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Abstract
Belnap and Dunn’s well-known 4-valued logic FDE is an interesting and useful non-
classical logic. FDE is defined by using conjunction, disjunction and negation as
the sole propositional connectives. Then the question of expanding FDE with an
implication connective is of course of great interest. In this sense, some implicative
expansions of FDE have been proposed in the literature, among which Brady’s logic
BN4 seems to be the preferred option of relevant logicians. The aim of this paper is
to define a class of implicative expansions of FDE in whose elements Boolean nega-
tion is definable, whence strong logics such as the paraconsistent and paracomplete
logic PŁ4 and BN4 itself are definable, in addition to classical propositional logic.

Keywords Belnap-Dunn logic · Implicative expansions of Belnap-Dunn logic ·
Boolean negation · Two-valued Belnap-Dunn semantics

1 Introduction

The aim of this paper is to define a class of implicative expansions of Belnap-Dunn
well-known 4-valued logic in which Boolean negation and, consequently, strong log-
ics such as E4, BN4, PŁ4 and classical propositional logic are definable. We shall
focus more on the functional strength of the elements in this class than on the (in
many cases) interesting properties sported by the characteristic implication of some
or other of said implicative expansions.
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As it is well-known, Belnap and Dunn’s useful four-valued logic or first-degree
entailment logic FDE is a “particularly interesting and useful” (cf. [25, p. 1021]) non-
classical logic. FDE can be viewed as a 4-valued logic in which wffs (formulas) can
be both true and false or neither true nor false, in addition to being only true or only
false (cf. [5, 6, 12–14, 25–27]).

FDE is defined in the language {∧, ∨, ∼} (cf. Definition 2.1) but some implicative
expansions of it have been given in the literature (cf. [4, 7, 18, 19, 23, 25–28] and
references in the last four items). Among these, Brady’s 4-valued logic BN4 (cf. [7])
seems to be regarded in the relevant area as the adequate 4-valued expansion of FDE
(cf., e.g., [24, p. 25] or [35, p. 289]).1

In this context, the logic E4 is proposed in [28] as the entailment counterpart to
BN4 in the sense that E4 is related to BN4 similarly as Anderson and Belnap’s E
(Entailment) is related to their logic R (Relevance) (cf. [1] about E and R). Further-
more, in pp. 852-853 of the quoted paper [28], three alternatives to BN4 (along with
another three to E4) are summarily discussed together with the question whether one
of these options might be preferable to BN4 and/or E4. This question is settled in
[33], where its proven that BN4 (resp., E4) and its three alternatives are functionally
equivalent logics, whereas BN4 is functionally included in E4, but not conversely.
In [33], it is then concluded that E4 is, to some extent, a preferable logic to BN4 as
everything that can be done with the latter can be done with the former, which has a
greater expressive power, in addition (cf., however, the end of Sections 4 and 7). But
be it as it may, let us now enunciate the aims of the present paper.

Let us name FOUR the matrix determining the logic FDE (cf. Definitions 2.1,
2.2). We define a class MI4C of implicative expansions of FOUR, each element of
which is implicative in the sense that the f→-function defining the connective → has
the ensuing properties.

1. It is C-extending, that is, is coincides with (the f→-function for) the classical
conditional when restricted to the “classical” truth-values f and t (cf. Definition
2.2).2

2. It satisfies the modus ponens.
3. It satisfies the self-identity axiom A → A (cf. Definition 2.1).

Now, as pointed out above, the purpose of the paper does not center on the char-
acteristic implications of the members of MI4C, but in some aspects of the functional
strength of MI4C as a whole. In particular, below it is proved that each element M of
MI4C enjoys the two following properties, among others:

4. The logic E4 (and so, BN4) is definable in M.

And, most of all,

1A referee of the the Journal of Philosophical Logic remarks: “This is a pretty strong statement. I think
that getting any kind of consensus from the “relevant area” is wishful thinking, much less agreement that
some logic is the “adequate expansion”.”
2A referee of the Journal of Philosophical Logic remarks: “The “C-extending” property was introduced
by Carnielli, Marcos and de Amo in an earlier paper as “hyperclassicality.” We suppose the referee refers
to [10].

916
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5. Boolean negation is definable in M where by “Boolean negation” we can under-
stand any of the four possibilities considered in [11, p. 833], and, in particular,
“the unique classical negation in the four-valued setting” ([11, p. 833]).

Of course, from (5) it follows that M includes classical propositional logic,
whence, in its turn, it follows that M includes the logic PŁ4 introduced in [21] and,
according to [16], equivalent to De and Omori’s logic BD+, Zaitsev’s paraconsistent
logic FDEP and Béziau’s 4-valued logic PM4N (cf. [16], [32] and references therein).
Thus, PŁ4 is a very important 4-valued logic that can be regarded as an implicative
expansion of FDE since it is a negation expansion of classical implicative logic C→ in
which FDE is definable (the negation expanding C→ is the characteristic negation of
FDE). We note that the logic HSE4 defined in [2] is a definitionally equivalent logic
to PŁ4 (it is defined in the language {⊃, ∧, ∨, ¬} where, in said work, ¬ represents
the characteristic FDE negation).

Independently of those that the characteristic f→-function of M can have, we think
that the properties M enjoys remarked above make of it a very interesting implicative
expansion of FOUR.

The structure of the paper is as follows. In Section 2, the class MI4C of implica-
tive expansions of FOUR is defined. It is required that each f→-function in MI4C

be such that f→(n,n) = b, f→(b,b) = t and f→(b, f) = n or f→(t,b) = n, in
addition to being a C-extending function verifying the modus ponens and the self-
identity axiom. In Section 3, it is shown that Boolean negation is definable in each
member M of MI4C, whence it follows that the material implication is also defin-
able in M. In Section 4, it is proved that the matrices MBN4 and ME4 determining
the logics BN4 and E are definable in each M in MI4C. (As noted in Section 1, BN4
is viewed as the correct 4-valued logic in the relevance logic area3, but it is func-
tionally included in E4, its “entailment counterpart”.) In Section 5, it is shown how
to give Hilbert-formulations (H-formulations) to the logic LM determined by the
matrix M in MI4C. Interestingly, each H-formulation of LM presents it as an expan-
sion of classical propositional logic. The strategy (based on [7] as developed in, e.g.,
[22, 23, 28]) uses a two-valued Belnap-Dunn semantics equivalent to the matrix
semantics definable upon each element in MI4C. In Section 6, the class MI4C is
restricted in order that its members verify the rule (or the axiom, as the case may be)
contraposition and the rule transitivity, since many of the members in MI4C do not
satisfy these rules and/or axiom. And, although as pointed out above, the focus of
the paper is on the functional strength of MI4C, it also seemed interesting to select
subclasses of MI4C whose elements would present stronger implication functions.
We provide Hilbert-formulations for the logics determined by a couple of matrices
resulting from the restrictions referred to above. In Section 7, the paper is ended with
some concluding remarks on the results obtained and on the possible future work to
be made on the topic.

