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Abstract
Both extended simples and unextended complexes have been extensively discussed
and widely used in metaphysics and philosophy of physics. However, the charac-
terizations of such notions are not entirely satisfactory inasmuch as they rely on a
mereological notion of extension that is too simplistic. According to such a mereo-
logical notion, being extended boils down to having a mereologically complex exact
location. In this paper, I make a detailed plea to supplement this notion of extension
with a different one that is phrased in terms of measure theory. This proposal has
significant philosophical payoffs. I provide new characterizations of both extended
simples and unextended complexes, that help re-evaluating the question of whether
such entities are metaphysically possible. Finally, I advance several suggestions as
to how different notions of extension relate, first, to one another and, second, to
mereological structure.

Keywords Extension · Extended simples · Unextended complexes · Measure ·
Location · Mereological harmony

1 Introduction

Extended simples have been thoroughly discussed in metaphysics1 and philosophy of
physics.2 Recently, unextended complexes have been investigated as well.3 Despite
the attention they have attracted, I find the characterizations of both extended sim-
ples and unextended complexes not entirely satisfactory inasmuch as they rely—for
the most part—on a mereological notion of extension that is simplistic. According to

1See among others Scala [42], McDaniel [32], Gilmore [19], and Rettler [40].
2See Braddon-Mitchell and Miller [8], Baker [4], and Baron and LeBihan ([7]).
3See e.g., McDaniel ([33]: 239–242), and Pickup [39].
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such a mereological notion, being extended boils down to having a mereologically
complex exact location. In this paper, I make a detailed plea to introduce a differ-
ent notion of extension that is phrased in terms of measure theory. A few caveats
are in order. First, I don’t mean to suggest that measure theoretic notions have been
completely absent from the philosophical literature. For example, some solutions of
Zeno’s paradox of infinite divisibility crucially rely on such notions—starting from
the classic [21].4 By contrast, the literature on extended simples and unextended
complexes has—at least explicitly—neglected measure theory. This paper represents
a first step to remedying this situation. Second, I am not urging to replace the mere-
ological notion of extension with the measure-theoretic one. Rather, my suggestion
is to keep them both, side by side, in our logical and metaphysical toolkit. One can
even go as far as claiming that, on a charitable reading, some philosophers implic-
itly recognized the need of something like a measure-theoretic notion of extension
alongside the usual mereological notion, at least insofar as they talked about size.5

However these philosophers provided hardly any detail on how to understand the
relevant notion of extension. This paper is meant to provide such relevant details.
The enriched formal framework that contains parthood, mereological, and measure-
theoretic—or metrical—extension is useful for the sake of (i) providing a measure
of different extensions, (ii) providing clear definitions of notions related to that of
extension, such as the relation of “less extended than”, (iii) providing different char-
acterizations of both extended simples and unextended complexes, to mention a
few. Furthermore, the metrical notion of extension may be fruitful for (many) other
debates in the metaphysics of objects.

2 Preliminaries

2.1 Space

The following is the somewhat standard set-theoretic construction of space.6 Space
is “constructed out” of a set of elements called spatial points. Points are supposed
to be mereologically simple and unextended. Spatial regions are non-empty sets of
points,7 and any non-empty set of points counts as a region.8 Different structures
can be defined on such a set. As of now, we need just to define its topological struc-
ture. This is usually taken to be R

3. In effect, the main points of the paper can be
made with respect to R

1 so I will mostly stick to it.9 I take R
1 to have the standard

4For some recent papers that do consider measure theory at length see Arntzenius [2] and Lando and
Scott [27].
5See e.g., Tognazzini ([47]: 122).
6Or spacetime. I will ignore this complication. See e.g., Baker [4] and Gilmore [19].
7This rules out that the empty-set counts as a region.
8Note that in the rest of the paper I will slightly abuse notation and write “region r is the union of two
points p1 and p2” as r = p1 ∪ p2 rather than r = {p1} ∪ {p2}.
9See footnote 37 for some thoughts about generalizations to R

n.
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open-ball topology.10 Any worry that this makes points, regions, and the entire space
abstract entities will be met in the next section. As I pointed out this is the somewhat
standard conception of space. This standard conception can be challenged. First, one
might think that there are no atomic regions of space.11 Second, one might think that
there are atomic regions of space, but they are extended.12 A detailed investigation of
these unorthodox accounts and of the possible notions of extension definable in their
terms goes beyond the scope of the paper—though I will briefly return to extended
atomic regions. The main point of the paper is that even within the standard concep-
tion of space there is an alternative notion of extension—and extended simples, and
unextended complexes—that has been overlooked.

2.2 Mereology

Following Cotnoir and Varzi [12], let � stand for a primitive two-place notion of part-
hood. In what follows I will use first order logic with identity and set-theory.13 This
is not mandatory.14 But given that we already introduced set-theory in Section 2.1,
and we will in fact use it again later on, we might use it here as well. Standard
mereological definitions are as follows:

x � y ≡df x � y ∧ x �= y (1)

PROPER PART

x ◦ y ≡df ∃z(z � x ∧ z � y) (2)

OVERLAP

F(x, S) ≡df ∀y(y ∈ S → y � x) ∧ ∀w(w � x → ∃z(z ∈ S ∧ z ◦ w)) (3)

FUSION

Given the orthodox set-theoretic construction of space, and restricting variables to
spatial regions, we can write:15

x � y ↔ x ⊆ y (4)

x � y ↔ x ⊂ y (5)
x ◦ y ↔ x ∩ y �= ∅ (6)

10Let d be a metric on the set of spatial points. Define an open ball of radius r centered at point p as
the set of points whose distance d from p is less than r . It is possible to show that open balls so defined
induce a topology on the set of spatial points, the so-called open-ball topology. This view is substantivalist
insofar as it does not try to reduce points and regions to something else, e.g. events, or material objects,
and relations between those.
11Famously, Whitehead held this view. For an introduction see Gruszczynski and Pietruszczak [22].
12For a philosophically oriented introduction see e.g. Braddon-Mitchell and Miller [8].
13I am using both set-theory and mereology. Alternatively, one might want to develop a system that
dispenses with set-theory altogether and only works with mereological notions. One possible step in
this direction would be to look at Field [15] and his use of Hilbert’s segment arithmetic. A significant
development in this direction is in Arntzenius and Dorr [3].
14A widespread alternative in the literature uses plural logic.
15So that e.g., Eq. 4 should be read as: x � y ∧ ψ(x) ∧ψ(y) ↔ x ⊆ y ∧ ψ(x) ∧ ψ(y), where ψ(x) is the
open formula “x is a region”. The same goes for Eqs. 5–7. See e.g., Uzquiano [48].
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F(x, S) ↔ x =
⋃

yi∈S

yi (7)

Equivalences (4)–(7) just say that a (proper) part of a region is a (proper) subset of the
region, two regions overlap iff their intersection is not empty, and the fusion of some
regions is their union. They ensure that we can use only mereological vocabulary to
talk about spatial regions. This should also alleviate the worry about spatial regions
being abstract entities.16 I will take parthood to be a partial order that obeys:

¬x � y → ∃z(z � y ∧ ¬z ◦ x) (8)

STRONG SUPPLEMENTATION

To keep things as simple as possible, I will also require two distinct fusion axioms.
Let ψ(x) and φ(x) be the open formulas: “x is a region” and “x is a material object”
respectively. Then, the fusion axioms are:

S �= ∅ ∧ ∀y(y ∈ S → ψ(y)) → ∃x(F (x, S)) (9)

REGION FUSION

S �= ∅ ∧ ∀y(y ∈ S → φ(y)) → ∃x(F (x, S)) (10)

