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Abstract
In a series of papers (Fine et al., 1982; Fine, Noûs 28(2), 137–158; 1994, Midwest
Studies in Philosophy, 23, 61–74, 1999) Fine develops his hylomorphic theory of
embodiments. In this article, we supply a formal semantics for this theory that is ade-
quate to the principles laid down for it in (Midwest Studies in Philosophy, 23, 61–74,
1999). In Section 1, we lay out the theory of embodiments as Fine presents it. In
Section 2, we argue on Cantorian grounds that the theory needs to be stabilized, and
sketch some ways forward, discussing various choice points in modeling the view. In
Section 3, we develop a formal semantics for the theory of embodiments by construct-
ing embodiments in stages and restricting the domain of the second-order quantifiers.
In Section 4 we give a few illustrative examples to show how the models deliver
Finean hylomorphic consequences. In Section 5, we prove that Fine’s principles are
sound with respect to this semantics. In Section 6 we present some inexpressibility
results concerning Fine’s various notions of parthood and show that in our formal
semantics these notions are all expressible using a single mereological primitive. In
Section 7, we prove several mereological results stemming from the model theory,
showing that the mereology is surprisingly robust. In Section 8, we draw some philo-
sophical lessons from the formal semantics, and in particular respond to Koslicki’s
(2008) main objection to Fine’s theory. In the appendix we present proofs of the
inexpressibility results of Section 6.
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1 The Theory of Embodiments

Fine [10] presents a number of arguments that standard mereology offers an incorrect
answer to how the existence conditions of wholes are determined in terms of their
parts. He proposes his theory of embodiments as a more satisfactory account. The
theory is broadly Aristotelian as it stems from a hylomorphic conception of objects
in that embodiments have both formal and material parts.

Fine’s theory presupposes a distinction between timeless and temporary parthood.
Timeless parts are ones for which it does not make sense to ask for how long some
objects have been parts of a whole. For instance, Fine takes the parts of a ham sand-
wich to be timeless in this sense. On his view it makes no sense to ask for how long
have the slices of bread been parts of the ham sandwich. Temporary parts are ones
for which it does makes sense to ask for how long some objects have been parts of
a whole. For instance, Fine takes the parts of a car to be temporary in this sense. On
his view, it makes sense to ask for how long has a car’s (current) carburettor been a
part of the car.

We begin by giving an informal presentation of Fine’s view, following the most
developed presentation of it in Fine [10]. Fine’s theory of embodiments is a theory of
objects of two kinds: rigid embodiments and variable embodiments. First, consider
Fine’s conception of rigid embodiments:

Rigid Embodiments Given objects a, b, c, . . . and a a relation R (holding contin-
gently of them), there is an object e = a, b, c, . . . /R which is an amalgam or
composite of a, b, c, . . . and R.

Here e is the rigid embodiment, R is the principle of rigid embodiment, and / denotes
some sort of operation of rigid embodiment. The key idea is that the objects a, b, c . . .

and R form a whole by their standing in that relation. As Fine writes,

The relation R preserves its predicative role and somehow serves to modify or
qualify the components. However, the result of the modification is not a fact or
state. It is a whole, whose components are linked by the relation, rather than the
fact or state of the components being so linked. (p. 65)

Limit cases of rigid embodiments a/P with exactly one object and a monadic
property P , are what Fine [8] calls ‘qua-objects’.

Rigid embodiments satisfy the following principles.

(R1) Existence: a, b, c, . . . /R exists at t iff R holds of a, b, c, . . . at t .
(R2) Location: If e = a, b, c, . . . /R exists at t then e is located a point p at t iff at

least one of a, b, c, . . . located at p.
(R3) Identity: For e = a, b, c, . . . /R and e′ = a′, b′, c′, . . . /R′, e = e′ iff a = a′,

b = b′, c = c′, . . . and R = R′.
(R4) Parthood: a, b, c, . . . are (timeless) parts of a, b, c, . . . /R.
(R5) Constituent Aspect: R is a (timeless) part of a, b, c, . . . /R.
(R6) That’s All Folks: Any (timeless) part of a, b, c, . . . /R is a timeless part of one

of a, b, c, . . . or of R.
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(R1) is a simple existence condition, and (R3) a fine-grained identity condition. This
treats rigid embodiments formed when e.g. a is above b and when b is below a as
distinct. Fine considers an alternate coarser-grained identity condition that treats such
rigid embodiments as identical as follows.

(R3’) Identity’: For e = a, b, c, . . . /R and e′ = a′, b′, c′, . . . /R′, e = e′ iff the
state of a, b, c, . . . standing in R is the same as the state of a′, b′, c′, . . . standing
in R′.

Then a corresponding variant of (R4) is motivated.

(R4’) Parthood’: e = a, b, c, . . . /R is a (timeless) part of e′ = a′, b′, c′, . . . /R′
iff the state of a, b, c, . . . standing in R is part of the state of a′, b′, c′, . . . standing
in R′.

Of course these two principles rely on an independent understanding of identity and
parthood among states, which would require additional theory. For this reason in
what follows our focus will be on (R3) and (R4) rather than (R3’) and (R4’).

(R2) and (R5) play a minimal role in the resulting theory. (R2) secures intuitive
locations of rigid embodiments whose components are located; it should be noted
that this is compatible with a rigid embodiment existing at t without being located at
any point at t . (R5) yields the hylomorphic idea that the embodied relation is itself a
part of the embodiment.1

Fine’s theory provides a satisfactory account of the existence conditions of objects
like the ham sandwich. He takes the ham sandwich to be a rigid embodiment: its
material parts are the two slices of bread and the piece of ham, and its formal part
is the betweenness relation. The ham sandwich exists whenever the piece of ham is
between the two slices of bread, which seems to appropriately account for the ham
sandwich’s existence conditions.

Secondly, Fine develops an account of variable embodiments.

Variable Embodiments Given any suitable function F (taking times to things) there
is a corresponding object /F/.

Here /F/ is the variable embodiment, F is the principle of variable embodiment,
and / . . . / denotes some sort of operation of variable embodiment, and the various
objects picked out by F are the manifestations of a variable embodiment. Where
f = /F/, ft is F(t) i.e. the manifestation of f at t . Variable embodiments satisfy
the following principles:

(V1) Existence: f = /F/ exists at t iff f has a manifestation at t , i.e. iff ft exists.
(V2) Location: If f = /F/ exists at t then f is located (at t) where ft is located

(if at all).
(V3) Identity: /F/ = /G/ iff F = G.

1Fine also wants a range of characterization postulates to do the work of saying how properties of the
embodiment are inherited by properties of the parts (either singly, or collectively). It is not clear how these
postulates are supposed to be given in a general way, and in any case they aren’t given in the theory and
so we won’t concern ourselves with them.
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(V4) Parthood: Any manifestation of a variable embodiment at a given time is a
temporary part of it at that time.

(V5) Chaining: If a is a timeless part of b that exists at t and if b is a part of c at t ,
then a is a part of c at t . Similarly, if a is part of b at t and if b is a timeless part of
an object c that exists at t , then a is a part of c at t .

(V6) That’s All Folks: If a is a temporary part of b at t then there is a mereological
chain at t connecting a to b.

(V1)-(V4) are obvious correlates to (R1)-(R4). (V3) is a fine-grained identity condi-
tion.2 There is perhaps space for an even finer-grained identity condition. If principles
of variable embodiment are construed as merely having a selecting role, then exten-
sionally equivalent functions result in the same variable embodiment. If principles of
variable embodiment are construed as having in addition a characterizing role, then
perhaps functions with different conceptual content may generate different variable
embodiments.3 (V5) is a transitivity condition; it states that any result of chaining
together a timeless and temporary part is a temporary part.

For (V6), we define a fundamental link at t to be the result of (V4), namely the
temporary parthood of some manifestation to its variable embodiment. (An auxiliary
link at t is a case of timeless parthood between entities that exist at t .) By a merelog-
ical chain at t , Fine means a sequence of links such that at least one of these links is
fundamental at t .

Note that the ‘constituent aspect’ analogue of (R5) is not present. Fine writes, ‘the
principle F stands in a purely external relationship to the manifestation ft , whereas
the manifestation is actually part of the embodiment.’ This is compatible, though,
with the principle F standing in an internal relationship to the variable embodiment.
On this way of thinking F would be a part of /F/ at every time. This is analogous
to the more explicitly hylomorphic rigid embodiments, and something which Fine
comes to accept in [13, p. 162].4

Fine’s theory offers a satisfactory account of existence conditions for objects like
a car. He takes the car to be a variable embodiment, one having as its manifestation at
t a rigid embodiment that contains the carburettor as one of its timeless parts. Thus,
at t , the carburettor is also a temporary part of the car, by (V5). The carburettor is not
a part of the rigid embodiment that is a manifestation of the car at a time t ′ at which
the carburettor has been replaced by another one. Thus, at t ′, the carburettor is not a
temporary part of the car. Moreover, if the car has no manifestation at t ′′ (e.g., if at
t ′′ the car’s parts are not assembled), then it is not the case that the carburettor is a
timeless part at t ′′ of the car.

2Fine actually puts the condition as follows:

(V3) Identity: /F/ = /G/ iff F and G are the same.

We assume what he means by ‘sameness’ of function is identity, rather than any analogue of ‘sameness’
in the coarser-grained (R3’).
3See Evnine [5] for an exploration of this idea.
4This additional constraint will be implemented in our semantics; see Definitions 6 and 9. Evnine [5, p. 55
fn 36] claims that Fine (via personal communication) does not regard the principle of variable embodiment
as being part of it, though it is not clear why.
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2 Choice Points

Fine [10] appears to intend his theory of embodiments to be developed in conjunction
with an abundantist view on what properties and relations there are. This fact raises
a challenge to any formulation of a formal semantics for the theory of embodiments.
On the face of it, this theory is inconsistent with abundantism, as already shown by
the Russellian argument in Fairchild [6].

The apparent inconsistency with Cantorian considerations of size also presents
itself when considering how to model Fine’s hylomorphic theory while taking prop-
erties to be abundant. Let 𝒹𝓉 be the domain of an arbitrary time 𝓉. That is, 𝒹𝓉 is
a set that represents the collection of objects that exist at 𝓉. If our models are abun-
dantist, then, for any subset 𝒮 of𝒹𝓉, there is at least one “property” (i.e., a function
from the set𝒯 of “times” to the powerset of𝒹𝓉) whose extension at 𝓉 is 𝒮 . So, for
each 𝒮 ⊆ 𝒹𝓉, let:

CH(𝒮 ) =
{
an arbitrary property whose extension at 𝓉 is 𝒮 if 𝒮 is nonempty
the “identity” relation if 𝒮 = ∅

Also, let:

ch(𝒮 ) =
{
an arbitrary member of 𝒮 if 𝒮 is nonempty
an arbitrary member of𝒹𝓉 if 𝒮 = ∅

In our models there will be some (possibly partial) function ℯ𝓂𝒷(·) mapping n-
ary sequences of elements of 𝒹𝓉 and n-ary relations, to the set-theoretic constructs
that represent rigid embodiments. So, let𝒻 be a possibly partial function with domain
the powerset of𝒹𝓉 and such that, for every 𝒮 ⊆ 𝒹𝓉:
𝒻(𝒮 ) =

{
ℯ𝓂𝒷(ch(𝒮 ), CH(𝒮 )) if 𝒮 is nonempty
ℯ𝓂𝒷(ch(𝒮 ), ch(𝒮 ), CH(𝒮 )) if 𝒮 = ∅

Respecting Fine’s postulate (R1), requires that, for every 𝒮 ⊆ 𝒹𝓉, 𝒻(𝒮 ) ∈
d𝓉. To see this, note that if 𝒮 is nonempty, then ch(𝒮 ) ∈ 𝒮 . But 𝒮 is
the extension of CH(𝒮 ) at 𝓉. So, ch(𝒮 ) has property CH(𝒮 ) at 𝓉, in which
case ℯ𝓂𝒷(ch(𝒮 ), CH(𝒮 )) exists at 𝓉 by (R1). Similarly, if 𝒮 is empty, then
〈ch(𝒮 ), ch(𝒮 )〉 belongs to the extension of the identity relation at 𝓉, in which case
ℯ𝓂𝒷(ch(𝒮 ), ch(𝒮 ), CH(𝒮 )) stands in the identity relation to itself at 𝓉. Therefore,
respecting Fine’s postulate (R1) requires that 𝒻(·) be a function with range𝒹𝓉.

Furthermore, respecting postulate (R3) requires that 𝒻 be a 1-1 function. To see
this, suppose that 𝒻(𝒮1) = 𝒻(𝒮2). Then, by, (R3), CH(𝒮1) = CH(𝒮2), and so
𝒮1 = 𝒮2, on the assumption that properties have only one set as its extension at 𝓉.
So, 𝒻 is 1-1. But this is impossible. By Cantor’s Theorem, there is no 1-1 function
with domain the power set of𝒹𝓉 and range𝒹𝓉.

So, the formulation of a model theory adequate to Fine’s theory requires abandon-
ing an abundantist conception of properties, or else it requires abandoning the idea
that for any property Y and individual x instantiating Y there is an embodiment x/Y .
Our option will be not to have our models incorporate an abundantist conception of
properties. Yet, a mitigated form of abundantism will be reflected in the model the-
ory. The principal idea that provides the basis for the model theory is what might be
called an iterative conception of wholes. In the model theory objects and relations
are relativised to stages. Stage i relations are defined in terms of the set of times
and of stage i objects, with the consequence that there are at least as many stage i
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properties as subsets of the set of entities of stage i. The objects of stage i +1 consist
of stage i objects together with new wholes (rigid and variable embodiments) defined
in terms of the objects and relations of stage i. This iterative conception of wholes
somewhat resembles the simultaneous definition of hierarchies of sets and proper-
ties formulated in Fine [7, p. 142]. There, the properties of sets of a given level are
used to define sets of a higher level, and these sets themselves are then used to define
properties not found at previous levels.

The object language first-order quantifiers will range over the objects of any stage
i smaller than some limit ordinal κ . The second-order quantifiers of the object lan-
guage will range over the relations of any stage i smaller than some limit ordinal κ .
Given the iterative structure exhibited by our models, it would be natural to also add
to the language restricted first- and second-order quantifiers, ones indexed to stages.
Even though we do not do so here, we note that once such quantifiers are added to
the language forms of property comprehension formulated in terms of them could
then be formulated. Thus, as already mentioned, the formal semantics to be offered
exhibits a minimally abundantist conception of properties, one according to which
for any subclass of objects of stage i there is a property of stage i corresponding to it.

One different choice point concerns the interaction between predication and being.
The issue concerns whether things may stand in relations at times at which they are
nothing. For instance, does Socrates currently have a property even though, arguably,
he is now nothing? For simplicity, in the model theory we will define relations in such
a way that if things stand in a relation𝒳 at any time 𝓉, then all of them belong to the
domain of 𝓉. This will make it possible to offer relatively simple characterisations of
temporary parthood and of the relation of being mereologically chained.

Yet another choice point concerns the object language expressions for tense. Even
though our option has been to use modal operators for this purpose, analogues of the
results to be presented would also be available if tense were treated via quantification
over times.

3 A Formal Semantics

We begin the presentation of the formal semantics for Fine’s theory of embodiments
by defining a class of frames and other set-theoretic constructs characterised in terms
of these.

