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Abstract
The origins of proof-theoretic semantics lie in the question of what constitutes the
meaning of the logical connectives and its response: the rules of inference that gov-
ern the use of the connective. However, what if we go a step further and ask about
the meaning of a proof as a whole? In this paper we address this question and lay
out a framework to distinguish sense and denotation of proofs. Two questions are
central here. First of all, if we have two (syntactically) different derivations, does
this always lead to a difference, firstly, in sense, and secondly, in denotation? The
other question is about the relation between different kinds of proof systems (here:
natural deduction vs. sequent calculi) with respect to this distinction. Do the differ-
ent forms of representing a proof necessarily correspond to a difference in how the
inferential steps are given? In our framework it will be possible to identify denota-
tion as well as sense of proofs not only within one proof system but also between
different kinds of proof systems. Thus, we give an account to distinguish a mere syn-
tactic divergence from a divergence in meaning and a divergence in meaning from a
divergence of proof objects analogous to Frege’s distinction for singular terms and
sentences.
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1 Introduction

In proof-theoretic semantics (PTS) the meaning of the logical constants is taken to
be given by the rules of inference that govern their use. As a proof is constituted
by applications of rules of inference, it seems reasonable to ask what the meaning
of proofs as a whole would consist of on this account. What we are particularly
interested in is a Fregean distinction between sense and denotation in the context of
proofs.1 This account builds up on [26], where such a distinction is proposed and
used in a proof-theoretic explanation of paradoxes.

The notion of denotation is nothing new in the context of proofs. It is common
in the literature on proof theory and PTS (e.g. [14, p. 6], [16, 22]) to distinguish
between derivations, as linguistic objects, and proofs, as abstract (in the intuitionis-
tic tradition: mental) entities. Proofs are then said to be represented or denoted by
derivations, i.e. the abstract proof object is the denotation of a derivation. The notion
of sense, on the other hand, has been more or less neglected. Tranchini [26], there-
fore, made a proposal that for a derivation to have sense means to be made up of
applications of correct inference rules. While this is an interesting approach to con-
sider, Tranchini only determines whether a proof has sense or not but does not go
further into what the sense of a proof exactly consists of, so there might be further
questions worth pursuing. We will spell out an account of a distinction between sense
and denotation of proofs, which can be considered a full-fledged analogy to Frege’s
distinction concerning singular terms and sentences.2 Another question concerns the
relation of different kinds of proof systems (intuitionistic natural deduction (ND) and
sequent calculus (SC) systems will be considered) with respect to such a distinction.
If we have two syntactically different derivations with the same denotation in differ-
ent proof systems, do they always also differ in sense or can sense be shared over
different systems?

2 Connecting Structure andMeaning

The basic point of departure is the simple observation that there can be different
ways leading from the same premises to the same conclusion, either in different proof
systems or also within one system. The focus in this matter so far has been on normal
vs. non-normal derivations in ND and correspondingly on derivations containing cut
vs. cut-free derivations in SC. However, there can also simply be a change of the
order of rule applications that can lead to syntactically different derivations from the

1We assume at least a basic familiarity with this idea, laid out in Frege’s famous paper “Über Sinn und
Bedeutung”, cf. [8] for an English translation.
2There is some literature also in the field of proof theory concerned with this Fregean distinction, how-
ever, to our knowledge, apart from [26] this is not concerned with the sense of derivations but with the
sense of sentences: cf. P. Martin-Löf (2001). The Sense/Reference Distinction in Constructive Seman-
tics. Transcription of a lecture given at a conference on Frege organised by G. Sundholm at Leiden,
25 August 2001, transcription by B. Jespersen, 9 August 2002: https://www.academia.edu/25695205/
The Sense Reference Distinction in Constructive Semantics, or [25].
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same premises to the same conclusion. Does this lead to a different denotation or
should we say that it is only the sense that differs in such cases, while the underlying
proof stays the same?

2.1 Normal Form and the Denotation of Derivations

One and the same proof may be linguistically represented by different derivations.
We will follow the general opinion in taking proofs to be the denotation - the semantic
value - of (valid) derivations. In ND a derivation in normal form is the most direct
form of representation of its denotation, i.e. the represented proof object. For our
purposes we will consider a derivation to be in normal form iff neither β- nor η-
conversions (cf. rules below) can be applied to it. A derivation in normal form in ND
corresponds to a derivation in cut-free form in SC. In intuitionistic logic derivations in
non-normal form in ND (resp. with cut in SC) can be reduced to ones in normal form
(resp. cut-free form). These are then thought to represent the same underlying proof,
just one more indirectly than the other, because, as Prawitz [22, p. 257f.] says, they
represent the same idea this proof is based on. In order to make sense and denotation
transparent, our approach will be to encode the derivations with λ-terms. As is well
known, by the Curry-Howard-isomorphism there is a correspondence between the
intuitionistic ND calculus and the simply typed λ-calculus and we can formulate
the following ND-rules annotated with λ-terms together with the usual β- and η-
conversions for the terms. The β-conversions correspond to the well-known reduction
procedures, which can be formulated for every connective in ND [21, p. 36f.], while
the η-conversions are usually taken to correspond to proof expansions [16, p. 101].
We use p, q, r ,... for arbitrary atomic formulas, A, B, C,... for arbitrary formulas,
and Γ , Δ,... for sets of formulas. Γ , A stands for Γ ∪ {A}. For variables in terms x,
y, z,... is used and r , s, t ,... for arbitrary terms.

Term-annotated ND-rules:

Γ, [x : A]....
t : B

λx.t : A ⊃ B
⊃I

Γ....
s : A ⊃ B

Δ....
t : A

App(s, t) : B
⊃E

Γ....
s : A

Δ....
t : B

〈s, t〉 : A ∧ B
∧I

Γ....
t : A ∧ B

f st (t) : A
∧E1

Γ....
t : A ∧ B

snd(t) : B
∧E2

Γ....
s : A

inls : A ∨ B
∨I1

Γ....
s : B

inrs : A ∨ B
∨I2

Γ....
r : A ∨ B

Δ, [x : A]....
s : C

Θ, [y : B]....
t : C

case r {x.s | y.t} : C
∨E
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Γ....
t : ⊥

abort (t) : A
⊥E

β-conversions:
App(λx.t, s) � t[s/x]

f st (〈s, t〉) � s snd(〈s, t〉) � t

case inlr {x.s | y.t} � s[r/x] case inrr {x.s | y.t} � t[r/y]

η-conversions: λx.App(t, x) � t (if x not free in t)

〈f st (t), snd(t)〉 � t

case r {t .inlt | s.inrs} � r

We read x : A as “x is a proof of A”. t[t ′/x] means that in term t every free
occurrence of x is substituted with t ′. The usual capture-avoiding requirements for
variable substitution are to be observed and α-equivalence of terms is assumed. A
term that cannot be converted by either β- or η-conversion is in normal form.