OBJECT FUSION

The fusion axioms ensure that for any non empty set of material objects there is a
fusion of those objects. The same goes for regions of space. The axioms are silent
as to whether cross-categorical fusions exist. I am going to assume that they do
not—but see footnote 34 for a possible argument. Together with strong supplemen-
tation the fusion axioms guarantee the existence and the uniqueness of the relevant
mereological fusions.17

16One might hold the view that set-theoretic notions apply only to abstract objects. Yet, equivalences
(4–7) ensure that set-theoretic talk can be translated into mereological talk for concrete spatial regions.
17Extensional Mereology is surely a controversial choice for material objects. The classic counterexample
to extensionality is arguably that of a statue and the matter it is composed of. They are (allegedly) distinct,
yet the share the same proper parts—the literature is literally too vast to mention. The interested reader
could find an (almost) exhaustive list in Cotnoir and Varzi [12]. I chose classical mereology for the sake
of simplicity, but nothing in the following arguments depends crucially on this choice. If one adopts a
weaker mereology for material objects, there is one detail that can make a difference, and that is whether
one takes the statue and the matter it is composed of to be mereologically related, by e.g., saying that the
matter is part of the statue. If so, one can simply stick to the letter of the arguments to follow, and e.g.,
identify—to anticipate my proposal—the extension of both the statue and the matter with the extension of
their exact locations. This is because the fusion of the statue and the matter would simply be the statue.
However, if one believes that there are no mereological relations whatsoever between the statue and the
matter—that is they are completely disjoint, as per disjointism (See Wasserman [51], and Limpan [29])—
the fusion axioms entail that there is (at least) a third object, namely (one of) their fusion(s). Let’s call one
of the fusions of the statue and the matter, the statter. Arguably, the “statter” has the same (exact) location
of the statue and the matter, which are, recall, its disjoint (co-located) proper parts. Then one would run in
a similar problem, mutatis mutandis, I discuss in footnote 34. My recommendation is the same: distinguish
between extensions of statues, hunks of matter, and their fusions. Thanks to an anonymous referee here.
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2.3 Location

Let @ be a primitive notion of exact location. @ is supposed to represent, as Parsons
[36] puts it, the “shadow” of a material object in substantival space, the region in
which the object exactly fits. We can then define other locative notions in terms of @
and mereology (or set-theory):

x@◦y ≡df ∃z(x@z ∧ z ◦ y) (11)

WEAK LOCATION

x@>y ≡df ∃z(x@z ∧ y � z) (12)

PERVASIVE LOCATION

That is, x is weakly located at y iff x is exactly located at a region that overlaps y,
and x it is pervasively located at y iff it is exactly at a z that has y as a part. As an
illustration, I am weakly located in my office, and I am pervasively located where
my heart is exactly located. In what follows I will assume the following:

∃y(x@◦y) → ∃z(x@z) (13)

EXACTNESS

x@y1 ∧ x@y2 → y1 = y2 (14)

FUNCTIONALITY

Exactness guarantees that every spatial entity, i.e., everything that is at least weakly
located in space, has an exact location.18 Functionality dictates that everything has at
most one exact location.19

I will also assume that all regions are located at themselves. From now on, I
will then use r1, ..., rn as singular terms (constants and variables) for spatial regions.
Given all this to each spatial entity—region or material object—we can associate its
exact location. Thus we can set

L(x) ≡df ιr(x@r) (15)

where ι is the Russell’s operator. In the rest of the paper, three different principles of
location will interest us:20

x@r ∧ y@r → x = y (16)

NON-COLOCATION

18As a matter of fact, there is no need to assume Eq. 13, insofar as it can be derived from Eq. 11. Alter-
natively, one could take weak location as primitive and define exact location in terms of it. If one uses the
definition in Parsons [36] one ends up with Functionality being a theorem. Eagle [13] proposes another
definition of exact location in terms of weak location that does not entail Functionality. For a critical
discussion of Eagle’s proposal see Calosi and Costa [10] and Payton [38].
19Exactness and Functionality are somewhat controversial axioms. I assume them for the sake of sim-
plicity: the arguments in the rest of the paper would go through without any of them as well–though the
arguments would need tweaking a little. I will suggest some tweaks myself in due course. Furthermore,
whenever these axioms seem to do substantive metaphysical work, I will simply flag that out explicitly.
20See e.g. Casati and Varzi [11], Parsons [36], Varzi [49], and Saucedo [41].
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x@>r → ∃y(y � x ∧ y@r) (17)

ARBITRARY PARTITION

x � y ∧ y@r1 → ∃r2(x@r2 ∧ r2 � r1) (18)

EXPANSIVITY

The first principle, Non-Colocation, says that no two things can be exactly located
at the same region.21 The second, Arbitrary Partition says that things have parts at
regions they pervade. Finally, Expansivity requires—roughly—that parts are located
where wholes are.

3 Extended Simples and Unextended Complexes Defined

3.1 Extended Simples

The following provides a representative sample of definitions of extended simples in
the literature—italics added:22

[A] simple, in my sense, occupies a greater than point-size region of space and
it is indivisible because it does not have, for instance, a right or a left half (Scala
[42]: 394).

[E]xtended simples are entities that are extended in space but have no (proper)
parts (...) they would occupy a —complex region of space (Pickup [39]: 257).

[A] simple is an entity that has no proper parts (...) Say that an entity is extended
just in case it is a spatiotemporal entity and does not have the shape and size of
a point (Gilmore [19]: 25–26).

[W]e take an extended simple to be a mereologically simple entity that is not
point-like (Calosi and Costa [10]: 1075–1076).

They seem to share the following picture. A mereologically complex region of space
is extended; anything that is exactly located at an extended region is an extended
entity. Pickup and Eagle are explicit:

[O]ne natural way to understand what it is to be an extended region is as being
composed of more than one point (Pickup [39]: 263).

21Strictly speaking there is a sense in which colocation occurs every time a material object x is exactly
located at region r . For, x and r are indeed colocated at r in all such cases. By contrast, the Non-Colocation
principle is meant to banish colocation between material objects—for, as I point out in Section 6, colo-
cation of regions is ruled out by Functionality alone. Thus, in what follows Non-Colocation is indeed
intended as Non-Colocation for material objects. I will stick to Eq. 18 for the sake of readability. Arguably,
the most widely cited violation of NON-COLOCATION is the case of the statue and the matter it is composed
of, as I discuss it in footnote 17
22Similar definitions are in McDaniel ([32, 33]: 131), Sider ([43]: 52), Simons ([45]: 63), and Rettler
([40]: 850).
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[I] will be understanding extendedness mereologically: a region is mereologi-
cally extended iff it has a proper subregion (Eagle [14]: 167).

Define Atom (or Simple, A) as something that does not have proper parts:

A(x) ≡df ¬∃y(y � x) (19)

ATOM

We could then define Being Extended� (EL) and Being Unextended� (¬EL):

E�(x) ≡df ¬A(L(x)) (20)

EXTENDED�
¬E�(x) ≡df A(L(x)) (21)

UNEXTENDED�
“Being Extended�” boils down to having a mereologically complex (exact) location.
This is why I have used the subscript “�”, to flag that this is a mereological notion
of extension. Many of the arguments in this paper can be read as a suggestion to
the point that mereological extension might be natural, as Pickup put it, but is not
entirely satisfactory. In some cases at least it is simplistic. In any event, as of now, an
extended simple ES� is easily defined:23

ES�(x) ≡df A(x) ∧ E�(x)

≡df A(x) ∧ ¬A(L(x)) (22)

EXTENDED SIMPLE�
I take Eq. 22 to be the definition of extended simples that is widely —if not
universally—accepted in the philosophical literature.24 Given that I am not entirely
satisfied with Eq. 20, I am not entirely satisfied with Eq. 22 either.

