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Abstract
This paper calls for a re-appraisal of McGee’s analysis of the semantics, logic and
probabilities of indicative conditionals presented in his 1989 paper Conditional prob-
abilities and compounds of conditionals. The probabilistic measures introduced by
McGee are given a new axiomatisation—built on the principle that the antecedent of
a conditional is probabilistically independent of the conditional—and a more trans-
parent method of constructing such measures is provided. McGee’s Dutch book
argument is restructured to more clearly reveal that it introduces a novel contribution
to the epistemology of semantic indeterminacy, and shows that its more controversial
implications are unavoidable if we want to maintain the Ramsey Test along with the
standard laws of probability. Importantly, it is shown that the counterexamples that
have been levelled at McGee’s analysis—generating a rather wide consensus that it
yields ‘unintuitive’ or ‘wrong’ probabilities for compounds —fail to strike at their
intended target; for to honour the intuitions of the counterexamples one must either
give up the Ramsey Test or the standard laws of probability. It will be argued that we
need to give up neither if we take the counterexamples as further evidence that the
indicative conditional sometimes allows for a non-epistemic ‘causal’ interpretation
alongside its usual epistemic interpretation.

Keywords Probability of conditionals · Compounds of conditionals ·
Sequence semantics

1 Introduction

In 1989 McGee published Conditional probabilities and compounds of condi-
tionals—a seminal paper on the semantics, logic and probabilities of indicative
conditional sentences and sentences containing compounds of such conditionals.
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It showed that—somewhat surprisingly—a number of pervasive logical, epistemic
and semantic intuitions concerning indicative conditionals can be combined into a
coherent formal analysis. However, while the paper is widely cited, the analytical
framework introduced in the paper has not been developed and studied in the way
one would expect given the richness of the framework and its close conformity to
principles that—while controversial—seem relatively well grounded in empirical
fact.

This paper presents a series of results intended to bring to further light the
depth of McGee’s analytical framework, both formally and philosophically. An
alternative, more transparent, axiomatisation of the probability measures introduced
by McGee (henceforth: McGee-measures) is provided, yielding insight into its
probabilistic constraints. A more direct and transparent way of constructing such
measures from factual probabilities is provided, removing any suspicion that the
selection function semantics draws on some notion of similarity between worlds.
The Dutch book arguments provided by McGee—that contain an uneasy mix of
syntactic and semantic principles—are shown to be grounded in purely seman-
tic considerations, and it is shown that their more philosophically controversial
implications are unavoidable given the laws of probability (additivity) and the
Ramsey Test.

It is shown, finally, that a whole cluster of counterexamples that have been lev-
elled specifically at McGee’s framework, resulting in a rather wide consensus that its
implications are ‘unintuitive’—indeed wrong—miss their target. For to honour the
intuitions one must either give up the laws of probability (additivity) or the Ramsey
Test, and so the intuitions behind the counterexamples cannot be honoured without
giving up either of these. Moreover, it is argued that at least some of the intuitions are
perhaps best explained as involving a non-epistemic causal reading of the indicative
conditional, a reading that sometimes coexists with the default epistemic reading (a
phenomenon studied by, for instance, [11–13]).

The results call for a reassessment of McGee’s analysis, in its favour. Some of
these results also have direct implications for a family of related analyses that take
the probabilistic semantics of Stalnaker and Jeffrey [33] as their starting point (and
which, logically, differ from McGee’s analysis only in their treatment of conditionals
with conditional consequents). Indeed, the results suggest that beyond these there is
very little room for alternative analyses that aspire to maintain both the Ramsey Test
and the standard laws of probability.

2 McGee’s Framework

2.1 A Formal Semantics for Conditionals

The factual language LF (the set of factual sentences) contains atomic sentences
p, q, r , and is closed under the boolean connectives: if A and B belong to LF , then
so do ¬A, A∨B, A∧B, A ⊃ B, and A ≡ B. Capital Roman letters at the beginning
of the alphabet (A, B, C, D, E) will exclusively be used to denote factual sentences.
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The base language LB contains the factual language, is closed under the boolean
connectives and, moreover, is closed under the clause: if A, B belong to LF , then so
does A → B. A sentence of the form A → B is called a base conditional.

The full language LM contains the factual language, is closed under the boolean
connectives and, moreover, is closed under the clause: if A belongs to LF and ϕ

belongs toLM , then so doesA → ϕ. Greek letters ϕ, ψ, χ , etc. will be used to denote
arbitrary sentences of LM . Note that conditionals even in the full language are only
allowed to have factual antecedents.

The semantic core of McGee’s framework is a standard selection-function seman-
tics in the style of Stalnaker, where the selection functions can be thought of as
selecting among the epistemically possible worlds. Let W be a set of worlds. Subsets
of W (“worldly propositions”) will be denoted by X, Y , Z, and so on. A selection
function f is a partial function that for some worldly propositions X returns a world
w = f (X). Selection functions are supposed to satisfy

1. f (W) is defined.
2. If f (X) is defined and f (X) ∈ Y , then f (Y ) is defined.
3. f (X) ∈ X (Centering).
4. If f (X) ∈ Y , then f (X ∩ Y ) = f (X).

From the above it follows that each selection function is associated with some
non-empty subset of D of W such that D ∩ X is non-empty iff f (X) is defined. This
set is denoted by D(f ). The world f (W) will be said to be the preferred world of f

and will be denoted by wf . Define the restriction of f to X, in symbols, f/X as the
function:

f/X(Y ) = f (X ∩ Y ).

Sets of selection functions will be denoted by P, Q, R, etc., and will be used to
represent propositions. The factual content of a proposition P will be denoted by
F(P ) = {wf : f ∈ P }. Where X is a set of worlds P(X) will be the propo-
sition {f : fw ∈ X} (P(X) is the weakest proposition P such that F(P ) = X,
it has ‘purely factual’ content). The set of all selection functions (the trivially true
proposition) will be denoted by F .

It should be noted that McGee does not explicitly refer to ‘propositions’ in this
respect. Often, propositions are represented as sets of worlds. However, if we take
propositions to denote the contents of sentences (as used in a particular context), and
to be the objects of propositional attitudes (so that the probability of a sentence in
a context becomes the probability that the proposition that the sentence expresses is
true), then, when conditionals are involved, we need to represent propositions using
a richer structure, in this case as sets of selection functions. (It is widely realised that
due to the impossibility results, a conditional satisfying the Ramsey Test cannot be
treated as expressing an ordinary factual proposition, more on this below).

A model for the language is a pair M = (W, V ) where W is a set of worlds and V

is a function that assigns to each atomic sentence some subset of W . We will define
a function �ϕ�

f
M that has the sentences of LM as its domain and returns one of the

values 0 or 1. Before giving a recursive definition it is useful to specify two auxiliary
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notions. The proposition expressed by a sentence is given by (reference to the model
will typically be omitted):

[ϕ] = {f : �ϕ�f = 1}.
(For richer languages we would need to relativize the proposition expressed by a
sentence to a context, and indeed at least one feature of contexts—what is taken as
given in a context—becomes relevant in subsequent discussions, see Section 3.) The
factual content of this proposition will be denoted by F(ϕ).

�p�f = 1 iff wf ∈ V (p)

�¬ϕ�f = 1 iff �ϕ�f = 0.

�ϕ ∨ ψ�f = 1 iff �ϕ�f = 1 or �ψ�f = 1, and so on for the other boolean

connectives.

�A → ψ�f = 1 iff �ψ�f/F(A) = 1 or D(f ) ∩ F(A) = ∅.
Note how, in the clause for the conditional, the antecedent of the conditional is used
to restrict the domain of the selection function f . McGee’s semantics is thus an early
instance of a restrictor semantics for the conditional: the role of the antecedent is to
restrict the domain of possibilities relative to which the consequent is evaluated.1

Definition 1 The logic ICL is the consequence relation:

ϕ1, . . . , ϕn |=ICL ψ iff for every model M: [ϕ1]M ∩ · · · ∩ [ϕn]M ⊆ [ψ]M .

If ϕ follows from no premises it is said to be ICL-valid (or simply valid).
McGee provided the first complete axiomatisation of a conditional with a restrictor

semantics. ICL is the smallest Tarskian consequence relation2 that satisfies:

MP⊃ ϕ, ϕ ⊃ ψ |=ICL ψ .
CL |=ICL τ , for any classical tautology τ .
CN If A |=ICL ψ , then |=ICL A → ψ .
CK If ψ1, . . . , ψn |=ICL χ , then A → ψ1, . . . , A → ψn |=ICL A → χ .
LLE If |=ICL A ≡ B, then |=ICL (A → ϕ) ≡ (B → ϕ).
CEM |=ICL (A → ϕ) ∨ (A → ¬ϕ).
Import-Export |=ICL (A → (B → ϕ)) ≡ ((A ∧ B) → ϕ).
rMP A, A → B |=ICL B.
rCS A, B |=ICL A → B.

Note the restrictions to factual sentences in rMP and rCS. The perhaps most distinc-
tive logical property of ICL is Import-Export. As noted by [7] a conditional satisfying
both Import-Export and unrestricted modus ponens collapses into the material condi-
tional. Consequently ICL only satisfies a restricted form of modus ponens (restricted

1Restrictor semantics for conditionals was first introduced by Angelika Kratzer (18, see collection in 19).
More recent accounts are found in [16, 34] and [38], while [3] explicitly employs McGee’s framework.
2A Tarskian consequence relation satisfies (i) ϕ |= ϕ, (ii) � |= ψ implies �, ϕ |= ψ , and (iii) � |= ϕ and
�, ϕ |= ψ together imply � |= ψ .
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to factual consequents). While ‘unorthodox’, it is supported by both widely shared
intuitions and experimental evidence.3

2.2 McGee-measures

Definition 2 Given a logicL on a languageL, anL-measure is a real-valued function
Pr(·) with domain L such that:

1. 0 ≤ Pr(ϕ) ≤ 1.
2. Pr(ϕ) = 1, if ϕ is L-valid.
3. Pr(ϕ ∨ ψ) = Pr(ϕ) + Pr(ψ), if ¬(ϕ ∧ ψ) is L-valid. (Additivity)

The logic of primary concern is ICL. An ICL-measure on the factual language LF

will be called factual, a measure on the base language LB will be called a base mea-
sure, while an ICL-measure on the full language LM will be called full. A measure
that doesn’t satisfy additivity is (probabilistically) non-additive. An ICL-measure will
be said to be regular if it satisfies:

If Pr(A) = 0, then Pr(A → ψ) = 1.

Definition 3 A McGee-measure is a full ICL-measure satisfying Generalised Inde-
pendence (McGee simply calls it Independence):

(GI)
Pr(C ∧ (A1 → B1)∧ · · · ∧ (An → Bn)) =

Pr(C) × Pr((A1 → B1) ∧ · · · ∧ (An → Bn)),

where each C, Ai and Bi is factual, Pr(Ai) > 0, and C is truth-functionally
incompatible with each Ai .

A core target property for an analysis of the epistemic interpretation of the
indicative conditional is the Ramsey Test. It relates probabilities of conditionals to
conditional probabilities, stating that Pr(A → ϕ) = the probability of ϕ given A.
Writing PrA(ϕ) for the probability of ϕ given A, the Ramsey Test thus states that
Pr(A → ϕ) = PrA(ϕ). The standard ratio analysis in turn provides an interpretation
of conditional probabilities, stating that, when Pr(A) > 0, PrA(ϕ) (the probability of
ϕ given A) = Pr(A ∧ ϕ)/Pr(A) (the ratio rule). Combining the Ramsey Test with
the ratio rule we get: Pr(A → ϕ) = PrA(ϕ) = Pr(A ∧ ϕ)/Pr(A).4 McGee-measures,
however, satisfy only a restricted version of the probabilistic Ramsey Test on its ratio
analysis:

Observation 1 Any McGee-measure will satisfy (for factual A and B):

rRT Pr(A → B) = Pr(A ∧ B)/Pr(A), if Pr(A) > 0.

3See [36] for experimental evidence for Import-Export and McGee’s(25, p.462) counterexample to modus
ponens.
4The combination of the unrestricted Ramsey Test and the unrestricted ratio rule is sometimes called
Stalnaker’s thesis. In the restricted forms (where consequents of conditionals are assumed to be factual) it
is sometimes called Adams’ thesis.
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Proof By GI Pr(¬A ∧ (A → B)) = Pr(¬A) × Pr(A → B) when Pr(A) > 0.
By standard principles of probability we then have Pr(A ∧ (A → B)) = Pr(A) ×
Pr(A → B). As, by rMP and rCS, A ∧ (A → B) is logically equivalent to A ∧ B,
Pr(A ∧ B) = Pr(A) × Pr(A → B). So Pr(A → B) = Pr(A ∧ B)/Pr(A).

So, given the background logic, GI implies rRT. The converse direction does not
hold:

Observation 2 A regular ICL-measure satisfying rRT need not satisfy GI.

(Longer proofs of Observations and Theorems are found in the Appendix.) So
given ICL as the background logic, rRT is strictly weaker than GI.

The restriction to factual consequents in rRT is essential. We know from Lewis’
triviality results [21, 22] that when the underlying logic satisfies Import-Export, and
conditional probabilities satisfy the ratio rule, no non-trivial measure can satisfy the
unrestricted Ramsey Test. McGee-measures, however, provably do not collapse into
triviality, as witnessed by McGee’s central result:

Theorem 1 [26] For any factual ICL-measure Pr′ there exists exactly one regular
McGee-measure Pr such that Pr(A) = Pr′(A) for all factual sentences A.

The existence part of the claim ensures non-triviality. The uniqueness part demon-
strates just how strong McGee’s principle GI is. It means that the probability of any
sentence containing conditionals, no matter how complex, is completely determined
by the probabilities of the factual sentences (indeed of the probabilities of the boolean
combinations of the factual sentences occurring in the sentence).

If we consider only the base language (the language where conditionals only have
factual consequents) McGee-measures will coincide with the measures studied by
[33] on the corresponding language (see also [12] for a fuller treatment).

Notably, while the empirical support for rRT is wide and well documented (e.g.
[4, 6, 30, 31, 37]), the empirical support for the unrestricted Ramsey Test—assuming
the unrestricted ratio rule for conditional probabilities—is very weak. Indeed, it is
easy to generate counterexamples.

Say that a card is to be drawn from a deck of cards. The conditional “If it is
not diamonds (¬d), then if it it’s red (r) it’s hearts (h)” should presumably have
probability 1. But Pr(¬d) = 3/4 and Pr(r → h) = 1/2 so
Pr(¬d ∧ (r → h)) ≤ 1/2 and so, combining the unrestricted Ramsey Test with the
unrestricted ratio rule:

Pr(¬d → (r → h)) = Pr(¬d ∧ (r → h))

Pr(¬d)
≤ 1/2

3/4
(= 2/3).

This does not seem right, and it presents a challenge to the contention that the Ramsey
Test is the defining feature of the epistemic interpretation of the indicative condi-
tional. However, McGee proposed that the problem resides not in the Ramsey Test,
but in the ratio analysis of conditional probabilities when conditionals are involved.
Indeed, if we—like McGee—set PrA(ϕ) = Pr(A → ϕ), the resulting analysis of the
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conditional probability PrA will satisfy the restricted ratio rule (witness rRT), but not
the unrestricted ratio rule, and it will by definition satisfy the unrestricted Ramsey
Test. Importantly, on this analysis, the class of McGee-measures is closed under con-
ditionalisation (if Pr is a McGee-measure then so is PrA, when Pr(A) > 0), as is the
class of regular McGee-measures (if Pr is a regular McGee-measure then so is PrA,
when Pr(A) > 0).