As it has been indicated above, FDE is defined in the language {∧, ∨, ∼}. Then,
the question of expanding it with an implication connective is of course of great
interest. In this sense, some implicative expansions of FDE have been proposed in the

3Cf. Note 1
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literature, the most important of which may be BN4, E4, PŁ4, BD+, PM4N, FDEP
and HSE4. But BN4 is functionally included in E4 (though not conversely) whereas
the remaining 5 logics are equivalent, as advertised in the precedent lines. Moreover.
it has also been signaled that all the logics just quoted are functionally definable in
each M in MI4C. This last fact can suggest that each logic LM is, to certain extent,
superior to the referred logics, since everything that can be done with the latter ones
can be done with LM, which has in principle greater expressive power. In this regard,
it is more than probable that the characteristic implication of some LM logic or other
will be useful in some sense or another, besides being capable of defining the strong
logics mentioned above (cf. Section 7 below).

To the best of our knowledge, the present paper introduces a class of implicative
expansions of Belnap-Dunn logic in which Boolean negation (so, classical proposi-
tional logic) and other strong logics are definable, for the first time in the literature,
a few specific instances of such type of expansions (all of them definable in each M
in MI4C) being at our disposal until now.

2 The Class MI4C of Implicative Expansions ofFOUR

In this section, we define the class MI4C of matrices (the label MI4C intends to abbre-
viate “implicative matrices expanding FOUR in which a Boolean —classical—
negation is definable”). We begin by stating some prior concepts.

Definition 2.1 (Some preliminary notions) The propositional language consists of
a denumerable set of propositional variables p0, p1, ..., pn, ..., and some or all of
the following connectives: → (conditional or implication4), ∧ (conjunction), ∨ (dis-
junction) and ∼ (negation). The biconditional (↔) and the set of formulas (wffs)
are defined in the customary way. A, B, C, etc. are metalinguistic variables. Then
the ensuing concepts are understood in a fairly standard sense: logical matrix M,
M-interpretation, M-consequence and M-validity. Also, the following notions: func-
tions definable in a matrix, functional inclusion and functional equivalence (cf., e.g.,
[30, Section 2] or [31]).

As suggested in the introduction, in this paper, logics are primarily viewed as
M-determined structures, i.e., as structures of the type (L,�M) where L is a propo-
sitional language and �M is a (consequence) relation defined in L according to the
logical matrix M as follows: for any set of wffs � and wff A, � �M A iff I (A) ∈ D

whenever I (�) ∈ D for all M-interpretations I (I (�) ∈ D iff I (A) ∈ D for all
A ∈ �; D is the set of designated values in M). Thus, from this viewpoint, we can
safely travel back and forth from matrices to logics, given the aims of this paper.

4We follow Anderson and Belnap’s “Grammatical Propaedeutic”, Appendix to [1]: “The principal aim of
this piece is to convince the reader that it is philosophically respectable to “confuse” implication and entail-
ment with the conditional, and indeed philosophically suspect to harp on the dangers of such “confusion”
([1, p. 473].
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Nevertheless, logics are sometimes defined as Hilbert-type axiomatic systems, the
notions of “theorem” and “proof from premises” being the usual ones. Furthermore,
in a derived or secondary sense, we can regard an M-determined logic as a, say,
Hilbert-type system (or a natural deduction system or a Gentzen-type system) L such
that � 	L A iff � �M A, where �M is the consequence relation defined above and
� 	L A means “A is provable from � in L”.

Definition 2.2 (Belnap and Dunn’s matrix FOUR) The propositional language
consists of the connectives ∧, ∨ and ∼. Belnap and Dunn’s matrix FOUR is the
structure (V, D,F) where (1) V is {f,n,b, t} and is partially ordered as shown in
Lattice 1 (cf. Fig. 1).

(2) D = {b, t}; F = {f∧, f∨, f∼} where f∧ and f∨ are defined as the glb (or
lattice meet) and the lub (or lattice joint), respectively. Finally, f∼ is an involution
with f∼(f) = t, f∼(t) = f, f∼(n) = n, f∼(b) = b (cf. [5, 6, 12–14]). We display
the tables for ∧, ∨ and ∼:

∧ f n b t
f f f f f
n f n f n
b f f b b
t f n b t

∨ f n b t
f f n b t
n n n t t
b b t b t
t t t t t

∼
f t
n n
b b
t f

Remark 2.3 (On the meaning of the symbols for referring to the four truth-values)
The symbols f,n,b and t stand for false only, neither true nor false, both true and
false and true only, respectively.

Next, we proceed to define the class MI4C. As pointed out in the preceding section,
any f→-function in MI4C needs to have at least the ensuing properties: (1) It is a
C-extending f→-function. (An f→-function is C-extending if it coincides with (the
f→-function for) the classical conditional when restricted to the “classical” values
f and t.) (2) It satisfies the modus ponens. (3) It is such that f→(n,n) = b and
f→(b,b) = t. (4) It is such that f→(b, f) = n or f→(t,b) = n. (Notice that the
conditions (1) and (3) conjointly taken guarantee that the self-identity axiom A → A

is satisfied by all members in MI4C.)

Fig. 1 Lattice 1

919



G. Robles, J.M. Méndez

Thus, we set:

Definition 2.4 (f→-functions complying with (1)-(4)) The 47 × 5 implicative truth-
tables describing all f→-functions fulfilling conditions (1)-(4) enunciated above are
contained in the general tables TI-TV displayed below (blank spaces can be filled
with no matter which truth-values in FOUR; b1, b2 ∈ {f,n}).5

T I

→ f n b t
f t t
n b
b f b1 t
t f b2 n t

T II

→ f n b t
f t t
n b
b n b1 t
t f b2 n t

T III

→ f n b t
f t t
n b
b n b1 t
t f b2 f t

T IV

→ f n b t
f t t
n b
b n b1 t
t f b2 b t

T V

→ f n b t
f t t
n b
b n b1 t
t f b2 t t

Definition 2.5 (The class MI4C) The class MI4C consists of the implicative expan-
sions of FOUR defined as follows. Each implicative expansion M is the structure
(V, D,F), where V, D, f∧, f∨ and f∼ are defined exactly as in FOUR (Definition
2.2) and f→ is defined according to one of the 47×5 different implication truth-tables
described in the general tables TI, TII, TIII, TIV and TV.

Remark 2.6 (MI4C
I -MI4C

V) We shall generally refer by MI4C
I (resp., MI4C

II, MI4C
III,

MI4C
IV, MI4C

V) to the members of MI4C built from the tables in MI4C
I (resp., MI4C

II,
MI4C

III, MI4C
IV, MI4C

V).