3.2 Unextended Complexes

Unextended complexes have not attracted as much attention as extended simples.
There are, however, notable exceptions. McDaniel [33] argues that unextended
complexes are metaphysically possible. McDaniel [34] argues they are ruled out by
reductive accounts of mereology.25 Pickup [39] focuses exclusively on them. Both
McDaniel and Pickup characterize them similarly:

23McDaniel [32, 33] distinguishes two types of extended simples, namely spanners and multilocaters.
Similarly, Eagle [14] distinguishes between l-extended simples and f -extended simples—corresponding
roughly to spanners and multilocaters respectively. Spanners are what I simply call “extended simples”.
Henceforth, I will work with a restricted notion of extended simples that does not include mutlilocaters.
24As I pointed out already, different notions of extension may be definable against the background of
unorthodox constructions of space. Also, as I once again already pointed out, some philosophers explicitly
talk about “size”.
25I will return to this in Section 6.
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[M]ereologically complex point-sized objects are also possible (McDaniel [33]:
239).

[T]here are two ways for an entity to be an extended complex, corresponding to
two ways of being unextended. Something can be unextended (a) by having no
location in space at all or (b) by being located at a simple part of space (Pickup
[39]: 258).

Let us focus on spatial entities for the moment.26 According to both McDaniel and
Pickup unextended complexes (UC�) can be defined as follows:

UC�(x) ≡df ¬A(x) ∧ ¬E�(x)

≡df ¬A(x) ∧ A(L(x)) (23)

UNEXTENDED COMPLEX�

Extended simples� and unextended complexes�, as defined in Eqs. 22 and 23, chal-
lenge mereological harmony—roughly the view that the mereological structure of
objects and the mereological structure of their exact locations perfectly mirror one
another.27 In fact, they provide counterexamples to some principles of location—
the ones I presented in Section 2.3—that can be thought of as committing, to some
extent, to such harmony.

3.3 Location and Extension

As I said, I find the mereological notion of extension not entirely satisfactory. Thus,
I find the definitions of extended simples and unextended complexes not entirely sat-
isfactory either. Let me briefly point out some of my perplexities. These perplexities
should not be read as reasons to discard the mereological notion of extension. Rather,
they should be taken as indicative of some limitations of that notion that are enough
to motivate the search for alternatives.

The mereological notion can be used to discriminate between extended and unex-
tended entities, but it is hardly of any use in providing a measure of that extension. We
can say that x is extended but we cannot say how much. Then, without recurring to
any other primitives, we cannot even say that x is less extended than y. We may think
we can, in a few cases. For example we might want to say that when x is a proper part
of y, x is less extended than y. This might actually be problematic, and I will return to
this later on. But for the moment I just want to point out that even if we were to agree
on that, this would be hardly enough for defining the relation of “being less extended
then”. For how are we supposed to handle cases in which x and y are mereologically
disjoint—i.e. non-overlapping? Suppose we even introduce a new primitive relation
to deal with such cases. What if I want to say that x is exactly n-times less extended

26That is, entities that are weakly located in space.
27For an introduction see Varzi [49], Uzquiano [48] and Leonard [28].
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than y?28 A natural question arises as to whether it is really necessary to give a
measure of extension. Indeed, providing a measure of extension is crucial for both
our everyday experience and our scientific practices. You don’t want to know just that
your bridal veil will be long. You want to know exactly how long it will be. In other
words, you want to measure its extension. You don’t want to know just that you have
an internal bleeding that is not point-sized. You want to know exactly how extended it
is. Your life might depend on its extension. Our scientific practices routinely involve
measures of acceleration, velocity, pressure, cross-sections, and the like. They all
require to give a measure of the extension of a spatial region. At this point one might
think that a pure mereological framework can be easily expanded to provide such a
measure. As a tentative suggestion, consider the following proposal: the measure of
the extension of a region r is the number of proper parts of r . There are reasons to
think that this suggestion won’t do because it is not fine grained enough, at least for
most of our purposes. Consider two intervals on R

1, say I1 = (0, 1) and I2 = (2, 4).
We want to be able to say that they have different extensions. In fact, we might want
to say that I1 is less extended than I2. Yet, they have the same number of proper parts.
To appreciate that note that they have the same cardinality. Hence their powers sets
have the same cardinality. Thus, it seems that a pure mereological account should be
supplemented with some other (primitive) notion(s). Perhaps a notion of congruence
will do—as I mentioned already in footnote 28.

What I am about to suggest is that we can use measure theory in general, and
Lebesgue measure in the particular case of the orthodox conception of space pre-
sented in Section 2.1. This raises the question: why this particular measure and not
another? Many measures will arguably provide interesting metric notions of exten-
sion. Many but not all of them. Consider the counting measure: for any finite set
S, the measure of S is the cardinality of S; for any infinite set S∗ the measure of
S∗ is infinite. The problem is that this is not fine grained enough. According to
the counting measure the sets I1 and I2 above have the same extension, namely an
infinite extension. In the context that is assumed throughout the paper, once again,
that of the orthodox conception of space, the Lebesgue measure has certain unique
advantages. First, it allows us to provide a fine-grained measure for a vast number
of subsets of R

1—in fact on R
n. Second, it has significant mathematical proper-

ties. It is the unique measure that is invariant under translations and send the “unit
cube” to +1.29 Because of this, it is routinely used in real analysis, and it is ubiqui-
tous in empirical science.30 Why shouldn’t metaphysicians use it as well? Once we
bought into set-theory, we should use set-theoretic constructions.31 To further stress
the point. Given the background assumptions I made in this paper, I will mostly be

28See Section 7 for some problematic attempts. I am not claiming it is impossible to find ingenious strate-
gies to deal with the worries I just discussed. Perhaps we could take “being exactly n-times less extended
than” as a primitive, and then work our way from there. Or perhaps a notion of congruence will do. How-
ever, we already have a detailed mathematical framework that gives us the resources to meet the challenges
in Section 3.3 head on. It is the framework of measure theory, that I introduce in the following section.
29More precisely: (i) for any set S and any x ∈ R, μ(S) = μ(S+x); (ii) Let U = (0, 1)×...×(0, 1) ⊂ R

n.
Then μ(U) = 1.
30For quantum mechanics see e.g. Hughes ([25]: §1.11). For relativity see Wald ([50]: Appendix B).
31Those who want to eschew set theory altogether may develop the alternative mentioned in footnote 13.
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concerned with Lebesgue measure. Yet, I will return to the more general notion of
metrical extension—of which Lebesgue extension is but one example—a few times
throughout the paper.

4 Measuring Extension

4.1 TheMeasure Theoretic Notion of Extension

In jargon, what we did in Section 2 was to define a topological space. We are going
to define yet another structure over the set Rn, a structure that will allow us to talk
about extension in much greater detail.

Before we enter somewhat technical details let me convey the intuitive picture
behind the Lebesgue measure (μ). We know how to assign extensions to particular
regions. For instance we know how to assign a length to a line interval in R

1, an
area to a plane figure such as a rectangle in R

2, and the volume to a solid figure
such as a cube in R

3. Let’s call those regions, independently of their dimensionality,
boxes–this is the technical term. Suppose now we want to assign an extension to an
arbitrary plane figure x in R

2, like the dotted figure x below. We can cover x entirely
with boxes in such a way that the boxes are pairwise disjoint—unsurprisingly, this is
known as a disjoint covering. We can then sum up the extensions of all the boxes we
used to cover x, and obtain n ∈ R. Clearly the extension of x is ≤ n. We can repeat the
process using coverings that are more and more fine-grained. They clearly approxi-
mate the extension of x better. We now take the infimum of all such extensions—i.e.,
of the extensions of the different coverings. Intuitively, we “minimize” such exten-
sion. We call it the the outer measure of x, m∗(x). This is because we “measured” x

from the outside so to speak. A dual approach measures x from the inside. We now
take the supremum of the relevant extensions. Intuitively, we “maximize” such exten-
sion. We call it the inner measure of x, m∗(x). This is because we measured x from
the inside so to speak. The Lebesgue measure of x, μ(x) is now given by:

m∗(x) = μ(x) = m∗(x) (24)

In other words: the measurable regions of space—which are measurable sets—are
those for which the outer measure is equal to the inner measure. We call such (equal)
measure the Lebesgue measure. Figure 1 below provides a partial illustration.