3 Re-axiomatisingMcGee-measures

GI is stronger than rRT making the very strength of GI a bit worrisome. How plausi-
ble is it? GI is a property governing the probability of a conjunction of conditionals.
But it is notoriously difficult to form intuitions about the probability of a conjunction
of conditionals. So why should the principle be trusted?

Consider the following principle, here called Independence of Antecedents (IA):

IA Pr(A ∧ (A → ϕ)) = Pr(A) × Pr(A → ϕ).

Note that ϕ here is not restricted to factual sentences.
IA states that the antecedent of a conditional is probabilistically independent of

the conditional. This reflects a property of evidential relationships that has been
regarded as fundamental, sometimes referred to as Rigidity [1, 10]: the extent to
which P is evidence for Q is independent of the probability of P . IA is thus
the exact property we would expect of a conditional that seeks to track evidential
relationships.

Theorem 2 A regular ICL-measure will satisfy IA if and only if it satisfies GI.

So we can replace GI by IA and get an alternative axiomatisation of regular
McGee-measures. With ICL as the background logic, the class of regular McGee-
measures is characterised by the principle that the antecedent of a conditional is
probabilistically independent of the conditional.

If we rearrange IA we get:

Pr(A → ϕ) = Pr(A ∧ (A → ϕ))

Pr(A)
, if Pr(A) > 0.

Notably, IA in this format has more than a passing resemblance to the Ramsey Test
(in its ratio rule format). Indeed, when we restrict the conditional involved to fac-
tual consequents (call the resulting principle rIA) then it becomes equivalent to the
restricted Ramsey Test:

Observation 3 An ICL-measure satisfies rIA if and only if it satisfies rRT.

Proof By rMP and rCS, A ∧ (A → B) is logically equivalent to A ∧ B. So
Pr(A ∧ (A → B)) = Pr(A ∧ B). The equivalence of rIA and rRT follows

immediately.
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So McGee’s analysis of conditional probabilities that sets PrA(ϕ) = Pr(A → ϕ)

can, when Pr(A) > 0, equivalently be given as:

PrA(ϕ) = Pr(A ∧ (A → ϕ))

Pr(A)
.

This is not quite the ratio rule, and assumes a language that contains the conditional.
But using McGee’s semantics it can be motivated as a ‘semantically sophisticated’
version of the ratio rule. In two steps. First, as conditionals semantically operate
by restricting the domain of possibilities, we can plausibly hold that the proposi-
tion expressed by a conditional sentence can vary with what is assumed (given) in
a context; for what is assumed to hold restrict the contextually relevant set of pos-
sibilities to which conditionals are semantically sensitive (we find the idea that the
context comes with a constrained set of possibilities in [19], see also [32]; the present
idea that an assumption can serve to constrain the set of possibilities and so change
the content of a conditional is similar to Mandelkern’s [23] idea of a local con-
text).5 Second—plausibly—a semantically sophisticated ratio rule analysis of PrA(ϕ)

should be based on the probability of the proposition expressed by ϕ in the context
where it is given that A.

Now combine these two ideas. Let [ϕ]X denote the proposition expressed by ϕ in
the context where the set of possible worlds have been restricted to X (this should
be non-empty), and set (where, recall, P(X) is the proposition with purely factual
content X)

[ϕ]X = (P(X) ∩ {f ∈ F : f/X ∈ [ϕ]}) ∪ (−P(X) ∩ [ϕ]).
So:

[ϕ]F(A) = [(A ∧ (A → ϕ)) ∨ (¬A ∧ ϕ)].
We have [ϕ] = [ϕ]W . For any factual sentence A we have [A]X = [A] (the propo-
sition expressed by a factual sentence does not vary with what is given). Moreover,
[A ∧ ϕ]F(A) = [A ∧ (A → ϕ)] (one of the terms of IA). So, assuming a probabil-
ity measure pr on propositions (rather than sentences) where Pr(ϕ) = pr([ϕ]), the
analysis we seek becomes:

PrA(ϕ) = pr([A] ∩ [ϕ]F(A))

pr([A])
(

= Pr(A ∧ (A → ϕ))

Pr(A)

)
.

This is more a proof-of-concept than a full-fledged analysis. A proper analysis would
have to motivate the definition of [ϕ]X. It does suggest, however, that we can retain
a version of the ratio rule on the level of propositional content, even though we can’t
retain it on the level of syntax. The problem with the ordinary unrestricted ratio rule is
diagnosed as a failure to take into consideration the fact that conditionals are semanti-
cally sensitive to what is assumed. Importantly, on the revised analysis of conditional

5Indeed, the idea that conditionals are semantically context sensitive is itself far from new. For instance,
[35] showed that it can be used to block Lewis-style triviality proofs. But van Fraassen’s development
of the idea has also been criticised (e.g. [9, 21]) as it makes conditionals semantically hyper-sensitive:
any two speakers with different degrees of belief will mean different things by the same conditional. The
present suggestion is less radical: conditionals are only semantically sensitive to what is taken as given in
the context, and not on the credences of individual speakers ([17] calls this moderate context sensitivity).
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probabilities, IA—the characteristic axiom of regular McGee-measures—turns out to
be equivalent to the target principle that conditionals satisfy the unrestricted Ramsey
Test:

RT Pr(A → ϕ) = PrA(ϕ).

4 ConstructingMcGee-measures

Any factual measure can be extended to a McGee-measure. McGee proved as much.
The proof—which is far from trivial—involves a rather complex way of constructing
McGee-measures from factual measures. The construction serves its purpose in the
proof, but is less than transparent and so provides only a limited understanding of
how the probabilities of complex conditional sentences come to be determined by
probabilities of factual sentences.

Consider a finite model M = (W, V ). A probability mass on worlds is a function
m from W to [0, 1] such that

∑
w∈W m(w) = 1. Where X is a set of worlds let

m(X) = ∑
w∈X m(w). A probability mass m on worlds lets us in a standard way

define a probability function Prm on factual sentences:

Prm(ϕ) = m(F(ϕ)).

A probability mass m on selection functions is a function m from F to [0, 1] such
that

∑
f ∈F m(f ) = 1. As before let m(P ) = ∑

f ∈P m(f ). Define the following
function on sentences of the full language:

Prm(ϕ) = m([ϕ]).
When thus defined, Prm will be an ICL-measure, but it won’t necessarily be aMcGee-
measure.

The task is to show how from a probability mass m on worlds one can construct
a probability mass m̂ on selection functions such that Prm̂ is the unique McGee-
measure extending the factual measure Prm. To this end we can explore the fact that
any selection function f with finite domain can be equivalently represented as an
ordered sequence s = 〈w1, . . . , wn〉 where w1, . . . , wn are non-identical worlds that
jointly make up the domain of f , and where, for any set of worlds X, f (X) selects
the element of X that occurs first in the sequence s. Let s[i] denote the i-th element
of s.

One can think of a selection function as a strategy for selecting the actual world
given different sets of alternatives, keeping in mind that one doesn’t know which
world is the actual world. Different strategies can be more or less likely to be
successful—i.e. more or less likely to select the actual world from a given set of alter-
natives. Say that one can choose from all worlds and that the strategy says to choose
w1. Here the probability of choosing the actual world is the probability of w1 itself.
Now say that we instead remove w1 from the set of alternatives and that the strategy
says to pick the world w2 from W − {w1}. The probability of having made the right
choice, assuming that the actual world is in W − {w1}, is the probability of w2 given
W − {w1}. And so on. An ordered sequence represents a selection strategy by giving
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the order in which worlds would be chosen when alternatives are gradually removed.
It turns out that we get McGee-measures by taking the probability of a sequence (a
choice strategy) to be the product of the probabilities of the individual choices.6

Consider a probability mass m on worlds. Let D(m) be the set of worlds w such
that m(w) > 0. The probability mass on selection functions (now represented as
sequences) generated by m, in symbols m̂, is defined as follows. For any sequence s

with domain of cardinality n, when D(s) = D(m) set:

m̂(s) =
∏

1≤i≤n

m(s[i])∑
i≤j≤n m(s[j ]) .

When D(s) �= D(m) set m̂(s) = 0.7

6The use of sequences echoes van Fraassen’s (35) Stalnaker-Bernoulli models, that are also employed by
[33] (and in subsequent developments of their framework). See also [12]. In their sequences a possible
world may occur countably many times in the sequence (in the present construct it can appear only once),
thus even in a model with finitely many possible worlds, there are infinitely many sequences. As Kauf-
mann puts it “each such sequence corresponds to the outcome of an infinite series of random choices of
worlds. . . with replacement, where the expectation of each trial is independent of the previous outcomes”
(p.6). So they employ a different space of sequences, and a very different motivation for their use. More-
over, the semantic clause for conditionals is different. However, for base conditionals the possibility of
multiple successive choices is irrelevant (there is only one choice), so, as already mentioned, for lan-
guages containing only base conditionals this analysis generates exactly the set of McGee-measures on
such languages (so they too satisfy GI).
7 An anonymous referee has brought to my attention that [15] (p.65) in lecture notes, and more elaborated
in [14] (forthcoming) and [8] (unpublished), present a construction using sequences that is similar (but not
identical) to the present construction. They place constraints on probability measures on sets of sequences
(propositions), where sequences do not allow for repetition of worlds. The details of their frameworks
differ, but the general format is that they place the following constraints on a measure pr on propositions
(relative to some set P of sequences, where m is a probability measure on worlds, and 〈w1, . . . , wn,−〉
denotes the set of sequences s in P that have 〈w1, . . . , wn〉 as their initial segment):

pr(〈w,−〉) = m(w).

pr(〈w1, . . . , wn,−〉) = pr(〈w1, . . . , wn−1,−〉) × m(wn)/m(W − {w1, . . . , wn−1}).

The second clause in particular is similar in structure to the present construct.
Constraints do not guarantee existence. A problem is that the properties of pr depend on the choice of

P . If P is not judiciously chosen (e.g., if we let P be the set of all sequences) the constraints do not ensure
additivity (the probability of a set of sequences is the sum of the probabilities of the individual sequences),
a property one would expect if individual sequences are the carriers of probability. In the construction of
m̂ in the present paper it is postulated that all and only sequences with domain D(m) will be assigned a
positive probability; this ensures that the probabilities add to 1 and the property of Regularity. Indeed if we
let P be the set of sequences with domain D(m), we get pr = m̂ (e.g., [14] has a different constraint on P

that also delivers). So (in this case) the constraints force the same probabilities to propositions as McGee
measures. This congruence, however, is at the level of propositions, not of sentences. The three cited
accounts that employ the above constraints give three very different semantic clauses for the conditional
([8] comes closest to McGee’s semantics by taking the antecedent of a conditional to function as a domain
restrictor); so the mapping of sentences to propositions need not coincide with McGee’s. As a result it
does not follow, for instance, that they satisfy McGee’s principle GI (which is not discussed). So while
these frameworks clearly are related to McGee’s, more work needs to be done to untangle how far this
relationship goes.
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For instance, let D(m) = {w1, w2, w3, w4}, with m(w1) = .2, m(w2) =
.4, m(w3) = .15 and m(w4) = .25 and let s be the ordered sequence
s = 〈w3, w1, w4, w2〉. Then:

m̂(s) = m(w3)

m({w1, w2, w3, w4}) × m(w1)

m({w1, w2, w4}) × m(w4)

m({w2, w4}) × m(w2)

m(w2)

= .15

1
× .2

.85
× .25

.65
× .4

.4
= .014

Theorem 3 Prm̂ is the unique regular McGee-measure extending the factual mea-
sure Prm.

The result to some extent clarifies the deeply epistemic role of selection functions
inMcGee’s framework. If a worldw1 is more likely thanw2, then, one will have more
confidence in selection strategies that prioritize w1 over w2 rather than the other way
around (the order of the other worlds being equal), with most confidence afforded to
those strategies that order worlds by their probability (in descending order). The con-
fidence one has in a selection strategy is entirely based on probabilistic considerations
of factual (non-modal) matters, and so does not intrinsically encode any sensitivity
to extra-epistemic facts (like ‘physical similarity’ between worlds).

The construction also dictates how we are to conditionalise a mass m̂ on sequences
with a factual proposition X. Let m be a factual probability mass and let mX be the
mass (for m(X) > 0):

mX(w) =
{

m(w)/m(X), if w ∈ X;

0, otherwise.

mX is the factual probability mass that we get when conditionalising m on X. Let m̂X

be the mass on sequences generated from mX according to the above construction.
The relationship between m̂ (the mass on sequences generated from m) and m̂X (the
mass on sequences generated from mX) is not explicitly given, but is still fixed by the
construction. We get m̂X from m̂ by imaging m̂ on X in a special way, specifically,
by transferring the probability of each sequence s to the sequence s/X (where s/X

is the sequence we get when removing the non-X worlds from s) and summing (to
deal with the cases where s/X = s′/X even though s �= s′):

Theorem 4 For any probability mass m on worlds such that m(X) > 0, and for any
sequence s:

m̂X(s) =
∑

s′/X=s

m̂(s′).

A sequence encodes what is possible, and an assumption serves to restrict what is
possible; so on conditionalising by X we need to shift the probability of a sequence
to its conditionalised counterpart.

From Theorem 3 we know that Prm̂X
is the McGee-measure that uniquely extends

the factual measure PrmX
. The relationship between Prm̂X

and Prm̂ is not explicitly
given but is also fixed by the construction:
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Corollary 1 For any factual sentence A:

Prm̂F(A)
(ϕ) = Prm̂(A → ϕ), if Prm̂(A) > 0.

(The proof is embedded in the proof of Theorem 4). The effect of standard ratio
rule conditionalisation on the underlying factual ptobabilities will, given the present
construction of probabilities of sequences, result in unrestricted RT when taking the
whole language into account.

5 Justification by Dutch Book

McGee provided a synchronic Dutch book argument in favour of McGee-measures
(his Theorem 1), and a diachronic Dutch book (his Theorem 5) in favour of the
identity PrA(ϕ) = Pr(A → ϕ). The synchronic Dutch book establishes that any-
one whose credences violates the constraints given by McGee-measures can face a
collection of bets that individually seem fair but jointly give a guaranteed loss. The
diachronic Dutch book establishes that anyone who learns A for certain and does
not update by the given identity can likewise be subject to a collection of bets that
individually seem fair but jointly give a guaranteed loss.

Dutch book arguments involve bets, and so presuppose a practice for settling bets.
The standard practice is that a bet on a proposition P is won if P turns out true,
and lost if P turns out false. A conditional bet on P is also won or lost depending
on whether P is true or false, with the proviso that the bet is called off (premium
refund) if the condition for the bet is not satisfied. The standard practice for settling
bets is thus squarely grounded in the semantic properties of the propositions that are
the objects of the bet.