3 Definability of Boolean Negation andMaterial Implication

In this section, Boolean and material implication are defined in each element of
MI4C. Firstly, we note a remark on the proofs to follow. Then, we define four
additional negation connectives.

5A referee of the Journal of Philosophical Logic remarks: “I’d take care here to prevent the reader from
thinking that the functions described by these matrices are partial functions.”
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Remark 3.1 (Functions and truth-tables. On displaying proofs of definability) Let
f∗ be a function defined in V = {f,n,b, t}. In this paper, f∗ is usually represented
by means of a truth-table t∗ (or simply ∗), as for instance, it is the case with ∧, ∨
and ∼ in FOUR (Definition 2.2). In addition, by k∗ (or simply ∗) we refer to the
connective defined by t∗. Now, let M be FOUR or an expansion of it. The proof
that a given unary or binary function f∗ is definable in M is easily visualized by
using the connectives corresponding to the functions in M needed in the proof in
question. In general, proofs provided below are simplified as just indicated (A, B

refer to any wffs —cf. Definition 2.1) On the other hand, in order to prove that a
certain matrix is functionally included in another one, it is clear that it suffices to
show that the implication table of the former is definable in the latter, given that we
treat only implicative expansions of FOUR. Finally, from now on, by “definable in
MI4C (resp., MI4C

II, MI4C
III, MI4C

IV, MI4C
V)”, we mean “definable in all members in

MI4C (resp., MI4C
II, MI4C

III, MI4C
IV, MI4C

V)”. (This convention can also be used w.r.t.
other general tables to be introduced in what follows. In case a tester is needed, the
one in [15] can be used.)

Proposition 3.2 (The negation connectives
•¬,

◦¬,
�¬ and

�¬) Consider the negation

connectives
•¬,

◦¬,
�¬ and

�¬, given by the truth tables:

•¬ ◦¬ �¬ �¬
f t t t t
n b b t t
b t f b t
t f f f f

The four connectives are definable in MI4C

Proof We set
•¬A =df A → ∼A;

◦¬A =df ∼(∼A → A);
�¬A =df

◦¬A ∨ ∼A;
�¬A =df

•¬A ∨ ∼A (→ is the conditional given by any truth-table in MI4C).

Net, we proceed to define Boolean negation in MI4C.

Proposition 3.3 (Boolean negation in MI4C
I and MI4C

II) Boolean negation ¬ as
given by the truth table

¬
f t
n b
b n
t f

is definable in MI4CI and MI4CII.
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Proof We set ¬A =df ∼(
�¬A → �¬A) ∨ ◦¬A (→ is the conditional given by any of

the truth-tables in MI4C
I and MI4C

II).

Proposition 3.4 (Boolean negation in MI4C
III, MI4C

IV and MI4C
V) Boolean negation

¬ as given by the same truth-table as in the preceding proposition is definable in
MI4CIII, MI4CIV and MI4CV.

Proof (1) f→-functions such that f→(n,b) ∈ {f,n}. We set ¬A =df [∼(∼A →
◦¬A) ∨ ◦¬A] ∧ •¬A. (2) f→-functions such that f→(n,b) ∈ {b, t}. We set ¬A =df

(∼A → ◦¬A) ∧ •¬A.

Although, as pointed out in the introduction to the paper, De and Omori think that
¬ represents “the unique classical negation in the four-valued setting” ([11, p. 833]),

they consider three alternatives to it: in addition to
◦¬, the connectives given by the

ensuing truth-tables.

⊕¬ �¬
f t t
n t t
b f n
t f f

We have:

Proposition 3.5 (
⊕¬ and

�¬ are definable in MI4C) The negation connectives
⊕¬,

�¬,
given by the truth-tables displayed above, are definable in MI4C.

Proof (1) Connective
⊕¬. (1a) f→-functions such that f→(t,b) = n. We set

⊕¬A =df

(
�¬A → �¬A) ∧ �¬A. (1b) f→-functions such that f→(b, f) = n. We set

⊕¬A =df

[[ •¬A → (∼A∧¬A)]∧�¬A]∨ ◦¬A. (2) Connective
�¬. We set

�¬A =df
⊕¬A∨¬A.

Turning to material implication, we recall that Omori and Wansing [25, p. 1036]
note two versions of it given by the tables displayed below.

b→ f n b t
f t t t t
n b t b t
b n n t t
t f n b t

e→ f n b t
f t t t t
n t t t t
b f n b t
t f n b t

where b (resp., e) abbreviates “Boolean” (resp., “exclusion”), Boolean and exclusion

being negations given by the connectives ¬ and
⊕¬ defined above, respectively. Of
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course, they mean that
b→ (resp.,

e→) can be defined by disjunction and Boolean
(resp., exclusion) negation.

Proposition 3.6 (
b→ and

e→ are definable in MI4C) Material implication, as given

by
b→ or

e→, is definable in MI4C.

Proof We set A
b→ B =df ¬A ∨ B; A

e→ B =df
⊕¬A ∨ B.

The connectives
b→ and

e→ represent material implication in the sense that the
respective truth-tables defining them verify classical implicative propositional logic
(as, e.g., firstly defined by Łukasiewicz and Tarski [20]: A ⊃ (B ⊃ A), [A ⊃ (B ⊃
C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)], [(A ⊃ B) ⊃ A] ⊃ A and modus ponens), on the
one hand, and on the other hand, that said tables do not verify any invalid classical
implicative wff as the functions f b→ and f e→ are C-extending f→-functions (cf. the
introduction to the paper). Concerning this question, let us remark that it is possible

to give definitions of material implication by using the connectives
◦¬ and

�¬.

Proposition 3.7 (Alternative definition of ⊃) Consider the following implicative
tables.

◦¬→ f n b t
f t t t t
n b t b t
b f n b t
t f n b t

�¬→ f n b t
f t t t t
n t t t t
b n n t t
t f n b t

These tables are definable in MI4C by putting A

◦¬→ B =df
◦¬A ∨ B; A

�¬→ B =df

�¬A∨B. Now,
◦¬→ and

�¬→ represent material implication in the same sense as
b→ and

e→.

4 Definability of E4 and BN4

The logics BN4 and E4 briefly discussed in the introduction to the paper are deter-
mined by the implicative expansions of FOUR defined when adding to it the
f→-functions described by the ensuing truth-tables.

BN4→ f n b t
f t t t t
n n t n t
b f n b t
t f n f t

E4→ f n b t
f t t t t
n f b f t
b f f b t
t f f f t
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As recalled in Section 1, BN4 is regarded as the adequate 4-valued implicative
logic, in the relevant area. Nevertheless, in [33], it is shown that BN4 is definable in
E4, though not conversely. Below, it is shown that E4 (and so, BN4) is definable in
MI4C.