This is actually what Lebesgue himself originally did. We now use a some-
what different—yet provably equivalent—approach, starting with a general measure
(m).32 Consider a set S. A sigma algebra σ(S) defined over S is a collection of
subsets of S, i.e. σ(S) ⊆ P(S), such that: (i) S ∈ σ(S); (ii) σ(S) is closed under
complement; (iii) σ(S) is closed under countable unions. The pair < S, σ(S) > is
called a measurable space, and the sets Si ∈ σ(S) are called the measurable sets. A
measure m on a measurable space < S, σ(S) > is a map m : σ(S) → R

≥0 ∪ {∞}
such that (i) m(∅) = 0, and (ii) m is countably additive.

32For an introduction see e.g., Tao [46].
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Fig. 1 Measuring x from the
outside (left) and the inside
(right)

In general, the Lebesgue measure μ on R
n is a measure on < R

n, σ (Rn) >—where
σ(Rn) is the so called Borel sigma algebra—33defined as follows: μ([a1, b1) × ... ×
[an, bn)) = (b1 −a1) · .... ·(bn −an), for all [ai, bi) ∈ R

n with ai < bi—note that this
basically gives us the extension of a n-dimensional box, as we introduced it above. It
is a substantive theorem that this map defines a unique measure for the entire Rn.

Countable additivity is important. Roughly it states that, for any Lebesgue mea-
surable set S, and any countable union of pairwise disjoint subsets Sn, such that⋃

Sn = S, we have:

μ(S) =
∑

x∈Sn

μ(x) (25)

The Lebesgue measure on R
n gives us a precise way to talk about the extension of

any measurable set S ∈ R
n. The extension of the set S is just the Lebesgue measure

of S. Indeed, we can prove that for particular sets the Lebesgue measure is exactly
what we expect: it gives us the length of a line interval in R

1, the area of a plane
figure in R

2, and the volume of a solid in R
3. As I pointed out in the introduction, I

will restrict here to R
1 for it suffices to make the main points of the paper. With this

restriction in place I suggest the following:34

Extμ(x) = μ(L(x)) = μ(x) (26)

EXTENSIONμ

According to the (Lebesgue) measure-theoretic notion of extension35—hence the
subscript μ—the extension of a spatial entity (in R

1) is the (Lebesgue) measure

33This is the sigma algebra generated by the open sets of the standard topology of Rn. A sigma algebra
generated by a set S is defined as the smallest sigma algebra that includes S.
34This is where the ban on cross-categorical fusions enters the argument. Suppose x is exactly located at
a region r , such that μ(r) �= 0. And suppose there is a cross-categorical mereological fusion of x and r .
Call it w. Now, clearly, L(w) = r . Therefore, by Eq. 26, μ(w) = μ(r). However, according to Lebesgue
measure—under the assumption that x and r do not overlap, we have that μ(w) = μ(x) + μ(r) =
μ(L(x)) + μ(r) = 2μ(r) �= μ(r). Contradiction. If one wants to have cross-categorical fusions, perhaps
because of the endorsement of full-blown unrestricted composition, one could—or perhaps should—insist
that regions do not have exact locations, and then distinguish extension of regions, objects, and cross-
categorical fusions of regions and objects.
35I will mostly omit the “(Lebesgue)” specification from now on.
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(in R
1) of its exact location.36 Then, we can introduce the notions of Being

Extendedμ and Being Unextendedμ as follows:

Eμ(x) ≡df Extμ(x) > 0 ≡df μ(L(x)) > 0 (27)

EXTENDEDμ

¬Eμ(x) ≡df Extμ(x) = 0 ≡df μ(L(x)) = 0 (28)

UNEXTENDEDμ

In other words: an extendedμ entity is an entity that has Lebesgue measure μ > 0.37

It is immediately clear that this notion of extension does not suffer from the problems
that were afflicting the mereological notion. We can easily “measure” the extension
of a spatially extended entity. We can also easily define a general relation of being
less extended than (<∗

E).38 I am writing this down, for it will play a role in Section 7:

x <∗
E y ≡df μ(L(x)) < μ(L(y)) (29)

Finally, we can also easily express that x is exactly n-times less extended than y,
as: μ(L(y)) = n · μ(L(x)).39

36The definition assumes Functionality, which is controversial. Here is one way—not the only way—one
can develop the main insight behind the definition in the absence of Functionality—that is, allowing for
multilocated objects. For the sake of simplicity, let’s stick to the case where x is exactly located at r1 and
r2, with r1 �= r2—the argument generalizes straightforwardly. One could relativize the attribution of the
extension of x to its exact locations—indeed this is exactly the orthodox suggestion in the literature on
multilocation. According to this proposal, x has an extension relative to r1, and another relative to r2. The
most natural thing to do is (arguably) to identify the extension of x relative to r1 with the extension of
r1, and the extension of x relative to r2 with the extension of r2. Let μ(x)r stand for “the extension of x

relative to (exact location) r”. Then the suggestion is that μ(x)r1 = μ(r1), and μ(x)r2 = μ(r2). Thanks
to an anonymous referee for pressing me on this point.
37We are working in R

1. Generalizations to R
n might not be entirely straightforward. I am not considering

them here for R1 is enough to make the main point of the paper, i.e. that there is a notion of extension, the
measure theoretic one, that is extensionally not equivalent to the mereological one. But a general theory of
extension should consider such generalizations. To see the challenges ahead, consider a one-dimensional
region r , say the open interval (0,1). It is not difficult to see that r has Lebesgue measure μ = 0 in R

2. At
this point, one might follow two strategies—I am not suggesting that one strategy is better than the other.
Consider a spatial entity x and its exact location r . r has a particular dimension, say n. Then, according
to the first strategy x has an extension only in R

n, and in particular its extension in R
n is μ(x)Rn . x is

an extended entity iff its (only) extension is > 0. Go back to the example of a one-dimensional region r .
Under the present proposal r simply does not have an extension in R

2. It only has an extension in R
1. In

particular μ(r)R1 = 1. Thus r is extended. According to the second strategy, x has an extension in every
R

s = R
1 × ... × R

1, where s ≥ n. In particular, in R
s , it has extension μ(x)Rs . It is not difficult to see

that for any s > n, μ(r)Rs = 0. Thus, x will count as unextended in R
s with s > n. As a matter of fact

r = (0, 1) counts as unextended in R
2. We could then define a notion of extension simpliciter along the

following lines: Ext(x) ≡ ∃y(y � x ∧μ(y)R1 > 0). In other words, we say that x is extended iff it has at
least a part that is extended in R

1. r = (0, 1) is unextended in R
2, but it is extended simpliciter, insofar as

it has a part whose extension in R
1 is > 0. Developing these generalizations and alternatives goes beyond

the scope of this paper.
38The superscript “∗” will become important later on.
39As I will discuss later, another limitation of the mereological notion of extension is that it seems impos-
sible to define an extended simple region. I want to briefly sketch an argument to the point that, broadly
speaking, a metrical notion does not suffer from the same limitation. Clearly, this is not intended to be a
fully fledged account—which will have to wait for another occasion. For the sake of simplicity, imagine
we only have two simple extended regions r1 and r2, and let S be the set containing those regions, i.e. S =
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According to Eqs. 27 and 28, being extended or unextended is predicated only of
spatial entities, regions or things that are exactly located at regions.40 As we saw,
Pickup thinks that things that are not in space count, by default, as unextended. I
disagree: what we should say in those cases is that the entity in question has no
extension. That is to say, that the predicate “being (un)extended” simply does not
meaningfully apply to the entity. By contrast, unextended entities are entities to which
the predicate does meaningfully apply. They just have extension = 0.41 To sum up:
things without extension are not unextended things.42