McGee’s Dutch book arguments deviate from the standard practice. He stipulates
a number of non-semantic rules for settling bets on conditionals and shows that if
these rules for settling bets are followed, one can be subjected to a Dutch book if
one’s subjective degrees of belief do not correspond to McGee-measures. The obvi-
ous complaint with such an approach is that if one can set the rules for settling bets
without regard to the truth or falsity of the proposition that the bet concerns, one can
devise a Dutch book for just about any rationality constraint. So: why did McGee
feel the need to write a whole new rulebook for settling bets on conditionals, why
should we think that these rules reveal something interesting about probabilities of
conditionals, and can they be grounded in purely semantic considerations?

Fair settlement conditions for a bet on P are ultimately codifications of how and
to what extent various possible states of affairs count in epistemic favour or disfavour
of P ; they provide, in this respect, proxies for an epistemic account of what is to
count as grounds—and the extent to which they are to count as grounds—for or
against holding that P is true. The point of this section is not to establish a Dutch
book argument that is more persuasive than McGee’s. The point is rather to ‘fill in
the blanks’. McGee provides no explicit link between his settlement conditions for
bets on conditional propositions (codifying epistemic constraints) and the semantics
that he provides for them; but this can be done. It turns our that certain contentious
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consequences of McGee’s settlement conditions for bets—and so of the epistemic
principles that they encode—become very difficult to avoid.

The focus here will be on two critical rules for settling bets that McGee offered
without any obvious semantic justification (the labels are not McGee’s):8

Bet-additivity When ϕ and ψ express ICL-incompatible propositions, the payoff
from a fair standard bet on ϕ ∨ ψ should always be the sum of the payoffs from
fair standard bets on ϕ and ψ .

Conjunction Cancellation A bet on (A1 → B1) ∧ · · · ∧ (An → Bn) is called off
(premium refund), if all A1, . . . , An are false.

The first rule— bet-additivity—imposes a structural property on settlement condi-
tions. Ultimately, the rule guarantees that a measure representing coherent degrees of
belief satisfies probabilistic additivity. This is plausible enough, but it is noteworthy
precisely because it hard-wires additivity into the very practice of settling bets with-
out any direct reference to the semantic content of the proposition one bets on (by
contrast, establishing that additivity is a rationality constraint is one of the core tar-
gets of traditional Dutch book arguments, and derive from the semantic properties of
the propositions one bets on).

The second rule invokes settlement for bets on a particular class of propositions:
conjunctions of base conditionals. It too is noteworthy, not because it is inherently
implausible, but because it makes no direct reference to the semantic status (true or
false?) of the conjunction, instead stating the settlement condition for the conjunction
on the basis of truth-values of sentences that partially compose the conjunction.

So why do we require special rules for settling bets on conditional propositions?
Let us go back to McGee’s semantic framework. The basic element is that of a selec-
tion function. But the structural properties of a selection function do not seem to
mirror any particular feature of the world. As McGee puts it:

Purely semantic considerations are, at best, only able to tell us which world
is the actual world. . . we have neither the need nor the ability to pick out a
particular selection function as the actual one. . . and we count a sentence as gen-
uinely true if it is made true by all the selection functions that are not excluded.
(p.518-19)

We are left with a supervaluational account of truth and falsity and so with semantic
indeterminacy:

P is determinately true at w iff for all f such that wf = w, f ∈ P .
P is determinately false at w iff for all f such that wf = w, f �∈ P .
P has an indeterminate truth value at w iff it is neither determinately true nor
determinately false at w.

So, for logically independent factual sentences A and B:

8McGee actually uses a weaker form of bet-additivity that only presupposes classical logic for the boolean
connectives. The remaining settlement principles are: bets on sentences that are boolean equivalent should
give equal pay-off, and a bet on A ∧ (A → B) should pay the same as a bet on A ∧ B. In McGee’s setting
the language in the Dutch book is restricted to compounds containing base conditionals only.
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A → B is determinately true at w iff A ∧ B is true at w,
A → B is determinately false at w iff A ∧ ¬B is true at w, and
A → B has an indeterminate truth value at w if A is false at w.

This places McGee’s analysis alongside a long tradition of taking conditionals to
require a three-valued semantics (e.g. see [28] for an historical overview), but in this
case we get there by a supervaluational route, and the three ‘truth values’ are modal
notions.9 One advantage of the supervaluational approach (of several) is that a logical
truth like A → A is indeed determinately true at every world, while on a standard
three-valued semantics it will lack truth value when A is false.

Semantic indeterminacy explains the need for non-standard settlement conditions.
For the standard settlement conditions for bets do not cover the possibility that a
proposition may lack a determinate truth value. If, as McGee suggests, a conditional
proposition can lack a determinate truth value, we need to fill this gap.

Let us fix some terminology. A bet is characterised by its cost, and its possible
pay-offs. Here a bet is represented as a pair (c, p) where c is the cost of the bet,
and p is a real-valued function from worlds to pay-offs. The net worth of a bet will
thus be p(w) − c, if the actual world is w. A standard bet pays in the interval $0 −
$1 where logical truths pay $1 and logical falsities $0 (standard bets are logically
normalized). It is assumed that the agent’s credence in ϕ can be represented by some
real valued measure Pr, and that a standard bet on ϕ is fair for the agent if the agent is
indifferent between buying and selling the bet at the price $Pr(ϕ). Betting preferences
are coherent if (1) there exists a fair standard bet for every sentence, and (2) the
cost of a fair standard bet is also the agent’s factual expectation value for the bet;
so if A1, . . . , An are factual sentences that form a logical partition, and if for all
w, w′ ∈ F(Ai), p(w) = p(w′) (allowing us to speak of p(A), the pay-off in case
A is true), then c = ∑

Pr(Ai)p(A). A measure that can give rise to coherent betting
preferences will likewise be said to be coherent.

The minimal requirements on a standard bet (c, p) on ϕ is that p(w) = $1 if ϕ is
determinately true in w, and that p(w) = $0 if ϕ is determinately false in w. This
much is standard.

So, what to do with a bet on ϕ in the event that it turns out to have an indeterminate
truth value? The following condition (the Strong Cancellation condition), modelled
on the idea of a conditional bet, suggests itself:

SC A bet on ϕ is called off, (the premium Pr(ϕ) is repaid), if ϕ has an indeterminate
truth value.

This gives us rRT (in the sense that any coherent measure that gives rise to betting
preferences satisfying SC will satisfy rRT), which is encouraging. However McGee
observes that the strong cancellation condition will not work when the goal is to

9 The claim that the truth value of a proposition is indeterminate need not be understood as the claim that
it has no truth value. For on at least one interpretation of a supervaluational semantic framework like the
present—an interpretation that McGee [27] has promoted in another context—it is still perfectly legitimate
to say that the proposition has a truth value (it is either true or false), it is just that the facts fail to determine
whether it is true or whether it is false.
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measure credences in compound conditional sentences. For a sentence like (A →
B) ∧ (¬A → B) cannot be determinately true (if B is not a logical truth), but it can
be determinately false, so a bet on the conjunction cannot be won but can be lost,
and so the only rational price to pay for the bet would be $0. Yet it is not hard to find
examples where a rational agent could assign such a sentence a non-zero probability.

If we are to take seriously the contention that conditionals allow for indeterminate
truth values we must allow that agents take the space of possibilities where a propo-
sition has indeterminate truth value to have a more finely grained epistemic structure
than the strong cancellation condition can capture. Moreover, this more finely grained
epistemic structure should be grounded in a more finely grained semantic structure.

McGee points us in this direction; for, intuitively, there seems to be additional
semantic structure that could and perhaps should have epistemic significance. To
illustrate the idea, consider the pair:

(1) (A → B) ∧ (¬A → C).
(2) (¬A → B) ∧ (¬A → C).

Assuming that all sentences involved are factual and logically independent, both con-
junctions will lack a determinate truth value in the event that A ∧ B is true; for then
their second conjunct ¬A → C will lack a determinate truth value. But there is a dif-
ference between (1) and (2). For in (1) the first conjunct is determinately true when
A ∧ B is true, while in (2) both conjuncts have indeterminate truth value. We might
say, somewhat suggestively (these are not McGee’s labels), that when A ∧ B is true,
(1) is ‘partially true’ while (2) is ‘strongly indeterminate’.

This appears to be borne out by intuition. Consider an example from [24]
concerning the toss of a die:

If it’s above three it will be a six, and if it’s below three it will be a one.

On the present semantics the conjunction is determinately false if the die shows a two,
four or seven. It cannot be determinately true, however, if the die shows a one or a six
it will be ‘partially’ true (as one conjunct is true and the other has indeterminate truth
value), while if it shows a three it will be strongly indeterminate (both conjuncts have
indeterminate truth value). This matches the results reported by McDermott where it
seems that people, when given the choice between ‘true’, ‘false’ or ‘neither’, tend to
view the conjunction as true if the die shows a one or a six, but to lack truth value if
it shows a three.

The idea is that we should limit the strong cancellation condition to apply only
to the strongly indeterminate case; for only in such cases is there nothing that points
either to the truth or the falsity of a proposition. Indeed, this is in effect what McGee’s
conjunction cancellation condition tells us: when all antecedents of a conjunction of
base conditionals are false (and no conditional is a logical truth or falsity), the con-
junction itself is strongly indeterminate and a bet on the conjunction should thereby
be cancelled. (We will return to what should happen if it is ‘partially’ true.)

But the distinction between ‘partially true’ and ‘strongly indeterminate’ has been
made by a mixture of semantic and syntactic criteria. To see the problem, say that a
conjunction is ‘half-true’ when one conjunct is true and the other false, while a con-
junction is ‘fully false’ if both conjuncts are false. Now say that A and B are both
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false. Then A ∧ B is ‘fully false’. Meanwhile A ∧ (¬A ∨ B) would be ‘half-true’ in
virtue of the truth of ¬A∨B. Yet the two conjunctions are logically equivalent. Thus
‘half true’ and ‘fully false’ are not properties of the proposition expressed by a con-
junction, they draw on both semantic and syntactic properties. Why would we think
that the distinction between conjunctions that are ‘partially true’ and ‘strongly inde-
terminate’ would fare any better? And if we cannot make the distinction on semantic
grounds, where does that leave McGee’s Conjunction Cancellation condition?

The semantic framework does not contain ‘atomic’ propositions in any language
independent sense. Moreover, factual propositions—represented as sets of worlds—
do not come in some ‘hierarchy of complexity’ that allow us to distinguish, say,
‘disjunctive’ from ‘conjunctive’ propositions. Conditional propositions turn out to be
different. They exhibit an internal structure that allow them to be placed in a hierarchy
of complexity.

For any sets of worlds X and Y define the conditional operator > as follows:

X > Y = {f : f (X) ∈ Y or f (X) is undefined}.
If P is a proposition such that there exist sets of worlds X and Y where P = X > Y ,
then P is a (positive) simple proposition, and its complement −P is a (negative)
simple proposition. A simple compound proposition is an intersection of simple
propositions. Finally, a complex compound proposition is a union of simple com-
pound propositions. Every proposition is a complex compound, but there are complex
compounds that are not simple compounds, there are simple compounds that are not
simple propositions and there are simple propositions that are not factual, giving us
a hierarchy of propositional complexity. It is this additional structure that allows us
to identify what ‘part’ of the content of a proposition that becomes indeterminate at
a given world.

A propositional decomposition is a setK of sets K of simple (positive or negative)
propositions P . The propositional content of a decomposition K, C(K), is given by:

C(K) =
⋃

K∈K

⋂
K .

A propositional decomposition is a representation of a proposition reminiscient of
the ‘disjunctive normal form’ (though note that a propositional decomposition is not
a proposition, it is a set of sets of propositions).

For any proposition P there is a decomposition K such that P = C(K).10

However, a proposition always has more than one decomposition; so we cannot
automatically take the properties of a particular decomposition to reflect on the
proposition it decomposes. But certain properties of a decomposition are decompo-
sition invariant: all decompositions of a proposition possess them, and so reveal an

10For any selection function f we have {f } = ⋂
Df ∩ ⋂

Uf , where

Df = {X > {w} : f (X) is defined and f (X) = w}.
Uf = {X > ∅ : f (X) is undefined}.

So, any selection function is given by the intersection of a set of positive simple propositions. Hence, any
set of selection functions can be represented as a set of sets of simple propositions.
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underlying structural property of the proposition. In this way they become a stepping
stone in extracting the notion of the ‘strongly indeterminate’ content of a proposition
with indeterminate truth value.

When K is a set of simple propositions define:

SICw(K) =

⎧⎪⎨
⎪⎩
F, if

⋂
K is determinately true at w.

∅, if
⋂

K is determinately false at w.⋂{P ∈ K : P lacks determinate truth value at w}, otherwise.

For a decomposition K define:

SICw(K) =
⋃

K∈K
SICw(K).

SICw(K) is a proposition. It is supposed to capture the (s)trongly (i)ndeterminate
(c)ontent of C(K) in w if it in w has indeterminate truth value.

At first blush, the analysis seems to fit the bill. For instance, whenA∧B is true, the
strongly indeterminate content of (A → B) ∧ (¬A → C) is expressed by ¬A → C.
This is captured by the above definition; for the content of (A → B) ∧ (¬A → C)

can be decomposed by K = {{[A → B], [¬A → C]}}, and SICw(K) = [¬A → C]
for any w in which A ∧ B is true.

But our function SICw can only serve its intended purpose if it is decomposition
invariant. Moreover, to check the reasonableness of the analysis we need to minimally
ensure that the strongly indeterminate part of a proposition that lacks determinate
truth value also lacks determinate truth value. Indeed, we get them both:

Theorem 5

1. If C(K) = C(K′), then SICw(K) = SICw(K′).
2. If C(K) has indeterminate truth value at w, then so does SICw(K).

So, we can without qualms define, for any proposition P :

SICw(P ) = SICw(K), for some decomposition K of P .

Now we can define our target properties:

Definition 4

1. P is strongly indeterminate at w iff P has indeterminate truth value at w and
P = SICw(P ).

2. P is partially true at w iff P has indeterminate truth value at w and P ⊂
SICw(P ).

3. P is partially false atw iff P has indeterminate truth value atw and SICw(P ) ⊂
P .

So, for instance (A → B) ∧ (¬A → C) will be partially true when A ∧ B is
true as it entails its strongly indeterminate content ¬A → C. Meanwhile, (A →
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¬B) ∨ (¬A → C) will be partially false when A ∧ B is true as it is entailed by its
strongly indeterminate content ¬A → C.

Note, however, that the trichotomy is not exhaustive, there are complex compound
propositions that have an indeterminate truth value at w but are neither strongly inde-
terminate, partially true, nor partially false. For instance ¬B → C expresses the
strongly indeterminate content of ¬A∨ ((¬B → C)∧D) in the case that A∧B ∧D

is true. But ¬A ∨ ((¬B → C) ∧ D) neither entails nor is entailed by ¬B → C.
Propositions that are neither partially true, partially false nor strongly indeterminate
will be said to be semantically neutral.

Having established the semantic credentials of the notion of a strongly indetermi-
nate proposition we can state the weak cancellation condition:

WC A bet on ϕ is called off (premium refund) if ϕ is strongly indeterminate.

In combination with the other requirements the weak cancellation condition turns out
to be equivalent to McGee’s conjunction cancellation condition.