3.1 Frames

Frames are defined as follows:

Definition 1 (Frame) A frame is a quintupleℱ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤〉, where:
1. 𝒯 and𝒫 are nonempty sets;
2. 𝒹0 is a function with domain𝒯 ∪ (𝒯 ×𝒫 ) such that:

∀𝓉,𝓅 : 𝓉 ∈ 𝒯 &𝓅 ∈ 𝒫 (𝒹0,𝓉,𝓅 ⊆ 𝒹0,𝓉);
3. 𝒯 ,𝒫 and

⋃
𝓉∈𝒯 (𝒹0,𝓉) are pairwise disjoint;
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4. κ is a limit ordinal;
5. ≤ is a nonstrict total order on𝒯 .

Our frames enrich frames for variable-domain first-order temporal logic. As in
temporal logic, the set 𝒯 represents the set of times and ≤ represents the ordering
of times (for simplicity, we assume that times are totally ordered).

In variable-domain first-order temporal logic, 𝒹0,𝓉 represents the set of all indi-
viduals that exist at time 𝓉, for each time 𝓉. Presently, 𝒹0,𝓉 does not represent the
set of all individuals that exist at t . Rather, it represents the set of those individuals
that exist at 𝓉 and have no proper parts. It is natural to understand Fine as endorsing
what may be called a ‘constructive’ or ‘iterative’ conception of wholes. Wholes are
constructed in stages. There is a first stage containing the individuals that have no
proper parts.5 Here, this first stage will be represented by the setℬ0 = ⋃

𝓉∈𝒯 𝒹0,𝓉.
At each stage greater than 0, new wholes are constructed out of the individuals and
the relations that exist at previous stages.

For each stage i, the relations of that stage are modelled by functions from times to
sets of sequences of individuals of stage i that exist at that time. The wholes of stage
i +1 are built out of the objects and relations of stage i. When i is a limit ordinal, the
individuals of stage i are the individuals found at any stage before i. The limit ordinal
κ constitutes a ‘cap’ on the construction of wholes. The first-order quantifiers of our
theory will range over the individuals of this stage.

The set 𝒫 has no correspondent in variable-domain first-order temporal logic.
Here, this set represents the set of spatial points.6 The function 𝒹0 also takes as
arguments time-location pairs. For each time 𝓉 and location𝓅,𝒹0,𝓉,𝓅 represents the
set of individuals with no proper parts that exist at 𝓉 and are located at 𝓅. It is for
this reason that we require that𝒹0,𝓉,𝓅 ⊆ 𝒹0,𝓉.

3.2 Domains of Individuals and Relations

We now offer, for each stage, simultaneous definitions of the different domains of
entities of that stage. We start by defining the domains of n-ary relations. These are
defined as usual, to wit, as functions from the set of times to sets of sequences of
elements belonging to the domain of that time. That is, for each time 𝓉, an n-ary
relation of stage i maps 𝓉 to a set of n-element sequences of elements of 𝒹i,𝓉 (the
set of all individuals of stage i that exist at time 𝓉).

Definition 2 (Domain of stage i n-ary relations)
For every i < κ and n ∈ N:

5We needn’t see these ‘atoms’ as purely partless; the approach outlined here is compatible with treating
them as (pieces of) gunk, whose structure is taken for granted for modelling purposes. Or better, this
framework could be supplemented with Fine’s Segmentation approach to decomposing structural atoms
[14, p. 578]. In this paper, we are attempting to model how the structural parts of embodiments behave;
segmentation could usefully be employed to model how spatial parts of these objects behave.
6We impose no structure on this the set of spatial points. Thus, applications of the semantics may require
the exclusion of some frames as representationally insignificant with respect to the structure of space.
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1. A stage i n-ary relation is a function𝒳 such that:
𝒳 ∈ (℘ ((

⋃
𝓉∈𝒯 (𝒹i,𝓉))

n))𝒯 and ∀𝓉 ∈ 𝒯 (𝒳 (𝓉) ⊆ (𝒹i,𝓉)
n).7

2. 𝒟𝓃
𝒾 is the set of stage i n-ary relations;

3. 𝒟+
κ = ⋃

n∈Z+
⋃

j<κ 𝒟
n
j is the set of all relations of positive arity.

4. 𝒟κ = ⋃
n∈N

⋃
j<κ 𝒟

n
j is the set of all relations of any arity.

Note that Definition 2 requires that individuals stand in a relation at a time only if
they all exist at that time. As mentioned in Section 2, our models will all incorporate
this simplifying assumption.

We now turn to the definition of the set of embodiments of stage i.

Definition 3 (Stage i n-ary embodiments)
For every ordinal i such that 0 < i ≤ κ and n ∈ Z

+, an n-ary embodiment of stage i

is an n + 1-tuple ℯ = 〈𝓂1, . . . ,𝓂n,𝒳 〉 such that:

1. If i = α +1, then ∀j (1 ≤ j ≤ n ⇒𝓂j : 𝒯 +→ ⋃
𝓉∈𝒯 (𝒹α,𝓉)),8 and𝒳 ∈ 𝒟 n

α .
2. If i is a limit ordinal, then e is a stage j n-ary embodiment, for some j < i.

According to Definition 3, an n-ary embodiment of stage i + 1 is an n + 1-tuple
whose first n members are partial functions from times to objects of at most stage
i and whose (n + 1)th member is an n-ary relation between objects of at most stage
α. For each embodiment e = 〈𝓂1, . . . ,𝓂n,𝒳 〉 and time 𝓉, each member𝓂i of ℯ
determines a “material part” 𝓂i (𝓉) of ℯ at 𝓉. The function 𝒳 is the “principle of
embodiment” of ℯ.

We now define rigid embodiments as special kinds of embodiments:

Definition 4 (Stage i n-ary rigid embodiments)
For every 0 < i ≤ κ and n ∈ Z

+:

1. A stage i n-ary rigid embodiment is a stage i n-ary embodiment ℯ =
〈𝓂1, . . . ,𝓂n,𝒳 〉 such that, for every j such that 1 ≤ j ≤ n:

(a) ∀𝓉 ∈ 𝒯 ∃𝓍(𝓍 =𝓂j (𝓉)); and
(b) ∀𝓉, 𝓉′ ∈ 𝒯 (𝓂j (𝓉) =𝓂j (𝓉′))

2. ℛn
i = ⋃

j≤i{ℯ : ℯ is a stage j n-ary rigid embodiment} is the set of n-ary rigid
embodiments of at most stage i;

3. ℛn
κ = ⋃

i<κ ℛ
n
i is the set of all n-ary rigid embodiments;

7Where:

• (
⋃
𝓉∈𝒯 (𝒹i,𝓉))

n =
⋃
𝓉∈𝒯

(𝒹i,𝓉) × . . . ×
⋃
𝓉∈𝒯

(𝒹i,𝓉)

︸ ︷︷ ︸
n times

;

• ℘((
⋃
𝓉∈𝒯 (𝒹i,𝓉))

n) is the powerset of (
⋃
𝓉∈𝒯 (𝒹i,𝓉))

n; and
• (℘ ((

⋃
𝓉∈𝒯 (𝒹i,𝓉))

n))𝒯 is the set of all functions from𝒯 to ℘((
⋃
𝓉∈𝒯 (𝒹i,𝓉))

n).

8That is,𝓂j is a partial function with domain𝒯 and codomainℬα .
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4. ℛi = ⋃
n∈Z+ ℛn

i is the set of rigid embodiments (of some arity) of at most
stage i;

5. ℛκ = ⋃
i<κ ℛi is the set of all rigid embodiments.

According to Definition 4, a rigid embodiment is an embodiment that contains the
same material parts at every time. The definition of variable embodiments will appeal
to a special type of property, defined as follows:

Definition 5 (Stage i individual concept)
For every i < κ:

1. A stage i individual concept is a function𝒳 ∈ 𝒟 1
i such that:

(a) ∀𝓉 ∈ 𝒯 (|𝒳 (𝓉)| = 1 or𝒳 (𝓉) = ∅); and
(b) ∃𝓉, 𝓉′ ∈ 𝒯 (|𝒳 (𝓉)| = |𝒳 (𝓉′)| = 1&𝒳 (𝓉) �= 𝒳 (𝓉′)).

2. ℐi is the set of stage i individual concepts.

According to Definition 5,𝒳 is an individual concept just in case: (i)𝒳 is instan-
tiated by at most one individual at each moment in time; and (ii) there are times 𝓉
and 𝓉′ such that 𝒳 is instantiated both at 𝓉 and 𝓉′, and the individual instantiating
𝒳 at 𝓉 is distinct from the individual instantiating𝒳 at 𝓉′. We are now in a position
to define variable embodiments:

Definition 6 (Stage i variable embodiments)
For every 0 < i ≤ κ:

1. A stage i variable embodiment is a stage i unary embodiment ℯ = 〈𝓂,𝒳 〉 such
that:

(a) 𝒳 is a stage i individual concept; and
(b) ∀𝓉 ∈ 𝒯 :

(i) ∀𝓍(𝒳 (𝓉) = {𝓍} ⇒𝓂(𝓉) = 𝓍); and
(ii) ¬∃𝓍(𝒳 (𝓉) = {𝓍}) ⇒ ¬∃𝓍(𝓂(𝓉) = 𝓍).

2. 𝒱i = ⋃
j≤i{ℯ : ℯ is a stage j variable embodiment} is the set of variable

embodiments of at most stage i;
3. 𝒱κ = ⋃

i<κ 𝒱i is the set of all variable embodiments.

Whereas in the case of rigid embodiments, each partial function𝓂j , for each j

such that 1 ≤ j ≤ n, determines the same individual with respect to every time, in the
case of variable embodiments each partial function𝓂 determines possibly different
individuals at different times. Moreover, in the case of variable embodiments the
partial function𝓂 is determined in terms of the individual concept𝒳 . For each time
t ,𝓂(𝓉) is the unique individual falling under 𝒳 at 𝓉, if there is such an individual,
and otherwise𝓂(𝓉) is undefined.
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Prima facie, n-ary rigid embodiments would more naturally be represented as n-
tuples of objects (rather than functions from times to objects) and n-ary relations.
The advantage of our representation of embodiments is that it makes possible for a
representation of both rigid and variable embodiments as entities of the same kind.
As we shall see, it also enables a unifying representation of the notion of immediate
parthood at a time.

We now define the set of individuals of at most stage i that exist at time 𝓉:

Definition 7 (Domain of individuals of at most stage i that exist at 𝓉)
For every i ≤ κ and 𝓉 ∈ T :

1. 𝓍 is an individual of at most stage i that exists at 𝓉 if and only if either:

(a) 𝓍 ∈ 𝒹0,𝓉, if i = 0;
(b) there is some n ∈ Z

+ and j ≤ i such that 𝓍 = 〈𝓂1, . . . ,𝓂n,𝒳 〉 ∈
(ℛ𝓃

𝒿 ∪𝒱j ) and
∃𝓍1, . . .𝓍n(𝓍1 = 𝓂1(𝓉)& . . .&𝓍n = 𝓂n(𝓉)& 〈𝓍1, . . . ,𝓍n〉 ∈
𝒳 (𝓉)), if i > 0.

2. 𝒹i,𝓉 is the set of stage i individuals of t ;
3. 𝒹κ,𝓉 = ⋃

i<κ di,𝓉 is the set of all individuals of t ;
4. ℬi = ⋃

𝓉∈𝒯 𝒹i,𝓉 is the set of individuals of at most stage i that exist at some
time;

5. ℬκ = ⋃
i<κ ℬi is the set of all individuals that exist at some time.

According to Definition 7, an individual of at most stage i that exists at time 𝓉
is either an element of 𝒹0,𝓉, if i = 0, or else it is a rigid or variable embodiment
of at most stage i whose material parts at 𝓉 stand, at 𝓉, in the relation that is the
individual’s principle of embodiment.

The set of stage i individuals of t is a superset of the set of stage i individuals of
𝓉 that are located at 𝓅:

Definition 8 (Domain of at most stage i individuals of 𝓉 that are located at 𝓅)
For every i ≤ κ , t ∈ T and p ∈ P :

1. A stage i individual 𝓍 of 𝓉 located at 𝓅 is either:

(a) An element of𝒹0,𝓉,𝓅, if i = 0; or else
(b) there is some n ∈ Z

+ such that𝓍 = 〈𝓂1, . . . ,𝓂n,𝒳 〉 ∈ 𝒹i,t & ∃l, j (1 ≤
l ≤ n& j < i &𝓂l (𝓉) ∈ 𝒹j,𝓉,𝓅), if i > 0.

2. 𝒹i,𝓉,𝓅 is the set of at most stage i individuals of 𝓉 that are located at 𝓅;
3. 𝒹κ,𝓉,𝓅 is the set of all individuals of 𝓉 that are located at 𝓅.

According to Definition 8, an embodiment is located at a point 𝓅 and time 𝓉 just
in case some of its material parts at 𝓉 are located at point 𝓅 and time 𝓉.
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3.3 Mereological Notions

We now turn to the characterisation of mereological notions in terms of frames. These
will be the interpretations of the mereological predicates of our language.

The most basic notion is that of immediate parthood at 𝓉:

Definition 9 (Immediate parthood)
For every frameℱ , 𝓉 ∈ 𝒯 , n ∈ N, and 𝓍,𝓎, 𝓍 is an immediate part of 𝓎 at t (and
ℱ ), 𝓍�𝓉

ℱ 𝓎 if and only if there is an n ∈ Z
+ such that

1. 𝓎 = 〈𝓂1, . . . ,𝓂n,𝒳 〉 ∈ 𝒹κ,𝓉 ∩ (ℛn
κ ∪𝒱κ); and

2. either (i) ∃i : 1 ≤ i ≤ n(𝓍 =𝓂i (𝓉)&𝓍 ∈ 𝒹κ,𝓉), or (ii) 𝓍 = 𝒳 .

Thus, according to Definition 9, 𝓍 is an immediate part of 𝓎 at 𝓉 just in case
𝓎 exists at 𝓉 and 𝓍 is either a material part of 𝓎 at 𝓉 that exists at 𝓉 or else 𝓍 is
𝓎’s principle of embodiment. The definition of parthood appeals to the following
definition:

Definition 10 (Immediate Parthood Sequence)
For every frame ℱ , time 𝓉 ∈ 𝒯 , n ∈ Z

+ and sequence of objects �𝓍n =
〈𝓍1, . . . ,𝓍n〉, �𝓍n is an n-element immediate parthood sequence at 𝓉 (and ℱ ),
�𝓉
ℱ ( �𝓍n), if and only if n ≥ 2 and ∀i : 1 ≤ i < n(𝓍i �𝓉

ℱ 𝓍i+1).

According to Definition 10, an immediate parthood sequence is a sequence each
member of which is an immediate part of its successor, whenever it has a successor.
Proper parthood is defined as follows:

Definition 11 (Proper Parthood)
For every frame ℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a proper part of 𝓎 at 𝓉 (and frame
ℱ ), x <𝓉ℱ y, if and only if:

∃n ∈ Z
+∃ �𝓍n(�𝓉

ℱ ( �𝓍n)&𝓍 = 𝓍1 &𝓎 = 𝓍n).