4.2 Extension� and Extensionμ

I have introduced two notions of “being extended” and “being unextended”, mere-
ological notions E� and ¬E� in Eqs. 20–21, and metrical notions Eμ and ¬Eμ in

{r1, r2}. A simple sigma algebra over S is the power-set of S, i.e. σ(S) = P(S) = {∅, {r1}, {r2}, {r1, r2}}.
Then we define m : σ(S) → R

≥0 ∪ {∞} as follows: (i) m(∅) = 0; (ii) m(r1) = a, (iii) m(r2) = b; (iv)
m(S) = a + b, where a, b ∈ R

>0, say a = 1 and b = 2. The reader can check that m does qualify as a
measure according to the definition in Section 4.1. Then, we can still define “being extended” as “having
an exact location with measure m > 0”, and “being unextended” as “having an exact location with mea-
sure m = 0”. This is exactly in line with Eqs. 27 and 28 above. m is not μ, but we still get a metrical
notion of extension.
40In fact, it is meaningful to apply extension only at spatial entities that have exact locations corresponding
to Lebesgue-measurable sets. Some might argue that this a drawback. I happen to think this is one elegant
way to dissolve seeming paradoxes of extension, such as the Banach-Tarski paradox. For a different take,
see Meyer [35]. This goes beyond the scope of the paper.
41Alternatively, one may introduce notions of “being extended∗” and “being unextended∗”. The former
notion can be predicated of spatial entities, whereas the latter can be predicated only of non-spatial enti-
ties. On this construal, entities in general are either extended∗ or unextended∗, and no question arises as to
the measure of such extension∗. Only extensions can be measured—and thus, compared. A spatial entity
always counts as extended∗. I have nothing against introducing these notions and adopting such a terminol-
ogy. The point would be to recognize that extended∗ entities could be either extended and unextended, and
their extensions can be measured. In the paper I maintained that an unextended entity is an entity to which
the extension predicate—rather that the extension∗ predicate—can indeed apply in general partly because
this is the standard usage for other notions. Massless particles are entities to which the mass predicate can
be applied, they just have 0 mass. The same goes for chargeless particles—see e.g. Balashov [5].
42I am not claiming that Lebesgue measure is without its conceptual difficulties. Infinite sets—both count-
able and uncountable—might have measure 0. Arguably the most infamous example of an uncountable
set of measure 0 is the so called Cantor set. A useful way to understand the Cantor set is to think of it as
the remainder of the interval [0, 1] after the iterative process of removing open middle thirds is taken to
infinity. For an accessible introduction see Abbott ([1]: §3.1). Another difficulty is that there are sets that
are not Lebesgue-measurable. A famous example is the so-called Vitali set. Non-measurable sets can give
rise to paradoxes of extension such as the Banach-Tarski paradox. Roughly, the paradox has it that one
can cut a solid sphere into finitely many pieces, shift some of them, then rotate all the pieces by different
angles and obtain two perfect copies of the original sphere. For an insightful discussion see Meyer [35].
These difficulties should be acknowledged. One might think that this is evidence that Lebesgue measure
is problematic as an explication of our naı̈ve, pre-theoretical conception of extension. Granted. But, first,
it is at least controversial to claim that our pre-theoretical notion of extension is applicable to complex
mathematical objects such as the Vitali set, or the Cantor set. Second, my point is not that we should use
Lebesgue measure to explicate our pre-theoretical notion. My point is that we should use Lebesgue mea-
sure to beef up metaphysical discussions of extension. As a matter of fact, I might even concede that the
mereological notion of extension is closer to our pre-theoretical understanding. I am not trying to replace
the mereological notion. I am trying to make a plea for enriching our basic metaphysical toolkit when
dealing with extended simples and unextended complexes.
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Eqs. 27–28. What are the relations between these notions? Under the “assumption”
that atomic regions of space, i.e., points, have Lebesgue measure 0 we have that:43

¬E�(x) → ¬Eμ(x) (30)

Claim Eq. 30 tells us that if something is exactly located at a point (thus being unex-
tended according to mereological extension), it has Lebesgue measure 0 (thus being
unextended also according to metrical extension).44 Contraposing (30) one obtains
that every extendedμ entity is extended�, and therefore mereologically complex.
Indeed, as we saw in Section 2.1, according to the orthodox conception of space,
every region is just a set of points, and points have Lebesgue Measure 0. In view
of Countable Additivity, any region with countably many points has Lebesgue mea-
sure 0. It then follows that any extendedμ region has at least uncountably many
points—and we now know, post-Cantor, that e.g., every line-segment contains indeed
uncountably many points.45

The crucial result is that Eq. 31 below fails:

¬Eμ(x) → ¬E�(x) (31)

This simply follows from Countable Additivity. To appreciate this, consider any finite
union, or any countable union of regions that have Lebesgue measure 0. Countable
Additivity dictates that the Lebesgue measure of such unions is 0 as well. Any entity
that is exactly located at those regions—the regions themselves in the first place—
will qualify as metrically unextended. Yet they will not qualify as mereologically
unextended, for their exact location is (massively) complex. The simplest case would
be that of a region r composed of only two distinct points p1 and p2, r = p1 ∪ p2.
For it follows that μ(r) = 0 and ¬A(r). This provides a counterexample to Eq. 31
and its contraposition.

All this plays a crucial role in the characterization of extended simples and
unextended complexes. Before turning to that, let me discuss—albeit briefly—other
examples in which the notion of metrical extension itself, and the distinction between
mereological and metrical extension can be fruitful.46

4.3 Notions of Extension and theMetaphysics of Objects

There are other debates in the metaphysics of material objects (and beyond) that
crucially depend on the notion of extension. One prominent example is the meta-
physics of persistence. The following is the by now orthodox construction. It is
mostly due to Gilmore [17] and Parsons [36]. For the sake of simplicity, we assume

43Given the definition of μ we could indeed prove that, for any point p, μ(p) = 0. The assumption is that
space is constructed out from such points.
44It may be worth noting that Eq. 30 will fail if atomic regions of space have a measure > 0. In that case,
being exactly located at a simple region of space would not even be sufficient for being unextended.
45Here one sees that the distinction between regions with countably many and uncountably many points
plays a crucial role.
46Thanks to an anonymous referee for prompting the following discussion. One can skip Section 4.3 if they
so wish. A disclaimer: it is not the purpose of the section to offer a fully-fledged, exhaustive discussion.
Rather it is to provide initial evidence for the potential fruitfulness of metrical extension.
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a standard picture where time is a one-dimensional manifold, constructed out of sim-
ple, unextended temporal atoms called instants with the topology of R

1. First we
define the path of an object x to be the union of its (temporal) exact locations. Let
R = {ri |x@ri}. Then:

pathx ≡df

⋃

ri∈R

ri (32)
PATH

Object x persists iff x’s path is not instantaneous. Given what we assumed about
temporal instants, this is equivalent to the fact that x’s path is not atomic. This in turn
simply means that a persisting object is something with a temporally extended� path:

Pers�(x) ≡ E�(pathx) (33)

PERSISTENCE�

Clearly, the arguments in the paper can be used to define another notion of persis-
tence according to which something persistsμ iff its path is temporally extendedμ:

Persμ(x) ≡ Eμ(pathx) (34)

PERSISTENCEμ

Everything that persistsμ persists� but the converse does not hold. This is impor-
tant. Recent arguments in the (meta)physics of persistence can be read as the claim
that relativistic objects persistμ, and therefore persist�, whereas quantum objects
persist� without persistingμ.47

Another debate where the notion of metrical extension can play a crucial role is
in answering what Markosian [30] calls the Simple Question: what are the necessary
and jointly sufficient conditions for an object to be lacking proper parts, that is, to
be simple or atomic. We will soon encounter two influential answers to the Simple
Question in Section 5. As of now, all that matters is that e.g., Tognazzini [47] argues
that virtuous answers to the Simple Question should be neutral as to whether space
is discrete, and, more importantly for us, neutral on the possibility that regions of
discrete space are of “non-uniform shape and size” (Tognazzini [47]: 123). But we
already saw that the mereological notion of extension can hardly be of use (by itself)
to assign a size to different regions, let alone compare different sizes. By contrast,
we saw that the metrical notion of extension scores highly on both respects.