So let us turn to the remaining cases: the pay-off for a bet on ϕ if it turns out to have
indeterminate truth value without being strongly indeterminate. It is not easy to see
how this case should be handled. All we know is that we cannot simply cancel such
bets; for then we in effect have the strong cancellation condition. However, McGee
shows that there is a sense in which we don’t need to explicitly state the settlement
conditions for this case. This is where his assumption of bet-additivity comes in:
combined with the other conditions, it will fill in the blanks. And bet-additivity has its
own appeal: its epistemic counterpart is the assumption that rational credences should
be probabilistically additive. On this basis McGee secures a Dutch book argument
for the claim that rational credences should be representable as McGee-measures. We
get a corresponding result with the present settlement conditions.

Theorem 6 The following claims are equivalent:

1. Pr is a McGee-measure.
2. Pr is coherent and the class of fair standard bets for Pr satisfies the minimal

requirements, the weak cancellation condition and bet-additivity.

For instance, as McGee shows, the settlement conditions jointly imply that a fair
standard bet on (A → B) ∧ (C → D) should pay:

1. $1 if A ∧ B ∧ C ∧ D.
2. $0 if (A ∧ ¬B) ∨ (C ∧ ¬D).
3. $Pr(A → B ∧ C → D) (the bet is cancelled, premium repaid), if ¬A ∧ ¬C.
4. $Pr(C → D), if ¬C ∧ A ∧ B.
5. $Pr(A → B), if ¬A ∧ C ∧ D.

We recognize the minimal requirements in (1) and (2) and the weak cancellation con-
dition in (3). It is (4) and (5) that are special; for they do not give the same pay-off as
as a clear win, a clear loss, or a cancelled bet: they are partial compensations. These
‘partial’ payoffs are derived from the other conditions together with bet-additivity.
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The fact that the settlement conditions give rise to such partial compensations is
arguably the most contentious implication of McGee’s settlement conditions.

To get a feeling for what is going on, take the case when ¬C ∧ A ∧ B is true.
In this case A → B is determinately true and C → D is strongly indeterminate; so
their conjunction is partially true. The pay-off for a bet on (A → B)∧ (C → D) will
then be $Pr(C → D), where C → D is its strongly indeterminate content. Except
in the extreme case where the conditionals have probability 0 or 1, this pay-off will
be higher than a premium refund, but less than $1: the pay-off will be proportionate
to the probability of its strongly indeterminate content. A standard fair bet on a par-
tially true proposition is thus partially won, and the pay-off is the probability of its
strongly indeterminate content. (Correspondingly, a standard fair bet on a partially
false proposition will be partially lost, the pay-off in non-extreme cases will be less
than a premium refund but greater than $0, and the pay-off is still the probability of
its strongly indeterminate part.)

We can generalise this. Consider the partial compensation condition:

PC The pay-off for a fair standard bet on ϕ at w is the probability of its strongly
indeterminate content at w.

(Given the definition of SICw it is straightforward to show that for any sentence ϕ

there are factual sentences A
ϕ
1 , . . . , A

ϕ
n that form a logical partition, and sentences

ψ
ϕ
1 , . . . , ψ

ϕ
n , such that SICw([ϕ]) = [ψϕ

i ] if w ∈ F(A
ϕ
i ). So, the partial com-

pensation condition states that a fair standard bet on ϕ will pay $Pr(ψ
ϕ
i ) if A

ϕ
i is

true.)
The partial compensation condition provides a single settlement condition for all

bets. The conditions under which a bet is settled are stated purely in terms of the
semantic properties of the sentence one bets on, and are stated without any side rules
like bet-additivity or conjunction cancellation. Note, however, that the pay-off for a
bet under a given condition is not fixed by factual or semantic properties alone, but
by the credences of the agent.

Theorem 7 The following claims are equivalent for any measure Pr:

1. Pr is a McGee-measure.
2. Pr is coherent and the class of fair standard bets for Pr satisfies the partial

compensation condition.

When we take away the betting context the partial compensation condition is
ultimately an epistemic thesis about the evidential weight provided by the differ-
ent possible ways in which a proposition can have an indeterminate truth value. The
weight can be either positive or negative, but will not categorically establish the truth
or falsity of the proposition. Now, in at least some domains where we (or some)
are ready to speak of indeterminacy—e.g. in making claims about the outcome of
a quantum experiment or about the position of a sub-atomic particle—we are still
ready to differentiate those indeterminate propositions that have a high probability
of being true from those that do not (all indeterminate propositions are not epistem-
ically on par). The partial compensation condition makes sense if the indeterminacy
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of conditional propositions follow suite and also allows for such differentiation: the
possibility that a conditional proposition has indeterminate truth value can rationally
count as evidence for or against the proposition.

The point is not that the partial compensation condition provides a more com-
pelling Dutch book argument than the conditions given by McGee. To the contrary,
once we make explicit the role of partial compensations, one would expect more
(not less) worries about the plausibility of the argument. But we have unveiled the
semantic underpinning for McGee’s settlement conditions and the interplay between
semantic and epistemic properties that they require.

Indeed, it turns out that the underlying problem of how to epistemically deal with
what has here been diagnosed as semantic indeterminacy provides a significant hur-
dle for any account: the space of factual possibilities is not sufficiently fine-grained
to yield, for each conditional proposition, a determinate true/false verdict, whether
one is comfortable of talking about semantically indeterminate propositions or not.
For say that one is sceptical of partial compensations in bets (as I expect many
would be). This means that one must give up on one of McGee’s settlement condi-
tions: the minimal requirements, bet-additivity or the weak cancellation condition.
The obvious strategy would be to reject the weak cancellation condition (rejecting
the minimal requirements or bet-additivity would require us to drop the standard laws
of probability). However, as it turns out, this will not solve our problems with partial
compensation; for we still face a significant hurdle.

Settlement conditions can be said to be finitely partition invariant for some sen-
tence ϕ if there is some finite partition E1, . . . , En of worlds, such that for any agent,
if (c, p) is a fair standard bet on ϕ for that agent, then p(w) = p(w′) whenever
w, w′ ∈ Ei (for 1 ≤ i ≤ n). Finite partition invariance for ϕ implies that there is
an agent-independent fixed finite (though it can be arbitrarily large) set of factual
possibilities that can be relevant when settling a bet on ϕ (the pay-off at each possi-
bility can still be agent-dependent). A bet on a factual sentence trivially satisfies this
(the partition consists of the set of worlds in which it is true and the set of worlds
in which it is false); moreover, assuming the partial compensation condition, we get
finite partition invariance for all sentences.

Observation 4 If the settlement conditions satisfy the minimal requirements, satisfy
bet-additivity, yield rRT, do not constrain probabilities on factual sentences (more
than requiring them to be coherent), and are such that any fair bet must give a pay-
off of either $0, $1 or premium refund (no further ‘partial compensations’ allowed),
then no sentence of the form ¬A ∧ (A → B) where A → B is logically contingent
can have finitely partition invariant settlement conditions.

So even if we simply drop the weak cancellation condition there will be no
straight-forward way of avoiding partial compensations. We can toy with the idea of
rejecting finite partition invariance for a whole class of sentences (minimally: all sen-
tences of the form ¬A ∧ (A → B)), but it is hard to see how such an account would
be developed, or what could count in its favour. Absent an implausibly fine-grained
structure of factual considerations, one cannot account for rational probabilistic
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attitudes towards complex conditional propositions by taking every factual possibil-
ity to be either irrelevant (premium refund) or as conclusive evidence for the truth
or the falsity of the proposition. This is indirect evidence for the contention that
conditionals do not express purely factual propositions. Importantly it would appear
that—contrary to what one might expect—it is the combination of rRT and additivity
that pushes us towards a commitment to partial compensations.

The most contentious implication of McGee’s settlement conditions for bets—that
pay-offs should allow for partial compensation—-comes from principles that many
would otherwise accept. If one accepts them one also owes an explanation for the
basis of the partial compensations.

Someone sceptical of McGee-measures but not of rRT or additivity, and who can
stomach partial compensations, still has room for manoeuvre. For from Observa-
tion 2 we know that rRT and probabilistic additivity do not jointly imply GI; so there
should be settlement conditions that allow for different pay-offs than those dictated
by McGee’s analysis. These can be had only by dropping or weakening the weak can-
cellation condition. For instance, one can replace it with the very weak cancellation
condition:

VWC A bet on ϕ is cancelled, if ϕ expresses a simple proposition that is strongly
indeterminate.

This will still give us rRT without giving GI.
But merely weakening a condition is not sufficient. Given only the very weak can-

cellation condition, bet-additivity will not allow us to derive settlement conditions for
bets on other indeterminate propositions. One must thus find some other settlement
conditions for these, and, as shown, they must allow for partial compensations that
presumably should be motivated in some way.

But why—if we can stomach the idea of partial compensations—would we think
that we need to weaken the weak cancellation condition?

6 Counterexamples!?

6.1 The Counterexamples

McGee’s analysis has repeatedly been held to ascribe unintuitive—indeed wrong—
probabilities to complex sentences, which arguably has seriously affected the recep-
tion of the analysis. A number of counterexamples have been put forward to show
this. The counterexamples have been aimed at GI and so strike equally at Stalnaker
and Jeffrey’s analysis.

Edgington [5] comes with the perhaps first documented counterexample; tersely
delivered as follows:

Take an ordinary fair coin. “If it’s first tossed at t0, it will land heads, and if it’s
first tossed at t1, it will land heads” should get 1/2, not 1/4. (p. 202, notation
changed)
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With the intuition that a coin can only be tossed for the first time once, and as the
coin is fair this first toss—whenever it occurs—will have probability 1/2 of landing
heads. But a McGee-measure will assign the conjunction probability 1/4 (which will
decrease further if we add more conjuncts, like “If it’s first tossed at t2, it will land
heads”).

Lance [20] develops a counterexample in more detail. He colourfully sketches a
scenario where a werewolf tossed a coin whether or not to stalk the neighbourhood
where Jones lived. If the werewolf stalked the neighbourhood, everyone that was
outside died. There is an even chance that Jones went out (an event that is probabilis-
tically independent of whether the werewolf stalked the neighbourhood) and, given
that he went out, an even chance that he went out the front door and an even chance
that he went out the back door.

The situation can be represented as follows:
J. went out front J. went out back J. stayed in

Werewolf J. killed (.125) J. killed (.125) J. lives (.25)

¬Werewolf J. lives (.125) J. lives (.125) J. lives (.25)

With these assumptions in place Lance asks us to consider the probability of the
conjunction:

(3) If Jones went out the front door, he was killed by the werewolf and if Jones
went out the back door he was killed by the werewolf.

Given rRT the probability of each conjunct should be .5. As all the factual probabil-
ities are given, we can calculate the probability that a McGee-measure will assign
to their conjunction: .25. However, Lance argues, this is the wrong answer; the right
answer is .5.

This is due to the fact that each conditional comes down to the question of
where the werewolf went tonight. If she went to our neighbourhood she killed
anyone outside. That is, if the werewolf is in our neighbourhood, then if Jones
went out the front, it is certain that he was killed and if he went out the back, it
is certain that he was killed. Similarly, if the werewolf is somewhere else, it is
certain that Jones was not killed upon going out either door. So if the werewolf
is in our neighbourhood, both conditionals are true (or highly assertible). If not,
both are false. (p.271)

Bradley [2] has proposed a similarly structured counterexample directed at a spe-
cial case of GI that doesn’t require a conjunction of conditionals. He sketches the
following scenario:

Suppose that we have before us a coin that is known to be biased but that we do
not know whether it is biased in favour of heads or in favour of tails (it is either
a two-headed or two-tailed coin, say).

Bradley supposes, furthermore, that whether the coin is tossed is independent of
whether it is biased heads or tails. Let bh = coin is biased heads, bt = coin is biased
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tail, to = coin is tossed, H = coin lands heads. Bradley suggests that we should
have:

Pr(bh ∧ (to → H)) = Pr(bh).

This makes intuitive sense. For, Bradley argues, we should have:

Prbt (to → H) = 0,

because “given that the coin is biased toward tails, it is certain that the coin would not
have landed heads had it been tossed” (p.553). So (as the ratio rule for conditioning
is assumed) Pr(bt ∧ (to → H)) = 0, and so Pr(¬bt ∧ (to → H)) = Pr(bh ∧
(to → H)) = Pr(to → H). Due to independence, Pr(to → H) = Pr(bh). But then
Pr(bh ∧ (to → H)) = Pr(bh).

Assuming that Pr(bh) = .5 we thus have Pr(bh ∧ (to → H)) = .5. But a
McGee-measure will give us Pr(bh ∧ (to → H)) = .25 �= Pr(bh). Hence we have a
counterexample to McGee’s analysis.

McDermott [24] offers two counterexamples directed at McGee’s account. Here
is the first (p.26, numbering changed)), where he is considering the toss of a fair die:

The following example is one about which everyone’s intuitions are clear:

(4) If it’s odd it will be below three, and if it’s even it will be above three.

This is true if the result is a six, four, or one, false otherwise; so its assertability
is 0.5.

McGee-measures will, by contrast, assign (4) probability 2/9.
The second counterexample that McDermott considers (p.27) also concerns the

toss of a die:

(5) If it’s even it will be above three, and if it’s odd it will be above three.

McDermott suggests that “Most people think that (5) is equivalent to ‘It will be above
three”’, an equivalence supported by his own semantic account, but not by McGee’s.
For a McGee-measure will never have

Pr((A → B) ∧ (¬A → B)) = Pr(B)

when A and B have non-extreme (0 or 1) probabilities.

6.2 Provingmore than one cares for

All the counterexamples were explicitly aimed at GI. The authors are all quite explicit
that they are not challenging rRT. However:

Observation 5 Let L be a normal conditional logic (that is, a Tarskian logic
satisfying MP⊃, CL, CN, CK, and LLE) that in addition satisfies:

rMP A, A → B �L B.
rCS A, B �L A → B.
Sα A → (B ∧ C) �L (A ∧ B) → C.
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Let Pr be an additive L-based measure, and A, B and C be factual sentences.

1. If Pr((A → B) ∧ (C → B)) = Pr(C → B), Pr(A ∧ ¬B) > 0, and
Pr(¬A ∧ C ∧ B) > 0, then Pr does not satisfy rRT.

2. If Pr(C ∧ (A → B)) = Pr(C), Pr(A ∧ ¬B) > 0 and Pr(¬A ∧ C) > 0, then Pr
does not satisfy rRT.

3. If Pr((A → B) ∧ (¬A → B)) = Pr(B), 0 < Pr(A) < 1, and 0 < Pr(B) < 1,
then Pr does not satisfy rRT.

The premises of (1) are satisfied in Edgington’s and Lance’s counterexample, the
premises of (2) are satisfied in Bradley’s, and the premises of (3) are satisfied in
McDermott’s second example (I will return to his first example). In no case can rRT
be satisfied. So the counterexamples that were nominally levelled at GI somewhat
unexpectedly (and, I take it, unintentionally) turn out to function as counterexamples
to rRT.