Proposition 4.1 (E4 is definable is MI4C) The logic E4 (so, also BN4) is definable
in MI4C.

Proof It suffices to show that the characteristic implicative table of E4 is definable

in MI4C. Consider then the unary connective � and the implicative connectives
1→

and
2→ as given by the truth-tables below.

�
f f
n f
b b
t f

1→ f n b t
f t t t t
n f t f t
b f f b t
t f f f t

2→ f n b t
f t t t t
n f b n t
b f b n t
t f b n t

These connectives are definable in MI4C as follows. �A =df ∼(
◦¬A∨∼A)∧�¬A;

A
1→ B =df [(¬A∨B)∧(∼B

b→ ∼A)]∧(
◦¬A∨B); A

2→ B =df (¬A∧∼A)∨∼¬B.

Then we have A
E4→ B =df �(A

1→ B) ∨ [(A 2→ B) ∧ (
◦¬A ∨ B)].

Thus, we see, the logic, let us name it L, built upon an arbitrary matrix in MI4C

contains, among other logics, classical propositional logic, Cp, E4 and BN4. So L is,
to some extent, superior to the logics it contains in the sense that anything that can be
done with these logics can also be done with L, which has more expressive power, in
addition. Nevertheless, of course, it does not mean that it is advisable or convenient
to drop Cp, E4 or BN4 in favor of L: one of these logics may have properties we
require for some purpose or another. For example, BN4 is a strong 4-valued exten-
sion of contractionless relevant logic R, while E4 is a strong 4-valued extension of
reductioless entailment logic E, which can be axiomatized by using modus ponens
(for the E4-conditional) and adjunction as the sole rules of inference (cf. [7, 28]).

Perhaps, we can elaborate on the question by taking an example from 3-valued
logic. As it is known, Kleene’s strong 3-valued matrix with two designated values,
MK3II, can be defined as follows.

Definition 4.2 (The matrix MK3II) The propositional language is the same as in
FOUR. The matrix MK3II is the structure (V, D,F) where (1) V = {f,b, t} and it
is ordered as shown in Lattice 2 (cf. Fig. 2).

(2) D = {b, t}; (3) F = {f∧, f∨, f∼}, where f∧ and f∨ are defined as in FOUR
and f∼ is an involution with f∼(t) = f, f∼(f) = t and f∼(b) = b.
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Fig. 2 Lattice 2

Then the logic Pac (“paraconsistency”) is the logic determined by the implicative
expansion of MK3II built up by adding the f→-function described by the following
table:

→ f b t
f t t t
b f b t
t f b t

Pac, maybe the most important paraconsistent 3-valued logic, has been defined
independently by many authors (cf. [17] and references therein). It can be axiom-
atized by adding to classical positive propositional logic the following axioms:
∼(A ∨ B) ↔ (∼A ∧ ∼B), ∼(A ∧ B) ↔ (∼A ∨ ∼B), ∼(A → B) ↔ (A ∧ ∼B),
A ↔ ∼∼A and A ∨ ∼A (cf. [29]).

Now, in [30], it is shown that Pac together with other 26 natural implicative expan-
sions of MK3II, one of them being the quasi-relevant logic RM3, can be defined
from 27 additional implicative expansions of MK3II, among which Łukasiewicz’s
Ł3 or the paraconsistent logic G3Ł are to be found, but not conversely. One of these
expansions is the logic, let us name it L′, (also axiomatized in [29]) determined by
the implicative expansion of MK3II built by adding the f→-function described by
the following table:

→ f b t
f t f t
b f t f
t f f t

But it is clear that it does not seem wise to drop Pac in favor of L′, a logic in which
wffs such as (A ∧ B) → A, (A ∧ B) → B, A → (A ∨ B) or B → (A ∨ B) are not
provable.

5 On Defining Hilbert-formulations of the L-logics

Let us generally refer by L-logics to the class of logics determined by the matrices
in MI4C. In this section, we show how to use the fact that classical propositional
logic is definable in each L-logic, in order to give easy Hilbert-style formulations (H-
formulations) of the L-logics. The H-formulations we define present the L-logics as
expansions of classical propositional logic.
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As a way of an example, we take the logic, let us provisionally name it L1, deter-
mined by the matrix in MI4C, let us provisionally name it M1, defined by using the
f→-function described in the ensuing table:

→ f n b t
f t t t t
n f b n t
b n n t t
t f f t t

In order to give an H-formulation for L1, we rely upon a strategy based upon
Belnap-Dunn two-valued semantics introduced by Brady in [7] (cf. also [8, 9, 34]),
as illustrated in some papers such as [21–23] or [28].

As it is well-known, Belnap-Dunn two-valued semantics is characterized by the
possibility of assigning T , F , both T and F or neither T nor F to the formulas of a
given language (cf. [5, 6, 12–14]; T represents truth and F represents falsity).

Given M an implicative expansion of FOUR (cf. Definition 2.2), the idea for
defining a BD-semantics, M′, equivalent to the matrix semantics based upon M is
simple: a wff A is assigned T and F in M′ iff it is assigned b in M; A is assigned
neither T nor F in M′ iff it is assigned n in M; finally A is assigned T but not F

(resp., F but not T ) in M′ iff it is assigned t (resp., f) in M.
Then below a BD-semantics for L1 is introduced by defining the notion of an

L1-model and the accompanying notions of L1-consequence and L1-validity.

Definition 5.1 (L1-models) An L1-model is a structure (K, I) where (i) K =
{{T }, {F }, {T , F }, ∅}, and (ii) I is an L1-interpretation from the set of all wffs to K ,
this notion being defined according to the following conditions (‘clauses’) for each
propositional variable p and wffs A, B:

1. I (p) ∈ K

2a. T ∈ I (∼A) iff F ∈ I (A)

2b. F ∈ I (∼A) iff T ∈ I (A)

3a. T ∈ I (A ∧ B) iff T ∈ I (A) & T ∈ I (B)

3b. F ∈ I (A ∧ B) iff F ∈ I (A) or F ∈ I (B)

4a. T ∈ I (A ∨ B) iff T ∈ I (A) or T ∈ I (B)

4b. F ∈ I (A ∨ B) iff F ∈ I (A) & F ∈ I (B)

5a. T ∈ I (A → B) iff [T /∈ I (A) & F ∈ I (A)] or

[T ∈ I (B) & F /∈ I (B)] or [T /∈ I (A) & F /∈ I (B)] or

[F ∈ I (A) & T ∈ I (B)] or [T ∈ I (A) & T ∈ I (B)]
5b. F ∈ I (A → B) iff F /∈ I (A) & T /∈ I (B).