Since there is a correspondence between intuitionistic SC and intuitionistic ND,
for every derivation in ND there must be a derivation in SC named by the same
λ-term. This correspondence is of course not one-to-one, but many-to-one, i.e. for
each proof in ND there are at least potentially different derivations in SC.3 The fol-
lowing are our respective SC-rules, where we use the propositional fragment of an
intuitionistic SC with independent contexts [18, p. 89]. The reduction procedures
remain the same as above in ND; β-reduction corresponds to the procedures needed
to establish cut-elimination, while η-conversion corresponds to what may be called
“identicals-elimination” [12] or “identity atomization” [4]:4

Term-annotated G0ip:

Logical axiom:

x : A 
 x : A
Rf

3On the complications of such a correspondence and also on giving a term-annotated version of SC cf. e.g.
[1, 13, 18, 20, 21, 29, 31]. Term-annotated sequent calculi can be found i.a. in [28] or [23], from which
our presentation is only a notational variant.
4Showing that it is possible to get rid of axiomatic sequents with complex formulas and derive them
from atomic axiomatic sequents. This is also part of cut-elimination but in principle those are separate
procedures [4, p. 26].
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Logical rules:

Γ 
 s : A Δ 
 t : B

Γ, Δ 
 〈s, t〉 : A ∧ B
∧R

Γ, x : A, y : B 
 s : C

Γ, z : A ∧ B 
 s[[f st (z)/x]snd(z)/y] : C
∧L

Γ 
 s : A

Γ 
 inls : A ∨ B
∨R1

Γ 
 s : B

Γ 
 inrs : A ∨ B
∨R2

Γ, x : A 
 s : C Δ, y : B 
 t : C

Γ,Δ, z : A ∨ B 
 case z {x.s | y.t} : C
∨L

Γ, x : A 
 t : B

Γ 
 λx.t : A ⊃ B
⊃R

Γ 
 t : A Δ, y : B 
 s : C

Γ, Δ, x : A ⊃ B 
 s[App(x, t)/y] : C
⊃L

x : ⊥ 
 abort (x) : C
⊥L

Structural rules:
Weakening:

Γ 
 t : C

Γ, x : A 
 t : C
W

Contraction:
Γ, x : A, y : A 
 t : C

Γ, x : A 
 t[x/y] : C
C

The rule of cut
Γ 
 t : D Δ, x : D 
 s : C

Γ, Δ 
 s[t/x] : C
cut

is admissible in G0ip.
In the left operational rules as well as in the weakening rule we have the case

that variables occur beneath the line that are not explicitly mentioned above the line.
In these cases the variables must be either fresh or - together with the same type
assignment - already occurring in the context Γ , Δ, etc. Same variables can only (but
need not) be chosen for the same type, i.e., if a new type occurs in a proof, then a fresh
variable must be chosen. If we would allow to choose the same variable for different
types, i.e. for example to let x : A and x : B occur in the same derivation this would
amount to assuming that arbitrarily different formulas have the same proof, which is
not desirable.

2.2 Identity of Proofs and Equivalence of Derivations

Figuring prominently in the literature on identity of proofs is a conjecture by Prawitz
[22, p. 257] that two derivations represent the same proof iff they are equivalent.5

This shifts the question of course to asking when two derivations can be considered
equivalent. Using the equational theory of the λ-calculus is one way to provide an
answer here: terms on the right and the left hand side of the β- and η-conversions are

5Prawitz gives credit for this conjecture to Martin-Löf. Cf. also Martin-Löf [16, p. 102] on this issue, in
his terminology “definitional equality”.
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considered denotationally equal [11, p. 16]. Hence, two derivations can be consid-
ered equivalent iff they are β-η-equal (cf. [30, p. 10], [3, p. 5], [23, p. 83ff.]).6 The
denotation is then seen to be referred to by the term that annotates the formula or
sequent to be proven. We will call this the ‘end-term’ henceforth so that we can cover
and compare both ND and SC at once. So if we have two derivations with essentially
different end-terms (in the sense that they are not belonging to the same equivalence
class induced by β-η-conversion), we would say that they denote essentially different
proofs. On the other hand, for two ND-derivations, where one reduces to the other
(or both reduce to the same), e.g. via normalization, we have corresponding λ-terms,
one β-reducible to the other (or both β-reducible to the same term). In this case we
would say that they refer to the same proof. Prawitz [22, p. 257] stresses that this
seems evident since two derivations reducing to identical normal derivations must be
seen as equivalent. Note that we can also have the case that two derivations of the
same formula, which would look identical in a non-term-annotated version, here for
example of ND, are distinguished on the grounds of our term annotation, like the
following two derivations:

ND1p ⊃ (p ⊃ (p ∧ p)) ND2p ⊃ (p ⊃ (p ∧ p))

[x : p]1 [y : p]2

〈x, y〉 : p ∧ p
∧I

λx. 〈x, y〉 : p ⊃ (p ∧ p)
⊃I1

λy.λx. 〈x, y〉 : p ⊃ (p ⊃ (p ∧ p))
⊃I2

[x : p]2 [y : p]1

〈x, y〉 : p ∧ p
∧I

λy. 〈x, y〉 : p ⊃ (p ∧ p)
⊃I1

λx.λy. 〈x, y〉 : p ⊃ (p ⊃ (p ∧ p))
⊃I2

The reason for this is that it is possible to generalize these derivations in different
directions, which is made explicit by the variables. Hence, the first one can be gen-
eralized to a derivation of B ⊃ (A ⊃ (A ∧ B)), while the second one generalizes to
A ⊃ (B ⊃ (A ∧ B)).7

So, encoding derivations with λ-terms seems like a suitable method to clarify the
underlying structure of proofs. There is one kind of conversion left, though, that
needs consideration, namely what we will call permutative conversions, or also γ -
conversions.8 They become relevant here because we have disjunction as part of our
logical vocabulary. Prawitz [21] was the first to introduce these conversions. In the
conjunction-implication-fragment of intuitionistic propositional logic derivations in
normal form satisfy the subformula property, i.e. in a normal derivation D of A from
Γ each formula is either a subformula of A or of some formula in Γ . However, with