According to Definition 11, to be a proper part is to be a member of a chain of
immediate parthood. Parthood is defined in the usual manner:

Definition 12 (Parthood)
For every frameℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a part of 𝓎 at 𝓉 (andℱ ), 𝓍 �𝓉ℱ 𝓎,
if and only if:
𝓍 <𝓉ℱ 𝓎 or 𝓍 = 𝓎 ∈ 𝒹κ,𝓉 ∪𝒟+

κ .

We now turn to the definition of proper timeless parthood:

Definition 13 (Proper Timeless Parthood)
For every frameℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a proper timeless part of 𝓎 at 𝓉 (and
ℱ ), 𝓍 �𝓉ℱ 𝓎, if and only if:
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∃n ∈ Z
+∃ �𝓍n(�𝓉

ℱ ( �𝓍n)&𝓍 = 𝓍1 &𝓎 = 𝓍n &∀i : 1 ≤ i < n(𝓍i+1 ∈
ℛn

κ or xi ∈ 𝒟+
κ )).

According to Definition 13, 𝓍 is a proper timeless part of 𝓎 just in case there is
an immediate parthood sequence linking𝓍 to 𝓎 whose members are all rigid embod-
iments except, perhaps, 𝓍 or else 𝓍 is a variable embodiment, its successor in the
immediate parthood sequence is a variable embodiment, and all other elements in the
immediate parthood sequence linking 𝓍 to 𝓎 are rigid embodiments.

Definition 14 (Timeless parthood)
For every frame ℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a timeless part of 𝓎 at 𝓉 (and ℱ ),
𝓍 �𝓉ℱ 𝓎, if and only if:
𝓍 �𝓉ℱ 𝓎 or 𝓍 = 𝓎 ∈ 𝒹κ,𝓉 ∪𝒟+

κ .

Besides timeless parthood, the other mereological primitives of Fine’s theory
are the relations of temporary parthood, of being a manifestation, and of being
mereologically chained. Manifestation is defined as follows:

Definition 15 (Manifestation)
For every frameℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a manifestation of 𝓎 at 𝓉 (andℱ ),
𝓍M𝓉

ℱ 𝓎, if and only if:
𝓎 ∈ 𝒹κ,𝓉 ∩𝒱κ and ∃𝓂,𝒳 (y = 〈𝓂,𝒳 〉& x =𝓂(𝓉) ∈ 𝒹κ,𝓉).

According to Definition 15, for𝓍 to be a manifestation of an entity 𝓎 is for 𝓎 to be
variable embodiment and for 𝓍 to be 𝓎’s material part at 𝓉. Proper temporary part-
hood is defined in terms of the mereological notions of parthood and manifestation
as follows:

Definition 16 (Proper Temporary parthood)
For every frame ℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a proper temporary part of 𝓎 at 𝓉
(andℱ ), 𝓍 ≺𝓉ℱ 𝓎, if and only if:

∃𝓊,𝓏 ∈ 𝒹κ,𝓉(𝓍 �𝓉ℱ 𝓊&𝓊M𝓉
ℱ 𝓏&𝓏 �𝓉ℱ 𝓎).

According to Definition 16, to be a proper temporary part of 𝓍 is to have as a
part a variable embodiment whose manifestation has 𝓍 among its parts. Temporary
parthood is defined as expected:

Definition 17 (Temporary parthood)
For every frameℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is a temporary part of 𝓎 at 𝓉 (andℱ ),
𝓍 �𝓉ℱ 𝓎, if and only if:
𝓍 ≺𝓉ℱ 𝓎 or 𝓍 = 𝓎 ∈ 𝒹κ,𝓉 ∪𝒟+

κ .

We now define the notion of a mereological chain:

Definition 18 (Mereological chain)
For every frameℱ , time 𝓉 ∈ 𝒯 , n ∈ Z

+ and n-ary sequence �𝓍n = 〈𝓍1, . . . ,𝓍n〉,
�𝓍n is a mereological chain at 𝓉 (andℱ ),�𝓉

ℱ ( �𝓍n), if and only if:
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n ≥ 2&∀i : 1 ≤ i < n(𝓍iM
𝓉
ℱ 𝓍i+1 or 𝓍i �𝓉ℱ 𝓍i+1)& ∃i : 1 ≤ i <

n(𝓍iM
𝓉
ℱ 𝓍i+1).

We can now define the final mereological notion in terms of which Fine’s theory
is formulated:

Definition 19 (Mereologically chained)
For every frame ℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎, 𝓍 is mereologically chained to 𝓎 at 𝓉
(andℱ ), x �𝓉

ℱ y, if and only if:
∃n ∈ Z

+(∃ �𝓍n(�t
F ( �𝓍n)&𝓍1 = 𝓍&𝓍n = y).

Before concluding the characterisation of the language’s mereological notions we
state a result to the effect that for 𝓍 to be a temporary part of 𝓎 at 𝓉 just is for 𝓍 to
be mereologically chained to 𝓎 at 𝓉:

Lemma 1 For every frameℱ , time 𝓉 ∈ 𝒯 and 𝓍,𝓎:

𝓍 ≺𝓉ℱ 𝓎 iff 𝓍�𝓉
ℱ 𝓎.

Proof of Lemma 1
(⇒): Suppose that 𝓍 ≺𝓉ℱ 𝓎. By Definitions 12 and 17, it follows that there is an
immediate parthood sequence at 𝓉 between𝓍 and some 𝓏 such that 𝓏 is a manifesta-
tion at 𝓉 of some𝓌 such that there is an immediate parthood sequence at 𝓉 between
𝓌 and 𝓎. Furthermore, note that, for every 𝓏 and 𝓌, if 𝓏 is an immediate part at 𝓉
of 𝓌, then either 𝓏 is a timeless part of 𝓌 at 𝓉, or else 𝓏 is a manifestation at 𝓉 of
𝓌, by Definitions 7, 9, 14 and 15. But then, 𝓍�𝓉

ℱ 𝓎.
(⇐): Clearly, for any 𝓏 and 𝓌, if 𝓏 is a manifestation of 𝓌 at 𝓉, then 𝓏 is an
immediate part of𝓌 at 𝓉, and if 𝓏 is a timeless part of𝓌 at 𝓉 then 𝓏 is an immediate
part of 𝓌 at 𝓉. Either way, 𝓏 is an immediate part of 𝓌 at 𝓉. Now, suppose that
𝓍 �𝓉

ℱ 𝓎. It follows from the above and Definition 19 that there is an immediate
parthood sequence at 𝓉 linking 𝓍 to some element 𝓏 that is a manifestation at 𝓉 of
some element 𝓌 which is such that there is an immediate parthood sequence at 𝓉
linking𝓌 to 𝓎. So, 𝓍 ≺𝓉ℱ 𝓎.

This result concludes the characterisation of our target frames. In what follows we
define a language with sufficient resources for the formulation of Fine’s theory of
embodiments.

3.4 Language

Fine’s theory of embodiments will be formulated in the language LE, a language
obtained from a second-order language by adding: (i) variables for spatial points, (ii)
the temporal operators ‘H ’ (‘it was always that’) and ‘G’ (‘it will always be that’);
(iii) the location predicate �Loc(s)�, for every spatial variable s (where ‘Loc(p)’
stands for a predicate standing the property of being located at p); (iv) ‘/’ (standing
for a function mapping an n-ary sequence of individuals and an n-ary relation to the
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rigid embodiment containing those individuals and that relation as immediate parts)
and ‘/ /’ (standing for a function mapping a monadic property to the variable embod-
iment containing this monadic property as its formal part); (v) the identity predicate
‘=’, flanked either by individual terms or n-ary second-order terms; (vi) the mere-
ological binary predicates ‘�’ (standing for the immediate parthood relation), ‘<’
(standing for the proper parthood relation), ‘�’ (standing for timeless proper part-
hood), ‘≺’ (standing for temporary proper parthood), ‘�’ (standing for the relation
that obtains between x and y when there is a mereological chain linking x to y), and
‘M’ (standing for the ‘is a manifestation of’ relation).

In what follows we offer a more precise definition of LE. We start by defining the
language’s individual constants, predicate letters and variables:

Definition 20 (Individual constants and predicates of LE)
1. The set {�ai� : i ∈ N} is the set of individual constants of LE;
2. For each n ∈ N, the set {�Rn

i � : i ∈ N} is the set of (uninterpreted) n-ary
predicates of LE.

Definition 21 (Variables of LE)
1. {�ui�, �vi�, �wi�, �xi�, �yi�, �zi� : i ∈ Z

+} is the set of individual variables
of LE;

2. For each n ∈ N, {�Un
i �, �V n

i �, �Wn
i �, �Xn

i �, �Yn
i �, �Zn

i � : i ∈ Z
+} is the set

of n-ary second-order variables of LE;
3. {�pi� : i ∈ Z

+} is the set of spatial variables of LE.

The set of n-ary second-order terms of LE is defined as follows:

Definition 22 (n-ary second-order terms of LE)
1. Every n-ary predicate letter is an n-ary second-order term;
2. Every n-ary second-order variable is an n-ary second-order term;
3. Nothing else is an n-ary second-order term.

The set of individual terms of LE is defined as follows:

Definition 23 (Individual terms of LE)
1. Every individual variable is an individual term;
2. Every individual constant is an individual term;
3. If σ1, . . ., σn are individual terms and ζ is an n-ary second-order term, then

�σ1, . . . , σn/ζ� is an individual term;
4. If ζ is a monadic second-order term, then �/ζ/� is an individual term;
5. Nothing else is an individual term.

The set of well-formed formulas (wffs) is defined as follows:

Definition 24 (Well-formed formulae of LE) If σ, σ1, σ2, . . . , σn are individual
terms, ζ, ζ1, ζ2 are n-ary second-order terms, ρ1 and ρ2 are either individual terms of
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second-order terms of some arity, ϕ and ψ are wffs, v is an individual variable, V is
an n-ary second-order variable and s is a spatial variable, then:

1. �ζσ1, . . . , σn� is a wff; 10. �ρ1 � ρ2� is a wff;
2. �Loc(s)σ� is a wff; 11. �¬ϕ� is a wff;
3. �σ1Mσ2� is a wff; 12. �ϕ ∧ ψ� is a wff;
4. �σ1 = σ2� is a wff; 13. �∀vϕ� is a wff;
5. �ζ1 = ζ2� is a wff; 14. �∀V ϕ� is a wff;
6. �ρ1 � ρ2� is a wff; 15. �∀sϕ� is a wff;
7. �ρ1 < ρ2� is a wff; 16. �Hϕ� is a wff;
8. �ρ1 � ρ2� is a wff; 17. �Gϕ� is a wff;
9. �ρ1 ≺ ρ2� is a wff;
Furthermore, nothing else is a wff.

This concludes the definition of the language LE.

3.5 Models

We now define models for LE:

Definition 25 (Models)
A model for LE based on a frame ℱ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤〉 is any sequenceℳ =
〈𝒯 ,𝒫 ,𝒹0, κ, ≤,𝓋〉, where:
1. 𝓋(σ ) ∈ℬκ , for each individual constant σ of LE;
2. 𝓋(ζ ) ∈ 𝒟 n

κ , for each n-ary predicate ζ of LE and n ∈ N.

Definition 26 (Variable-assignment)
For every frameℱ ,

1. A variable-assignment based onℱ is a function ℊ such that, for each first-order
variable 𝓋, n-ary second-order variable V , and spatial variable s, ℊ(v) ∈ ℬκ ,
ℊ(V ) ∈ 𝒟 n

κ and ℊ(s) ∈ 𝒫 .
2. Asℱ is the set of all variable-assignments based onℱ ;
3. Where ℊ is a variable-assignment, ℊ[η/𝓍] is a variable assignment just like ℊ

except that it assigns 𝓍 to the variable η (where η and 𝓍 are such as to respect
the conditions required for ℊ[η/𝓍] to belong to Asℱ ).

We now define the notion of value relative to a variable-assignment and a time:

Definition 27 (Value relative to a variable-assignment and a time)

1. 𝓋ℊ(σ ) =
{
𝓋(σ ) if σ is an individual constant
ℊ(σ ) if σ is a first-order variable

2. 𝓋ℊ(ζ ) =
{
𝓋(ζ ) if ζ is an n-ary predicate letter
ℊ(ζ ) if ζ is an n-ary second-order variable
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3. vg(σ1, . . . , σn/ζ )=
{
ℯ=〈λ𝓉∈𝒯 .𝓋ℊ(σ1), . . . , λ𝓉∈𝒯 .𝓋ℊ(σn),𝓋ℊ(ζ )〉 if ℯ∈ℛn

κ ∩ℬκ

undefined Otherwise

4. vg(/ζ/) =
{
ℯ = 〈𝓂,𝒳 〉 such that𝒳 = 𝓋ℊ(ζ ) if ℯ ∈𝒱κ ∩ℬκ

undefined Otherwise

Satisfaction is defined as follows:

Definition 28 (Satisfaction) For every modelℳ (based on some frameℱ ), 𝓉 ∈ 𝒯
and ℊ ∈ Asℱ :

1. ℳ, 𝓉,ℊ � ζσ1 . . . σn iff ∀i : 1 ≤ i ≤ n(𝓋ℊ(σi) is defined), and
〈𝓋ℊ(σ1), . . . ,𝓋ℊ(σn)〉 ∈ 𝓋ℊ(ζ )(𝓉)

2. ℳ, 𝓉,ℊ � Loc(s)σ iff 𝓋ℊ(σ ) is defined and 𝓋ℊ(σ ) ∈ 𝒹κ,𝓉,ℊ(s);
3. ℳ, 𝓉,ℊ � σ1Mσ2 iff 𝓋ℊ(σ1) and 𝓋g(σ2) are defined and 𝓋ℊ(σ1)M

𝓉
ℱ 𝓋

ℊ(σ2);
4. ℳ, 𝓉,ℊ � σ1 = σ2 iff 𝓋ℊ(σ1) ∈ 𝒹κ,𝓉 and 𝓋ℊ(σ1) = 𝓋ℊ(σ2);
5. ℳ, 𝓉,ℊ � ζ1 = ζ2 iff 𝓋ℊ(ζ1) = 𝓋ℊ(ζ2);
6. ℳ, 𝓉,ℊ � ρ1 � ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) �𝓉

ℱ
𝓋ℊ(ρ2);

7. ℳ, 𝓉,ℊ � ρ1 < ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) <𝓉ℱ
𝓋ℊ(ρ2);

8. ℳ, 𝓉,ℊ � ρ1 � ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) �𝓉ℱ 𝓋ℊ(ρ2);
9. ℳ, 𝓉,ℊ � ρ1 ≺ ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) ≺𝓉ℱ

𝓋ℊ(ρ2);
10. ℳ, 𝓉,ℊ � ρ1 � ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) �𝓉

ℱ
𝓋ℊ(ρ2);

11. ℳ, 𝓉,ℊ � ¬ϕ iffℳ, 𝓉,ℊ �� ϕ;
12. ℳ, 𝓉,ℊ � ϕ ∧ ψ iffℳ, 𝓉,ℊ � ϕ andℳ, 𝓉,ℊ � ψ ;
13. ℳ, 𝓉,ℊ � ∀vϕ iff for all 𝓍 ∈ 𝒹κ,𝓉:ℳ, 𝓉,ℊ[v/𝓍] � ϕ;
14. ℳ, 𝓉,ℊ � ∀V ϕ iff for all𝒳 ∈ 𝒟 n

κ :ℳ, 𝓉,ℊ[V/𝒳 ] � ϕ;
15. ℳ, 𝓉,ℊ � ∀sϕ iff for all 𝓅 ∈ 𝒫 :ℳ, 𝓉,ℊ[s/𝓅] � ϕ;
16. ℳ, 𝓉,ℊ � Hϕ iff for all 𝓉′ ∈ 𝒯 s. t. 𝓉′ < 𝓉:ℳ, 𝓉′,ℊ � ϕ;
17. ℳ, 𝓉,ℊ � Gϕ iff for all 𝓉′ ∈ 𝒯 s. t. 𝓉′ > 𝓉:ℳ, 𝓉′,ℊ � ϕ.