The results of Observation 5 are unexpected, and what makes them unexpected,
I would suggest, is that the counterexamples allow for a rather subtly misleading
partial fulfilment of rRT. For instance, in Lance’s example any pair of the factual
propositions a werewolf is about, Jones walked out the front door, Jones walked
out the back door, and Jones was killed can be combined into conditionals like If a
werewolf is about then Jones walked out the front door that satisfy rRT while main-
taining the intuitions of the example. But when these ‘core’ factual propositions enter
into various boolean combinations (e.g. disjunctions), thereby widening the space
of factual propositions, this no longer holds. For instance, what happens to a condi-
tional like If it is either the case that a werewolf is about or Jones walked out the
front door, then Jones was killed? From the proof of the above observation one can
see that it is not possible for all such ‘peripheral’ conditionals to satisfy rRT while
maintaining Lance’s intuitions concerning the example. The same for Edgington’s,
McDermott’s and Bradley’s counterexamples. The violations of rRT are ‘hidden’ in
these peripheral propositions and, correspondingly, difficult to detect.

The conclusion can of course be resisted by rejecting one of the logical principles
that are presupposed, or the standard laws of probability. Rejecting the logical prin-
ciples, however, is not so easy; for they are rather weak, at least given a commitment
to rRT.

First, all the logical principles only concern base conditionals. Nothing is assumed
about conditionals with non-factual consequents.

Second, all logical principles invoked are ICL-valid. So the logical principles make
full room for McGee-measures, and these satisfy rRT. So the logical principles are
not inherently hostile to rRT.

Third, from Observation 2 we can see that ICL+rRT does not imply GI. As GI is
not assumed, the counterexamples will be in conflict with rRT even in the absence
of GI. So the logical principles do not beg the question with regard to significant
alternatives to McGee’s analysis.

Fourth, the logical principles invoked are jointly strictly weaker than ICL. Impor-
tantly, no use is made of the most contentious principles of ICL: Import-Export and
Conditional Excluded Middle.
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Fifth, all the logical principles have independent appeal. Normality (CK + CN +
LLE) is more or less a pre-condition for any semantically well-behaved conditional,
and the only criticism of rMP that I am aware of is that it is too weak (by only being
a restricted form of modus ponens). So, assuming that the Tarskian principles of
classical logic and the standard laws of probability theory are beyond reproach in this
context, only Sα and rCS can reasonably be held under suspicion.

Consider Sα first. It is valid in both Stalnaker’s basic system C2 as well as in
Lewis’ system VC (following the terminology of [29]). Moreover, (and perhaps
more importantly) given rRT it is ‘probabilistically valid’, in the sense that for any
probability measure satisfying rRT we will have:

Pr(A → (B ∧ C)) ≤ Pr((A ∧ B) → C).

The relationship between such probabilistic validity and logic is important. Quite
generally we expect general constraints on a probability measure to be neutral with
regard to the space of possibilities allowed by the semantics. That is, we expect that
Pr(ϕ) ≤ Pr(ψ) will hold for all probability measures satisfying the constraints only
if ϕ semantically entails ψ . For if ϕ does not semantically entail ψ , it must be pos-
sible that ϕ is true but that ψ is false, and if this possibility is sufficiently likely, the
probability of ϕ will exceed that of ψ . To insist that it is possible that ϕ is true and
that ψ is false, but—as a general probabilistic constraint—that the probability of this
possibility is sufficiently low to ensure that Pr(ϕ) ≤ Pr(ψ), would be to add a prob-
abilistic constraint that is not neutral with regard to the possibilities allowed by the
semantics. So to reject Sα is to reject rRT as a semantically neutral constraint.11

So rCS remains. It too is valid in both Stalnaker’s C2 and Lewis’ VC. Moreover,
it is probabilistically valid given rRT; for Pr(A ∧ B) ≤ Pr(A → B). So, again,
defending rRT from the counterexamples by weakening the logic will just strike back
at rRT.

11The dialectical situation is somewhat nebulous as there is, to my knowledge, no one who actively
endorses rRT who actively rejects Sα. However, the multi-dimensional framework developed by [2] (the
same paper where he offers his counterexample to McGee) at least opens for the possibility. Bradley seeks
a framework in which one can have rRT and additivity while satisfying the probabilities of the coun-
terexamples and suggests that this can be done by weakening McGee’s GI to a principle of restricted
independence of antecedents rIA: Pr(¬A ∧ (A → B)) = Pr(¬A) × Pr(A → B) (this is our principle
IA restricted to factual consequents). As Bradley notes rIA implies rRT. Bradley’s full semantic frame-
work, outlined in his concluding section, is essentially a selection function semantics like McGee’s, where
selection functions are encoded as sequences of worlds. It features Centering, but Bradley does not state
(or discuss) any further constraints, like the constraint that if f (X) ∈ Y ∩ Z, then f (X ∩ Y) ∈ Z) (cen-
tral to Stalnaker-style treatments of conditionals and which validates Sα). Without further constraints all
conditionals with non-equivalent antecedents become logically independent of each other, thus a logical
principle like Sα will not be validated. Indeed, as Bradley suggests, it is plausible that weakening GI to rIA
will allow the intuitions of the counterexamples to stand, but—and there is nothing to suggest that Bradley
was aware of this—only in the absence of Sα and similar properties. Bradley offers no discussion of the
problems associated with giving up Sα and related logical properties, including the problem that in the
absence of Sα a principle like rRT will not be neutral to the space of possibilities. So Bradley’s framework
opens for the possibility that we have rRT without Sα, but he does not in any way argue for the plausibil-
ity of this combination. (Let me emphasize that these comments are in no way intended as a criticism of
Bradley or his paper—it would be absurd to demand discussion of a result that did not exist at the time.)
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In one way or other there is a hard logical price to pay for maintaining that the
intuitions driving the counterexamples are logically consistent with rRT, given the
standard laws of probability. I shall proceed under the assumption that they are not.
We might then take the counterexamples to strike at rRT. But there remains the possi-
bility that we cannot uphold the standard laws of probability in this context. After all,
in the Dutch book argument, we either had to introduce bet-additivity (which gives
us probabilistic additivity) as an assumption or derive it from the rather contentious
partial compensation condition.

6.3 Dropping Additivity?

It is notable that the intuitions suggested by the counterexamples are all vindicated
if we treat partially true propositions as epistemically on par with determinately true
propositions. That is, if we stop treating partially true propositions as ‘only partially’
true, and instead treat them as true. Let us say that a sentence is quasi-true at w

when it is either partially or determinately true at w, and, similarly, quasi-false at w

when it is either partially or determinately false w. (Note that quasi-truth and quasi-
falsity are ‘factual’ properties of sentences: for any world w, a sentence is either
quasi-true at w, quasi-false at w or neither quasi-true nor quasi-false at w). So for
instance both A → B and (A → B) ∧ (¬A → C) will be quasi-true when A ∧ B

is true (provided that ¬A → C is not a logical contradiction), and both A → ¬B

and (A → ¬B) ∨ (¬A → C) will be quasi-false when A ∧ B is true (provided that
¬A → C is not a logical truth).

A flat measure (so-called as it flattens out the distinction between partial and
determinate truth) is then given by the identity:

Pr(ϕ) = The probability that ϕ is quasi-true.

The probability that ϕ is either quasi-true or quasi-false.

(When the probability that ϕ is either quasi-true or quasi-false is 0, Pr(ϕ) can be set
to 1.) This corresponds to the following settlement conditions for a standard bet on ϕ:

1. Pay $1 if ϕ is quasi-true.
2. Pay $0 if ϕ is quasi-false.
3. Pay $Pr(ϕ) (premium refund) if ϕ is neither quasi-true nor quasi false (i.e. if ϕ

is strongly indeterminate or semantically neutral).

This will give us rRT and vindicates the intuitions of the counterexamples. Edg-
ington’s “If the coin was first tossed at t0, it landed heads and if it was first tossed
at t1 it landed heads” will be quasi-true or quasi false if the coin was first tossed
at either t0 or t1. It cannot be determinately true, but it is partially true iff it landed
heads at that time. So, with a flat measure Pr((Ft0 → H) ∧ (Ft1 → H)) =
Pr((Ft0 ∧ H) ∨ (Ft1 ∧ H))/Pr(Ft0 ∨ Ft1) = 0.5 (given that Ft0 ∨ Ft1 is probabilis-
tically independent of H and Pr(H) = .5), just as Edgington would have it. Lance’s
“If Jones left by the front door he was killed and if he left by the back door he was
killed” is quasi-true iff Jones left by some door and was killed (probability .25), and
is (quasi-)false iff he left by some door and wasn’t killed (.25), and so will have prob-
ability .5. Bradley’s “The coin is biased heads and if it was tossed it landed heads” is
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partially true if the coin is biased heads and wasn’t tossed and determinately true if
the coin was biased heads and tossed, and so will be quasi-true iff the coin was biased
heads, and so the conjunction will have probability .5. McDermott’s example with a
fair die “If it’s odd it will be below three, and if it’s even it will be above three” will
be partially true if the die shows a one, four or six, and will be determinately false
otherwise; so it will have probability .5 just as McDermott intuit, and his suggestion
that (A → B)∧ (¬A → B) is ‘equivalent’ to B is also vindicated: given that neither
conjunct is a logical contradiction, the former is partially true iff the latter is true, and
so they will have the same probability.

Treating partial truth as epistemically on par with determinate truth has some
clear benefits. It brings together two truth-like concepts and offers an analysis
of, well, truth (if we are willing to remove the modifier ‘quasi’). Unlike McGee-
measures flat measures capture the intuitions in the counterexamples. Of course, we
know the theoretical cost for this: with flat measures we lose probabilistic additiv-
ity.12 But we also know—recall Observation 5 of the previous section—that this
is the price we must pay anyway for honouring the intuitions of the counterexam-
ples (while maintaining rRT). So the intuitions seem to go together with a loss of
additivity.

However, the apparently semantic grounds for the intuitions evoked by the
counterexamples do not seem very stable.

Consider McDermott’s suggestion that (A → B) ∧ (¬A → B) is equivalent to
(and so should have the same probability as) B. This makes some intuitive sense. But
the intuitive support fades quickly once A and B become probabilistically dependent.
For instance, say that Lucy is a good runner and that it is highly likely that she won
yesterday’s race if she entered into it. It is also highly likely that she did enter into the
race. So it is quite likely that she won yesterday’s race. Of course, if she didn’t enter
into the race she didn’t win. This much is certain. So “If she didn’t enter into the race,
she won” has probability 0 (or very close to 0). But—by Mcdermott’s reckoning—
“If Lucy entered into the race she won the race and if she didn’t enter into the race,
she won the race” has the same rather high probability as “Lucy won the race”, even
though the second conjunct has probability 0 (or close to 0). McDermott, on con-
sidering a similar example, bites the bullet, implying that we should be prepared to
accept a conjunction even though we reject one of its conjuncts, but it seems a hard
sell.

Likewise, the reasoning behind the suggestion that “If it’s odd it will be below
three, and if it’s even it will be above three” should be assigned probability .5 will
lead to strange consequences. For the first conjunct only has probability 1/3, which
is lower than the probability of the conjunction. On the same reasoning, the following
claim about a thousand-sided die would also be assigned probability .5 “If it’s odd it
will be a 1, and if it’s even it will be above 2” as it is partially true in 500 cases and
determinately false in 500 cases. But the first conjunct has probability .002. While

12The loss of additivity for flat measures is easily shown. By additivity Pr(A → B) = Pr(A ∧ (A →
B)) + Pr(¬A ∧ (A → B)) = (by flatness) Pr(A ∧ B) + Pr(¬A). This will not in general be compatible
with rRT: Pr(A → B) = Pr(A ∧ B)/Pr(A).
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one no doubt can feel the pull of McDermott’s reasoning—partial truth has a ‘truish’
feel to it—it leads to conclusions that are very hard to accept.13

Lance and Bradley, by contrast, explicitly assume an element of probabilistic inde-
pendence in their counterexamples. Lance assumes that the werewolf’s whereabouts
is probabilistically independent of whether Jones leaves the house or not. Bradley
assumes that whether the coin is tossed or not is probabilistically independent of
whether it is biased heads or tails. Neither makes it explicit why the independence
assumption is important. But it does seem to be.

For consider the following modification of Lance’s example. In one way or other
we acquire more (perhaps not entirely trustworthy) information about what took
place. In particular, say that we acquire good (though inconclusive) evidence that
Jones is still alive (he seems to have survived the night!). This doesn’t exclude that
there was a werewolf about, but it strongly suggests that even if Jones went out, he
wasn’t killed, and so if he went out there was no werewolf about. There is now a
perfectly legitimate—indeed perhaps dominant—interpretation of “If Jones went out
he was eaten” whereby it acquires a lower, even considerably lower, probability than
both “There was a werewolf about” and “If Jones had gone out, he would have been
eaten”.

In the quote given earlier Lance states “So, if the werewolf is in our neighbour-
hood, both conditionals are true (or highly assertible). If not, both are false”. But this
claim fails to establish that the conditionals have the truth-conditions that Lance’s
counterexample builds on. For if Jones is alive—and one has evidence for it—then
“If Jones went out, he was eaten” doesn’t strike one as true, even if one also knows
that there was a werewolf about; so Lance’s argument only works as long as one has
no additional evidence of whether Jones is alive or not.14

Notably, when we switch from indicative conditionals to subjunctive conditionals
Lance’s argument makes sense irrespective of considerations of probabilistic inde-
pendence, or of what we know. Even if we knew for sure that Jones is alive we would

13In his paper McDermott presents results from an informal survey on how people probabilistically assess
compounds of conditionals. The results indicate that in the cases when compounds are only partially truth
evaluable (on the current analysis), there is a strong tendency for the subjects to differ in their evaluation,
yielding different probabilistic judgments. On being instructed to treat propositions that (on the current
analysis) are actually partially true or partially false as either true, false, or neither, subjects gave differ-
ing responses. McDermott’s hypothesized that the explanation for this inter-subject inconsistency is that
the English ‘and’ and ‘or’ are ambiguous when they conjoin conditionals. A possible alternative expla-
nation for the inconsistency is that speakers have different epistemic strategies for dealing with partial
truth/falsity. One strategy is to equate partial truth with truth, another to equate it with undetermined, and
McGee presents a third strategy by treating partial truths as true-ish (or, more exactly, the case when a
proposition would be partially true evidentially speaks to its truth to some degree), giving them a more
positive weight than undetermined, but not as positive as a fully fledged determinate truth. We can thus, in
principle, explain the inconsistent responses in terms of the present semantic framework.
14One could, of course, hold that the semantic content of the conditional depends on what the speaker or
assessor knows or has evidence for, leading into the debate on contextualist and relativist semantic theories.
But it would seem that Lance’s position in the paper is neither contextualist nor relativist; according to him
it is the factual/causal (non-agent dependent) circumstances that make the conditional true. And, indeed,
one can sense a reading according to which it is true in this more objective sense: the causal sense that is
discussed below.

1000



Revisiting McGee’s Probabilistic Analysis of Conditionals

still accept “If Jones had gone out the front door he would have been eaten” (given
that we know that there was a werewolf about).

Bradley’s example follows the same pattern. Say that one learns that the person
who was to flip the biased coin was very reluctant to flip it if the coin was biased
tails. This makes one downgrade the probability of “If it was tossed it landed tails”,
but it doesn’t make one downgrade the probability that it was biased tails. Now the
intuition that “The coin was biased tails and if it was tossed it landed tails” says no
more than— or at least has the same probability as—“The coin was biased tails”
becomes seriously strained; far more so than the intuition that “The coin was biased
tails and if it had been tossed it would have landed tails” has the same probability
as “The coin was biased tails” (indeed, Bradley uses a subjunctive conditional to
underscore his point “given that the coin is biased toward tails, it is certain that the
coin would not have landed heads had it been tossed” (p.553)).