Definition 5.2 (L1-consequence, L1-validity) Let M be an L1-model. For any set of
wffs � and wff A:
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1. � �M A (A is a consequence of � in M) iff T ∈ I (A) whenever T ∈ I (�).
(T ∈ I (�) iff ∀A ∈ �(T ∈ I (A)); F ∈ I (�) iff ∃A ∈ �(F ∈ I (A)).)

2. � �L1 A (A is a consequence of � in L1-semantics) iff � �M A for each L1-
model M.

3. In particular, �L1 A (A is valid in L1-semantics) iff �M A for each L1-model M
(i.e., iff T ∈ I (A) for each L1-model M).

By �L1 we shall refer to the relation just defined.
Now, given Definition 2.5 together with the adjoined notions of M1-interpretation

and M1-validity (cf. Definition 2.1) and Definitions 5.1 and 5.2. We easily prove:

Proposition 5.3 (Coextensiveness of �M1 and �L1) For any set of wffs � and a wff
A, � �M1 A iff � �L1 A. In particular, �M1 A iff �L1 A.

Proof See the proof of Theorem 8 in [7] or Proposition 4.4 in [22] where the simple
proof procedure is exemplified in the cases of the logics BN4 and Sm4, respectively.

Proposition 5.3 simply formalizes the intuitive translation (explained above) of
the matrix semantics based upon M1 into Belnap and Dunn’s two-valued type L1-
semantics. Nevertheless, it is a useful proposition, since it gives us the possibility of
proving soundness of L1 w.r.t. �M1 while proving completeness w.r.t. �L1 by using
a canonical model construction. But let us now define the H-system HL1. We use ⊃
(as interpreted by table

b→ —cf. Proposition 3.6), → and ∼ as primitive connectives.

Definition 5.4 (The system HL1) The system HL1 can be formulated as follows
(A1, ...An ⇒ B means “if A1, ..., An, then B”).

Axioms:

A1. A ⊃ (B ⊃ A)

A2. A ⊃ (B ⊃ C) ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]
A3. (¬A ⊃ ¬B) ⊃ (B ⊃ A)

A4. (A → B) ⊃ (A ⊃ B)

A5. A ↔ ∼∼A

A6. ∼(A ∨ B) ↔ (∼A ∧ ∼B)

A7. ∼(A ∧ B) ↔ (∼A ∨ ∼B)

A8. ∼A → [A ∨ (A → B)]
A9. B → [∼B ∨ (A → B)]

A10. (A ∨ ∼B) ∨ (A → B)

A11. [(A ∨ ∼A) ∧ B] ⊃ (A → B)

A12. [(A → B) ∧ ∼B] ⊃ [∼A ∨ (A ∧ B)]
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A13. (∼A ∨ B) ∨ ∼(A → B)

A14. [∼(A → B) ∧ (∼A ∨ B)] ⊃ C

Rules:

MP⊃. A ⊃ B, A ⇒ B

Definitions:

A ∧ B =df ¬(A ⊃ ¬B)

A ∨ B =df ¬A ⊃ B

A ↔ B =df (A → B) ∧ (B → A)
•¬A =df A → ∼A
◦¬A =df ∼(∼A → A)

¬A =df A ⊃ ∼(
◦¬A → •¬A)

We note that the tables resulting from the definitions of ∧, ∨ and ¬ are exactly
those for ∧ and ∨ in FOUR (cf. Definition 2.2) and the one for Boolean negation
(cf. Proposition 3.3), respectively.

Below, we remark some properties of HL1.

Proposition 5.5 (Some rules of HL1) The following are provable in HL1:

1. Deduction theorem (DT). If �, A 	HL1 B, then � 	HL1 A ⊃ B.
2. If A is a classical propositional tautology, then 	HL1 A.
3. Modus ponens for → (MP→). A → B, A ⇒ B.
4. Adjunction. A, B ⇒ A ∧ B.

Proof They are immediate. (1) By A1 and A2, since MP⊃ is the sole rule of infer-
ence. (2) By A1, A2, A3 and MP⊃, since, as known, the three axioms and the rule
axiomatize classical propositional logic. (3) By A4 and MP⊃. (4) By A ⊃ [B ⊃
(A ∧ B)] and MP⊃.

In what follows, we proceed to the proofs of soundness and completeness.

Theorem 5.6 (Soundness of HL1) For any set of wffs � and a wff A, if � 	HL1 A

then (1) � �M1 A and (2) � �L1 A.

Proof (1) It is immediate: the axioms of HL1 are M1-valid and MP⊃ preserves M1-

validity. (Recall that the material conditional is understood according to table
b→; cf.

Proposition 3.6; in case a tester is needed, the one in [15] can be used.) (On the other
hand, the definitions can be understood as mere abbreviations. Nevertheless, they
provide the right table for the respective connective, as pointed out before.)

Concerning completeness, it is proved by a canonical model construction, as sug-
gested above. Let us see how this proof proceeds. We begin by stating a couple of
definitions.
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Definition 5.7 (HL1-theories) An HL1-theory is a set of wffs containing all HL1-
theorems and closed under MP⊃. An HL1-theory t is prime if whenever A ∨ B ∈ t ,
then A ∈ t or B ∈ t ; and t is non-trivial if it does not contain all wffs.

Definition 5.8 (Canonical HL1-models) Let T be a non-trivial prime L1-theory. A
canonical HL1-model is the structure (K, IT ) where (i) K is defined as in Definition
5.1 and (ii) IT is a function from the set of all wffs to K defined as follows: For each
wff A, T ∈ IT (A) iff A ∈ T and F ∈ IT (A) iff ∼A ∈ T .

Then, in order to prove completeness, we have to prove the ensuing two facts:

1. An HL1-theory without a given wff can be extended to a prime HL1-theory
without the same wff.

2. Let T be a non-trivial prime HL1-theory. Then IT (as defined in Definition 5.8)
fulfills clauses (2a), (2b), (3a), (3b) (4a), (4b), (5a) and (5b) (it is immediate that
IT fulfills clause (1)). That is, we have to prove that the canonical translations
of clauses (1) through (5b) are provable in T .

We proceed to the proofs of facts 1 and 2.

Lemma 5.9 (Primeness) Let A be a wff and t an HL1-theory such that A /∈ t . Then
there is a prime HL1-theory T such that t ⊆ T and A /∈ T .

Proof We extend t to a maximal HL1-theory T such that A /∈ T . If T is not prime,
there are wffs B, C such that B ∨ C ∈ T but B /∈ T and C /∈ T . We then define
the sets [T , B], [T , C] as follows: [T , B] = {D | ∃E ∈ T [	HL1 (B ∧ E) ⊃ D]};
[T , C] is defined similarly.