6There is some discussion about whether η-conversions are indeed identity-preserving. Martin-Löf [16, p.
100] does not think so, for example. Prawitz [22, p. 257] is not clearly decided but writes in the context of
identity of proofs it would seem “unlikely that any interesting property of proofs is sensitive to differences
created by an expansion”. Widebäck [30], relating to results in the literature on the typed λ-calculus like
[10] and [24], argues for β-η-equality to give the right account of identity of proofs and Girard [11, p.
16] does the same, although he mentions, too, that η-equations “have never been given adequate status”
compared to the β-equations.
7For a more detailed examination of generalization cf. [30] or [3].
8It goes under various other names, as well, like permutation/permuting conversions or commut-
ing/commutative conversions. Some also prefer “reductions” but we will go with the - to us seemingly
- more neutral “conversions”. The term γ -conversions appears in [15]. Cf. about these conversions in
general e.g. [22]: 251-259, [11]: Ch. 10, [2], [7].
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the disjunction elimination rule this property is messed up, since we get to derive a
formula C from A ∨ B which is not necessarily related to A or B. That is why, in
order to recover the subformula property, permutation conversions are introduced,
which can be presented in their most general form in the following way:

Γ....
A ∨ B

Δ, [A]....
C

Θ, [B]....
C

C
∨E

D �

Γ....
A ∨ B

Δ, [A]....
C

D

Θ, [B]....
C

D
D

∨E

Whether or not these are supposed to be taken into the same league as β- and η-
conversions in matters of identity preservation of proofs is an even bigger dispute
than the one mentioned concerning η-conversions. Prawitz [22, p. 257] says that
while there can be no doubt about the ‘proper reductions’ having no influence on
the identity of the proof, “[t]here may be some doubts concerning the permutative
∨E-[...]reductions in this connection” but does not go into that matter any further.
Since he needs these reductions to prove his normalization theorem, it seems that he
would be inclined not to have too many doubts about identity preservation under the
permutative conversions. Girard [11, p. 73], on the other hand, does not seem to be
convinced, as he says - considering an example of permutation conversion - that we
are forced to identify “a priori different deductions” in these cases. Even though he
accepts these conversions for technical reasons, he does not seem to be willing to
really identify the underlying proof objects. Restall,9 however, analyzing derivations
by assigning to them what he calls “proof terms” rather than λ-terms, considers the
derivations above as merely distinct in representation but not in the underlying proof,
which on his account is the same for both. What is more, he does so not only for
technical but rather philosophical reasons, since he claims the flow of information
from premises to conclusion to be essentially the same. Lindley [15, p. 258] and
Tranchini [27, p. 1037f.] both make a point about the connection between reductions
and expansions (although they speak of certain kinds of “generalized” expansions) on
the one hand and (“generalized”) permutative conversions on the other, claiming that
performing a (generalized) expansion on the left hand side of the conversion above
followed by a reduction (and possibly α-conversion) just yields the right hand side. To
conclude, if we only consider the ⊃-∧-fragment of intuitionistic propositional logic,
β-η-equality is enough, but if we consider a richer vocabulary, it seems to us at least
that there are substantial reasons to include permutative conversions in our equational
theory.10 We do not aim to make a final judgment on this issue here. Rather, when
we have laid out our distinction about sense and denotation of proofs below, we will
consider the matter again and show why it makes no essential difference for our
purposes whether we include permutative conversions or not.

9Restall, G. (2017). Proof Terms for Classical Derivations. Article in progress: https://consequently.org/
papers/proof-terms.pdf
10The consequence for this paper would be of course to add “γ -conversions” to the list of relevant
conversions in our definitions about normal forms, identity of denotation, etc.
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3 The Sense of Derivations

Let us spell out at this point what exactly we will consider as the sense and also again
the denotation of a derivation in our approach:

Definition of denotation: The denotation of a derivation in a system with λ-
term assignment is referred to by the end-term of the derivation. Identity of
denotation holds modulo belonging to the same equivalence class induced by
the set of α-, β- and η-conversions of λ-terms, i.e. derivations that are denoted
by terms belonging to the same equivalence class induced by these conversions
are identical, they refer to the same proof object.11

Definition of sense: The sense of a derivation in a system with λ-term assign-
ment consists of the set12 of λ-terms that occur within the derivation. Only a
derivation made up of applications of correct inference rules, i.e. rules that have
reduction procedures, can have sense.

3.1 Change of Sense Due to Reducibility

Concerning a distinction between sense and denotation in the context of proofs,
the rare cases where this is mentioned at all deal with derivations one of which is
reducible to the other or with λ-terms which are β-convertible to the same term in nor-
mal form (cf. [11, p. 14], [26, p. 501], Restall 2017, p. 6). Since Tranchini is the only
one to spell out the part about sense in detail, we will briefly summarize his consider-
ations. As mentioned above, in his account, for a derivation to have sense means that
it is made up of applications of correct inference rules. The question to be asked then
is of course what makes up correct inference rules? Tranchini’s answer is that infer-
ence rules are correct if they have reduction procedures available, i.e. a procedure to
eliminate any maximal formula resulting from an application of an introduction rule
immediately followed by an elimination rule of the same connective. From a PTS
point of view, applying reduction procedures can be seen as a way of interpreting the
derivation because it aims to bring the derivation to a normal form, i.e. the form in
which the derivation represents the proof it denotes most directly [26, p. 507].13 So
the reduction procedures are the instructions telling us how to identify the denotation
of the derivation, which for Tranchini means that they give rise to the sense of the
derivation. If we have two derivations denoting the same proof, for example, one in

11We use the more accurate formulation of “belonging to the same equivalence class” here instead of the
formulation we used before of two terms “having the same normal form”. The reason for this is that while
these two properties coincide for most standard cases, they do not necessarily concur when it comes to
Lindley’s “general permutative conversions” or also to SC in general because in these cases the confluence
property is not guaranteed. We want to thank one of the anonymous referees for indicating this important
point.
12One could also consider the question whether multi-sets are an even better choice here, which would of
course yield a much stronger differentiation of senses. The reason why we consider sets instead of multi-
sets is that to us the distinctions brought about by multi-sets, by e.g. a variable occurrence more or less,
do not seem to go hand in hand with substantial differences in how inferences are built up.
13Tranchini does not restrict his examination to derivations that normalize, though, but to the contrary,
uses it to analyze non-normalizable derivations, like paradoxical ones.
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normal form and the other in a form that can be reduced to the former, we could say
in Fregean terminology that they have the same denotation but differ in their sense
because they denote the proof in different ways, one directly, the other indirectly. So,
we can take as an example the following two derivations, one in normal and one in
non-normal form:

NDp ⊃ p

[x : p] ⊃I
λx.x : p ⊃ p

NDnon-normal p ⊃ p

[x : p] ⊃I
λx.x : p ⊃ p

[y : q] ⊃I
λy.y : q ⊃ q ∧I〈λx.x, λy.y〉 : (p ⊃ p) ∧ (q ⊃ q) ∧E

f st (〈λx.x, λy.y〉) : p ⊃ p

The latter obviously uses an unnecessary detour via the maximal formula (p ⊃
p)∧ (q ⊃ q), which is introduced by conjunction introduction and then immediately
eliminated again, thus, producing different and more complex terms than the former
derivation. The derivation can be easily reduced to the former, though, which can be
also seen by β-reducing the term denoting the formula to be proven:

f st (〈λx.x, λy.y〉) � λx.x

We can also give an example analogous to the one above, where a non-normal
term (highlighted in bold) in SC is created by using the cut rule:14

SC
 (p ∧ p) ⊃ (p ∨ p)

Rf
z : p 
 z : p

W
z : p, x : p 
 z : p ∧L

y : p ∧ p 
 f st (y) : p ∨R
y : p ∧ p 
 inlf st (y) : p ∨ p ⊃R
 λy.inlf st (y) : (p ∧ p) ⊃ (p ∨ p)

SCcut
 (p ∧ p) ⊃ (p ∨ p)

Rf
z : p 
 z : p

W
z : p, x : p 
 z : p ∧L

y : p ∧ p 
 f st (y) : p

Rf
z : p 
 z : p

W
x : p, z : p 
 z : p ∧L

y : p ∧ p 
 snd(y) : p ∧R
y : p ∧ p, y : p ∧ p 
 〈f st (y), snd(y)〉 : p ∧ p

C
y : p ∧ p 
 〈f st (y), snd(y)〉 : p ∧ p

Rf
z : p 
 z : p

W
z : p, x : p 
 z : p ∧L

y : p ∧ p 
 f st (y) : p
cut

y : p ∧ p 
 f st 〈f st (y), snd(y)〉 : p ∨R
y : p ∧ p 
 inlf st 〈f st (y), snd(y)〉 : p ∨ p ⊃R
 λy.inlf st 〈f st (y), snd(y)〉 : (p ∧ p) ⊃ (p ∨ p)

14Note however, that the connection between the application of cut and the resulting non-normal term
is necessary but not sufficient, i.e. there can be applications of cut not creating a non-normal term. A
non-normal term is produced if both occurrences of the cut formula in the premises are principal.

579What is the Meaning of Proofs?



λy.inlf st 〈f st (y), snd(y)〉 � λy.inlf st (y)

In this case again the two derivations are essentially the same because the latter can
be reduced to the former by eliminating the application of the cut rule. Again, the
proof object they represent is thus the same, only the way of making the inference,
represented by the different terms occurring within the derivation, differs, i.e. the
sense is different.

3.2 Change of Sense Due to Rule Permutations

So far we only considered the case in which there is an identity of denotation but a
difference in sense of derivations due to one being represented by a λ-term in non-
normal form reducible to one in normal form. However, we want to show that this
is not the only case where we can make such a distinction. This is also the reason
why our approach differs from Tranchini’s (who works solely in an ND system) in
how we grasp the notion of sense of a derivation. Following Tranchini, the derivation
having sense at all depends on there being reduction procedures available for the
rules that are applied in it. Since we are also interested in a comparison of sense-and-
denotation relations between ND and SC systems, our approach requires that there
are reduction procedures available for the created terms. Thereby we will be able to
cover both systems at once.

Encoding the proof systems with λ-terms also makes the connection between
changing the order of the rule applications and the sense-and-denotation distinc-
tion transparent, which is the other case we want to cover. In ND with disjunction
rules it is possible to have rule permutations producing derivations with end-terms
identifiable by means of the permutative conversions. In SC, however, there are
more cases of rule permutations possible. When the left disjunction rule is involved,
this also leads to different - though γ -equal - terms; with the left conjunction or
implication rule the end-term remains completely unchanged. Consider e.g. the fol-
lowing three derivations in SC of the same sequent 
 ((q ∧ r) ∨ p) ⊃ ((p ∨ q)∧
(p ∨ r)):

SC1
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
q 
 q ∨R

q 
 p ∨ q
W

q, r 
 p ∨ q ∧L
q ∧ r 
 p ∨ q

Rf
r 
 r ∨R

r 
 p ∨ r
W

q, r 
 p ∨ r ∧L
q ∧ r 
 p ∨ r ∧R

q ∧ r, q ∧ r 
 (p ∨ q) ∧ (p ∨ r)
C

q ∧ r 
 (p ∨ q) ∧ (p ∨ r)

Rf
p 
 p ∨R

p 
 p ∨ q

Rf
p 
 p ∨R

p 
 p ∨ r ∧R
p, p 
 (p ∨ q) ∧ (p ∨ r)

C
p 
 (p ∨ q) ∧ (p ∨ r) ∨L

(q ∧ r) ∨ p 
 (p ∨ q) ∧ (p ∨ r) ⊃R
 ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))
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SC2
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
q 
 q

W
q, r 
 q ∧L
q ∧ r 
 q ∨R

q ∧ r 
 p ∨ q

Rf
r 
 r

W
q, r 
 r ∧L
q ∧ r 
 r ∨R

q ∧ r 
 p ∨ r ∧R
q ∧ r, q ∧ r 
 (p ∨ q) ∧ (p ∨ r)

C
q ∧ r 
 (p ∨ q) ∧ (p ∨ r)

Rf
p 
 p ∨R

p 
 p ∨ q

Rf
p 
 p ∨R

p 
 p ∨ r ∧R
p, p 
 (p ∨ q) ∧ (p ∨ r)

C
p 
 (p ∨ q) ∧ (p ∨ r) ∨L

(q ∧ r) ∨ p 
 (p ∨ q) ∧ (p ∨ r) ⊃R
 ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))