The reliance on probabilistic independence I think speaks against taking the intu-
itions as grounded in the semantics of an epistemic reading of the conditional. A
possible alternative explanation comes from Kaufmann’s [11, 12] observation that
in certain circumstances indicative conditionals evoke a natural ‘causal’ reading that
differs from its normal epistemic reading (in his terminology, indicatives have ‘local’
and ‘global’ readings).15 In our case this is borne out by the fact that in both Lance’s
and Bradley’s examples the intuitions become more stable and do not rely on proba-
bilistic independence once we use subjunctive conditionals (the latter typically have
a ‘causal’ reading). (Indeed [12], on independent grounds, analyses Lance’s exam-
ple in this way.) What kind of factors that would trigger such an alternative reading
is disputed. [13] offers an account, and notes that one of the challenges is to explain
why the phenomenon is relatively unusual. Perhaps in Lance’s and Bradley’s exam-
ples the triggering mechanism could be that probabilistic independence imposes a
very small ‘semantic cost’ for adopting a causal reading—our judgments of indica-
tive and subjunctive conditionals tend to coincide when probabilistic dependencies
stem from our knowledge of causal relations rather than our knowledge of particular
facts—and this is buttressed by an intuition that the sentences involved at least seem
‘sort of’ true in the stated conditions. Whatever the explanation would be, both Kauf-
mann and Khoo agree that even in cases where the ‘causal’ reading is dominant, an
alternative ‘evidential’ reading persists.

If there is a distinctly causal reading, this at least undermines the argument that,
due to the counterexamples, we need to abandon additivity. It would seem more
appropriate to grab the other horn of the dilemma and reject rRT. After all, there is
no reason to think that rRT would hold in general (e.g. also for more ‘peripheral’
propositions) for conditionals that are given a causal reading. If we allow that there
is also an evidential reading that in these cases is not dominant (and so somewhat
‘counter-intuitive’), rRT is not touched by the nowmerely apparent counterexamples.
Nor—one should add—would the counterexamples work against McGee’s analysis
(or against the Stalnaker-Jeffrey analysis for that matter).

15One should add that for future tensed indicatives, a causal reading is often the most dominant. The
discussion here concerns present and past tensed conditionals where the epistemic reading is usually the
more dominant.
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Edgington’s example breaks the pattern as her indicative cannot be given a causal
reading. But even while conceding the pull of her intuition in the example,16 one can
note that the four indicative conjunctions:

(Ft0 → H) ∧ (Ft1 → H) (Ft0 → T ) ∧ (Ft1 → T )

(Ft0 → H) ∧ (Ft1 → T ) (Ft0 → T ) ∧ (Ft1 → H)

are (a) probabilistically incompatible, (b) jointly exhaustive and (c) equiprobable.17

This on its own (without any particular theory of assigning probabilities to conjunc-
tions of conditionals) suggests that each should have probability .25 (in accordance
with McGee’s analysis). But if we honour the intuition in Edgington’s example
they should each have probability .5, and this strikes me as highly counter-intuitive.
Indeed, when one considers a long conjunctive string of mixed conditionals like
(Ft0 → H) ∧ (Ft1 → T ) ∧ (Ft2 → T ) ∧ (Ft3 → H) (which, by Edgington’s
account should have probability .5), implying multiple claims about the first flip
of the coin, one starts sensing a friction in the original intuition: how can such an
elaborate claim about varying possible outcomes at different points in time–that is
indefinitely extendable to claims about other points in time–have the same probabil-
ity as a claim about a single point in time? So, while Edgington’s example cannot
be explained away by giving the conditional a causal reading, what we can say in
defence of additivity (and by extension McGee’s-analysis) is that we are dealing with
a clash of intuitions, and not with a clear-cut counterexample.

7 Concluding Remarks

McGee’s semantic analysis of indicative conditionals manages to bring together sev-
eral ideas that have been recurrent in the literature. It allows that conditionals with
false antecedents can ‘lack’ a determinate truth value. It takes the antecedent of a
conditional to restrict the space of possibilities relative to which the consequent is
evaluated (a restrictor semantics), and it models this formally by a well-known tech-

16A possible origin of Edgington’s intuition is our tendency to treat (A ∨ B) → C as equivalent to
(A → C) ∧ (B → C). Indeed, semantically they are ‘quasi-equivalent’ as (A ∨ B) → C is quasi-true iff
(A → C)∧(B → C) is quasi-true (as long as neither A → C nor B → C is logically false), which means
that flat measures will assign them the same probability. By any account Pr((Ft0 ∨Ft1 ) → H) = .5; so by
the equivalence we would have Pr((Ft0 → H) ∧ (Ft1 → H)) = .5, just as Edgington suggests. But there
seem to be clear examples where the semantic ‘quasi-equivalence’ does not translate into a probabilistic
identity. For instance, one may have high confidence in “If it was either the butler or the gardener that did
it, then it was the gardener that did it”, even though one has a low confidence in “If it was the butler that
did it, then it was the gardener that did it, and if it was the gardener that did it, then it was the gardener that
did it”, as one has very low confidence in the first conjunct (this presupposes that one thinks it unlikely
that both did it).
17It is presupposed here that sentences that are equivalent by ordinary boolean logic have the same prob-
ability. In addition claim (a) presupposes that Pr(Fx → (H ∧ T )) = Pr((Fx → H) ∧ (Fx → T )) = 0
(for x = t0 or t1), and that Pr(ϕ ∧ ψ) = 0 if Pr(ϕ) = 0, which means that the conjunction of any two
of the sentences will have probability 0. Claim (b) presupposes that Pr(Fx → (T ∨ H)) = Pr((Fx →
H) ∨ (Fx → T )) = 1 and that Pr(ϕ ∧ ψ) = 1 if Pr(ϕ) = Pr(ψ) = 1, which means that the disjunction of
all four sentences will have probability 1. (c) is given by the assumption that the coin is fair.
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nical device: Stalnaker-style selection functions. The logic that McGee draws on
(which matches the semantics) also brings together logical properties that have been
recurrent in the literature (which, of course, McGee himself has been central in shap-
ing): notably, the validity of Import-Export, and the failure of unrestricted modus
ponens. The exact epistemic significance of the selection functions invoked in the
formal machinery (e.g. what do they correspond to, pre-theoretically?) is still per-
haps poorly understood, but by the construction invoked here, one can see that they
can be given a purely epistemic interpretation.

McGee’s rather opaque principle of independence (herein called GI) turns out to
be equivalent to a more familiar independence principle that features as a recurrent
theme in the literature: the antecedent of a conditional is probabilistically indepen-
dent of the conditional (herein called IA). If we allow for a semantically sophisticated
analysis of conditional probabilities, the principle IA turns out to be the unrestricted
Ramsey Test.

Assuming that credences are otherwise well behaved (satisfy additivity) the
underlying semantic analysis in combination with rRT force upon us a particularly
contentious feature of McGee’s analysis: the possibility that a proposition has inde-
terminate truth value can serve as either ‘weak’ positive or ‘weak’ negative evidence
for the proposition, and the corresponding idea that bets—when used as measure-
ments of credences—should provide partial compensations in the event that these
possibilities materialise. The problem doesn’t go away by dismissing talk of semantic
indeterminacy. For as long as we accept the Ramsey Test and additivity, our condi-
tions for settling bets will still require partial compensations, and this needs somehow
to be explained.

The counterexamples that have been levelled specifically at McGee’s probabilistic
analysis all fail to achieve their intended purpose. For we cannot accommodate them
merely by giving up the principle that they were aimed at (GI or IA). Instead—
given fairly weak logical assumptions—the only way of accommodating them is by
giving up either probabilistic additivity or the Ramsey Test, also in its restricted form.
However, one can make a good case, at least for some of the counterexamples, that
instead of accommodating the intuitions behind the counterexamples as features of an
epistemic interpretation of conditionals, we should view them as additional evidence
that indicative conditionals in certain contexts allow for a second, distinctly causal,
sometimes dominant interpretation.

It is striking that the most contentious features of McGee’s analysis stem from
combining rRT and additivity and not from the much criticized GI. And, indeed, not
all the intuitions behind the counterexamples can be explained away by appeal to
a distinctly causal (non-epistemic) interpretation of the conditionals involved: some
of the intuitions stand in an apparently irreconcilable conflict with intuitions sup-
ported by additivity. For an adherent of additivity it is perhaps a bit embarrassing
that in this context one needs to resort either to general theoretical considerations
or a contentious epistemology of indeterminacy to justify additivity. But many of its
implications (e.g. a conjunction cannot be almost certainly true when one of its con-
juncts is almost certainly false) make strong intuitive sense on independent grounds
also when conditionals are involved, and these intuitions conflict with the intuitions
driving the counterexamples. So, there is a genuine tension present which is not just
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driven by mere theoretical considerations. McGee’s semantic framework allows us
to identify semantic mechanisms that plausibly explain the conflicting intuitions (a
semantically robust but epistemically confounding notion of ‘partial’ truth and fal-
sity). McGee’s epistemological framework provides a plausible—but perhaps not
compelling—means of resolving these conflicts.

In brief, the analysis that McGee presented in his 1989 paper stands on firmer
grounds—both philosophically and in its ability to line up with both widely shared
intuitions and the empirical facts—than is often realised.

Appendix: Proof of Observations and Theorems

Proof of Observation 2: The proof uses notions from Section 4. Consider a model
where W contains four worlds, labelled 1, 2, 3, and 4. Let m be some probability
mass on W that assigns non-zero probabilities to each world, and m̂ be the McGee-
mass generated by m. Consider some ε > 0 such that m̂(s) > ε and m̂(s)+ε ≤ 1 for
all sequences s. Let m̂′ be a probability mass on sequences that is just like m̂ except
for the following four reassignments:

m̂′(〈1, 3, 2, 4〉) = m̂(〈1, 3, 2, 4〉) + ε,

m̂′(〈1, 3, 4, 2〉) = m̂(〈1, 3, 4, 2〉) − ε,

m̂′(〈3, 1, 2, 4〉) = m̂(〈3, 1, 2, 4〉) − ε,

m̂′(〈3, 1, 4, 2〉) = m̂(〈3, 1, 4, 2〉) + ε.

The net change is 0, so
∑

f ∈F m̂′(f ) = 1.
Assume a language where 1, 2, 3 and 4 serve as factual sentences true at (and

only at) the corresponding world. A sequence like 134 will be understood as the
disjunction 1 ∨ 3 ∨ 4.

The first reassignment has the effect of adding probability ε to the following base
conditionals (and any base conditional entailed by them):

1234 → 1 234 → 3 24 → 2

Combining all three in a conjunction we get a sentence that is true only at the
sequence 〈1, 3, 2, 4〉. The second reassignment has the effect of subtracting ε from
the probability of the base conditionals:

1234 → 1 234 → 3 24 → 4

So, the net effect of the two first reassignments leaves the probability of 1234 → 1
and 234 → 3 unchanged, while the probability of 24 → 2 has been raised by ε and
the probability of 24 → 4 has been lowered by ε.

The third reassignment has the effect of lowering the following by ε:

1234 → 3 124 → 1 24 → 2

The fourth reassignment has the effect of adding ε to the following:

1234 → 3 124 → 1 24 → 4
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So, the net effect of the third and fourth reassignments is that the probability of
24 → 2 has been lowered by ε while the probability of 24 → 4 has been raised
by ε. In effect: undoing the changes (as regards base conditionals) of the first two
reassignments.

So, taken together the four reassignments will not affect the probability of any
base conditional. Moreover, the new measure is regular. As Prm̂ satisfies rRT, Prm′
will satisfy rRT. But the probability of certain compounds of base conditionals have
changed. For instance, the probability of

3 ∧ 124 → 1 ∧ 24 → 2

has changed; for this conjunction is true only at the sequence 〈3, 1, 2, 4〉 to which we
have added probability ε.

Given that GI uniquely determines the probabilities of all complex sentences on
the basis of the factual probabilities, and that our original measure satisfied GI, we
can thus conclude that the new measure does not. But one can also see this directly.
For the probability of the conjunction 124 → 1 ∧ 24 → 2 is unchanged by the
reassignments (it is true at 〈1, 3, 2, 4〉 to which we have added ε and at 〈3, 1, 2, 4〉
from which we have subtracted ε). By GI

Prm̂(3 ∧ 124 → 1 ∧ 24 → 2) = Prm̂(3) × Prm̂(124 → 1 ∧ 24 → 2).

But Prm̂(124 → 1 ∧ 24 → 2) = Prm̂′(124 → 1 ∧ 24 → 2) and Prm̂(3) = Prm̂′(3).
Still Prm̂(3 ∧ 124 → 1 ∧ 24 → 2) �= Prm̂′(3 ∧ 124 → 1 ∧ 24 → 2). So:

Prm̂′(3 ∧ 124 → 1 ∧ 24 → 2) �= Prm̂′(3) × Prm̂′(124 → 1 ∧ 24 → 2).

Thus GI is violated. Our measure Prm̂′ satisfies rRT but not GI.

Proof of Theorem 2: Take any regular McGee-measure Pr. Consider the following
consequence of GI:
(A)

Pr

⎛
⎝¬A ∧

∧
1≤i≤n

((A ∧ Bi) → ai)

⎞
⎠ = Pr(¬A) × Pr

⎛
⎝ ∧

1≤i≤n

((A ∧ Bi) → ai)

⎞
⎠ .

Here each ai is an atomic sentence or a negated atomic sentence. Note that as Pr is
regular we do not need to assume that Pr(A ∧ Bi) > 0. For if Pr(A ∧ Bi) = 0, then
by regularity Pr((A ∧ Bi) → ai) = 1 and so the i-th term could without any effect
be removed from the conjunction (if Pr(A ∧ Bi) = 0 for all i then both sides of the
identity are equal to Pr(¬A)).

From (A) we can establish:

(B)

Pr

⎛
⎝¬A ∧

∧
1≤i≤n

((A ∧ Ai) → ai) ∧
∧

1≤i≤m

¬((A ∧ Ci) →⊥)

⎞
⎠ =

Pr(¬A) × Pr

⎛
⎝ ∧

1≤i≤n

((A ∧ Ai) → ai) ∧
∧

1≤i≤m

¬((A ∧ Ci) →⊥)

⎞
⎠ .
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For given regularity Pr(¬((A ∧ Ci) →⊥)) is either 0 or 1. To see this assume that:

Pr(¬((A ∧ Ci) →⊥)) > 0.

Then 1 − Pr((A ∧ Ci) →⊥) > 0 and so 1 > Pr((A ∧ Ci) →⊥), By regular-
ity it follows that Pr(A ∧ Ci) > 0 and so by rRT Pr((A ∧ Ci) →⊥) = 0. So
Pr(¬((A ∧ Ci) →⊥)) = 1.