Definition 29 (Consequence and Truth in a Model)
For every modelℳ (based on some frameℱ ), wff ϕ and set of wffs �:

1. ϕ is a consequence of � inℳ, � �ℳ ϕ, if and only if
∀g ∈ Asℱ ∀𝓉 ∈ 𝒯 (∀γ ∈ �(ℳ, 𝓉,ℊ � γ ) ⇒ℳ, 𝓉,ℊ � ϕ).

2. ϕ is true inℳ, �ℳ ϕ, if and only if ∅ �ℳ ϕ.

Definition 30 (LE Consequence and Truth)
For every wff ϕ and set of wffs �:

1. ϕ is an LE-consequence of �, � � ϕ, if and only if, for every modelℳ: � �ℳ ϕ;
2. ϕ is an LE-truth, � ϕ, if and only if ∅ � ϕ.

We will call the theory consisting of all LE truths the E-theory.
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This concludes the presentation of the model theory for LE. In the next section
we discuss a couple illustrative examples concerning the predictions made by the
E-theory.

4 Illustrative Examples

The Ham Sandwich And now, “we can give a satisfactory account of the ham sand-
wich” [10, p. 67], which is a rigid embodiment s = s1, h, s2/B consisting of two
slices of bread, s1 and s2, and a slice of ham, h, and is structured by the ‘betweenness’
relation, B.

Letℳ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤,𝓋〉 be a model such that:

1. 𝒯 = {1, 2, 3}; 4. 𝓋(s1) = 𝓈1, 𝓋(s2) = 𝓈2 and
2. 𝒹0,1 = 𝒹0,2 = 𝒹0,3 = {𝓈1,𝒽, 𝓈2}; 𝓋(h) = 𝒽;
3. 1 ≤ 2 ≤ 3; 5. 𝓋(B) =ℬ s.t.:ℬ(1) = ∅;

ℬ(2) =ℬ(3) = {〈𝓈1,𝒽, 𝓈2〉}.
Then, for every ℊ ∈ Asℱ :

vg(s1, h, s2/B) = 〈λ𝓉.𝓋ℊ(s1), λ𝓉.𝓋ℊ(h), λ𝓉.𝓋ℊ(s2),ℬ〉
= 〈λ𝓉.𝓈1, λ𝓉.𝒽, λ𝓉.𝓈2,ℬ〉.

Among the consequences of the model theory are the following:

1. (a) ℳ, 1,ℊ � ¬Bs1hs2, for every ℊ ∈ Asℱ ;
(b) ℳ, 1,ℊ � ¬∃x(x = (s1, h, s2/B)), for every ℊ ∈ Asℱ :
(c) ℳ, 1,ℊ � ¬s1 � (s1, h, s2/B), for every ℊ ∈ Asℱ ;
(d) ℳ, 1,ℊ � ¬h � (s1, h, s2/B), for every ℊ ∈ Asℱ ;
(e) ℳ, 1,ℊ � ¬s2 � (s1, h, s2/B), for every ℊ ∈ Asℱ ;

2. (a) ℳ, 𝓉,ℊ � Bs1hs2, for every ℊ ∈ Asℱ and every 𝓉 ∈ {2, 3};
(b) ℳ, 𝓉,ℊ � ∃x(x = (s1, h, s2/B)), for every ℊ ∈ Asℱ and every 𝓉 ∈

{2, 3};
(c) ℳ, 𝓉,ℊ � s1 � (s1, h, s2/B), for every ℊ ∈ Asℱ and every 𝓉 ∈ {2, 3};
(d) ℳ, 𝓉,ℊ � h � (s1, h, s2/B), for every ℊ ∈ Asℱ and every 𝓉 ∈ {2, 3};
(e) ℳ, 𝓉,ℊ � s2 � (s1, h, s2/B), for every ℊ ∈ Asℱ and every 𝓉 ∈ {2, 3}.

The Car Similarly we can now “provide a more satisfactory account of the car”
[10, p. 68]. We model the change in parts in the car by a variable embodiment /A/

consisting at each time of rigid embodiments composed of ‘automotive’ parts such
as a chassis (a), body (b), engine (e), etc. organized in the ‘automotive way’ (R), and
which undergoes a change in its carburettor (from c to d) and then is disassembled.

Letℳ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤, v〉 be a model such that:

1. 𝒯 = {1, 2, 3};
2. 𝒹0,1 = 𝒹0,2 = 𝒹0,3 = {𝒶,𝒷,𝒸,𝒹,ℯ};
3. 1 ≤ 2 ≤ 3;
4. 𝓋(a) = 𝒶, 𝓋(b) = 𝒷, 𝓋(c) = 𝒸, 𝓋(d) = 𝒹, 𝓋(e) = ℯ;
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5. v(R) = ℛ such that ℛ(1) = {〈𝒶,𝒷,𝒸,ℯ〉}, ℛ(2) = {〈𝒶,𝒷,𝒹,ℯ〉} and
ℛ(3) = ∅;

6. v(A) = 𝒜 such that 𝒜 (1) = {〈λ𝓉.𝒶, λ𝓉.𝒷, λ𝓉.𝒸, λ𝓉.ℯ,ℛ〉}, 𝒜 (2) =
{〈λ𝓉.𝒶, λ𝓉.b, λ𝓉.𝒹, λ𝓉.ℯ,ℛ〉} and𝒜 (3) = ∅.

Now, let𝓂 : 𝒯 +→ ⋃
𝓉∈𝒯 (𝒹κ,𝓉) be a function such that:

1. 𝓂(1) = 〈λ𝓉.𝒶, λ𝓉.𝒷, λ𝓉.𝒸, λ𝓉.ℯ,ℛ〉;
2. 𝓂(2) = 〈λ𝓉.𝒶, λ𝓉.𝒷, λ𝓉.𝒹, λ𝓉.ℯ,ℛ〉;
3. 𝓂 is undefined when 𝓉 = 3.

Then, for every ℊ ∈ Asℱ :
𝓋ℊ(/A/) = 〈𝓂,𝓋ℊ(A)〉 = 〈𝓂,𝒜 〉.
Among the consequences of the model theory are the following:

1. (a) ℳ, 1,ℊ � a ≺ /A/, for all ℊ ∈ Asℱ ;
(b) ℳ, 1,ℊ � b ≺ /A/, for all ℊ ∈ Asℱ ;
(c) ℳ, 1,ℊ � c ≺ /A/, for all ℊ ∈ Asℱ ;
(d) ℳ, 1,ℊ � ¬d < /A/, for all ℊ ∈ Asℱ ;

2. (a) ℳ, 2,ℊ � a ≺ /A/, for all ℊ ∈ Asℱ ;
(b) ℳ, 2,ℊ � b ≺ /A/, for all ℊ ∈ Asℱ ;
(c) ℳ, 2,ℊ � d ≺ /A/, for all ℊ ∈ Asℱ ;
(d) ℳ, 2,ℊ � ¬c < /A/, for all ℊ ∈ Asℱ .

We now turn to the proof that Fine’s theory of embodiments is sound with respect
to the semantics offered in Section 3.

5 Soundness of the Theory of Embodiments

We begin by formulating the postulates of the theory of embodiments in the language
LE.

5.1 Fine’s Postulates

Let �xn and �yn be, respectively, the sequences of x1, . . ., xn and y1, . . ., yn of variables.
Fine’s postulates are regimented in LE as follows:
Rigid Embodiments:

(R1) ∃x(x = �yn/Xn) ↔ Xn �yn.
(R2) ∃x(x = �yn/Xn) → ∀p(Loc(p)�yn/Xn ↔ ∨

1≤i≤n(Loc(p)yi)).
(R3) ∃z(z = �xn/Xn) → (�xn/Xn = �ym/Ym ↔ (

∧
1≤i≤m(xi = yi) ∧ Xn = Ym)).

(R4) ∃z(z = �xn/Xn) → ∧
1≤i≤n xi � �xn/Xn.

(R5) ∃z(z = �xn/Xn) → Xn � �xn/Xn.
(R6) (x� �yn/Xn → ∨

1≤i≤n(x � yi))∧(Ym� �yn/Xn → ∨
1≤i≤n(Y

m�yi)∨Ym =
Xn).

Variable Embodiments:

(V1) ∃x(x = /X/) ↔ ∃x(xM/X/).
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(V2) ∃x(x = /X/) → ∃x(xM/X/ ∧ ∀p(Loc(p)/X/ ↔ Loc(p)x)).
(V3) ∃x(x = /X/) → (/X/ = /Y/ ↔ X = Y ).
(V4) xM/X/ → x ≺ /X/.
(V5a) (∃y(∃u(x = u) ∧ x � y ∧ y ≺ z) → x ≺ z) ∧ (∃y(∃Un(Xn = Un) ∧ Xn �

y ∧ y ≺ z) → Xn ≺ z).
(V5b) (∃y(x ≺ y ∧ (∃u(z = u) ∧ y � z) → x ≺ z) ∧ ∃y(Xn ≺ y ∧ ∃u(z =

u) ∧ y � z) → Xn ≺ z).
(V6) (x ≺ y → x � y) ∧ (Xn ≺ y → Xn � y).

Before proceeding it is relevant to make a couple of observations on the present
formulation of Fine’s postulates. The first observation is that the formulation of prin-
ciples (R3), (R4), (R5) and (V3) differs slightly from the one offered in Section 1.
The present formulation qualifies the principles presented in Section 1 by making
them conditional on the existence of the requisite rigid or variable embodiments. To
see the need for such qualification, consider, for instance, principle (R3). In gen-
eral, the parts of a past or future rigid embodiment may all exist, and so may all be
self-identical, even though the rigid embodiment is not self-identical, as it does not
currently exist (recall that in our models standing in a relation at a time implies exis-
tence at that time). The antecedent of (R3) rules out this scenario by requiring the
existence of the rigid embodiment. Similar remarks apply to principles (R4), (R5)
and (V3). Unqualified, the principles presented in Section 1 may fail to be true in
hylomorphic models, owing to the fact that the requisite embodiments do not exist.

The second observation concerns principles (R6), (V5a), (V5b) and (V6). These
are formulated as conjunctions in order to reflect the fact that not only individuals
but also relations may be parts. In each case taking just the first conjunct would not
do, since the variables of LE do not range over a common domain of individuals and
relations.

5.2 Preliminary Lemmas

We now state a number of lemmas that will be appealed to in the proof that Fine’s
postulates are all LE-truths.

Lemma 2 For every time 𝓉 ∈ 𝒯 , parthood at 𝓉 is a partial order. That is, parthood
at 𝓉 is reflexive, antisymmetric and transitive in𝒹κ,𝓉 ∪𝒟+

κ .

The proof of Lemma 2 depends on Lemmas 3 and 4:

Lemma 3 For every ℯ = 〈𝓂1, . . . ,𝓂n,𝒳 〉 ∈ ℬκ ∩ (ℛn
κ ∪ 𝒱κ) and time

𝓉 ∈ 𝒯 , every immediate part of ℯ at 𝓉 belongs to the transitive closure of ℯ under
membership.

Proof of Lemma 3 Suppose 𝓉 is an arbitrary member of𝒯 , ℯ = 〈𝓂1, . . . , mn,𝒳 〉
is an arbitrary element ofℬκ∩(ℛn

κ∪𝒱κ) and𝓍 is an arbitrary immediate part ofℯ at 𝓉.
Either (a)𝓍 = 𝒳 , or (b) ∃j ≤ n(𝓍 =𝓂j (𝓉)), by Definition 9. Clearly, if (a) is true,
then 𝓍 ∈ T C(ℯ) (where T C(ℯ) is the transitive closure of ℯ under membership).
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Furthermore, if (b) is true, then 〈𝓉,𝓂j (𝓉)〉 ∈ 𝓂j . So, 𝓂j (𝓉) ∈ T C(𝓂j ). But
𝓂j ∈ T C(ℯ). Therefore,𝓂j (𝓉) ∈ T C(ℯ). Hence, 𝓍 ∈ T C(ℯ).

Lemma 4 For every n ∈ Z
+ and every immediate parthood at 𝓉 sequence �𝓍n =

〈𝓍1, . . . ,𝓍n〉:
∀j ∈ Z

+ : j < n(𝓍j belongs to the transitive closure of 𝓍n).

Proof of Lemma 4 The proof is by induction on the positive integers:
(Base Case): when n = 1 there is no positive integer smaller than n. Therefore, the
base case holds vacuously.
(Induction Case): By the induction hypothesis, ∀j ∈ Z

+ : j < n(𝓍j ∈ T C(𝓍n)).
But, 𝓍n ∈ T C(𝓍n+1), by Lemma 3. Therefore, ∀j ∈ Z

+ : j ≤ n(𝓂j ∈
T C(𝓍n+1)).

We now prove that parthood is a partial order:

Proof of Lemma 2
(Reflexivity): Follows straightforwardly from Definition 12, since every 𝓍 ∈ 𝒹κ,𝓉 ∪
𝒟+

κ is such that 𝓍 = 𝓍, and so 𝓍 ≤𝓉ℱ 𝓍.
(Antisymmetry): Suppose𝓍 ≤𝓉ℱ y and 𝓎 ≤𝓉ℱ 𝓍. Suppose, for reductio, that𝓍 �= 𝓎.
Then, by Definition 12:

∃n,m ∈ Z
+∃ �𝓍n∃ �𝓎m(�𝓉

ℱ ( �𝓍n)& �𝓉
ℱ (�ym)&𝓍 = 𝓍1 = 𝓎m &𝓎 = 𝓎1 =

𝓍n &𝓍,𝓎 ∈ 𝒹κ,𝓉)

By Lemma 4, x ∈ T C(y) and y ∈ T C(x). But this is impossible, as it
would violate the axiom of foundation. Therefore, x = y. Hence, parthood at t is
antisymmetric.
(Transitivity): Suppose 𝓍 ≤𝓉ℱ 𝓎 and 𝓎 ≤𝓉ℱ 𝓏. Then,

∃n,m ∈ Z
+∃ �𝓍n∃ �𝓎m(�𝓉

ℱ ( �𝓍n)& �𝓉
ℱ ( �𝓎m)&𝓍 = 𝓍1 &𝓎 = 𝓍n = 𝓎1 &𝓏 =

𝓎m), by Definitions 11, 12.
Now, consider the n + m − 1-sequence �𝓏n+m−1 = 〈𝓏1, . . . ,𝓏n, . . . ,𝓏m+n−1〉

such that:

– ∀i : 1 ≤ i ≤ n(𝓏i = 𝓍i ); and
– ∀l : 1 ≤ l ≤ m(𝓏l+n−1 = 𝓎l ).

Clearly, �𝓉
ℱ ( �𝓏n+m−1), 𝓏1 = 𝓍 and 𝓏m+n−1 = 𝓏, by Definitions 9 and 10.