SC3
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
q 
 q ∨R

q 
 p ∨ q
W

q, r 
 p ∨ q ∧L
q ∧ r 
 p ∨ q

Rf
p 
 p ∨R

p 
 p ∨ q ∨L
(q ∧ r) ∨ p 
 p ∨ q

Rf
r 
 r ∨R

r 
 p ∨ r
W

q, r 
 p ∨ r ∧L
q ∧ r 
 p ∨ r

Rf
p 
 p ∨R

p 
 p ∨ r ∨L
(q ∧ r) ∨ p 
 p ∨ r ∧R

(q ∧ r) ∨ p, (q ∧ r) ∨ p 
 (p ∨ q) ∧ (p ∨ r)
C

(q ∧ r) ∨ p 
 (p ∨ q) ∧ (p ∨ r) ⊃R
 ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))

The difference between SC1 and SC2 (highlighted in bold) is that the order of
applying the right disjunction rule and the left conjunction rule is permuted. The
difference between SC1 and SC3 (highlighted with underlining) is that the order of
applying the right conjunction rule and the left disjunction rule is permuted. The
order of applying the right disjunction rule and the left conjunction rule stays fixed
this time. Encoded with λ-terms, though, we see that in the first case, comparing SC1
and SC2, the permutation of rule applications produces exactly the same end-term.
Both derivations have the same end-term, namely:

λu.case u {v. 〈inrf st (v),inrsnd(v)〉 | x. 〈inlx,inlx〉}
SC1
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
y : q 
 y : q

∨R
y : q 
 inry : p ∨ q

W
y : q, z : r 
 inry : p ∨ q

∧L
v : q ∧ r 
 inrf st (v) : p ∨ q

Rf
z : r 
 z : r

∨R
z : r 
 inrz : p ∨ r

W
y : q, z : r 
 inrz : p ∨ r

∧L
v : q ∧ r 
 inrsnd(v) : p ∨ r

∧R
v : q ∧ r, v : q ∧ r 
 〈inrf st (v),inrsnd(v)〉 : (p ∨ q) ∧ (p ∨ r)

C
v : q ∧ r 
 〈inrf st (v),inrsnd(v)〉 : (p ∨ q) ∧ (p ∨ r)

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ q

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ r

∧R
x : p, x : p 
 〈inlx,inlx〉 : (p ∨ q) ∧ (p ∨ r)

C
x : p 
 〈inlx,inlx〉 : (p ∨ q) ∧ (p ∨ r)

∨L
u : (q ∧ r) ∨ p 
 case u {v. 〈inrf st (v),inrsnd(v)〉 | x. 〈inlx,inlx〉} : (p ∨ q) ∧ (p ∨ r)

⊃R
 λu.case u {v. 〈inrf st (v),inrsnd(v)〉 | x. 〈inlx,inlx〉} : ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))
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SC2
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
y : q 
 y : q

W
y : q, z : r 
 y : q

∧L
v : q ∧ r 
 f st (v) : q

∨R
v : q ∧ r 
 inrf st (v) : p ∨ q

Rf
z : r 
 z : r

W
y : q, z : r 
 z : r

∧L
v : q ∧ r 
 snd(v) : r

∨R
v : q ∧ r 
 inrsnd(v) : p ∨ r

∧R
v : q ∧ r, v : q ∧ r 
 〈inrf st (v),inrsnd(v)〉 : (p ∨ q) ∧ (p ∨ r)

C
v : q ∧ r 
 〈inrf st (v),inrsnd(v)〉 : (p ∨ q) ∧ (p ∨ r)

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ q

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ r

∧R
x : p, x : p 
 〈inlx,inlx〉 : (p ∨ q) ∧ (p ∨ r)

C
x : p 
 〈inlx,inlx〉 : (p ∨ q) ∧ (p ∨ r)

∨L
u : (q ∧ r) ∨ p 
 case u {v. 〈inrf st (v),inrsnd(v)〉 | x. 〈inlx,inlx〉} : (p ∨ q) ∧ (p ∨ r)

⊃R
 λu.case u {v. 〈inrf st (v),inrsnd(v)〉 | x. 〈inlx,inlx〉} : ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))

Considering the second comparison between SC1 and SC3 the situation is differ-
ent: here the permutation of rule applications leads to a different end-term. In the
end-term for SC1 and SC2 the pairing operation is embedded within the case expres-
sion, whereas in the end-term for SC3 the case expression is embedded within the
pairing:

λu. 〈case u {v.inrf st (v) | x.inlx},case u {v.inrsnd(v) | x.inlx}〉
SC3
((q∧r)∨p)⊃((p∨q)∧(p∨r))

Rf
y : q 
 y : q

∨R
y : q 
 inry : p ∨ q

W
y : q, z : r 
 inry : p ∨ q

∧L
v : q ∧ r 
 inrf st (v) : p ∨ q

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ q

∨L
u : (q ∧ r) ∨ p 
 case u {v.inrf st (v) | x.inlx} : p ∨ q

Rf
z : r 
 z : r

∨R
z : r 
 inrz : p ∨ r

W
y : q, z : r 
 inrz : p ∨ r

∧L
v : q ∧ r 
 inrsnd(v) : p ∨ r

Rf
x : p 
 x : p

∨R
x : p 
 inlx : p ∨ r

∨L
u : (q ∧ r) ∨ p 
 case u {v.inrsnd(v) | x.inlx} : p ∨ r

∧R
u : (q ∧ r) ∨ p, u : (q ∧ r) ∨ p 
 〈case u {v.inrf st (v) | x.inlx},case u {v.inrsnd(v) | x.inlx}〉 : (p ∨ q) ∧ (p ∨ r)

C
u : (q ∧ r) ∨ p 
 〈case u {v.inrf st (v) | x.inlx},case u {v.inrsnd(v) | x.inlx}〉 : (p ∨ q) ∧ (p ∨ r)

⊃R
 λu. 〈case u {v.inrf st (v) | x.inlx},case u {v.inrsnd(v) | x.inlx}〉 : ((q ∧ r) ∨ p) ⊃ ((p ∨ q) ∧ (p ∨ r))

When we take a look at how the term-annotated rules must be designed in order to
have a correspondence to the respective rules in ND, we see why some permutations
of rule applications lead to different end-terms, while others do not; and why SC is in
general more flexible in this respect than ND. In SC the left conjunction rule as well
as the left implication rule are substitution operations, i.e. they can change their place
in the order without affecting the basic term structure because only in the inner term
structure terms are substituted with other terms.15 In ND, on the other hand, there are
no substitution operations used in the term assignment, i.e. for each rule application
a new basic term structure is created.