From (B) it follows by basic probabilistic principles (i.e. if Pr(¬A ∧ ψ) =
Pr(¬A) × Pr(ψ), then Pr(A ∧ ψ) = Pr(A) × Pr(ψ)) that:

(C)

Pr

⎛
⎝A ∧

∧
1≤i≤n

((A ∧ Ai) → ai) ∧
∧

1≤i≤m

¬((A ∧ Ci) →⊥)

⎞
⎠ =

Pr(A) × Pr

⎛
⎝ ∧

1≤i≤n

((A ∧ Ai) → ai) ∧
∧

1≤i≤m

¬((A ∧ Ci) →⊥)

⎞
⎠ .

One can show (see [3]) that any sentence of the form A → ψ is logically equivalent
to a disjunctionD(A → ψ) = δ1∨· · ·∨δn where the disjuncts are mutually logically
incompatible and each δj has the form

∧
1≤i≤kj

((A ∧ B
j
i ) → a

j
i ) ∧

∧
1≤i≤mj

¬((A ∧ C
j
i ) →⊥).

Together with claim (C) this ensures that for any sentence A → ψ (where ψ need
not be factual):

Pr(A ∧ (A → ψ))

= Pr(A ∧ D(A → ψ)) = Pr((A ∧ δ1) ∨ · · · ∨ (A ∧ δn)) =
∑

1≤j≤n

Pr(A ∧ δj )

=
∑

1≤j≤n

Pr

⎛
⎝A ∧

∧
1≤i≤kj

((A ∧ B
j
i ) → a

j
i ) ∧

∧
1≤i≤mj

¬((A ∧ C
j
i ) →⊥)

⎞
⎠

= Pr(A) ×
∑

1≤j≤n

Pr

⎛
⎝ ∧

1≤i≤kj

((A ∧ B
j
i ) → a

j
i ) ∧

∧
1≤i≤mj

¬((A ∧ C
j
i ) →⊥)

⎞
⎠ (by C)

= Pr(A) ×
∑

1≤j≤n

Pr(δj ) = Pr(A) × Pr(D(A → ψ)) = Pr(A) × Pr(A → ψ).
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And this is IA.
For the other direction assume that Pr is a regular ICL-measure satisfying IA. By

IA (omitting the subscript 1 ≤ j ≤ n for
∨
, and 1 ≤ i ≤ n for

∧
):

Pr
(∨

Aj ∧
((∨

Aj

)
→

∧
(Ai → ψi)

))
=

Pr
(∨

Aj

)
× Pr

((∨
Aj

) → ∧
(Ai → ψi)

)
.

Note (letting ⇔ denote logical equivalence):(∨
Aj

)
→

∧
(Ai → ψi) ⇔

∧((∨
Aj

)
→ (Ai → ψi)

)
(Normality)

⇔
∧(((∨

Aj

)
∧ Ai

)
→ ψi

)
(Import-Export)

⇔
∧

(Ai → ψi). (LLE)

So:

Pr
(∨

Aj ∧
(∧

(Ai → ψi)
))

= Pr
(∨

Aj

)
× Pr

(∧
(Ai → ψi)

)
.

And so:

Pr
(∧

¬Ai ∧
∧

(Ai → ψi)
)

= Pr
(∧

¬Ai

)
× Pr

(∧
(Ai → ψi)

)
.

This implies GI.

Proof of Theorem 3: Let m be a probability mass on worlds. Let s be some non-
empty sequence with domain D(s) of cardinality k. Define an intermediary notion:

m∗(s) =
∏

1≤i≤k

m(s[i])∑
i≤j≤k m(s[j ]) .

Let s − w be the sequence we get when we remove the world w from s. Trivially
(when D(s) contains more than one world):

m∗(s) = m(s[1])
m(D(s))

× m∗(s − s[1]).
As before where P is a set of sequences let m∗(P ) = ∑

s∈P m∗(s), and let P − w

be the set of sequences we get when we remove w from each sequence in P (if
P = {〈w〉}, then P − w = ∅). Let P [w] be the set of sequences in P that have w as
its first element.

When P is a set of sequences, let P ◦ be the set of sequences in P that have domain
D(m). Our target construction m̂ is then related to m∗ by the identity:

m̂(P ) = m∗(P ◦).
(m∗ differs from m̂ in that it will assign a non-zero weight also to a sequence that has
a strict subset of D(m) as its domain, and as a result m∗(F) can be greater than 1).

When s = 〈w1, . . . , wk〉 is a sequence such that w �∈ D(s) then the sequence
〈w1, . . . , wi, w, wi+1, . . . wk〉, for any i such that 0 ≤ i ≤ k + 1 is a w-variant of s

(we get a w-variant by inserting w somewhere in the sequence). Let I (s, w) denote
the set of w-variants of s. We can now prove the core lemma.
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Lemma 1 If m(w) > 0 and w �∈ D(s), then m∗(I (s, w)) = m∗(s).

Proof Assume that m(w) > 0. When m∗(s) = 0 it trivially follows that
m∗(I (s, w)) = 0. So assume that m∗(s) > 0. Proof by induction over the cardi-
nality of D(s). For the base case the cardinality is 1, so D(s) = {w′} for some w′.
There are two w-variants of s: 〈w, w′〉 and 〈w′, w〉. Trivially m∗(s) = 1. Moreover
m∗({〈w, w′〉, 〈w′, w〉}) = m(w)/(m(w) + m(w′)) + m(w′)/(m(w) + m(w′)) = 1.

For the induction hypothesis assume that the claim holds for any s with domain
of cardinality k. Consider some sequence s = 〈w1, . . . , wk+1〉 that has a domain of
cardinality k + 1. Assume that w �∈ D(s). Let s′ = 〈w2, . . . , wk+1〉. D(s′) is of
cardinality k so the claim holds for s′: m∗(I (s′, w)) = m∗(s′). We can get nearly all
the elements of I (s, w) by concatenating w1 as an initial world to each element s′′
of I (s′, w), (in symbols 〈w1; s′′〉). The only element of I (s, w) that we will miss in
this way will be the sequence in which w is the initial element, that is, the sequence
〈w; s〉.

So

(A) m∗(I (s, w)) = m∗({〈w1; s′′〉 : s′′ ∈ I (s′, w)}) + m∗(〈w; s〉).
Focus first on the first term on the right-hand side of (A). We have:

m∗({〈w1; s′′〉 : s′′ ∈ I (s′, w)}) = 1

p
× m(w1) × m∗(I (s′, w)),

where p = m(D(s)) + m(w) = the probability of the domain of the sequences
involved. By the induction hypothesis:

1

p
× m(w1) × m∗(I (s′, w)) = 1

p
× m(w1) × m∗(s′).

Note that

m∗(s) = 1

p − m(w)
× m(w1) × m∗(s′)

(w is not in the domain of s, thereby the term p − m(w)). So m(w1) × m∗(s′) =
(p − m(w)) × m∗(s). So:

1

p
× m(w1) × m∗(s′) = 1

p
× (p − m(w)) × m∗(s).

The right-hand side will be our new first term for (A).
Now take the second term on the right-hand side of (A). We have:

m∗(〈w; s〉) = 1

p
m(w) × m∗(s).

So, combining the two new right-hand terms for (A):

m∗(I (s, w)) = 1

p
× (p − m(w)) × m∗(s) + 1

p
× m(w) × m∗(s)

=
(
1

p
× (p − m(w)) + 1

p
× m(w)

)
× m∗(s).

1008



Revisiting McGee’s Probabilistic Analysis of Conditionals

As 1
p

× (p − m(w)) + 1
p

× m(w) = 1
p
(p − m(w) + m(w)) = 1:

m∗(I (s, w)) = m∗(s).

A set of sequences P is closed under w-variants if for any s ∈ P such that s �=
〈w〉: I (s − w, w) ⊆ P . Intuitively, a proposition is closed under w-variants if the
placement of w in an ordering is irrelevant for the truth of the proposition.

Corollary 2 If P is closed under w-variants and every s ∈ P has a domain of at least
two elements, then m∗(P ) = m∗(P − w).

Proof Assume that P is closed under w-variants. As each sequence has a domain
of at least two elements P − w will be a set of sequences. As P is closed under w-
variants: for each s ∈ P − w, I (s, w) ⊆ P . Indeed {I (s, w) : s ∈ P − w} makes
up a partition of P . So m∗(P ) = ∑

s∈P−w m∗(I (s, w)). By Lemma 1, m∗(s) =
m∗(I (s, w)) for each s ∈ P − w. So m∗(P − w) = ∑

s∈P−w m∗(I (s, w)). So
m∗(P ) = m∗(P − w).

Corollary 3

1. m̂(F) = 1. (m̂ is a probability mass on sequences)
2. m̂([A]) = m(F(A)). (m̂ extends m)
3. m̂([¬A ∧ (A → ϕ)]) = m̂([¬A]) × m̂([A → ϕ]) (m̂ satisfies IA).

Proof (1) First prove that if X ⊆ D(m) and P is the set of all sequences with
domain X, then m∗(P ) = 1. By induction over the cardinality of X. The case
when X is a singleton {w} is trivial. So assume that the claim holds for cardi-
nality k. Show that it holds for X of cardinality k + 1. Let P be the set of all
sequences with domain X. Take any w ∈ X. Note that P − w is the set of all
sequences with domain X − {w}. By the induction hypothesis m∗(P − w) = 1.
By Corollary 2, m∗(P − w) = m∗(P ). So m∗(P ) = 1.

F is the set of all sequences and F◦ is the set of all sequences with domain
D(m). So m∗(F◦) = m̂(F) = 1.

(2) Take any w ∈ F(A). If w �∈ D(m) then [A][w]◦ is empty and m∗([A][w]◦) =
m(w) = 0 (where, recall, P [w] is the set of sequences of P that begin with
w). So assume that m(w) > 0. Note that [A][w]◦ − w is the set of all
sequences that have domain D(m) − {w}. By construction m∗([A][w]◦) =
(m(w)/m(D(m))) × m∗([A][w] − w) = m(w) × m∗([A][w]◦ − w) (recall:
m(D(m)) = 1). But by (1) of this Corollary, m∗([A][w]◦ − w) = 1. So
m∗([A][w]◦) = m(w). This holds for all w ∈ F(A) so m∗([A]◦) = m̂([A]) =
m(F(A)).

(3) Note that [A → ϕ] is closed under w-variants for each w ∈ F(¬A). Consider
P = [A → ϕ]◦. P has domain D(m) and will be closed under w-variants for
each w ∈ F(¬A) such that m(w) > 0.

First show that m∗(P [w]) = m(w) × m∗(P ) for each w ∈ F(¬A). Assume that
w ∈ F(¬A). If D(m) = {w} or if m(w) = 0 the claim follows immediately. So
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assume that D(m) �= {w} and that m(w) > 0. By construction m∗(P [w]) = m(w)×
m∗(P −w). By Corollary 2 m∗(P ) = m∗(P −w), so m∗(P [w])) = m(w)×m∗(P ).

This holds for all w ∈ F(¬A) and so m∗([¬A] ∩ P) = m(F(¬A)) × m∗(P ).
By construction m∗(P ) = m̂([A → ϕ]) and m∗([¬A] ∩ P) =

m̂([¬A ∧ (A → ϕ)]). Moreover, m(F(¬A)) = m̂([¬A]). So:
m̂([¬A ∧ (A → ϕ)]) = m̂([¬A]) × m̂([A → ϕ]).

It follows immediately that Prm̂ is a regular McGee-measure. Uniqueness follows
from McGee’s results.

Proof of Theorem 4: Assume a measure m such that m(X) > 0. Assume a lan-
guage where each set of worlds X has a corresponding atomic sentence X such that
F(X) = X. Given such a language one can for every sequence s construct a sentence
s such that [s] = s. Let PrX be the measure PrX(ϕ) = Prm̂(X → ϕ). As McGee
demonstrated PrX thus defined is a McGee-measure. By rRT we know that for any
factual A, PrX(A) = Prm̂(A ∧ X)/Prm̂(X). So the probability mass on worlds that
would generate PrX is mX. So PrX = Prm̂X

and so PrX(ϕ) = m̂X([ϕ]).
Take any sequence s. We know that, for any s′ such that D(s′) ∩ X �= ∅, s′ ∈

[X → s] iff s′/X = s. So

m̂([X → s]) =
∑

s′∈[X→s]
m̂(s′) =

∑
s′/X=s

m̂(s′).

PrX(s) = m̂X(s). Moreover, PrX(s) = m̂([X → s]), so m̂X(s) =
∑

s′/X=s

m̂(s′).

Proof of Theorem 5: (1) First a useful definition and an important property. Where
f is a selection function and w is a world define f w as follows (for any set of worlds
X):

f w(X) =

⎧⎪⎨
⎪⎩

f (X), if w �∈ X and D(f ) ∩ X �= ∅,

w, if w ∈ X,

undefined, otherwise.

f w is ‘just like’ f except that it has w as its preferred world. Note that, trivially, if
P is determinately true at w, then f w ∈ P , and if P is determinately false at w then
f w �∈ P .

Lemma 2 If P is a simple proposition that has an indeterminate truth value at w, then
f w ∈ P iff f ∈ P .

Proof Let P be a simple proposition that has an indeterminate truth value at w. Take
any f . Consider the case when P is positive, so P = X > Y for some X and Y . If
w ∈ X, then, contrary to assumption, X > Y has a determinate truth value at w (it is
determinately true at w if w ∈ Y and determinately false at w if w �∈ Y ). So w �∈ X.
Note that as D(f ) − {w} = D(f w) − {w}, D(f ) ∩ X = ∅ iff D(f w) ∩ X = ∅ (as
w �∈ X). So if D(f ) ∩ X = ∅, then f ∈ X > Y iff f w ∈ X > Y . So assume that
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D(f ) ∩ X �= ∅. As w �∈ X, by construction, f w(X) = f (X). So f w(X) ∈ Y iff
f (X) ∈ Y , and so f w ∈ X > Y iff f ∈ X > Y .

Consider the case when P is negative, so P = −(X > Y) for some X and Y . If
−(X > Y) has an indeterminate truth value at w, then so does X > Y(= −P). By
the above f w ∈ −P iff f ∈ −P , so f w ∈ P iff f ∈ P .

Now, assume that C(K) = C(K′). Assume (i) that f ∈ SICw(K) but for reductio
(ii) that f �∈ SICw(K′).

From (ii) it follows that for every K ′ ∈ K′ we have f �∈ SICw(K ′). Take any
K ′ ∈ K′.

⋂
K ′ cannot be determinately true at w, for then SICw(K ′) = F and so

would contain f contrary to assumption. So we have two alternatives. Either
⋂

K ′ is
determinately false in w, and then, trivially, f w �∈ ⋂

K ′. Or
⋂

K ′ has indeterminate
truth value at w. Then there is some simple proposition P ∈ K ′ such that P has
indeterminate truth value at w and f �∈ P . By Lemma 2, f w �∈ P . Accordingly,
f w �∈ ⋂

K ′. In either case: f w �∈ ⋂
K ′. This holds for all K ′ ∈ K′, so f w �∈ C(K′).

We know from (i) that for some K ∈ K, f ∈ SICw(K). It follows that
⋂

K is
not determinately false at w and so that no P ∈ K is determinately false in w. So
take any P ∈ K . Either P has indeterminate truth value at w, in which case f ∈ P .
By Lemma 2, f w ∈ P . Or P is determinately true at w. Then, trivially, f w ∈ P . In
either case f w ∈ P . This holds for all P ∈ K , so f w ∈ ⋂

K . But then f w ∈ C(K),
but then C(K) �= C(K′) and we have a contradiction.

