), subJ #(K(L(q)),#x)));
p otherwise.

Using Theorem B.1, there is an index a such that Fa(p) = G(p, a), for all p ∈ ω.
We now define the formula

Bew�(x) :≡ Bewa(f 0
0 (x)).

Given the fixed-point property of a, we have

Ia(f 0
0 )(#Bew�(dJ (Bew�(x)))) = #0.

We observe that application of Jeroslow’s diagonal operator to the provability
predicate Bew�(x) yields a refutable Henkin sentence:

Fact B.6

(1) Bew�(x) weakly represents provability in Basic(Ia);
(2) Basic(Ia) � ¬Bew�(dJ (Bew�(x))).

To sum up, dJ (Bew�(x)) is a refutable Henkin sentence, where dJ is a uniform
diagonal operator and the underlying naming relation is given by a standard number-
ing and numeral function. Hence, in particular, the corresponding naming relation is
well-founded.
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7. Grabmayr, B. (2021). On the invariance of Gödel’s second theorem with regard to numberings. Review

of Symbolic Logic, 14(1), 51–84.
8. Grabmayr, B., & Visser, A. (2021). Self-reference upfront: a study of self-referential Gödel number-
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