We show (I) [T , B] is closed under MP⊃ (the proof for [T , C] is similar). Suppose
then (1) 	HL1 (B ∧ E) ⊃ (D ⊃ G) and (2) 	HL1 (B ∧ E′) ⊃ D for some wffs D, G

and E, E′ ∈ T . Obviously, we get (3) 	HL1 [B ∧ (E ∧ E′)] ⊃ [(D ⊃ G) ∧ D],
whence (4) 	HL1 [B ∧ (E ∧ E′) ⊃ G follows, i.e., G ∈ [T , B] since E ∧ E′ ∈ T as
T is closed under Adj.

(II) T ⊂ [T , B], [T , C]. Immediate by the HL1-theorems (D ∧ E) ⊃ D, (D ∧
E) ⊃ E and the supposition that B /∈ T , C /∈ T .

It follows from (I) and (II) that [T , B] and [T , C] are HL1-theories in which T is
strictly included. By the maximality of T , we have (1) 	HL1 (B ∧ E) ⊃ A and (2)
	HL1 (C ∧E′) ⊃ A for some E, E′ ∈ T , that is (3) 	HL1 [(B ∧E)∨ (C ∧E′)] ⊃ A,
whence by the distributive properties between ∧ and ∨ we get (4) [(B ∨ C) ∧ (E ∧
E′)] ⊃ A and, finally, A ∈ T , as (B ∨ C) ∧ (E ∧ E′) ∈ T , which is impossible.
Therefore, T is a prime HL1-theory such that A /∈ T .

Lemma 5.10 (Canonical HL1-models are HL1-models) Let Mc be a canonical HL1-
model. Then Mc is indeed an HL1-model.

Proof Let T be a non-trivial prime HL1-theory and Mc be the canonical HL1-model
built upon it as indicated in Definition 5.8. In order to prove that Mc is indeed an
HL1-model it suffices to prove that IT fulfills clauses (2a) through (5b). We have:
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• Clause (2a). It is trivial.
• Clause (2b). By using A5 A ↔ ∼∼A.
• Clause (3a). By the HL1-theorems (A ∧ B) ⊃ A, (A ∧ B) ⊃ B, A ⊃ [B ⊃

(A ∧ B)].
• Clause (3b). By A7 ∼(A ∧ B) ↔ (∼A ∨ ∼B).
• Clause (4a). By primeness of T and the HL1-theorems A ⊃ (A ∨ B), B ⊃

(A ∨ B).
• Clause (4b). By A6 ∼(A ∨ B) ↔ (∼A ∧ ∼B).
• Clause (5a). (⇒) Suppose A → B ∈ T . We have to show that at least one of the

following alternative obtains: [A /∈ T & ∼A ∈ T ] or [B ∈ T & ∼B /∈ T ]
or [A /∈ T & ∼B /∈ T ] or [∼A ∈ T & B ∈ T ] or [A ∈ T & B ∈ T ]. For
reductio, suppose that there are wffs A, B such that (1) A ∈ T or ∼A /∈ T and
(2) B /∈ T or ∼B ∈ T and (3) A ∈ T or ∼B ∈ T and (4) ∼A /∈ T or B /∈ T and
(5) A /∈ T or B /∈ T . We have 32 possibilities to consider, but each one of them
contains either (a) or (b), (a) being A ∈ T & B /∈ T and (b) being ∼B ∈ T and
either ∼A /∈ T or one of A /∈ T , B /∈ T . But (a) and (b) are impossible: (a) since
T is closed under MP, and (b) by A12, [(A → B) ∧ ∼B] ⊃ [∼A ∨ (A ∧ B)].

(⇐) Suppose [A /∈ T & ∼A ∈ T ] or [B ∈ T & ∼B /∈ T ] or [A /∈ T &
∼B /∈ T ] or [∼A ∈ T & B ∈ T ] or [A ∈ T & B ∈ T ]. We have to prove
that A → B ∈ T follows from each one of these five alternatives. Now, this is
immediate by using A8, A9, A10, A11 and A11, respectively.

• Clause (5b). (⇒) Suppose ∼(A → B) ∈ T . We have to prove ∼A /∈ T & B /∈
T , which is immediate by A14: if either ∼A ∈ T or B ∈ T , then C ∈ T for any
wff C, contradicting the non-triviality of T .

(⇐) Suppose ∼A /∈ T and B /∈ T . We have to prove ∼(A → B) ∈ T , which
is immediate by A13 and primeness of T .

Once Lemmas 5.9 and 5.10 proved, completeness is at hand.

Theorem 5.11 (Completeness of HL1) For any set of wffs � and wff A, (1) if � �M1

A, then � 	HL1 A; (2) if � �L1 A, then � 	HL1 A.

Proof Firstly, case (2) is proved. (2) Suppose � �HL1 A, i.e., that A is not included
in the set of consequences derivable in HL1 from � (in symbols, A /∈ Cn�[HL1]).
Then, Cn�[HL1] is extended to a prime HL1-theory T such that A /∈ T . Next,
the canonical HL1-model Mc = (K, IT ) based upon T is defined, and we have
� �Mc A, since T ∈ IT (�) (as T ∈ IT (Cn�[HL1]) but T /∈ IT (A)), whence
� �L1 A (by Definitions 5.1 and 5.2), as was to be proved.

(1) It is immediate by (2) and Proposition 5.3.

6 Restricting Tables TI-TV in Order to Verify the Contraposition
and Transitivity Rules

As discussed at the end of Section 4, the fact that a given logic L is functionally
included in another one L′ does not mean that L has to be forgotten in favor of L′:
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L may have properties desirable from some perspective or another, whence it would
follow the convenience of maintaining the independence status of L. In this regard, it
has to be remarked that the logics determined by all matrices MIV and MV lack the
rule contraposition (con): let M be any of such matrices and I be an M-interpretation
assigning t and b to different propositional variables p and q, respectively. Then
I (p → q) = t but I (∼q → ∼p) = n. Consequently, the L-logics built upon MIV
and MV may lack the replacement theorem, as it is the case with L1, where the rule
A ↔ B ⇒ ∼B ↔ ∼A fails (of course, L1 has a replacement theorem for a number

of conditionals definable in it such as
b→,

E4→ or
BN4→ ). In addition, it also has to be

remarked that the transitivity rule (trans), A → B, B → C ⇒ A → C, fails in all
L-logics built upon MIV or MV, the f→-function of which has f→(f,b) ∈ {f,n} or
both f→(n, t) = t and f→(n,b) ∈ {f,n}. Finally, as it is shown below, many of the
L-logics definable upon TI-TIII also lack the rule con.

Therefore, it seemed interesting to restrict tables TI-TV in order to the rules con
and trans to be verified thus giving us a class of L-logics whose characteristic impli-
cation has stronger properties than the ones presented by the modest ones definable
upon MI-MV in their present form.

Then in what follows, we operate the restrictions commented upon above and
next provide H-formulations for a couple of L-logics built upon the resulting general
tables. We shall limit ourselves to supply the BD-semantics for said logics and the H-
formulations definable from them, being the soundness and completeness theorems
entirely similar to those for L1 developed in the previous section.