Therefore, 𝓍 ≤𝓉ℱ 𝓏, by Definitions 11 and 12. Thus, parthood at 𝓉 is transitive.
Therefore, parthood at t is a partial order.

5.3 Soundness

We now prove that Fine’s postulates are sound with respect to the model-theoretic
semantics offered in Section 3 by showing that each postulate is an LE-truth.

Theorem 1 (Soundness) Fine’s theory of embodiments is sound with respect to the
semantics characterised in Section 3.
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Proof of Theorem 1
In what follows we prove that all postulates of Fine’s theory are LE-truths. We do so
by showing that every one of Fine’s postulates is true at an arbitrary modelℳ (based
on some frameℱ ), time 𝓉 ∈ 𝒯 and variable-assignment ℊ ∈ Asℱ .
Proof ofℳ, 𝓉,ℊ �(R1)
(⇒): Suppose ℳ, 𝓉,ℊ � ∃x(x = �yn/Xn). Then, 𝓋ℊ(�yn/Xn) ∈ 𝒹κ,𝓉, by Defi-
nition 28. So, 𝓋ℊ(�yn/Xn) = 〈λ𝓉 ∈ 𝒯 .𝓋ℊ(y1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(yn),𝓋ℊ(Xn)〉 ∈
𝒹κ,t ∩ ℛn

κ , by Definition 27. Hence, 〈𝓋ℊ(y1), . . . ,𝓋ℊ(yn)〉 ∈ 𝓋ℊ(Xn)(𝓉), by
Definition 7. So,ℳ, 𝓉,ℊ � Xn �yn, by Definition 28.
(⇐): Supposeℳ, 𝓉,ℊ � Xn �yn. Then, 〈𝓋ℊ(y1), . . . ,𝓋ℊ(yn)〉 ∈ 𝓋ℊ(Xn)(𝓉), by Def-
inition 28. So, 〈λ𝓉 ∈ 𝒯 .𝓋ℊ(y1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(yn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,t ∩ Rn

κ by
Definition 7. But 𝓋ℊ(�yn/Xn) = 〈λ𝓉 ∈ 𝒯 .𝓋ℊ(y1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(yn),𝓋ℊ(Xn)〉,
by Definition 27. Therefore, 𝓋ℊ(�yn/Xn) ∈ 𝒹κ,𝓉. Hence, ℳ, 𝓉,ℊ � ∃x(x =
�yn/Xn), by Definition 28.
Therefore,ℳ, 𝓉,ℊ � ∃x(x = �yn/Xn) ↔ Xn �yn, by Definition 28.

Proof ofℳ, 𝓉,ℊ �(R2)
Suppose ℳ, 𝓉,ℊ � ∃x(x = �yn/Xn). Then, 𝓋ℊ(�yn/Xn) = 〈λ𝓉 ∈
T .𝓋ℊ(y1), . . . , λ𝓉 ∈ T .𝓋ℊ(yn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,𝓉, by Definitions 27 and 28. Let
ℊ′ be any variable-assignment differing from ℊ at most in the value assigned to
the spatial variable p. We show that ℳ, 𝓉,ℊ′ � Loc(p)�yn/Xn iff ℳ, 𝓉,ℊ′ �∨

1≤i≤n Loc(p)yi .

(⇒) Suppose that ℳ, 𝓉,ℊ′ � Loc(p)�yn/Xn. Then, 𝓋ℊ
′
(�yn/Xn) = 〈λ𝓉 ∈

T .𝓋ℊ
′
(y1), . . . , λ𝓉 ∈ T .𝓋ℊ

′
(yn),𝓋ℊ

′
(Xn)〉 ∈ 𝒹κ,𝓉,ℊ′(p), by Definitions 27 and 28.

So, ∃1 ≤ i ≤ n s. t. λ𝓉 ∈ 𝒯 .𝓋ℊ
′
(yi)(𝓉) = 𝓋ℊ

′
(yi) ∈ 𝒹κ,t,ℊ′(p), by Definition 8,

since 𝓋ℊ(�yn/Xn) ∈ 𝒹κ,𝓉, by assumption, and 𝓋ℊ(�yn/Xn) = 𝓋ℊ
′
(�yn/Xn) – as no

spatial variable occurs in ��yn/Xn�. So, ∃1 ≤ i ≤ n s. t.ℳ, 𝓉,ℊ′ � Loc(p)yi , by
Definition 28. Hence,ℳ, 𝓉,ℊ′ �

∨
1≤i≤n Loc(p)yi , by Definition 28.

(⇐) Suppose ℳ, 𝓉,ℊ′ �
∨

1≤i≤n Loc(p)yi . Then, ∃1 ≤ i ≤ n s. t. ℳ, 𝓉,ℊ′ �
Loc(p)yi , by Definition 28. So, ∃1 ≤ i ≤ n s. t. 𝓋ℊ

′
(yi) = λ𝓉 ∈ 𝒯 .𝓋ℊ

′
(yi)(𝓉) ∈

𝒹κ,𝓉,ℊ′(p), by Definition 28. But 𝓋ℊ(�yn/Xn) ∈ 𝒹κ,𝓉, by assumption, and so

𝓋ℊ
′
(�yn/Xn) = 〈λ𝓉 ∈ T .𝓋ℊ

′
(y1), . . . , λ𝓉 ∈ T .𝓋ℊ

′
(yn),𝓋ℊ

′
(Xn)〉 ∈ 𝒹κ,𝓉,ℊ′(p), by

Definition 8. Therefore,ℳ, 𝓉,ℊ′ � Loc(p)�yn/Xn, by Definition 28.
So,ℳ, 𝓉,ℊ � ∀p(Loc(p)�yn/Xn ↔ ∨

1≤i≤n Loc(p)yi), by Definition 28.
Therefore, ℳ, 𝓉,ℊ � ∃x(x = �yn/Xn) → ∀p(Loc(p)�yn/Xn ↔∨

1≤i≤n Loc(p)yi), by Definition 28.

Proof ofℳ, 𝓉,ℊ �(R3)
Suppose ℳ, 𝓉,ℊ � ∃z(z = �xn/Xn). Then 𝓋ℊ(�xn/Xn) = 〈λ𝓉 ∈
𝒯 .𝓋ℊ(x1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(xn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,𝓉 ∩ℛn

κ , by Definitions 27 and 28.
Furthermore, for all 1 ≤ i ≤ n, λ𝓉 ∈ 𝒯 .𝓋ℊ(xi) ∈ 𝒹κ,𝓉, by Definitions 2 and 7. We
show thatℳ, 𝓉,ℊ � �xn/Xn = �ym/Ym iffℳ, 𝓉,ℊ �

∧
1≤i≤m xi = yi ∧ Xn = Ym.

(⇒) Supposeℳ, 𝓉,ℊ � �xn/Xn = �ym/Ym. Then, m = n, λ𝓉 ∈ 𝒯 .𝓋ℊ(xi) = λ𝓉 ∈
𝒯 .𝓋ℊ(yi) ∈ 𝒹κ,𝓉, for all 1 ≤ i ≤ n and 𝓋ℊ(Xn) = 𝓋ℊ(Y n), by the assumption and
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Definition 27. So,ℳ, 𝓉,ℊ � xi = yi for all 1 ≤ i ≤ m(= n),ℳ, 𝓉,ℊ � Xn = Ym,
by Definition 28. So,ℳ, 𝓉,ℊ �

∧
1≤i≤m xi = yi ∧ Xn = Ym, by Definition 28.

(⇐) Suppose ℳ, 𝓉,ℊ �
∧

1≤i≤m xi = yi ∧ Xn = Ym. Then, m = n, λ𝓉 ∈
𝒯 .𝓋ℊ(xi) = λ𝓉 ∈ 𝒯 .𝓋ℊ(yi) ∈ 𝒹κ,𝓉, for all 1 ≤ i ≤ n and 𝓋ℊ(Xn) = 𝓋ℊ(Y n),
Definition 28. So, 〈λ𝓉 ∈ 𝒯 .𝓋ℊ(x1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(xn),𝓋ℊ(Xn)〉 = 〈λ𝓉 ∈
𝒯 .𝓋ℊ(y1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(yn),𝓋ℊ(Y n)〉. But, by assumption, 𝓋ℊ(�xn/Xn) =
〈λ𝓉 ∈ 𝒯 .𝓋ℊ(x1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(xn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,𝓉 ∩ℛn

κ . So, 𝓋
ℊ(�xn/Xn) =

𝓋ℊ(�ym/Ym) ∈ 𝒹κ,𝓉, by Definition 27. So, ℳ, 𝓉,ℊ � �xn/Xn = �ym/Ym, by
Definition 28.
Therefore, ℳ, 𝓉,ℊ � �xn/Xn = �ym/Ym ↔ ∧

1≤i≤m xi = yi ∧ Xn = Ym, by
Definition 28.
Hence, ℳ, 𝓉,ℊ � ∃z(z = �xn/Xn) → �xn/Xn = �ym/Ym ↔ ∧

1≤i≤m xi = yi ∧
Xn = Ym, by Definition 28.

Proof ofℳ, 𝓉,ℊ �(R4) and (R5)
Suppose ℳ, 𝓉,ℊ � ∃z(z = �xn/Xn). Then 𝓋ℊ(�xn/Xn) = 〈λ𝓉 ∈
𝒯 .𝓋ℊ(x1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(xn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,𝓉 ∩ℛn

κ , by Definitions 27 and 28.
Furthermore, 𝓋ℊ(xi) = λ𝓉 ∈ 𝒯 .𝓋ℊ(xi)(𝓉), for all 𝓉 ∈ T and each 1 ≤ i ≤ n. Since
𝓋ℊ(�xn/Xn) ∈ 𝒹κ,𝓉 ∩ ℛn

κ , it follows by Definitions 2 and 7 that 𝓋ℊ(xi) ∈ 𝒹κ,𝓉,
for all 𝓉 ∈ T and each 1 ≤ i ≤ n. Furthermore, 𝓋ℊ(Xn) ∈ 𝒟 n

κ . So, by Def-
inition 9, for each 1 ≤ i ≤ n, 𝓋ℊ(xi) and 𝓋ℊ(Xn) are immediate parts at 𝓉 of
〈λ𝓉 ∈ 𝒯 .𝓋ℊ(x1), . . . , λ𝓉 ∈ 𝒯 .𝓋ℊ(xn),𝓋ℊ(Xn)〉 ∈ℛn

κ . So:
For each 1 ≤ i ≤ n ℳ, 𝓋ℊ(xi) �𝓉ℱ 𝓋ℊ(�xn/Xn), by Definition 13. So, for each
1 ≤ i ≤ n,ℳ, 𝓉,ℊ �

∧
1≤i≤n xi � �xn/Xn, by Definition 28. Therefore,ℳ, 𝓉,ℊ �

∃z(z = �xn/Xn) → ∧
1≤i≤n xi � �xn/Xn, by Definition 28. This establishes that

ℳ, 𝓉,ℊ �(R4).
ℳ, 𝓉,ℊ � Xn � �xn/Xn, by Definition 28. Therefore,ℳ, 𝓉,ℊ � ∃z(z = �xn/Xn) →
Xn � �xn/Xn, by Definition 28. This establishes thatℳ, 𝓉,ℊ �(R5).

Proof ofℳ, 𝓉,ℊ �(R6)
Without loss of generality, we show only that ℳ, 𝓉,ℊ � x � �yn/Xn →∨

1≤i≤n(x � yi). Suppose ℳ, 𝓉,ℊ � x � �yn/Xn. Then, 𝓋ℊ(x) �𝓉ℱ 𝓋ℊ(�yn/Xn),
by Definition 28. By Definition 27, 𝓋ℊ(�yn/Xn) = 〈λ𝓉 ∈ 𝒯 .𝓋ℊ(y1), . . . , λ𝓉 ∈
𝒯 .𝓋ℊ(yn),𝓋ℊ(Xn)〉 ∈ 𝒹κ,t ∩ ℛn

κ . So, by Definition 9, the only immediate parts
at 𝓉 of 𝓋ℊ(�yn/Xn) are 𝓋ℊ(yi), for each i : 1 ≤ i ≤ n, and 𝓋ℊ(Xn). Since
𝓋ℊ(x) �𝓉ℱ 𝓋ℊ(�yn/Xn), there is an immediate parthood at 𝓉 sequence �𝓍m+1 linking
𝓋ℊ(x) to 𝓋ℊ(�yn/Xn) and such that, for each 1 < i < n, 𝓍i ∈ 𝒟+

κ or xi+1 ∈ ℛκ ,
by Definition 11. So, clearly, there is some i : 1 ≤ i ≤ n such that 𝓋ℊ(yi) is
the mth-element of �𝓍m+1, and so 𝓋ℊ(yi) ∈ 𝒹κ,𝓉 ∩ ℛκ . But then, there is some
i : 1 ≤ i ≤ n such that either 𝓋ℊ(yi) = 𝓋ℊ(x), or else �𝓍m is an immediate parthood
at 𝓉 sequence linking 𝓋ℊ(x) to 𝓋ℊ(yi), and such that, for each 1 < i < n, 𝓍i ∈ 𝒟+

κ

or xi+1 ∈ ℛκ . So, there is an i : 1 ≤ i ≤ n such that eitherℳ, 𝓉,ℊ � x = yi or
else 𝓋ℊ(x) �𝓉ℱ vℊ(yi), by Definitions 13 and 28. So,ℳ, 𝓉,ℊ �

∨
1≤i≤n(x � yi),

by Definition 28. Therefore,ℳ, 𝓉,ℊ � x � �yn/Xn → ∨
1≤i≤n(x � yi).
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Proof ofℳ, 𝓉,ℊ �(V1)
(⇒): Supposeℳ, 𝓉,ℊ � ∃x(x = /X/). Then, 𝓋ℊ(/X/) ∈ 𝒹κ,𝓉, by Definition 28.
So, ∃𝓂(𝓋ℊ(/X/) = 〈𝓂,𝓋ℊ(X)〉 ∈𝒱κ ∩𝒹κ,𝓉), by Definition 27. Therefore, ∃𝓍 ∈
𝒹κ,𝓉(𝓂(𝓉) = 𝓍&𝓍M𝓉

ℱ 𝓋
ℊ(/X/)), by Definitions 2, 7 and 15. So, ℳ, 𝓉,ℊ �

∃x(xM/X/)), by Definition 28.
(⇐): Suppose ℳ, 𝓉,ℊ � ∃x(xM/X/)). Then, ∃𝓍 ∈ 𝒹κ,𝓉(𝓍M𝒯

ℱ 𝓋
ℊ(/X/)). So,

𝓋ℊ(/X/) ∈ 𝒹κ,𝓉, by Definition 15. So,ℳ, 𝓉,ℊ � ∃x(x = /X/), by Definition 28.
Therefore,ℳ, 𝓉,ℊ � ∃x(xM/X/)) ↔ ∃x(x = /X/), by Definition 28.