A further example comes from the debate in the metaphysics of receptacles. This
is a debate as to whether there are any constraints for regions to be receptacles, i.e.,
possible exact locations of objects. The most permissive view is the so-called liberal
view of receptacles, defended in Hudson [23, 24]. According to the liberal view, any
region whatsoever, in particular any region of any size can be a receptacle. Once
again, this presupposes that we can assign extensions to different regions, an easy
task for the metrical notion, a difficult one for the mereological one.

47See Gilmore [18] for the relativistic case, and Pashby [37] for the quantum case.
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Finally, there are all the arguments and debates where comparative claims about
extension are crucial—for as we saw, this is another instance where the mereological
notion shows its limits. I will defer this discussion to Section 7.

5 Extended Simples and Unextended Complexes Revised

5.1 Extended Simples, Again

Back to extended simples and unextended complexes. The measure theoretic notion
of extension discussed in Section 4 can be used to provide a novel characterization
of extended simples. We all agree that an extended simple is a mereological atom
that is (spatially) extended. I am suggesting that we can also cash out the extension
requirement in measure-theoretic terms. This gives us the following:

ESμ(x) ≡df A(x) ∧ Eμ(x)

≡df A(x) ∧ μ(L(x)) > 0 (35)

EXTENDED SIMPLEμ

The results of Section 4 have now a profound consequence on the debate over
extended simples. For the very same arguments establish that:

ES�(x) → ESμ(x) (36)

does not hold. To further stress the point: an atomic spatial entity that is exactly
located at r = p1∪p2 counts as an extended simple�, but not as an extended simpleμ,
thus providing a counterexample to Eq. 32. We do however get:

ESμ(x) → ES�(x) (37)

This is because any spatial entity that has a Lebesgue measure > 0 is exactly
located at a region r that certainly is mereologically (extremely) complex—as
we saw already. Extended simples, that is, both extended simples� and extended
simplesμ, violate Arbitrary Partition in Section 2.3. Thus, extended simplesμ chal-
lenge mereological harmony as much as extended simples�. To see this, just note that
both extended simples� and extended simplesμ have mereologically complex exact
locations.48 This might pave the way to the following worry. Given that being metri-
cally extended suffices for being mereologically extended, the philosophical interest
of metrical extension is exhausted by the mereological consequences of metrical
extension. This worry is unfounded—or so I contend.

The worry is significant only inasmuch as the philosophical interest of metrical
extension is limited to questions about mereological harmony. But I don’t see any
compelling reason why this should be the case. For example, looking a little beyond
the orthodox conception of space in Section 2.1, one can appreciate another limitation

48It should be noted that this is a consequence of the fact that simple regions of space, according to the
orthodox framework of Section 2.1, are both unextended� and unextendedμ. Braddon-Mitchell and Miller
[8] argue that extended simples need not violate Arbitrary Partition if atomic regions of space are extended.
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of mereological extension. If that were the only notion of extension at stake, extended
simple regions would turn out to be impossible. This is because mereological exten-
sion boils down to mereological complexity for regions. Yet, various philosophical
arguments crucially depend on the possibility of extended simple regions, e.g., the
ones in Tognazzini [47] and Kleinschmidt [26].

Let me start from the first. Tognazzini argues that the possibility of discrete space
provides an argument against several influential answers to the Simple Question, the
pointy view answer (PV),49 and the maximally continuous view answer (MaxCon).50

He explicitly writes:

On one picture, the space atoms are still point-sized. On the other, the space
atoms themselves are extended. In what follows, I will be concerned only with
this second picture of discrete space. It is with the possibility of this type of
discrete space that MaxCon and PV are inconsistent (Tognazzini [47]: 119,
italics added).

As for Kleinschmidt [26], her argument is that no theory of location with only one
primitive can accommodate her place cases—as she labels them. The first such case,
the Almond in the Void, features

[A]n extended simple region r , which contains an almond (and its parts) which
is smaller than r , and r is otherwise empty (Kleinschmidt [26]: 122, italics
added).

It is clear that the arguments above crucially depend upon the possibility of
extended simple regions. Indeed, some broader claims in those arguments depend on
comparative claims about size, claims such as “simples are located at the smallest
regions of space” (Tognazzini [47]: 121) or as “the almond is smaller than the region
it is contained in” (Kleinschmidt [26]: 122). And, as I argued already, this presents
a tremendous challenge for the mereological notion of extension. By contrast, this is
not the case for the metrical notion of extension in general. Nothing prevents sim-
ple regions to be extended in the metrical sense, for mereological complexity is not
a necessary condition for metrical extension.51 In effect, atomic measures could be
used to define extended simple regions. A measure m is atomic iff every measurable
set of positive measure contains a “metrical atom”, a positive-measure set S1 that has
only 0-measure subsets:52

m(S1) > 0 ∧ ∀S2(S2 ⊂ S1 → m(S2)) = 0 (38)

METRICAL ATOM

49Roughly the claim that, necessarily, x is simple iff x is a point-like object. Note that unextended
complexes provide an (alleged) counterexample to PV.
50Roughly the view that, necessarily, x is simple iff x is a maximally continuous object.
51One might worry that this trivializes the point. One can always find an atomic measure according to
which a given region is extended. But this misses the point. The point is simply that the metrical notion of
extension allows us to define extended simple regions, whereas the mereological notion does not.
52These sets are called “metrical atoms”. Consider the counting measure in Section 3.3. Any singleton set
S = ({n}|n ∈ Ii ) is a metrical atom.
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A toy example of one such atomic measure is in footnote 39. It can be used to define
extended simple regions.53 The arguments in Tognazzini [47] and Kleinschmidt [26]
could be run using metrical extension. This is one significant example where, in gen-
eral, the divergence between the mereological and the metrical notion of extension
has significant philosophical payoffs. And I will return to the case of comparative
claims about different extensions in Section 7.

Furthermore, as we will see, the case of Unextended Complexes is significantly
different from that of Extended Simples. In that case, the divergence of the met-
rical and mereological notion of extension plays a crucial role when assessing the
metaphysical possibility of Unextended Complexes.

5.2 Unextended Complexes, Again

My take on unextended complexes parallels the one for extended simples. Unex-
tended complexes are spatial entities that are mereologically complex and are
(spatially) unextended. If we cash out spatial extension in measure-theoretic terms
we have that:

UCμ(x) ≡df ¬A(x) ∧ ¬Eμ(x)

≡df ¬A(x) ∧ Extμ(x) = 0 ≡df ¬A(x) ∧ μ(L(x)) = 0 (39)

UNEXTENDED COMPLEXμ

The point is that the following does not hold:

UCμ(x) → UC�(x) (40)

That is to say, a spatial entity can be an unextended complexμ, without thereby being
an unextended complex�. The simplest case in point is always the same. A complex
spatial entity that is exactly located at r = p1 ∪ p2 is an unextended complexμ that
is not an unextended complex�. On the other hand the converse of Eq. 40 holds:

UC�(x) → UCμ(x) (41)

The case of unextended complexes is different from the case of extended sim-
ples, for it turns out that unextended complexes� and unextended complexesμ violate
very different principles of location. In effect, unextended complexesμ do not violate
any of these principles. This makes a substantive difference when it comes to their
metaphysical possibility—as I am about to argue.