(2) Suppose that C(K) has indeterminate truth value at w. So there are selection
functions f and f ′ such that (i) wf = wf ′ = w, (ii) f ∈ C(K) and (iii)
f ′ �∈ C(K).

By (ii) there is someK ∈ K such that f ∈ ⋂
K . So

⋂
K is not determinately false

atw (and
⋂

K can’t be determinately true atw for thenC(K)would be determinately
true at w). As

⋂
K has indeterminate truth value at w and f ∈ ⋂

K , f ∈ SICw(K)

and so f ∈ SICw(K). So SICw(K) is not determinately false at w.
By (iii) for all K ∈ K, f ′ �∈ ⋂

K . Suppose, for reductio, that there is some K ∈ K
such that f ′ ∈ SICw(K). It follows that

⋂
K is not determinately false at w. So⋂

K = Q ∩ SICw(K), where Q is some proposition that is determinately true at
w. But as wf ′ = w, Q contains f ′. So then f ′ ∈ ⋂

K , contrary to assumption. So
f ′ �∈ SICw(K). This holds for all K ∈ K so f ′ �∈ SICw(K) and so SICw(K) is not
determinately true at w.

Proof of Theorem 6: 2-to-1. Assume that Pr is coherent and that the class of fair bets
for Pr satisfies the minimal requirements, bet-additivity and the weak cancellation
condition. By the minimal requirements Pr(ϕ) = 1, for any ICL-validity ϕ (as any
ICL-valid sentence ϕ is always determinately true and a bet on ϕ will give pay-off
$1). Likewise, by bet-additivity Pr(ϕ ∨ ψ) = Pr(ϕ) + Pr(ψ), when ¬(ϕ ∧ ψ) is
ICL-valid.

So Pr is an ICL-measure.
Consider a sentence ϕ = A1 → B1∧· · ·∧An → Bn. Assume that no Ai → Bi is

a logical truth or a logical contradiction (logical contradictions will have probability
0; if there are one or more logical truths in a conjunction they can be removed while
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retaining the same probability). Consider a sentence C that is incompatible with each
Ai . Take any world w in which C is true. Take a fair bet b1 = ($Pr(ϕ), p1) on ϕ. We
will have p1(w) = $Pr(ϕ) due to the weak cancellation condition. Take fair bets b =
($Pr(C∧ϕ), p2) and b3 = ($Pr(¬C∧ϕ), p3) on C∧ϕ and ¬C∧ϕ respectively. Due
to bet additivity we have p1(w) = p2(w)+p3(w). That is, $Pr(ϕ) = p2(w)+p3(w).
But ¬C ∧ ϕ is determinately false at w so p3(w) = 0. So p2(w) = $Pr(ϕ). This will
hold for all w where C is true. So the expectation value of b2 is $Pr(C) × Pr(ϕ). But
the cost of b2 is $Pr(C ∧ ϕ). So Pr(C ∧ ϕ) = Pr(C) × Pr(ϕ).

So we have GI.
(1-to-2) AsMcGee has provided a proof based on closely related assumptions only

the finite case will be treated and only for regular measures. So assume, for simplicity,
a finite model, and to avoid technicalities assume that the McGee-measure is defined
on propositions, that propositions are sets of sequences, and that bets are made on
propositions. Furthermore, let D(Pr) be the set of worlds w such that Pr(P(w)) > 0.

Where P is a proposition, let pP be the pay-off function:

pP (w) = Pr(SICw(P )).

(This is the Partial Compensation condition!) Let bP = ($Pr(P ), pP ). We need to
show that this is a fair standard bet on P .

Take any s = 〈w1, . . . , wn〉. We then have the unit proposition {s}. Let (recall: >

is our conditional operator on sets of worlds)

Ps = ({w2, . . . , wn} > {w2}) ∩ · · · ∩ ({wn−1, wn} > {wn−1}) ∩ ({wn} > {wn}).
Qs =

⋂
w �∈D(s)

({w} > ∅).

Rs = −({w2} > ∅) ∩ · · · ∩ −({wn} > ∅).

{s} = P(w1) ∩ Ps ∩ Qs ∩ Rs . Note that, due to Regularity, Pr(Qs) = 0 if there
is some w ∈ D(Pr) such that w �∈ D(s). Meanwhile if there is some w ∈ D(s)

such that w �∈ D(Pr), then Pr(Rs) = 0. So if D(Pr) �= D(s), then Pr({s}) = 0.
Meanwhile, if D(s) = D(Pr), then Pr(Qs) = Pr(Rs) = 1. So if D(s) = D(Pr), then
Pr({s}) = Pr(P(w1) ∩ Ps) = (by GI) Pr(P(w1)) × Pr(Ps). (which is also the cost of
the bet b{s}).

Note that Ps ∩ Qs ∩ Rs is the strongly indeterminate content of {s} at w1 (our
SICw1({s})), while at all other worlds w, SICw({s}) = ∅. So the expected pay-off
for b{s} (when Pr({s}) > 0) is

∑
w∈W Pr(P(w)) × Pr(SICw({s}) = Pr(P(w1)) ×

Pr(Ps) = Pr({s}) which is also the cost of the bet and so b{s} is a fair standard bet.
This holds for unit propositions. We need to show that it holds for all propositions.

Lemma 3 For any propositional decompositions K and K′, if C(K) ∩ C(K′) = ∅,
then

1. SICw(K) ∩ SICw(K′) = ∅.
2. SICw(K) ∪ SICw(K′) = SICw(K ∪ K).
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Proof (1) Assume that there is a K ∈ K and a K ′ ∈ K′ and some f such that f ∈
SICw(K) ∩ SICw(K ′). It follows that no P ∈ K ∪ K ′ is determinately false
in w. But then by Lemma 2 f w ∈ ⋂

K ∩ ⋂
K ′. But then f w ∈ C(K) ∩ C(K′)

which gives us a contradiction.
(2) Follows trivially from the construction.

So, as the strongly indeterminate content is decomposition invariant, if P ∩Q = ∅,
then SICw(P ) ∩ SICw(Q) = ∅ and SICw(P ∪ Q) = SICw(P ) ∪ SICw(Q). So
SICw(P ) = ⋃

s∈P SICw({s}). When s �= s′, SICw({s}) ∩ SICw({s′}) = ∅. So by
the additivity of Pr:

Pr(SICw(P )) =
∑
s∈P

Pr(SICw({s})).

The pay-off for a bet on P in the event that w will be pP (w) = Pr(SICw(P )) =∑
s∈P Pr(SICw({s}), so the expected pay-off will be∑

w∈W

Pr(P(w))
∑
s∈P

Pr(SICw({s}) =
∑
s∈P

∑
w∈W

Pr(P(w))Pr(SICw({s})

=
∑
s∈P

Pr({s}) = Pr(P ).

So bP will be a fair standard bet for all P , and the set of fair standard bets will be
additive. Moreover, the minimal requirements will hold (for if P is determinately true
at w then SICw(P ) = F , and if P is determinately false at w then SICw(P ) = ∅).
Finally, the Weak Cancellation condition will hold trivially.

Proof of Theorem 7: The proof was—effectively—given in the proof of Theorem 6.
For it was there shown that the class of fair standard bets on ϕ for a McGee-measure
satisfies partial compensation and the latter entails the minimal requirements, bet-
additivity and the partial compensation condition.

Proof of Observation 4: Assume a measure Pr that is coherent according to the set-
tlement conditions. From bet-additivity: Pr(A → B) = Pr(A∧(A → B))+Pr(¬A∧
(A → B)). Given rRT, Pr(A → B) = Pr(A∧B)/Pr(A). Given the minimal require-
ments Pr(A ∧ A → B) = Pr(A ∧ B), so it follows that Pr(¬A ∧ (A → B)) =
Pr(¬A) × Pr(A → B).

Now assume factual sentences EF , E1, . . . , En that partition the worlds so that
any fair bet (c, p) on ¬A ∧ (A → B) will satisfy: p(w) = p(w′) if w, w′ ∈ Ex . So
we can write p(Ex) for the pay-off in partition Ex . Assume that EF is the outcome
that makes our sentence determinately false (i.e. EF are the worlds in which A is
true, and so worlds where p(w) = $0). The remaining elements E1, . . . , En partition
possible ways in which ¬A is true. Assume that 0 < Pr(¬A) < 1. The expected
value of a fair bet on Pr(¬A ∧ A → B) should be $Pr(¬A) × Pr(A → B).

If n = 1 we get Pr(E1)p(E1) = Pr(¬A)Pr(A → B). But Pr(E1) = Pr(¬A). So
p(E1) = $Pr(A → B). However, the pay-off $Pr(A → B) is not identical to either
of the three allowed pay-offs $0, $1 or $Pr(¬A)Pr(A → B).
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So n > 1. There are uncountably many ways of distributing the probability of ¬A

over the Ei’s in a way that does not affect the probability of either ¬A or A → B

(given rRT). However, the expected pay-off on a bet on ¬A ∧ A → B for each
distribution must be the same: for any given distribution Pr we need Pr(E1)p(E1) +
· · · + Pr(En)p(En) = Pr(¬A)Pr(A → B) = (Pr(E1) + · · · + Pr(En))Pr(A → B).
But given that each pay-off p(Ei) can only take one of three values this cannot be
achieved, not without imposing constraints on how the probabilities on the Ei’s are
distributed.

Proof of Observation 5: First a useful lemma.

Lemma 4 Assume that all logical and probabilistic properties stated in the Observa-
tion hold, and that rRT holds. Assume, moreover that Pr(ϕ∧(A → B)) = Pr(ϕ), and
that Pr(A) > 0. Then either Pr(A ∧ ¬B) = 0 or Pr(¬A ∧ C) = 0 for every factual C
that logically implies ϕ.

Proof Assume that Pr(ϕ ∧ (A → B)) = Pr(ϕ), that Pr(A) > 0 and that C logically
implies ϕ.

Assume for reductio that Pr(ϕ ∧ (A → ¬B)) > 0. As Pr(ϕ ∧ (A → B)) = Pr(ϕ),
by ordinary probabilistic reasoning it then follows that Pr(ϕ ∧ (A → B) ∧ (A →
¬B)) > 0. ϕ ∧ (A → B) ∧ (A → ¬B) implies (A → B) ∧ (A → ¬B) which by
normality is equivalent to A → (B ∧ ¬B). As Pr(A) > 0, we can apply rRT; but
this will give Pr(A → (B ∧ ¬B)) = 0. So Pr((A → B) ∧ (A → ¬B)) = 0 and so
Pr(ϕ ∧ (A → B) ∧ (A → ¬B)) = 0, and we have a contradiction.

So Pr(ϕ ∧ A → ¬B) = 0. As C implies ϕ, Pr(C ∧ (A → ¬B)) = 0.
Let

ψ = (A ∨ ¬C) → (A ∧ ¬B).

By Sα, ψ logically implies ((A ∨ ¬C) ∧ A) → ¬B and so by LLE ψ logically
implies A → ¬B. As Pr(C ∧ (A → ¬B)) = 0, Pr(C ∧ ψ) = 0.

By rMP, ¬A∧¬C ∧ψ and A∧B ∧¬C ∧ψ are logical contradictions and so will
have probability 0. The four sentences C, ¬A∧¬C, A∧B ∧¬C and A∧¬B ∧¬C

form a logical partition, and the first three get probability 0 when conjoined with ψ ,
so by additivity we have:

Pr(ψ) = Pr(A ∧ ¬B ∧ ¬C ∧ ψ).

However, by rCS, A ∧ ¬B ∧ ¬C logically implies ψ so

Pr(A ∧ ¬B ∧ ¬C ∧ ψ) = Pr(A ∧ ¬B ∧ ¬C).

So:
Pr(ψ) = Pr(A ∧ ¬B ∧ ¬C).

By rRT:

Pr(ψ) = Pr((A ∨ ¬C) ∧ A ∧ ¬B)/Pr(A ∨ ¬C)

= Pr(A ∧ ¬B)/Pr(A ∨ ¬C).

So:
Pr(A ∧ ¬B)/Pr(A ∨ ¬C) = Pr(A ∧ ¬B ∧ ¬C).
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This can only hold if either Pr(A∧¬B) = 0, or Pr(A∨¬C) = 1 (i.e. if Pr(¬A∧C) =
0).

Claim 1. Suppose that (i) Pr((A → B) ∧ (C → B)) = Pr(C → B), (ii) Pr(A ∧
¬B) > 0, (iii) Pr(¬A∧C ∧B) > 0. Suppose, moreover, for reductio that Pr satisfies
rRT. By rCS, C∧B logically implies (C → B). By Lemma 4, either Pr(A∧¬B) = 0
or Pr(¬A ∧ C ∧ B)) = 0. The first alternative falls with premise (ii) and the second
with premise (iii) and so we have a contradiction.

Claim 2. Suppose that (i) Pr(C ∧ (A → B)) = Pr(C), (ii) Pr(A ∧ ¬B) > 0,
and (iii) Pr(¬A ∧ C) > 0. Furthermore, by way of reductio, suppose that Pr satisfies
rRT. C logically implies itself so from Lemma 4 we have either Pr(A ∧ ¬B) = 0
or Pr(¬A ∧ C) = 0. The first alternative falls with premise (ii) and the second with
premise (iii) and so we have a contradiction.

Claim (3). Suppose that (i) Pr((A → B)∧(¬A → B)) = Pr(B), (ii) 0 < Pr(A) <

1, (iii) 0 < Pr(B) < 1. Suppose, moreover, for reductio that Pr satisfies rRT.
By additivity Pr((A → B) ∧ (¬A → B)) = Pr(A ∧ (A → B) ∧ (¬A →

B))+Pr(¬A∧ (A → B)∧ (¬A → B)). By rMP and rCS A∧ (A → B) is logically
equivalent to A ∧ B, and ¬A ∧ (¬A → B) is logically equivalent to ¬A ∧ B. So
Pr((A → B) ∧ (¬A → B)) = Pr(A ∧ B ∧ (¬A → B)) + Pr(¬A ∧ B ∧ (A →
B)) = Pr(B) (by (i)). As Pr(B) = Pr(A ∧ B) + Pr(¬A ∧ B) it follows that (1)
Pr(A∧B∧(¬A → B)) = Pr(A∧B) and (2) Pr(¬A∧B∧(A → B)) = Pr(¬A∧B).

Consider the first of these identities. A ∧ B logically implies itself, so from
Lemma 4 either (a) Pr(¬A ∧ ¬B) = 0 or (b) Pr(¬¬A ∧ A ∧ B) = Pr(A ∧ B) = 0.
Consider the second identity.¬A∧B logically implies itself, so from Lemma 4 either
(c) Pr(A ∧ ¬B) = 0 or (d) Pr(¬A ∧ ¬A ∧ B) = Pr(¬A ∧ B) = 0. Four possibil-
ities. If (a)+(c) hold then Pr(¬B) = 0 and this contradicts premise (iii). If (a)+(d)
then Pr(¬A) = 0 and this contradicts premise (ii). If (b)+(c) then Pr(A) = 0 and this
contradicts premise (ii). If (b)+(d) then Pr(B) = 0 and this contradicts premise (iii).
Those are all the alternatives, so we have a contradiction.
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