Proof ofℳ, 𝓉,ℊ �(V2)
Supposeℳ, 𝓉,ℊ � ∃x(x = /X/). Then, as shown in the proof ofℳ, 𝓉,ℊ �(V1),
∃𝓍 ∈ 𝒹κ,𝓉(𝓂(𝓉) = 𝓍&𝓍M𝓉

ℱ 𝓋
ℊ(/X/)&𝓋ℊ(/X/) ∈ 𝒱κ ∩𝒹κ,𝓉). Now, let ℊ′ be

any variable-assignment differing from the variable-assignment ℊ[x/𝓂(𝓉)] at most
in the value assigned to the spatial variable p. We show thatℳ, 𝓉,ℊ′ � Loc(p)/X/

iffℳ, 𝓉,ℊ′ � Loc(p)x.
(⇒): Suppose ℳ, 𝓉,ℊ′ � Loc(p)/X/. Then, 𝓋ℊ

′
(/X/) ∈ 𝒹κ,𝓉,ℊ′(p), by Defi-

nition 28. So, 𝓂(𝓉) ∈ 𝒹κ,𝓉,ℊ′(p), by Definition 8, since 𝓋ℊ
′
(/X/) ∈ 𝒱κ . So,

ℳ, 𝓉,ℊ′ � Loc(p)x, by Definitions 27 and 28, since ℊ[x/𝓂(𝓉)](x) =𝓂(𝓉).
(⇐): Suppose ℳ, 𝓉,ℊ′ � Loc(p)x. Then 𝓂(𝓉) ∈ 𝒹κ,𝓉,ℊ′(p), by Definitions 27

and 28. But 𝓋ℊ(/X/) = 〈m,𝓋ℊ
′
(X)〉 ∈ 𝒱κ ∩ 𝒹κ,𝓉, by the main assumption.

So, by Definition 8, 𝓋ℊ(/X/) ∈ 𝒹κ,𝓉,ℊ′(p). Hence, ℳ, 𝓉,ℊ′ � Loc(p)/X/, by
Definition 28.
So, ℳ, 𝓉,ℊ′ � Loc(p)/X/ ↔ Loc(p)x, by Definition 28. Hence,
ℳ, 𝓉,ℊ[x/𝓂(𝓉)] � ∀p(Loc(p)/X/ ↔ Loc(p)x), by Definition 28. So,
ℳ, 𝓉,ℊ[x/𝓂(𝓉)] � xM/X/ ∧ ∀p(Loc(p)/X/ ↔ Loc(p)x), by Definition 28
and the main assumption. Therefore,ℳ, 𝓉,ℊ � ∃x(xM/X/ ∧ ∀p(Loc(p)/X/ ↔
Loc(p)x)), by Definition 28. Hence, ℳ, 𝓉,ℊ � ∃x(x = /X/) → ∃x(xM/X/ ∧
∀p(Loc(p)/X/ ↔ Loc(p)x)), by Definition 28.

Proof ofℳ, 𝓉,ℊ �(V3)
Supposeℳ, 𝓉,ℊ � ∃x(x = /X/). Then, 𝓋ℊ(/X/) ∈ 𝒹κ,𝓉 by Definition 28. Fur-
thermore, there is an𝓂 such that 𝓋ℊ(/X/) = 〈𝓂,𝓋ℊ(X)〉 ∈ 𝒱κ , by Definition 27.
We now show thatℳ, 𝓉, ℊ � /X/ = /Y/ iffℳ, 𝓉,ℊ � X = Y , by Definition 28.
(⇒): Suppose ℳ, 𝓉, ℊ � /X/ = /Y/. Then, 𝓋ℊ(/X/) = 𝓋ℊ(/Y/) ∈ 𝒹κ,𝓉, by
Definition 28. So, 〈𝓂,𝓋ℊ(Y )〉 = 𝓋ℊ(/Y/) = 𝓋ℊ(/X/) = 〈𝓂,𝓋ℊ(X)〉 ∈ 𝒹κ,𝓉 ∩
𝒱κ , by Definitions 27 and 28. So, 𝓋ℊ(X) = 𝓋ℊ(Y ) ∈ 𝒟 1

κ , by Definition 27. Thus,
ℳ, 𝓉,ℊ � X = Y , by Definition 28.
(⇐): Suppose that ℳ, 𝓉,ℊ � X = Y . Then 𝓋ℊ(X) = 𝓋ℊ(Y ) ∈ 𝒟 1

κ , by Defini-
tions 28 and 27. By assumption, there is an𝓂 such that 𝓋ℊ(/X/) = 〈𝓂,𝓋ℊ(X)〉 ∈
𝒹κ,𝓉 ∩ 𝒱κ . So, 𝓋ℊ(/X/) = 〈𝓂,𝓋ℊ(Y )〉 ∈ 𝒹κ ∩ 𝒱κ . But then, 𝓋ℊ(/Y/) =
〈𝓂,𝓋ℊ(Y )〉 ∈ 𝒹κ ∩ 𝒱κ , by Definition 27. So, 𝓋ℊ(/X/) = 𝓋ℊ(/Y/) ∈ 𝒹κ,𝓉.
Therefore,ℳ, 𝓉,ℊ � /X/ = /Y/, by Definition 28.
Therefore,ℳ, 𝓉,ℊ � /X/ = /Y/ ↔ X = Y , by Definition 28. Hence,ℳ, 𝓉,ℊ �
∃x(x = /X/) → (/X/ = /Y/ ↔ X = Y ), again by Definition 28.
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Proof ofℳ, 𝓉,ℊ �(V4)
Suppose ℳ, 𝓉,ℊ � xM/X/. Then, 𝓋ℊ(x)M𝓉

ℱ 𝓋
ℊ(/X/), by Definition 28, and

𝓋ℊ(x),𝓋ℊ(/X/) ∈ 𝒹κ,𝓉, by Definition 16. So, 𝓋ℊ(x) ≺𝓉ℱ 𝓋ℊ(/X/), by Defi-
nition 15. So, ℳ, 𝓉,ℊ � x ≺ /X/, by Definition 28. Therefore, ℳ, 𝓉,ℊ �
xM/X/ → x ≺ /X/, by Definition 28.

Proof ofℳ, 𝓉,ℊ �(V5)
Without loss of generality, we consider only the proof of the first conjunct of (V5a).
Supposeℳ, 𝓉,ℊ � ∃y(∃u(x = u)∧x�y∧y ≺ z). Then, by Definition 28, there is a
𝓎 ∈ 𝒹κ,𝓉 s. t.: (i) 𝓋ℊ(x) ∈ 𝒹κ,𝓉; (ii) 𝓋ℊ(x)�𝓉ℱ 𝓎; and (iii) 𝓎 ≺𝓉ℱ 𝓋ℊ(z). From (iii) it
follows that there are 𝓊,𝓌 ∈ 𝒹κ,𝓉 such that 𝓊M𝓉

ℱ𝓌, 𝓎 �𝓉ℱ 𝓊 and𝓌 �𝓉ℱ 𝓋ℊ(z),
by Definition 16. From (ii) it follows that 𝓋ℊ(x) <𝓉ℱ 𝓎, by Definitions 11 and 13.
So, from Lemma 2 it follows that 𝓋ℊ(x) <𝓉ℱ 𝓊. But then there are𝓊,𝓌 ∈ 𝒹κ,𝓉 such
that 𝓊M𝓉

ℱ𝓌, 𝓋ℊ(x) �𝓉ℱ 𝓊 and 𝓌 �𝓉ℱ 𝓋ℊ(z). Therefore, 𝓋ℊ(x) ≺𝓉ℱ 𝓋ℊ(z), by
Definition 16. So,ℳ, 𝓉,ℊ � x ≺ z, by Definition 28. Hence,ℳ, 𝓉,ℊ � ∃y(∃u(x =
u) ∧ x � y ∧ y ≺ z) → x ≺ z, by Definition 28.

Proof ofℳ, 𝓉,ℊ �(V6)
Without loss of generality, we consider only the proof of the first conjunct of (V6).
Suppose ℳ, 𝓉,ℊ � x ≺ y. Then, 𝓋ℊ(x) ≺𝓉ℱ 𝓋ℊ(y), by Definition 28. So,
∃𝓊,𝓏 ∈ 𝒹κ,𝓉(𝓋ℊ(x) �𝓉ℱ 𝓊&𝓊M𝓉

ℱ 𝓏&𝓏 �𝓉ℱ 𝓋ℊ(y)), by Definition 16. Since
𝓏 �𝓉ℱ 𝓋ℊ(y), there is a sequence �𝓏n such that either �𝓏n is an immediate parthood at
𝓉 sequence, 𝓏1 = 𝓏 and 𝓏n = 𝓋ℊ(y), or else �𝓏n is a one element sequence whose
member is 𝓏 = 𝓋ℊ(y) ∈ 𝒹κ,𝓉, by Definition 12. Similarly, there is a sequence
�𝓊m such that either �𝓊m is an immediate parthood at 𝓉 sequence �𝓊m such that
𝓊1 = 𝓋ℊ(x) and𝓊m = 𝓊, or else �𝓊m is a one element sequence whose only member
is 𝓋ℊ(x) = 𝓊 ∈ 𝒹κ,𝓉, by Definition 12. Now, consider the sequence �xm+n such that
𝓍i = 𝓊i , for all i : 1 ≤ i ≤ m and 𝓍i+m = 𝓏i for all i : 1 ≤ i ≤ m. Clearly, �𝓍m+n,
is an immediate parthood sequence at 𝓉, by Definitions 9, 10 and 15. Furthermore, for
every 1 ≤ i < m + n, 𝓍i = 𝒳 or 𝓍i = 𝓂j (𝓉), where 𝓍i+1 = 〈𝓂1, . . . ,𝓂l ,𝒳 〉,
for some l ∈ Z

+,𝓂1, . . .,𝓂l and𝒳 . If𝓍i = 𝒳 or𝓍i+1 is a rigid embodiment, then
𝓍i �𝓉ℱ 𝓍i+1, by Definition 13. Otherwise,𝓍iM

𝓉
ℱ 𝓍i+1, by Definitions 9 and 15. Fur-

thermore, 𝓊 = xmM𝓉
ℱ 𝓍m+1 = 𝓏. So, 𝓋ℊ(x) �𝓉

ℱ 𝓋
ℊ(y), by Definitions 18 and 19.

Therefore,ℳ, 𝓉,ℊ � x � y, by Definition 28. Hence,ℳ, 𝓉,ℊ � x ≺ y → x � y,
by Definition 28.

This concludes the proof of Theorem 1. Fine’s theory of embodiments is sound
with respect to the model-theory offered in Section 3.

6 Expressibility in the Theory of Embodiments

In this section we consider a number of results concerning the definability of
mereological notions. The two main results of the section are the following:
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timeless parthood and immediate parthood are not definable in terms of parthood;
all the mereological primitives of LE are definable in terms of immediate parthood.

We begin by showing the exact sense in which timeless parthood and immediate
parthood are not definable in terms of parthood. In order to do so we will first define
the temporal operators ‘A’ (always) and ‘S’ (sometimes) in terms of the primitives of
LE:

Definition 31
Aϕ := Hϕ ∧ ϕ ∧ Gϕ (Always)
Sϕ := ¬A¬ϕ (Sometimes)

According to Definition 31, it is always the case that ϕ if and only if (i) ϕ was the
case in the past, (ii) ϕ is the case, and (iii) ϕ will always be the case in the future.
Furthermore, it is sometimes the case that ϕ just in case ¬ϕ is not always the case.

Now, Let LR1,...,Rn
E be a language just like LE except that its only mereological

primitives are R1, . . ., Rn, for some natural number n (where each Ri is one of ‘<’,
‘�’, ‘�’, ‘≺’, ‘�’ and ‘M’). Consider the following definition of explicit definability
in the E-theory:

Definition 32 (Explicit Definability)
A notion expressed by a formula ζ containing as free variables the individual or
second-order variables v1, . . ., vn, is explicity definable in the E-theory solely in
terms of the mereological primitives R1, . . ., Rn if and only if there is some formula
ϕ of LR1,...,Rn

E , whose only free variables are v1, . . ., vn, such that the following is an
LE-truth:

A∀v1 . . .∀vn(ϕ ↔ ζv1 . . . vn)

Timeless parthood and immediate parthood are thus not definable in terms of
parthood in the following sense:

Theorem 2 (Undefinability of immediate parthood and timeless parthood in
terms of parthood) Timeless parthood and immediate parthood are not explicitly
definable in terms of parthood in the E-theory.

We offer a proof of Theorem 2 in the appendix. We now turn to the positive result
that all primitive mereological notions of LE are definable in the E-theory solely in
terms of immediate parthood.

We begin by defining parthood as the ancestral of immediate parthood:

Definition 33 (Parthood)
Let σ , σ1, σ2 be any individual terms and ζ be any n-ary second-order term of LE.
Then:

– σ1 <∗ σ2 := ∀Y ((∀x(σ1 � x → Yx)∧∀z∀w((Yz∧z � w) → Yw)) → Yσ2);
– ζ <∗ σ := ∀Y ((∀x(ζ � x → Yx) ∧ ∀z∀w((Yz ∧ z � w) → Yw)) → Yσ2)
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That is, for x to be a part of y just is for y to have all the immediate parthood-
hereditary properties had by all objects of which x is an immediate part.

Lemma 5 The following are LE truths:

1. A∀x∀y(x <∗ y ↔ x < y)

2. A∀X∀y(X <∗ y ↔ X < y)

Proof of Lemma 5 The proof of Lemma 5 is a straightforward consequence of the
equivalence between the definitions of ancestral and transitive closure.

We now define what it is to be a principle of variable embodiment.

Definition 34 (Principle of Variable Embodiment)
Let σ be any individual term and ζ be any monadic second-order term. Then:

ζV ∗σ := ζ � y ∧ S(∃y(y � σ ∧ S∃z(z � σ ∧ x �= y)))

That is, for a property 𝒳 to be a principle of variable embodiment 𝓎 is for 𝒳 to
be a part of 𝓎 and for 𝓎 to have different immediate parts at different times.

Lemma 6 For everyℳ, 𝓉 ∈ 𝒯 and for every variable-assignment ℊ:
ℳ, 𝓉,ℊ[X/𝒳 , y/𝓎] � XV ∗y iff 𝓎 = 〈𝓂,𝒳 〉 is a variable embodiment in𝒹κ,𝓉,

for some𝓂.

Proof of Lemma 6
ℳ, 𝓉,ℊ[X/𝒳 , y/𝓎] � XV ∗y if and only if (i) 𝒳 �𝓉

ℱ 𝓎, and (ii) ∃𝓉′ ∈ 𝒯 ,

𝓍 ∈ 𝒹κ,𝓉′ s. t. 𝓍 �𝓉′
ℱ 𝓎 and ∃𝓉′′ ∈ 𝒯 , 𝓏 ∈ 𝒹κ,𝓉′′ s. t. 𝓏 �𝓉′′

ℱ 𝓎 and 𝓏 �= 𝓍, by
Definition 28. Moreover, (i) is the case if and only if 𝓎 = 〈𝓂,𝒳 〉 is an embodiment
in 𝒹κ,𝓉, for some𝓂, by Definition 9, and (ii) is the case if and only if 𝓎 ∈ 𝒱κ , by
Definitions 9 and 6. So,ℳ, 𝓉,ℊ[X/𝒳 , y/𝓎] � XV ∗y if and only if 𝓎 = 〈𝓂,𝒳 〉 is
a variable embodiment in𝒹κ,𝓉, for some𝓂.

We will define timeless parthood in terms of the notions of immediate parthood
and of being a rigid embodiment. The latter notion is defined as follows:

Definition 35 (Rigid Embodiment) Let σ be any individual term. Then:
R∗σ := ∃x(x � σ) ∧ ¬∃X1(X1 � σ ∧ X1V ∗σ)

That is, to be a rigid embodiment just is to have any immediate part and not to
have a principle of variable embodiment as an immediate part.