6 TheMetaphysical Possibility of Unextended Complexes

As we saw, according to Pickup there are two kinds of unextended complexes�: (a)
mereological complexes that don’t have any location in space —e.g., mereologically

53The Lebesgue measure is not atomic. However, I will put forward a suggestion that uses the Lebesgue
measure in Section 7.
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complex abstract entities, and (b) mereologically complex spatial entities that are
exactly located at spatial points. These are “pointy complexes”.

I briefly pointed out what I take to be misleading about case (a). I think that the
right thing to say in such a case is that the entities in question lack extension, not that
they are unextended. An unextended entity is not an entity without an extension: in
fact, it has a very precise metrical extension. This leaves case (b), i.e., that of pointy
complexes. Here is McDaniel:

[T]he argument is as follows: (1) co-located point-sized objects are possible;
(2) if co-located point-sized objects are possible complex point-sized objects
are also possible (McDaniel [33]: 239).

McDaniel is explicit in grounding the metaphysical possibility of unextended
complexes� in the metaphysical possibility of co-location. This already rules out
unextended complex� regions for Functionality entails Non-Colocation for regions.
Pickup [39] discusses co-location as well, but he also adds a new interesting spin:

[H]ow does the pointy complex occupy the point it is at? (...) The point is
occupied by each of the proper parts of the entity: these parts are all exactly
located at the point. On this alternative the parts are co-located. Or, secondly,
the point could be spanned: the whole pointy complex could be located at the
point without any of the parts of the entity having locations at all (...) On this
alternative, the parts have no location (Pickup [39]: 260).

In the passage above Pickup notes yet another possibility for a pointy complex to
occupy a spatial point: by having parts that have no exact location. It is interesting
to note that, on this second alternative, Non-Colocation is not violated. Rather, both
Exactness and Expansivity are.54 Now, at this point one might suspect that a theory of
location that features Exactness begs the question against this possibility. Exactness
may be problematic, so that we might indeed prefer a theory of location that does not
have it among its axioms/theorems. But, even in the absence of Exactness, Pickup’s
second alternative still violates Expansivity, for crucially the pointy complex has an
exact location, as Pickup explicitly acknowledges.

It is difficult to evaluate the arguments in favor of the possibility of unextended
complexes� vis-a-vis the possible violations of different principles of location. I will
just note that whereas Non-Colocation and Exactness are subject to possible serious
counter-examples, to my knowledge almost nobody in the literature is ready to give
up Expansivity.55 I don’t want to get into these details here, for they would lead
us astray.

54Assuming that proper parts are in space, that is, at least weakly located at a region. This could of course
be denied. Markosian [31] endorses a principle according to which every material object has an exact
location. The case at hand would violate such a principle too. Note that, if x has an exact location, it also
has a weak location. This assumes that the parts of the pointy complex are themselves material objects.
55Saucedo [41] might be the only relevant exception. In the absence of Exactness one might formulate a
weaker version of Expansivity, WEAK EXPANSIVITY as follows: x � y∧y@◦r → ∃r2(x@◦r2∧r2 � r1).
Note that the scenario described by Pickup [39] does not violate Weak Expansivity. I owe this suggestion
to an anonymous referee for this journal.
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This discussion is however useful in dispensing with yet another argument in favor
of the possibility of unextended complexes� in Pickup [39]:

[H]ow could it be that something located at a single point of space has proper
parts? But I contend that it is no stranger than the extended simple case: (...)
until a reason is given why pointy complexes are worse off than extended
simples, we should treat their possibility equally (Pickup [39]: 259).

I find this wanting. Extended simples56 and unextended complexes� violate very
different principles of location. Extended simples violate Arbitrary Partition; unex-
tended complexes� violate either Non-Colocation, or Exactness, or Expansivity. One
might have very different attitudes towards these principles. And different attitudes
towards these principles will warrant different attitudes towards the metaphysical
possibility of the relevant entities that constitute a counterexample to them.

As I pointed out in Section 5, unextended complexesμ need not be unextended
complexes�. What about their metaphysical possibility? The simplest argument I can
think of is the following: if the orthodox construction of space in Section 2.1 is on
the right track, they are actual, therefore they are metaphysically possible.

Consider any countable union of regions with Lebesgue measure 0. Call it r: r is an
example of an unextended complexμ, given Countable Additivity. And the existence
of r is guaranteed by the existence of Lebesgue measure 0 regions, and the fusion
axioms in Section 2.2.

What about unextended complexesμ that are material objects? An argument in
favor of their metaphysical possibility runs as follows: (i) material objects that are
exactly located at regions of Lebesgue measure 0 are metaphysically possible; (ii)
mereological fusions of such objects are metaphysically possible; therefore unex-
tended complexesμ that are material objects are metaphysically possible. Claim (ii)
follows from the fusion axioms in Section 2.2, and the claim that existents are meta-
physically possible.57 So, the crux of the argument lies in premise (i). Now, one may
think that material objects that are exactly located at (some) regions of Lebesgue
measure 0 are physically impossible. Here is Simons:

[H]owever such point particles are physically impossible, because they would
have to have infinite density, being a finite mass in a zero-volume (...) Therefore
there can be no point-particles (Simons [44]: 373, italics added).

This would not yet tell against their metaphysical possibility. I am not sure what
novel argument I can give in favor of that. One such argument has been provided
by Hudson [23] in his defense of the liberal view of receptacles, which we already
encountered.58 He writes:

56That is, both extended simples� and extended simplesμ.
57Even in the absence of these axioms, I suspect that one should grant such a possibility. As far as I can
see, only those who believe in the metaphysical necessity of mereological nihilism are in a position to
object to (ii).
58For an argument against the metaphysical possibility of point-sized objects, see Giberman [16]. Thanks
to an anonymous referee here.
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Since I believe that any region is a receptacle, I am willing to acknowledge
the possibility of open, closed, and partially-open material objects of all sizes,
shapes, and surfaces—including 3-dimensional solids, 2-dimensional plane-
walls and sphere-shells, 1-dimensional ribbons and poles, and 0-dimensional
grains and fusions-of-countably-many-grains (Hudson [23]: 432–433, ital-
ics added).

Here, I shall be content with just pointing out that the arguments in the literature
already assume that e.g., point-sized particles are indeed metaphysically possible.
They then go on to claim that co-located point particles are possible. Insofar as
the argument in favor of the possibility of unextended complexesμ that are material
objects is not hostage of the (controversial) possibility of co-location, it is a much
stronger argument. This is yet another instance of the philosophical significance of
the divergence between the mereological and metrical notion of extension.

Now, unextended complexes� present a challenge to mereological harmony: they
are complex entities with a simple exact location. Unextended complexesμ on the
other hand do not. They are complex entities, and their exact location is complex
as well. There might be a worry that this renders unextended complexesμ meta-
physically less interesting than their mereological counterparts. If the metaphysical
interest of unextended complexes were exhausted by their alleged challenge to mere-
ological harmony that would perhaps be the case. But, once again, I don’t think
that it is. Unextended complexesμ present a formidable challenge to our naı̈ve con-
ception of extension. Consider the set S of rational numbers between 0 and 1, i.e.
S = {x ∈ Q|0 ≤ x ≤ 1}. This set is dense (in R). And yet it has measure 0. Let me
try to convince you that this is in fact challenging. Imagine you could take a walk—
this is just a metaphor—on the rational line—from 0 to 1. S is dense: you will always
step on a rational number, you will never have to jump. You can just leisurely stroll
along the rationals from 0 to 1. When you get to 1, you look back, and you wonder
how long is the path you took, the answer is 0! In fact, you can walk the entire infinite
rational line, and you still would have walked a path of length 0, for μ(Q) = 0. How
is this challenge to our naı̈ve notion of extension not interesting? Note that, in this
respect, it is unextended complexes� that are less interesting. For it is arguably nei-
ther interesting nor surprising that an object that is exactly located at a spatial point
is unextended.