How is this related to the distinction between sense and denotation? In cases like
SC1 vs. SC2 the way the inference is given differs, which can also be seen in different
terms annotating the formulas occurring within the derivation: with otherwise identi-
cal terms in the two derivations inry and inrz only occur in SC1, while fst(v) and

15For ⊃L the only exception is when an application of this rule is permuted with an application of ∨L,
which creates a different, though γ -convertible term.
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snd(v) only occur in SC2. However, the resulting end-term stays the same, thus, we
would describe the difference between these derivations as a difference in sense but
not in denotation. In other cases, when disjunction elimination or the left disjunction
rule is involved, permutation of rule applications can lead to a different end-term,
as we see above in SC1 vs. SC3. Whether this corresponds to a difference in deno-
tation depends on whether we accept γ -conversions to be identity-preserving. What
all cases have in common, though, is that rule permutation always leads to a differ-
ence in sense of the given derivations because the sets of terms occurring within the
derivations differ from each other.

3.3 Philosophical Motivation

Let us have a look at how the Fregean conception of sense is received in the litera-
ture in order to show the philosophical motivation for adopting such a definition of
sense for derivations. According to Dummett [5, p. 91], Fregean sense is to be con-
sidered as a procedure to determine its denotation.16 Girard [11, p. 2], in a passage
about sense and denotation and the relation between proofs and programs, mentions
that the sense is determined by a “sequence of instructions” and when we see in this
context terms as representing programs and “the purpose of a program [...] to cal-
culate [...] its denotation” (ibid., p. 17), then it seems plausible to view the terms
occurring within the derivation, decorating the intermediate steps in the construction
of the complex end-term that decorates the conclusion, as the sense of that derivation.
Tranchini holds the reduction procedures to be the sense because these ‘instructions’
lead to the term in normal form. However, in our framework - because we do not
only consider normal vs. non-normal cases - it seems more plausible to look at the
exact terms occurring within the derivations and view them as representing the steps
in the process of construction encoding how the derivation is built up and leading us
to the denotation, the end-term. For us it is therefore only a necessary requirement
for the derivation to have sense to contain only terms for which reduction procedures
are available but it does not make up the sense. In the case of rule permutation we can
then say that the proof is essentially the same but the way it is given to us, the way
of inference, differs: i.e. the sense differs. This can be read off from the set of terms
that occur within the derivation: they end up building the same end-term, but the way
it is built differs, the procedures to determine the denotation differ. Thus, this allows
us to compare differences in sense within one proof system as well as over different
proof systems.

Troelstra and Schwichtenberg [28, p. 74] e.g. give an example of two derivations
in SC producing the same end-term in different ways to show that just from the
variables and the end-term we cannot read off how the derivation is built up:17

16This idea of sense as procedures also occurs in more recent publications like [17] or [6].
17For simplicity we omit the weakening steps that would strictly seen have to precede the applications of
the ∧L-rule.
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SC1
 (s ∧ p) ⊃ ((q ∧ r) ⊃ (p ∧ q))

Rf
x : p 
 x : p

Rf
y : q 
 y : q ∧R

x : p, y : q 
 〈x, y〉 : p ∧ q ∧L
x : p, z : q ∧ r 
 〈x, f st (z)〉 : p ∧ q ∧L

u : s ∧ p, z : q ∧ r 
 〈snd(u), f st (z)〉 : p ∧ q ⊃R
u : s ∧ p 
 λz. 〈snd(u), f st (z)〉 : (q ∧ r) ⊃ (p ∧ q) ⊃R
 λu.λz. 〈snd(u), f st (z)〉 : (s ∧ p) ⊃ ((q ∧ r) ⊃ (p ∧ q))

SC2
 (s ∧ p) ⊃ ((q ∧ r) ⊃ (p ∧ q))

Rf
x : p 
 x : p

Rf
y : q 
 y : q ∧R

x : p, y : q 
 〈x, y〉 : p ∧ q ∧L
u : s ∧ p, y : q 
 〈snd(u), y〉 : p ∧ q ∧L

u : s ∧ p, z : q ∧ r 
 〈snd(u), f st (z)〉 : p ∧ q ⊃R
u : s ∧ p 
 λz. 〈snd(u), f st (z)〉 : (q ∧ r) ⊃ (p ∧ q) ⊃R
 λu.λz. 〈snd(u), f st (z)〉 : (s ∧ p) ⊃ ((q ∧ r) ⊃ (p ∧ q))

The senses of these derivations would be the following:
Sense of SC1:

{x, y, z, u, 〈x, y〉 , 〈x, f st (z)〉, 〈snd(u), f st (z)〉 , λz. 〈snd(u), f st (z)〉 ,

λu.λz. 〈snd(u), f st (z)〉}
Sense of SC2:

{x, y, z, u, 〈x, y〉 , 〈snd(u), y〉, 〈snd(u), f st (z)〉 , λz. 〈snd(u), f st (z)〉 ,

λu.λz. 〈snd(u), f st (z)〉}
The two sets only differ with regard to the underlined terms, otherwise they are

identical. Thus, they only differ in the order in which the two left conjunction rules
are applied. For the resulting end-term this is inessential, but we can see that when
taking the sense, and not only the end-terms, i.e. the denotation, into account, it is
indeed possible to read off the structure of the derivations. As noted above (examples
on p. 6), the term annotation of the calculi makes this structure of derivations explicit
so that we can differentiate between derivations which would otherwise look identi-
cal. As several authors point out, this is a desirable feature if one is not only interested
in mere provability but wants to study the structure of the derivations in question (cf.
[23, p. 82], [19, p. 93]) and also, for simplicity, if one wants to compare proof sys-
tems of ND and SC with each other [28, p. 73]. Since we are interested in both of
these points, it seems the right choice for our purposes to consider the annotated ver-
sions of the calculi and that is also why these annotated versions are indeed needed
for our notions of sense and denotation. Of course, one could argue that the underly-
ing structure is still the same in the non-annotated versions and can be made explicit
by other means, too, like showing the different generalizations of the derivations, but
still, we do not see how in these calculi our notions could be easily applied.
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Another issue that needs to be considered is the one of identity of senses, i.e.
synonymy. Therefore, we want to extend our definition of sense given above with an
addition:

If a sense-representing set can be obtained from another by uniformly replacing
(respecting the usual capture-avoiding conventions) any occurrence of a vari-
able, bound or free, by another variable of the same type, they express the same
sense.