Proposition 6.1 (f→-functions in TI-TV falsifying con) 1. Any f→-function in
tables TIV and TV falsifies con.

2. If an f→-function in tables TI-TIII satisfies one of the conditions (a)-(f) below
falsifies con:

(a) f→(n, f) ∈ {b, t}
(b) f→(n, b) ∈ {b, t}
(c) f→(n, t) ∈ {b, t} & f→(f,n) ∈ {f,n}
(d) f→(f,n) ∈ {b, t} & f→(n, t) ∈ {f,n}
(e) f→(f,b) ∈ {b, t} & f→(b, t) ∈ {f,n}
(f) f→(b, t) ∈ {b, t} & f→(f,b) ∈ {f,n}

Proof (1) As discussed above, it suffices to note that f→(t,b) ∈ {b, t} in all tables
in TIV and TV. (2) As summarily shown in the diagram below (cf. Definition 2.4).

p → q ∼q → ∼p

(a) n b/t f t b2 n
(b) n b/t b b b1 n
(c) n b/t t f f/n n
(d) f b/t n n f/n t
(e) f b/t b b f/n t
(f) b b/t t f f/n b
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A corollary of Proposition 6.1 is the ensuing proposition:

Proposition 6.2 (Tables in TI-TV verifying con) Consider the following general
truth-tables TVI-TIX6:

TVI

→ f n b t
f t a1 a2 t
n b1 b b2 a3
b b3 t a4
t f b4 t

TVII

→ f n b t
f t a1 b1 t
n b2 b b3 a2
b b4 t b5
t f b6 t

TVIII

→ f n b t
f t b1 a1 t
n b2 b b3 b4
b b5 t a2
t f b6 t

TIX

→ f n b t
f t b1 b2 t
n b3 b b4 b5
b b6 t b7
t f b8 t

where ai (1 ≤ i ≤ 4) ∈ {b, t}, bi (1 ≤ i ≤ 8) ∈ {f,n} and there are three
possibilities for filling the blank spaces: (1) f→(b, f) = f→(t,b) = n; (2)
f→(b, f) = n & f→(t,b) = f; (3) f→(b, f) = f & f→(t,b) = n. The 210 × 3 matri-
ces definable upon TVI through TIX are the only ones in tables TI-TIII verifying the
rule con.

Proof It is easy to show that all matrices in TVI-TIX verify con: the cases where
f→(f, f) = f→(f, t) = f→(b,b) = f→(t, t) = t and f→(n,n) = b are trivial,
while it is immediate to check that the rest of the cases of interest verify con. Consider
TVI: it is obvious that if A → B is assigned any of the pairs 〈f,n〉, 〈f,b〉, 〈n, t〉 or
〈b, t〉 then ∼B → ∼A is assigned a designated value. Therefore, from Proposition
6.1, it follows that tables TVI-TIX are the only ones in TI-TV verifying con: any
other particular table in TI-TV not in TVI-TIX satisfies one of the conditions (a)-(f)
in Proposition 6.1, thus falsifying con.

In addition to verifying con, tables TVI-TIX also verify trans.

Proposition 6.3 (TVI-TIX verify trans) Matrices definable upon the general tables
TVI-TIX verify the rule trans, i.e., A → B, B → C ⇒ A → C.

Proof The easy proof is left to the reader: if A → C takes a non-designated value,
then either A → B or B → C also takes a non-designated value.

The following proposition proposes the last restriction of tables TI-TV carried out
in the present paper, this time in order to verify the contraposition axiom, (A →
B) → (∼B → ∼A).

6Cf. Note 5
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Proposition 6.4 (Tables in TVI-TIX verifying the contraposition axioms) Consider
the following general table TX

TX

→ f n b t
f t a d t
n b b c a

b e c t d

t f b e t

where a, d ∈ {f,n,b, t} and b, c, e ∈ {f,n}. The 27 matrices definable upon TX are
the only ones in tables TVI-TIX verifying the contraposition axiom (A → B) →
(∼B → ∼A).

Proof It is easy. As a means to verify the contraposition axiom, we need the following
equations: f→(f,n) = f→(n, t); f→(n, f) = f→(t,n); f→(n,b) = f→(b,n);
f→(b, f) = f→(t,b); f→(f,b) = f→(b, t).

In Section 5, we have considered a matrix in TV falsifying both the con and trans
rules. Next, we briefly treat a matrix in TIX verifying both said rules and another one
in TX verifying the contraposition axiom in addition to the rule trans.

Definition 6.5 (The logics L2 and L3) The logics L2 and L3 are those determined by
the matrices M2 and M3 built up by adding to FOUR the f→-functions described
by the tables t2 and t3, respectively:

t2

→ f n b t
f t n n t
n f b n n
b f f t n
t f f n t

t3

→ f n b t
f t f f t
n f b n f
b n n t f
t f f n t

(Notice that t2 is one of the tables in TIX, while t3 belongs to TX.)

Next, BD-semantics for L2 and L3 are provided by defining the concepts of an L2-
model and an L3-model (the notions of L2- (L3-) consequence and L2- (L3-) validity
are defined similarly as the corresponding ones for the logic L1 —cf. Definition 5.2).

Definition 6.6 (L2-models) An L2-model is a structure (K, I) where (i) K =
{{T }, {F }, {T , F }, ∅} and (ii) I is an L2-interpretation from the set of all wffs to K

fulfilling the same conditions (1), (2a), (2b), (3a), (3b), (4a) and (4b) as in L1-models,
while conditions (5a) and (5b) are as follows:

(5a) T ∈ I (A→B) iff [T /∈ I (A) & F ∈ I (A) & T /∈ I (B) & F ∈ I (B)] or

[T /∈ I (A) & F /∈ I (A) & T /∈ I (B) & F /∈ I (B)] or
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[T ∈ I (A) & F ∈ I (A) & T ∈ I (B) & F ∈ I (B)] or

[T ∈ I (A) & F /∈ I (A) & T ∈ I (B) & F /∈ I (B)] or

[T /∈ I (A) & F ∈ I (A) & T ∈ I (B) & F /∈ I (B)]
(5b) F ∈ I (A → B) iff [T ∈ I (A) & T /∈ I (B)] or [F /∈ I (A) & T /∈ I (B)]

Definition 6.7 (L3-models) An L3-model is a structure (K, I) where K is defined as
in L2-models and an (L3-interpretation) I is defined exactly as in L2-models except
for the clause (5b), which now reads as follows:

(5b) F ∈ I (A → B) iff [F /∈ I (A) & T /∈ I (B)] or

[T /∈ I (A) & T /∈ I (B) & F /∈ I (B)] or

[T /∈ I (A) & F /∈ I (A) & F /∈ I (B)] or

[T /∈ I (A) & F ∈ I (A) & T ∈ I (B) & F ∈ I (B)] or

[T ∈ I (A) & F ∈ I (A) & T ∈ I (B) & F /∈ I (B)]

Next, H-formulations of L2 and L3 are provided. The base is the same as that for

L1: ⊃, → and ∼ as primitive connectives;
•¬,

◦¬, ¬, ∧, ∨ and ↔ are defined connec-
tives with MP⊃ as the sole rule of inference. The axiomatization, especially in the
case of L3, is a bit more complicated than that of L1, since the clauses (5a) and (5b)
in L2- and L3-models are more involved than those of L1-models. But, anyway, the
resulting H-formulations are not more complex than, say, those for strong 3-valued
logics (see, e.g., [3] and references therein).