There is one final point I’d like to discuss—albeit briefly—concerning the dif-
ference between unextended complexes� and unextended complexesμ. Recently
some philosophers have explored—if not endorsed—reductive accounts of mereol-
ogy, roughly along the following lines: x � y ≡df L(x) ⊆ L(y). They include
Markosian [31], McDaniel [34] and Calosi [9]. As McDaniel explicitly acknowledges
such accounts are incompatible with the existence of unextended complexes�. How-
ever they are not incompatible with unextended complexesμ, for the obvious reason
that unextended complexesμ are not a threat to mereological harmony. By distin-
guishing the mereological and metrical notion of extension, those who endorse such
reductionist accounts can accept a substantive notion of unextended complexes.
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7 On “Being Less Extended Than”

In the broadest sense, the paper offers a plea to introduce a notion of metrical exten-
sion along with the mereological one. This notion can be used to do some real
work—as in the case of extended simples and unextended complexes, and in the
cases discussed in Section 4.3. It also sheds new light on the limits of the mereologi-
cal notion. Recall Section 3.3. There I claimed that, even if we were to introduce the
notion of “being less extended than” (<E), it was even problematic to claim that if x

is a proper part of y, then x it less extended than y:

x � y → x <E y (42)

To see this, suppose we define <E simply as <∗
E in Eq. 29:

x <E y ≡df μ(L(x)) < μ(L(y)) ≡df x <∗
E y (43)

Given definition (43), it is easy to find counter-examples to Eq. 42. The counterex-
ample is in fact, always the same. Take two distinct points p1 and p2. Clearly we
have that p1 � p1 ∪ p2,59 and yet μ(p1) = 0 = μ(p1 ∪ p2), contra (42).

This is already enough to see that some recent claims in the literature are problem-
atic. For example, Baron [6] contains an argument—the Argument from Size—against
the thesis that all non-fundamental physical objects, regions included, are composed
of fundamental physical objects. The argument crucially relies on the following:

[S]maller Than: For any x and y, x is smaller than y iff there is a region r at
which x is exactly located that is a proper subregion of the region r∗ at which
y is exactly located (Baron [6]: 391).

One immediate problem is that the left-to-right direction of “Smaller Than” entails
that this speck of dust fluttering over my desk is not smaller than the Cliffs of Dover,
for they are mereologically disjoint. Now, perhaps “Smaller than” is more charita-
bly interpreted as a conditional claim, the condition being that x is part of y. If
so, it shows that we cannot really use it to provide a definition of the “being less
extended than” relation. Be that as it may, the argument above spells also trouble for
the right-to-left direction. Depending on the definition of “being less extended than”,
it provides a counterexample to such direction. Suppose that x is exactly located at p1
and y, the fusion of x and z, is exactly located at p1 ∪ p2. Then, x is exactly located
at a proper subregion of the exact location of y but they have the same extension.

This discussion is also significant for another argument we already encountered.
Recall place-cases in Kleinschmidt’s [26]. A crucial element in one such case, the
Almond in the Void, is that the almond (a) is “smaller” than the extended simple
region (r) it is contained in. Kleinschmidt does not provide any detail on how to
characterize the notion of “smaller than”, and relies instead on a somewhat intuitive
understanding. I want to suggest something based on the arguments in the paper.
First, endorse something like the following principle of Duplicate Extension: For any
x and y, is x is a a duplicate of y, then x has the same extension as y. Next, one

59This is equivalent to p1 ⊂ p1 ∪ p2.
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considers a duplicate of the almond, call it a∗, located in a space described by the
orthodox construction in Section 2. The same for a duplicate of r , r∗—modulo details
about their mereological structures. Then, one uses Eq. 42 to claim that the a∗ <∗

E r∗
insofar as μ(L(a∗)) < μ(L(r∗)). Finally, one uses Duplicate Extension to claim that
it follows that a <∗

E r , which is exactly what we were after.
What seems clear at this juncture is that we do have two notions of “being less

extended/smaller than”, <E and <∗
E . Once again, there seems to be (at least) two

options. One option is to discard the mereological notion of extension altogether, and
then stick to definition (39) for the relation of “being less extended than”. The other
is to retain the mereological notion alongside the metrical one, and consequently two
notions of “being less extended than”, <E , and <∗

E .
As I already pointed out a few times, I favor the latter option.60 In this case we

use Eq. 29 to define only <∗
E . Then we could e.g., claim that Eq. 42 is an axiom that

regiments one notion of “being less extended than” (<E) but not the other (<∗
E). It

then becomes a substantive question what is the interaction between these notions.
To conclude, I want to discuss such interaction. First I want to argue that

x <E y → x <∗
E y (44)

does not hold. Let me first introduce another property of the Lebesgue measure,
namely Monotonicity. For any two sets S1 and S2, such that S1 ⊂ S2 we have:

μ(S1) ≤ μ(S2) (45)

with equality holding iff S1 and S2 differ for a set of 0 measure. Given all this, it
is clear that we can have counterexamples to Eq. 44. Let xy stand for the relative
mereological complement of x with respect to y, that is, the mereological fusion of
the parts of x that do not overlap y. Now consider x and y such that (i) x � y and
(ii) μ(xy) = 0 both hold. Given Eq. 42 and (i), it follows that x <E y. Yet, given
Monotonicity μ(x) = μ(y), so that x <∗

E y does not hold, contra (44).
Does the converse of Eq. 44, i.e.,

x <∗
E y → x <E y (46)

hold? Interestingly enough, this cannot be answered in full generality. All we know
about <E is that it obeys (42). This is enough to conclude that, in the case in which

60As a matter of fact, I am open to the possibility that we should introduce even further notions of exten-
sion. One possible such notion is based on metric spaces. In a nutshell, the thought is the following. A
metric space (S, d) consists of a non-empty set S and a function d : S × S → R

≥0 ∪ {∞} such that d

respects the following conditions: (i) d is positive, that is, for all x and y either d(x, y) > 0 or x = y; (ii)
d is symmetric, i.e. d(x, y) = d(y, x); and (iii) d respects the Triangle Inequality, that is, for all x, y, and
z, d(x, y) ≥ d(x, z) + d(z, y). Then we could define a metric-space notion of extension in the following
way: a region r is extendedmet iff there are two points p1, p2 ∈ r such that d(p1, p2) �= 0. A fully-fledged
development of this notion of extension and its relations to both the locational and the measure theoretic
notion clearly deserves an independent scrutiny. Baron and LeBihan [7] is not completely explicit, but it
makes use of metric-spaces. Relatedly, Goodsell et al. [20] use a somewhat similar notion of extension
to define an explicitly extrinsic notion of extended simple region. Note that my proposed definition is
intrinsic instead. A comparison between these notions of metric-spaces notions of extension will have to
wait for another occasion. Note that neither Baron and LeBihan [7] nor Goodsell et al. [20] even mention
measure theory.
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x � y, Eq. 46 holds. For it follows from Monotonicity and x <∗
E y that x is a proper

part of y—not just a part—whose complement has positive measure. This is enough
to entail x <E y, by Eq. 42. But it is not enough to derive Eq. 46 in its full generality.
One needs to provide more details on x <E y, and show that they are enough to
prove Eq. 46. Alternatively, one can assume it as an axiom—a quite plausible one.
All this should be taken into account in the development of a truly general theory of
extension.
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