What we ensure with this point is just that it does not (and should not) matter which
variables one chooses for which proposition as long as one does it consistently. So, it
does not make a difference whether we have

ND1p ⊃ (q ⊃ p)

[x : p] ⊃I
λz.x : q ⊃ p ⊃I

λx.λz.x : p ⊃ (q ⊃ p)

Sense1: {x, λz.x, λx.λz.x}

or

ND2p ⊃ (q ⊃ p)

[y : p] ⊃I
λz.y : q ⊃ p ⊃I

λy.λz.y : p ⊃ (q ⊃ p)

Sense2: {y, λz.y, λy.λz.y}

Sense1 and Sense2 represent the same sense. Or to give another example (pointed
to by one of the anonymous referees) where we have free variables occurring within
the derivation but not appearing in the end-term: If one would replace all occurrences
of the free variable y by the variable w in derivation SC1
 (s ∧ p) ⊃ ((q ∧ r) ⊃ (p ∧ q))

(cf. above), then this would make no difference to the sense according to our
definition since the sense-representing sets would be obtained from replacing y by w.

This also fits the Fregean criterion of two sentences’ identical sense, as Sundholm
[25, p. 304] depicts it within a broader analysis: two propositions express the same
sense if it is not possible to hold different epistemic attitudes towards them, i.e. “if one
holds the one true, one also must hold the other one true, and vice versa”. Whereas,
if we have two sentences which only differ in two singular terms, referring to the
same object but differing in sense, we can easily hold the one sentence to be true,
while thinking the other is false, if we do not know that they are referring to the same
object. With proofs it is the same: Looking at ND1p ⊃ (q ⊃ p) and ND2p ⊃ (q ⊃ p) we
may not know whether the derivation is valid or not, we do know, however, that if
one is a valid derivation then so is the other. With derivations differing in sense this
is not so straightforward.

For Frege this point of considering cases where intensionality is directed towards
sentences was crucial to develop his notion of sense, so the question arises how we
can explain cases of intensionality directed towards proofs with our notions of sense
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and denotation. Let us suppose we have two denotationally-identical proofs which
are represented by two different derivations D and D′. In this case it could happen
that a (rational) person believes that derivation D is valid but does not believe that
derivation D′ is valid. How can we account for that? One explanation would be of
course to point to the difference in linguistic representation. After all, it can just be
the case that one way of writing down a proof is more accessible to the person than
another (they may not be familiar with a certain proof system, for example). This
would amount to letting the linguistic representation, the signs, collapse with the
sense of a derivation. However, then we would have no means to distinguish this case
from cases in which we want to argue that it is not justified for a rational person to
have different propositional attitudes towards propositions which are about deriva-
tions differing insignificantly from each other, like in the cases of ND1p ⊃ (q ⊃ p) and
ND2p ⊃ (q ⊃ p) above. For Frege [8, p. 212, 218] the referent of an expression in an
intensional context is not its customary referent, i.e. the object it refers to or the truth
value in the case of sentences, but its customary sense. Here the situation is the same:
What is referred to in such a setting, when speaking about the attitudes of a person
towards propositions about derivations, is not the proof objects (which are identical
in our situation) but their senses, which are in this context represented by the sets of
terms encoding the steps of construction. It seems plausible then to say that when
the construction steps differ in two derivations, a person can have different attitudes
towards propositions about them, because the different construction steps may lead
to this person grasping the one derivation, while not understanding the other.

4 Analogy to Frege’s Cases

Let us finally compare how our conception of sense and denotation in the context of
proofs fits the distinction Frege came up with for singular terms and sentences. We
can have the following two cases with Frege’s distinction: firstly (cf. [8, p. 211]),
there can be different signs corresponding to exactly one sense (and then of course
also only one denotation). In the case of singular terms an example would be “Gott-
lob’s brother” and “the brother of Gottlob”. The sense, the way the denoted individual
object is given to us, is the same because there is only a minor grammatical difference
between the two expressions. More frequently, this occurs in comparing different
languages, though, taking singular terms which express exactly the same sense only
using different words, like “the capital of France” and “die Hauptstadt Frankreichs”.
In the case of sentences an example would be changing from an active to a passive
construction without changing the emphasis of the sentence; an example from Frege
is the following: “M gave document A to N”, “Document A was given to N by M”
[9, p. 141]. In the case of proofs, finally, an example would be the following case:

ND(p ∨ p) ⊃ (p ∧ p)

[y : p ∨ p]3 [x : p]1 [x : p]1

∨E1

case y {x.x | x.x} : p

[y : p ∨ p]3 [x : p]2 [x : p]2

∨E2

case y {x.x | x.x} : p ∧I〈case y {x.x | x.x},case y {x.x | x.x}〉 : p ∧ p ⊃I3

λy. 〈case y {x.x | x.x},case y {x.x | x.x}〉 : (p ∨ p) ⊃ (p ∧ p)
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SC
 (p ∨ p) ⊃ (p ∧ p)

Rf
x : p 
 x : p

Rf
x : p 
 x : p

∨L
y : p ∨ p 
 case y {x.x | x.x} : p

Rf
x : p 
 x : p

Rf
x : p 
 x : p

∨L
y : p ∨ p 
 case y {x.x | x.x} : p

∧R
y : p ∨ p, y : p ∨ p 
 〈case y {x.x | x.x},case y {x.x | x.x}〉 : p ∧ p

C
y : p ∨ p 
 〈case y {x.x | x.x},case y {x.x | x.x}〉 : p ∧ p

⊃R
 λy. 〈case y {x.x | x.x},case y {x.x | x.x}〉 : (p ∨ p) ⊃ (p ∧ p)

Sense:

{x, y,case y {x.x | x.x}, 〈case y {x.x | x.x},case y {x.x | x.x}〉 ,

λy. 〈case y {x.x | x.x},case y {x.x | x.x}〉}

Or to give another example:
NDp ⊃ (p ⊃ (p ∧ p))

[x : p]2 [y : p]1

∧I〈x, y〉 : p ∧ p ⊃I1

λy. 〈x, y〉 : p ⊃ (p ∧ p) ⊃I2

λx.λy. 〈x, y〉 : p ⊃ (p ⊃ (p ∧ p))

SC
 p ⊃ (p ⊃ (p ∧ p))

Rf
x : p 
 x : p

Rf
y : p 
 y : p ∧R

x : p, y : p 
 〈x, y〉 : p ∧ p ⊃R
x : p 
 λy. 〈x, y〉 : p ⊃ (p ∧ p) ⊃R
 λx.λy. 〈x, y〉 : p ⊃ (p ⊃ (p ∧ p))