Definition 6.8 (The system HL2) The system HL2 can be formulated as follows.
Axioms: A1-A7 of HL1 and:

A8. [(A → B) ∧ (B → C)] ⊃ (A → C)

A9. (A → B) ⊃ (∼B → ∼A)

A10. (A ∧ B) ⊃ [(∼A ∨ ∼B) ∨ (A → B)

A11. (∼A ∧ B) ⊃ [(A ∨ ∼B) ∨ (A → B)]
A12. [(A ∧ ∼A) ∧ (B ∧ ∼B)] ⊃ (A → B)

A13. [(A ∨ ∼A) ∨ (B ∨ ∼B)] ∨ (A → B)

A14. [(A → B) ∧ ∼A] ⊃ (B ∨ ∼B)

A15. [(A → B) ∧ (A ∧ ∼A)] ⊃ ∼B

A16. (∼A ∨ B) ∨ ∼(A ⊃ B)

A17. A ⊃ [B ∨ ∼(A → B)]
A18. [∼(A → B) ∧ (∼A ∨ B)] ⊃ A

A19. [∼(A → B) ∧ B] ⊃ C
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Rules:

MP⊃: A ⊃ B, A ⇒ B

Definitions: As in HL1.

Definition 6.9 (The system HL3) The system HL3 can be formulated as follows.
Axioms: A1-A8 and A10-A16 of HL2 with A9′ (A → B) ↔ (∼B → ∼A)

instead of A9 and:

A17. [(A ∨ ∼A) ∨ ∼B] ∨ ∼(A → B)

A18. [(A ∧ ∼A) ∧ B] ⊃ [∼B ∨ ∼(A → B)

A19. [∼(A → B) ∧ (A ∧ ∼A)] ⊃ B

A20. [∼(A → B) ∧ (A ∧ B)] ⊃ ∼A

A21. [∼(A → B) ∧ (∼A ∧ B)] ⊃ (A ∨ ∼B)

A22. [∼(A → B) ∧ [(A ∧ ∼A) ∧ ∼B)]] ⊃ C

Rules:

MP⊃: A ⊃ B, A ⇒ B

Definitions: As in HL1.

Proposition 6.10 (Some theorems of HL2 and HL3) The ensuing wffs are theorems
of HL2:

t1. (∼A ∧ ∼B) ⊃ [(A ∨ B) ∨ (A → B)]
t2. (∼A → B) ⊃ (∼B → A)

t3. (A → ∼B) ⊃ (B → ∼A)

t4. (∼A → ∼B) ⊃ (B → A)

t5. [(A → B) ∧ (B ∧ ∼B)] ⊃ A

t6. [(A → B) ∧ B] ⊃ (A ∨ ∼A)

In addition, the rule modus tollens (MT) A → B, ∼B ⇒ ∼A, also holds in HL2.
Then, in addition to t1-t6 and MT, the following are provable in HL3:

t7. ∼(A → B) ↔ ∼(∼B → ∼A)

t8. [(B ∨ ∼B) ∨ A] ∨ ∼(A → B)

t9. [(B ∧ ∼B) ∧ ∼A] ⊃ [A ∨ ∼(A → B)]
t10. [∼(A → B) ∧ (B ∧ ∼B)] ⊃ ∼A

t11. [∼(A → B) ∧ (∼A ∧ ∼B)] ⊃ B

t12. [∼(A → B) ∧ [(B ∧ ∼B) ∧ A]] ⊃ C

Proof It is easy and is left to the reader

By following the pattern set up in the case of HL1 in Section 5, it is easy to prove
that HL2 and HL3 are sound and complete in the same sense as HL1 is.
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7 Concluding Remarks

In this paper, the class of matrices MI4C is defined. MI4C is composed of a wealth of
implicative expansions of the matrix FOUR characterizing the well-known Belnap-
Dunn 4-valued logic FDE. Each matrix M in MI4C determines the logic LM in the
usual way: LM = (L,�M) where L is the implicative expansion of the language
upon which FOUR is built and �M is the consequence relation defined in M, as
it is customary. As in Section 5, we shall refer by L-logics to the class of logics
determined by the matrices in MI4C.

Boolean negation is definable in each member M of MI4C, whence it follows that
matrices determining strong logics such as E4, BN4, PŁ4 and classical propositional
logic are also definable. But in addition to initiate the study of the functional strength
of MI4C, it also seemed interesting to begin to explore the characteristic properties
of the implication functions in MI4C. In this sense, it has to be noted that many of
them lack the rule transitivity (trans), whereas the rule contraposition (con) does not
hold in more than the seventy per cent of the L-logics. Consequently, in order to
obtain L-logics with a stronger implication, we investigated two restrictions in MI4C.
The first one, results in a subset, say S, of MI4C validating con. Next, it develops
that trans is also validated in S. The second restriction gives us a subset of S, say S′,
validating the contraposition axiom (we note that only 128 matrices in MI4C validate
the contraposition axiom; cf. Proposition 6.4). Of course, still stricter restrictions are
possible. For instance, are there elements in S′ validating the suffixing and prefixing
axioms or at least the corresponding rules? In this way, we obtain L-logics with a
stronger characteristic implication, which can be useful in some way or another, in
addition to being capable of defining such strong logics as BN4 and PŁ4.

It has been shown how to give Hilbert-formulations to the L-logics by lean-
ing upon a two-valued Belnap-Dunn semantics equivalent to the matrix semantics
definable upon the elements in MI4C.

As far as we know, this paper is the first item in the literature presenting a class of
implicative expansions of Belnap-Dunn logic in which Boolean negation is definable.
Until now, only a few specific instances of such type of expansions could be found
in it, all of them definable in MI4C.

There is a number of ways in which the investigation carried out in the present
paper could be pursued. We remark on three of them.

1. To continue the study of the functional strength of the L-logics.
2. To investigate the functional relations the L-logics maintain to each other.
3. To study whether there are L-logics with an interesting characteristic implication

among those verifying con or the contraposition axiom.
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