Lemma 7 For everyℳ, 𝓉 ∈ 𝒯 and for every variable-assignment ℊ:
ℳ, 𝓉,ℊ[x/𝓍] � R∗x iff 𝓍 is a rigid embodiment in𝒹κ,𝓉.
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We are now in a position to define timeless parthood as the ancestral of immediate
timeless parthood.

Definition 36 (Timeless Parthood)
Let σ , σ1, σ2 be any individual terms and ζ be any n-ary second-order term. Then:

– σ1�∗σ2 := ∀Y ((∀x((σ1 �∗ x∧R∗x) → Yx)∧∀z∀w((Yz∧(z �∗ w∧R∗z)) →
Yw)) → Yσ2)

– ζ �∗ σ := ∃x(ζ �∗ x ∧ (x �∗ σ ∨ x = σ))

Say that 𝓍 is an immediate rigid part of 𝓎 just in case 𝓍 is an immediate part of
𝓎 and 𝓎 is a rigid embodiment. Then, for 𝓍 to be a timeless part of y just if for 𝓎 to
have all the immediate and rigid-parthood hereditary properties had by all objects of
which x is an immediate and rigid part.

Lemma 8 The following are LE-truths:

1. A∀x∀y(x �∗ y ↔ x � y);
2. A∀X∀y(X �∗ y ↔ X � y).

Proof of Lemma 8 As was the case with Lemma 5, Lemma 8 is a straightforward
consequence of the equivalence between the definitions of ancestral and transitive
closure.

We now turn to the definitions of manifestation and of temporary parthood.

Definition 37 (Manifestation)
Let σ1 and σ2 be any individual terms. Then:

σ1M
∗σ2 := ∃X(XV ∗σ2 ∧ Xσ1)

That is, for 𝓍 to be a manifestation of 𝓎 just is for 𝓍 to fall under 𝓎’s principle of
variable of embodiment.

Lemma 9 The following is an LE-truth:
A∀x∀y(xM∗y ↔ xMy).

Proof The explicit definability of manifestation is an immediate consequence of
Definition 15, Definition 28 and Lemma 6.

Finally, temporary parthood is defined as expected in terms of parthood and
manifestation.

Definition 38 (Temporary Parthood)
Let σ , σ1, σ2 be any individual terms of LE and ζ be any n-ary second-order term of
LE. Then:

– σ1 ≺∗ σ2 := ∃x∃y(σ1 ≤∗ x ∧ xM∗y ∧ y ≤∗ σ2);
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– ζ ≺∗ σ := ∃x∃y(ζ ≤∗ x ∧ xM∗y ∧ y ≤∗ σ2);

Lemma 10 The following are LE truths:

1. A∀x∀y(x ≺∗ y ↔ x ≺ y);
2. A∀X∀y(X ≺∗ y ↔ X ≺ y).

Proof of Lemma 10 Lemma 10 is a straightforward consequence of Lemmas 5 and 9
and Definition 28.

This last result also reveals that the notion of being mereologically chained is
explicitly definable solely in terms of immediate parthood, given Lemma 1.

Thus, as a corollary of Lemmas 5, 8, 9 and 10 we have that:

Theorem 3 (Definability of all mereological primitives in terms of immediate
parthood) The notions of parthood, timeless parthood, temporary parthood, being
mereologically chained and being a manifestation are all explicitly definable in terms
of immediate parthood in the E-theory.

We now turn to the presentation of some mereological consequences of the E-
theory.

7 Mereological Results

In this section we give some mereological results falling out of the formal semantics.
These results should not be thought of entailments of Fine’s postulates since we do
not have anything like Completeness to go along with Soundness. There may well be
other models of the theory of embodiments that fail to validate some of the results
that follow.

Though there are many parthood notions available to consider, we focus on the
main mereological notion of our semantics: parthood at t given in Definition 12 as
expressed by our binary predicate < (Definition 28.7).

We already have some preliminary results for parthood at t : Lemma 2 proves that
this relation is a strict partial order (i.e. the E-theory counts as a Ground Mereology
in the sense of Casati and Varzi [1, p. 36]). This is somewhat unremarkable, as most
mereological theories meet this constraint.9

7.1 Decomposition

Here we address some questions about how embodiments are decomposed. A partic-
ular point of contention amongst hylomorphists regards the Weak Supplementation
principle (WSP).

9Though there are exceptions; see e.g. Cotnoir and Bacon [4].
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WSP ∀x∀y(x < y → ∃z(z < y ∧ ¬z ◦ x))

(Here x ◦ z is the mereological notion of overlap, defined as ∃w(w � x ∧ w � z).)
Many authors claim that Weak Supplementation is analytically true, indeed constitu-
tive of the concept of proper parthood.10 Casati and Varzi [1, p. 39] go so far as to
call any theory that satisfies the partial order axioms together with WSP ‘Minimal
Mereology’. By contrast Johnston [15] is a hylomorphist who rejects WSP.

WSP fails trivially here, due to the formulation using only the first-order quan-
tifier. The theory of embodiments allows for distinct embodiments with exactly the
same objects as material parts; a/F �= a/G, where F �= G even though they aren’t
in the range of the first-order quantifier. It is natural then, to formulate more general
versions of WSP as follows:

WSP 2a ∀x∀y(x < y → (∃z(z < y ∧ ¬z ◦ x) ∨ ∃Zn(Zn < y ∧ ¬Zn ◦ x)))

WSP 2b ∀Xm∀y(Xm < y → (∃z(z < y ∧¬z ◦Xm)∨∃Zn(Zn < y ∧¬Zn ◦Xm))

Here the disjunctive consequent allows for parts of both first-order and second-order.
(These principles require a similar generalization of the definition of ◦).

Koslicki [16, p. 155] presses the failures of Weak Supplementation as an objection
to Fine’s theory of embodiments. The worry is to do with variable embodiments and
their manifestations. If the manifestation at t of a variable embodiment is the only
part-at-t of that variable embodiment, then it looks as though parthood at t will fail
to satisfy WSP 2. Following Fine [13, p. 162], our formal semantics in Definition 9
treats the principle of a variable embodiment as a part at t of that embodiment. We
can easily respond to Koslicki’s worry by proving that WSP 2 holds.

Theorem 4 (Weak Supplementation) For every model ℳ, time 𝓉 ∈ 𝒯 and
variable-assignment ℊ:
ℳ, 𝓉,ℊ � ∀x∀y(x < y → (∃z(z < y ∧ ¬z ◦ x) ∨ ∃Zn(Zn < y ∧ ¬Zn ◦ x)))

ℳ, 𝓉,ℊ � ∀Xm∀y(Xm < y → (∃z(z < y∧¬z◦Xm)∨∃Zn(Zn < y∧¬Zn ◦Xm))

To prove Theorem 4, we need a the following Lemma:

Lemma 11 Let ℯ = 〈𝓂1, . . .𝓂n,𝒳 〉 be an embodiment inℬκ ∩ (ℛn
κ ∪𝒱κ), then

for all 𝓍 s.t. 𝓍 is part of ℯ at 𝓉,𝒳 is not part of 𝓍 at 𝓉.

Proof of Lemma 11 Suppose 𝓍 <𝓉ℱ ℯ. Then ∃n ∈ Z
+∃ �𝓍n(�𝓉

ℱ ( �𝓍n)&𝓍 =
𝓍1 &ℯ = 𝓍n) by Definition 11. By Lemma 2, 𝓍 <𝓉ℱ 𝓍n−1. Since𝒳 is simple (by
construction), 𝓍n−1 �= 𝒳 and 𝓍n−1 = 𝓂j (𝓉) for some j by Definition 3. Let ordi-
nal α be the first stage such that 𝓍 ∈ ℬα . Since 𝓍 <𝓉ℱ 𝓂j (𝓉),𝓂j (𝓉) must first
appear inℬβ for β > α (Definitions 9, 11). But𝒳 is an n-ary relation (Definition 2)
such that 〈. . .𝓂j (𝓉) . . .〉 ∈ X(𝓉) by Definition 7. Hence𝒳 is an n-ary relation that
first appears at stage β by Definition 3. But since β > α,𝒳 is not part of𝓍 at 𝓉.

10Varzi [19, p. 110], Simons [18, p. 116, p. 26], Koslicki [17, p. 167–168], and Evnine [5, p. 58].
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Proof of Theorem 4 For WSP 2a, assume for all𝓍,𝓎 ∈ 𝒹κ,𝓉,ℳ, 𝓉,ℊ[x/𝓍, y/𝓎] �
x < y [Definition 28.13]. Then 𝓍 <𝓉ℱ 𝓎 by Definition 28.7. By Definition 11 ∃n ∈
Z

+∃ �𝓍n(�𝓉
ℱ ( �𝓍n)&𝓍 = 𝓍1 &𝓎 = 𝓍n). By Definition 9, 𝓎 = 〈𝓂1 . . .𝓂m,𝒳 〉

and: either (i) ∃i : 1 ≤ i ≤ m(𝓍n−1 =𝓂i (𝓉))&𝓍n−1 ∈ 𝒹κ,𝓉, or (ii) 𝓍m−1 = 𝒳 .
If (i) 𝓍n−1 = 𝓂i (𝓉) we fix ℊ[Z/𝒳 ]. Note that 𝒳 <𝓉ℱ y by Definitions 9

and 11; soℳ, 𝓉,ℊ[Zn/𝒳 ] � Zn < y. Note also, 𝒳 is mereologically simple by
construction, and so 𝒳 and 𝓍 share a part at t iff 𝒳 <𝓉ℱ x. By Lemma 11, 𝒳 is
not part of x at t , and hence have no parts in common. Hence ℳ, 𝓉,ℊ[Zn/𝒳 ] �
¬Zn ◦ x by def. of ◦ and Definition 28.7. Soℳ, 𝓉,ℊ � ∃Zn(Zn < y ∧ ¬Zn ◦ x) by
Definitions 28.12 and 28.13.

If (ii)𝓍m−1 = 𝒳 , either𝓂i (𝓉) = 𝓍 for some i or not. If so, we fixℊ[Z/𝒳 ], and
proceed as in case (i). If𝓂i (𝓉) �= 𝓍 for all i, there’s some ℯ ∈ 𝒹κ,𝓉 s.t. 𝓍 �𝓉

ℱ ℯ,
and ℯ �𝓉ℱ 𝓂i (𝓉) by Definitions 9 and 11. By Definition 9, ℯ = 〈𝓂e

1 . . .𝓂e
j ,𝒳 〉.

Since 𝒳 <𝓉ℱ ℯ �𝓉ℱ 𝓂i (𝓉) <𝓉ℱ 𝓎, by Lemma 2 𝒳 <𝓉ℱ 𝓎. Fix ℊ[Z/𝒳 ];
then ℳ, 𝓉,ℊ[Zn/𝒳 ] � Zn < y. Similarly, 𝒳 has no parts in common with x

by Lemma 11. So ℳ, 𝓉,ℊ[Zn/𝒳 ] � ¬Zn ◦ x, and so ℳ, 𝓉,ℊ � ∃Zn(Zn <

y ∧ ¬Zn ◦ x)) by Definitions 28.12 and 28.13.
The proof of WSP 2b is similar.

It is important to note that this result relies crucially on the assumption that any
object that has properties or stands in relations must exist. Were it possible for a

to be F without existing, there could be a rigid embodiment a/F existing at t (e.g.
Aristotle qua the greatest philosopher of Antiquity) with only one part existing at t ,
namely F . These would be models that do not satisfy WSP 2.11

Are there any models of mereological gunk — objects with no atomic parts — or
is the mereology atomistic? We begin by defining these notions.

Definition 39 (LE: Atoms) At(x) := ¬∃y(y < x)

Definition 40 (LE: Gunk) Gu(x) := ∀y(y < x → ¬At(y))

Atomism ∀x∃y(y � x ∧ At(y))

Atomlessness ∀x∃y(y < x)

Our formulation here does not quantify over formal parts of rigid or variable embod-
iments, since they are always mereologically simple by construction. Atomism
requires that every object have a material part with no proper parts; and Atomlessness
requires that every object have some material proper part.

11To get a better sense of what such a countermodel would look like: letℳ be such that𝒯 = {1, 2} with
1 ≤ 2,ℬ0 = 𝒹0,1 = {a, b} and𝒹0,2 = {b}, 𝓋(a) = 𝒶 and 𝓋(G) = 𝒢 s.t. 𝒢 (1) = 𝒢 (2) = {𝒶}. Then:
– 𝓋ℊ(a/G) = 〈λ𝓉 ∈ 𝒯 .𝒶,𝒢 〉
– ℳ, 2,ℊ � G < a/G

– ℳ, 2,ℊ � ∃z(z < a/G ∧ ¬z ◦ G)

– ℳ, 2,ℊ � ∃Z(Z < a/G ∧ ¬Z ◦ G)
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We can see intuitively that the mereology here satisfies Atomism, since all objects
in the model are generated from the base-level entities B0, which are assumed to be
mereologically simple.12 We can actually show something stronger: parthood at t is
a well-founded partial order.

Lemma 12 For every time 𝓉 ∈ 𝒯 , parthood at t is well-founded inℬκ ∪𝒟+
κ .

Proof of Lemma 12 Let 𝒮 be an arbitrary nonempty subset of ℬκ ∪𝒟+
κ and α be

the least ordinal such that there is an 𝓍 ∈ 𝒮 such that 𝓍 ∈ ℬα ∪ ⋃
n∈N𝒟 n

α . Take
any 𝓍 ∈ 𝒮 ∩ (ℬα ∪ ⋃

n∈N𝒟 n
α ). Suppose, for reductio, that ∃𝓎 ∈ 𝒮 (𝓎 <𝓉ℱ 𝓍).

Then, there is an ordinal β < α such that 𝓎 ∈ ℬβ ∪ ⋃
n∈N𝒟 n

β , by Definitions 3,
9 and 12, and so α is not the least ordinal such that there is an 𝓍 ∈ 𝒮 such that
𝓍 ∈ℬα ∪⋃

n∈N𝒟 n
α . Contradiction. Hence, ∀𝓎 ∈ 𝒮 : y ≤𝓉ℱ 𝓍(𝓎 = x). Therefore,

∀𝒮 ⊆ℬκ ∪𝒟+
κ : 𝒮 �= ∅(∃𝓍 ∈ 𝒮 (∀𝓎 ∈ 𝒮 : 𝓎 ≤𝓉ℱ 𝓍(𝓎 = 𝓍))).

Thus, parthood at t is well-founded inℬκ ∪𝒟+
κ .

This gives atomism as a clear corollary:

Theorem 5 For allℳ, 𝓉, and ℊ,ℳ, 𝓉,ℊ � ∀x∃y(y � x ∧ At(y)).

Proof of Theorem 5 We show for arbitraryℊ thatℳ, 𝓉,ℊ � ∃y(y � x ∧At(y)). By
Lemma 12, every parthood at t chain beginning at 𝓋ℊ(x) has an <-minimal element;
call it 𝓎. So ℳ, 𝓉,ℊ[y/𝓎] � y � x ∧ At(y) by Definition 28.7. So ℳ, 𝓉,ℊ �
∃y(y � x ∧ At(y)) by Definition 28.13, and since ℊ was arbitrary we have the
result.