Sense: {x, y, 〈x, y〉 , λy. 〈x, y〉 , λx.λy. 〈x, y〉}

In these cases derivations can consist of different signs, namely by having one
representation in SC and one in ND, which do not differ in sense nor in denota-
tion, since they both contain exactly the same terms and produce the same end-term.
This comparison between different proof systems seems to fit nicely with Frege’s
[8, p. 211] comment on “the same sense ha[ving] different expressions in differ-
ent languages”. However, as we have seen above with the examples ND1p ⊃ (q ⊃ p)

and ND2p ⊃ (q ⊃ p), this case can also occur within the same proof system. One
could wonder whether there should not be a differentiation between the senses of
the derivations in the first example since it seems that different rules are applied: in
SC
 (p ∨ p) ⊃ (p ∧ p) we have an application of contraction, which we do not have in
ND(p ∨ p) ⊃ (p ∧ p). This would also question whether our definition of sense distin-
guishes and identifies the right amount of cases. We do believe that this is the case,
though, because in the first example, where there is an application of the contraction
rule in SC, there is also a multiple assumption discharge in the ND-derivation, which
is generally seen as the corresponding procedure, just as cases of vacuous discharge
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of assumptions in ND correspond to the application of weakening in SC. So just as
in different languages of course not exactly the same expressions are used, here too,
the rules differ from ND to SC but since the corresponding procedures are used, one
can argue that the sense does not differ for that reason.

Another case that can occur according to Frege (ibid.) is that we have one denota-
tion, i.e. one object a sign refers to, but different senses. An example for this would
be his famous “morning star” and “evening star” comparison, where both expressions
refer to the same object, the planet Venus, but the denoted object is given differently.
On the sentence level this would amount to exchanging singular terms in a sentence
by ones which have the same denotation: “The morning star is the planet Venus” and
“The evening star is the planet Venus”. The denotation of the sentence - with Frege:
its truth value - thus stays the same, only the sense of it differs, the information is
conveyed differently to us. For our proof cases we can say that this case is given
when we have syntactically different derivations, be it in one or in different proof
systems, which have end-terms belonging to the same equivalence class induced by
the set of α-, β- and η-conversions. Thus, examples would be corresponding proofs
in ND and SC, which share the same end-term, but contain different terms occurring
within the derivations. The reason for this to happen seems that in SC often more
variables are necessary than in ND. If we compare derivations within ND, one def-
inite case in which we have the same denotation but a different sense is between
equivalent but syntactically distinct derivations, e.g. non-normal and normal deriva-
tions, one reducible to the other. Another case up for debate would be the one with
rule permutations due to disjunction elimination. Within SC we can have two cases:
one due to rule permutation, one due to applications of cut. For the first case, where
the inference could be given in a different way, although ending on the same term, we
gave examples above (cf. p. 11f. and 14). However, it is worth mentioning that our
distinction still captures the usual distinction, the second case, where it is said that
two derivations, one containing cut and the other one in cut-free form (as a result of
cut-elimination applied to the former), have the same denotation but differ in sense:

SC
 (p ∧ p) ⊃ (p ∨ p)

Rf
z : p 
 z : p

W
z : p, x : p 
 z : p ∧L

y : p ∧ p 
 f st (y) : p ∨R
y : p ∧ p 
 inlf st (y) : p ∨ p ⊃R
 λy.inlf st (y) : (p ∧ p) ⊃ (p ∨ p)

Sense: {z, x, y, f st (y),inlf st (y), λy.inlf st (y)}
SCcut
 (p ∧ p) ⊃ (p ∨ p)

Rf
z : p 
 z : p

W
z : p, x : p 
 z : p ∧L

y : p ∧ p 
 f st (y) : p

Rf
z : p 
 z : p ∨R

z : p 
 inlz : p ∨ p
cut

y : p ∧ p 
 inlf st (y) : p ∨ p ⊃R
 λy.inlf st (y) : (p ∧ p) ⊃ (p ∨ p)
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Sense: {z, x, y, f st (y),inlz,inlf st (y), λy.inlf st (y)}

As mentioned above (fn 14), cut does not need to create a non-normal term, as it
is the case here, but still any application of cut will necessarily change the sense of a
derivation as opposed to its cut-free form.

Finally, cases that need to be avoided in a formal language according to Frege
[8, p. 211] would be to have one sign, corresponding to different senses, or on the
other hand, one sense corresponding to different denotations. As he mentions, these
cases of course occur in natural languages but should not happen in formal ones, so
it should also not be possible in our present context, for sure. Fortunately, this cannot
happen in the context of our annotated proof systems, either, since the signs (taken
to be the derivation as it is written down) always express at most one sense in our
annotated system, and likewise the sense always yields a unique denotation since the
end-term is part of the sense-denoting set.18

5 Conclusion

The context in which Frege considered sense and denotation was the context of iden-
tity. Likewise, we argued in this paper, if we use term-annotated calculi, we can
also say something about proof identity: identity of proofs over different calculi or
within the same calculus consists in having end-terms that belong to the same equiv-
alence class induced by the set of α-, β- and η-conversions. In ND this can happen
when we have the same proof in normal and non-normal form, in SC this can hap-
pen when we have the same proof using cut and in cut-free form but also when there
are forms of rule permutations where an application of the ∧L-rule or the ⊃L-rule
switches place with another rule. Including disjunction in our language creates for
both calculi the additional question of whether rule permutations including disjunc-
tion elimination (resp. the left disjunction rule) lead to a different proof, or whether
these proofs should be identified. We are more interested in sense, however, and here
we can conclude that what in all these cases changes is the sense of the derivation
in question. Finally, considering the question of identity of sense, i.e. synonymy, and
trying to follow Frege’s conception on this matter, too, we can say the following: if
two derivations are supposed to be identical in sense, this means that the way the
inference is given is essentially the same, so the set of terms building up the end-
term must be the same. The end-term itself does not necessarily tell us anything
about the structure of the proof. Sense, on the other hand, is more fine-grained in
that the set of terms occurring within the derivation reflects how the derivation is
built up. Especially in SC, where we can have different orders of rule applications
leading up to the same end-term, the sense gives us means to distinguish on a more
fine-grained level.

18Another question would be whether there can be signs without any sense at all. Frege [8, p. 211] dis-
misses this case, as well, with a remark that we need at least the requirement that our expressions are
“grammatically well-formed”. Tranchini [26] gives a good analogy pointing to the notorious connective
tonk playing this role in the case of proofs.
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