In fact, Lemma 12 shows not only that the mereology is atomistic, it is also super-
atomistic in the sense of Cotnoir [2] — there is no infinite descent of parthood at
all.

7.2 Composition

What about symmetric considerations involving composition? As should be clear
enough, the theory is plenitudinous in that it permits mereological composition in
a wide variety of cases. In classical mereology, fusion is defined in terms of part-
hood; but in Fine’s theory, the operations of embodiment are not defined in terms
of parthood in the usual way, and so principles regarding composition will be given
directly about the operations of embodiment. (This is in keeping with Fine’s [14]
operationalism.)

12Again, we might supplement this framework following Fine’s Segmentation approach, which would
allow further decompositions of structural atoms into spatial parts corresponding to subregions. See Fine
[14, p. 578]. Such an approach need not assume that objects are always segmented into spatial atoms, and
so would be compatible with a gunky view.
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From this perspective, we can see that the regimented versions (R1) and (V1) are
unrestricted composition principles. (R1) says that, given any things �yn and relation
Xn holding of them, there is something (the rigid embodiment) that has those ele-
ments as its immediate parts. And we know from Theorem 1 that this principle holds
in all models. It is worth noting another limitation which is merely an artefact of our
choice of object language. In the case of rigid embodiments, the principle of embod-
iment is always an n-ary relation; because our language is finitary, the arity of any
principle of embodiment can only ever be finite. It turns out, then, that a class of
objects C compose something if and only if C is finite.13

Similarly, (V1) says that any individual concept has an embodiment existing (at
t) iff it has a manifestation (at t), and again we know from Theorem 1 that this
principle holds in all models. The constraint that a variable embodiment must have
a manifestation might be thought of as a ‘restriction’ on composition; but it is no
more a restriction than the corresponding unrestricted fusion principle in classical
mereology, which permits only satisfiable conditions ϕ to have fusions.

Mereological extensionality principles purport to show that objects that are equiv-
alent with respect to some mereological property/relation are identical. One standard
test of extensionality is called the ‘Uniqueness of Composition’, according to which
taking the fusion of the same things always results in the same thing. Remember that
the operations of embodiment are serving as our fusion operation, so one might be
tempted to think that the regimented versions of (R3) and (V3) state (in the object
language) the uniqueness of those modes of composition. However, that would be
incorrect. They do not state that the result of applying the operation of rigid embod-
iment and variable embodiment to the same things (whether material parts under a
relation or an individual concept), is always the same. After all, take some a and b

and R such that Rab and Rba both hold. Then 〈a, b/R〉 �= 〈b, a/R〉, and hence the
operation of rigid embodiment is not unique on the same components — it is only
unique on the same components in the same order, as stated in (R3).

What about so-called ‘junk’ — the dual of gunk? Is everything a proper part
of something else? Or are there co-atoms — objects which are not proper parts of
anything — in every model?

Definition 41 (LE: Junk) Ju(x) := ∀y(x < y → ¬Co(y))

Definition 42 (LE: Co-atoms) Co(x) := ¬∃y(x < y)

Co-atomism ∀x∃y(x � y ∧ Co(y))

Co-atomlessness ∀x∃y(x < y)

Perhaps somewhat surprisingly, the mereology of embodiments satisfies co-
atomlessness.

Theorem 6 For allℳ, 𝓉, and ℊ,ℳ, 𝓉,ℊ � ∀x∃y(x < y).

13This restriction of composition, and its relation to ‘junk’, is discussed further in Cotnoir [3].
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Proof of Theorem 6 We show for arbitrary ℊ that ℳ, 𝓉,ℊ � ∃y(x < y). Call
𝓋ℊ(x) = 𝓍 and 𝓍 ∈ ℬκ ∈ ℳ by Definition 25. Then 𝓍 ∈ 𝒹0,𝓉 or 𝓍 ∈ ℛκ ∪𝒱κ

by Definition 7. Butℛκ = ⋃
j<κ ℛ

n
j by Definition 4 and𝒱κ = ⋃

j<κ 𝒱j by Def-
inition 6. Hence in either case 𝓍 is some object appearing at some prior stage i < κ

(either an embodiment at some stage j , or base-level object appearing at stage 0). But
then𝓍 ∈ 𝒳 (t) for some𝒳 ∈ 𝒟 1

i by Definition 2, and hence 〈𝓍,𝒳 〉 ∈ℛi+1∪𝒱i+1

by Definition 3. Call this embodiment 𝓎. Then 𝓍 <𝓉ℱ 𝓎 by Definitions 9, 11.
Hence ℳ, 𝓉,ℊ[y/𝓎] � x < y by Definition 28.7; and ℳ, 𝓉,ℊ � ∃y(x < y) by
Definition 28.13.

The universe of these models is ‘junky’ — it indefinitely extends from stage to
stage. Not only is every model indefinitely extending, it is indefinitely extensible: for
any modelℳκ , there is always another modelℳμ containing a higher ‘cap’, a limit
ordinal μ > κ , such thatℬκ ofℳμ is identical toℬκ ofℳκ .

This fact fits neatly with the methodology that Fine [11, 12] develops, called ‘pro-
cedural postulationism’ for mathematical entities. According to this view, the domain
of the universal quantifier may always be extended to accommodate further objects,
and the postulates of a given theory are imperatives for constructing a domain. In
the case of mereology, Fine [13, p. 164] suggests that, while some objects are given,
only those embodiments that are introduced via postulation will exist. The postulates
of the theory of embodiments (R1)–(R6) and (V1)–(V6), then are instructions for
introducing new individuals. In Fine [8, p. 103], Fine claims that rigid embodiments
involving single individuals — ‘qua objects’ — are derivative entities; qualified indi-
viduals are posterior to the individuals which are qualified. The stages in our models
give a definite content to that claim; here we understand the priority of stages not in
terms of temporal precedence, nor in terms of ontological dependence, but rather they
are to be understood postulationally. The mathematical structure of our models as
constructed in stages, then, connects nicely with the underlying picture of ontological
commitment.

8 Primitive Ideology and Koslicki’s Objections

Aside from stabilizing the theory, and highlighting the various choice points for the
overall philosophical view, our formal semantics serves another useful purpose: it
provides an avenue of reply to one of the main objections that has been levelled
against Fine’s theory. Koslicki’s [17] conception of objects shares a lot of common-
alities to Fine’s; they are both broadly neo-Aristotelian hylomorphists, who accept
that forms are parts of the material objects they characterize. Koslicki proceeds with
a single primitive notion of parthood for which she provides a theory, and she objects
to Fine’s theory for requiring multiple primitive notions of parthood. It is worth
reproducing her objection here at length.

From a methodological point of view, Fine’s analysis raises the worry that it leads
to a proliferation of primitive, sui generis relations of parthood and composition.
[. . . ] the domain of ordinary material objects alone, in Fine’s view, already calls
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for two distinct, primitive, sui generis relations of parthood and composition: the
relations of composition by which rigid embodiments and variable embodiments
are formed out of their respective components; as well as the relations of timeless
part and temporary part that go along with these. [. . . ]

Whatever connections there are between the two notions of composition and
parthood thus do not follow from the general formal properties of the basic
mereological vocabulary, independently of the domain of objects to which this
vocabulary is currently applied; rather, they are explicitly imposed on these rela-
tions via postulates specifically tailored to the realm of ordinary material objects.
Thus, even within this single domain of objects, Fine’s strategy already leads on a
(comparatively) small scale to a proliferation of distinct, primitive relations, which
are not obviously needed in order to capture the conditions of existence, identity,
location, character and part/whole structure of ordinary material objects. Since
mereological vocabulary also applies outside of the realm of ordinary material
objects, however, Fine’s strategy would appear to lead to further distinct, primitive,
sui generis relations of composition and parthood for each such domain of objects,
accompanied by a system of postulates specifically tailored to the particular kinds
of objects at issue. Such an approach takes on an overly stipulative and fractured
air. [17, p. 82f]

We can separate out two strands of Koslicki’s complaint here: a main concern, and
a subsidiary one. The main concern is that the notions of rigid and variable embod-
iments require distinct primitive notions of parthood, and hence a range of post hoc
principles to bridge their interactions. This is, according to Koslicki, an objectionable
proliferation of mereological ideology. The subsidiary concern is that these addi-
tional ‘bridging’ principles are not motivated by general considerations of formal
mereology, but rather by domain-specific considerations of material constitution.14

As to the subsidiary concern, we think it is already sufficiently answered by Fine
[10] who explicitly motivates rigid and variable embodiments by appeal not just to
concrete material objects, but also to abstract objects. For example, he considers
actions (p. 68), events (p. 72), musical works (p. 68), bodies of law (p. 72), word
tokens and types (p. 68), tropes and universals (p. 68), sets (p. 73), propositions (p.
74), etc. Indeed, bringing the theory of material objects closer to theories of abstract
objects was part of Fine’s stated aim: “We are led, by these considerations, to a pic-
ture of the material world that has much more in common with the abstract realms of
sets or of propositions than with the realms of concreta envisaged by the mereologist.
(p. 74)”15

14See also Koslicki [16]
15In reply to Koslicki, Fine [13] writes:

It was not my intention in the papers I have so far published to provide a general theory of part-
whole but merely to present those aspects of it that were especially relevant to the constitution
of material things. I believe that a general theory, once developed, would reveal these particular
aspects of it to be less fragmentary and stipulative in character than might appear from the published
papers. But whether this is so or whether there is a more satisfactory way of developing such a
theory is perhaps best discussed once the details of the theory and its rivals are at hand. (161)
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As to the main concern— that Fine’s theory proliferates primitive sui generis part-
hood relations — the results of Section 6 reveal that, even though timeless parthood
(�) and temporary parthood (≺) are not definable in terms of the natural notion of
parthood defined as the ancestral of immediate parthood (Theorem 2), these notions
are not primitive sui generis parthood relations; they are defined in a systematic way
from the single general notion of immediate parthood (�), as shown in Theorem 3.
From the perspective of the model theory, Fine’s theory requires exactly one prim-
itive mereological relation. The ideology of this model-theoretic implementation of
Fine’s theory is no more onerous than Koslicki’s own.
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Appendix

A.1<-bisimulation

In this appendix we offer a proof of Theorem 2. The proof of this theorem will
appeal to a notion of model indistinguishability, <-bisimulation. We begin by for-
mulating this notion and proving that it indeed captures a sense in which models are
indistinguishable vis-á-vis parthood.

Definition 43 (<-Bisimulation)
Where ℳ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤,𝓋〉 and ℳ� = 〈𝒯 �,𝒫 �,𝒹�

0 , κ�, ≤�,𝓋�〉
are any LE models (based, respectively, on frames ℱ and ℱ�), a function π :
ℬκ ∪ ⋃

n∈N𝒟 n
κ ∪𝒯 ∪ P →ℬ�

κ ∪ ⋃
n∈N𝒟

�,n
κ ∪𝒯 � ∪ P� is a <-bisimulation

betweenℳ andℳ�,ℳ
π

�ℳ�, if and only if:

1. For every 𝓉 ∈ 𝒯 : π 	𝒯 is a bijection between𝒯 and𝒯 �;
2. For every 𝓉, 𝓉′ ∈ 𝒯 : 𝓉 ≤ 𝓉′ if and only if π(𝓉) ≤� π(𝓉′);
3. For every 𝓅 ∈ 𝒫 : π 	𝒫 is a bijection between𝒫 and𝒫 �;
4. For every 𝓉 ∈ 𝒯 : π 	𝒹κ,𝓉 is a bijection between𝒹κ,𝓉 and𝒹

�
κ,π(𝓉);

5. For every 𝓉 ∈ 𝒯 and 𝓅 ∈ 𝒫 : π 	𝒹κ,𝓉,𝓅 is a bijection between 𝒹κ,𝓉,𝓅 and

𝒹�
κ�,π(𝓉),π(𝓅)

;
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6. For every n ∈ N:

(a) π 	
𝒟�,n

κ
is a bijection between𝒟 n

κ and𝒟�,n

κ� ;
(b) For every 𝒳 ∈ 𝒟 n

κ : π(𝒳 )(π(𝓉)) = {〈π(𝓍1), . . . , π(𝓍n)〉 :
〈𝓍1, . . . ,𝓍n〉 ∈ 𝒳 (𝓉)}

7. For every individual constant σ : π(𝓋(σ )) = 𝓋�(σ );
8. For every n-ary predicate ζ , for every n ∈ N: π(𝓋(ζ )) = 𝓋�(ζ );
9. For every 𝓉 ∈ 𝒯 :

π(<𝓉ℱ ) = {〈π(𝓍), π(𝓎)〉 : 〈𝓍,𝓎〉 ∈<𝓉ℱ } =<
π(𝓉)
ℱ� .

A first important result of the appendix is a theorem to the effect that <-bisimilar
models are indiscernible vis-à-vis parthood, in the minimal sense that the same
formulae of L<

E are true in <-bisimilar models:

Theorem 7 For all modelsℳ andℳ� (based, respectively, on framesℱ andℱ�)

and function π such thatℳ
π

�ℳ�, and for every formula ϕ of L<
E :

ℳ, 𝓉,ℊ � ϕ if and only ifℳ�, π(𝓉), π(ℊ) � ϕ,

The proof of this theorem will rely on some auxiliary definitions and lemmas. We
start by defining the image of a variable-assignment under a bisimulation.

Definition 44 For all models ℳ and ℳ� (based, respectively, on frames ℱ and

ℱ�), if ℳ
π

� ℳ�, then, for every variable-assignment ℊ based on ℱ , π(ℊ) is
that function such that, for every individual variable, second-order variable or spatial
variable ρ,

π(ℊ)(ρ) = π(ℊ(ρ)).

The following lemma shows that the image of a variable-assignment under a <-
bisimulation is itself a variable-assignment:

Lemma 13 For all modelsℳ andℳ� (based, respectively, on framesℱ andℱ�),

ifℳ
π

�ℳ�, then π(ℊ) is a variable-assignment based onℱ�, for every variable-
assignment ℊ ofℱ .

Proof of Lemma 13 Suppose thatℳ
π

� ℳ� where,ℳ is based on ℱ andℳ� is
based onℱ�. Let ℊ be an arbitrary variable-assignment based onℱ .

Take an arbitrary individual variable v. We have that π(ℊ)(v) = π(ℊ(v)). Since
ℊ(v) ∈ ℬκ , by Definition 26, it follows that ℊ(v) ∈ 𝒹κ,𝓉, for some 𝓉 ∈ 𝒯 , by
Definition 7. So, π(ℊ)(v) = π(ℊ(v)) ∈ 𝒹�

κ�,π(𝓉)
, by Definition 43. Therefore,

π(ℊ)(v) ∈ℬ�
κ� , by Definition 7.

Take an arbitrary n-ary second-order variable V . We have that π(ℊ)(V ) =
π(ℊ(V )). Since ℊ(V ) ∈ 𝒟n

κ , by Definition 26, it follows that π(ℊ)(V ) =
π(ℊ(V )) ∈ 𝒟�,n

κ� , by Defn. 7.
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Take an arbitrary spatial variable s. We have that π(ℊ)(s) = π(ℊ(s)). Since
ℊ(s) ∈ 𝒫 , by Definition 26, it follows that π(ℊ)(s) = π(ℊ(s)) ∈ 𝒫 �, by
Definition 7.

Therefore, π(ℊ) is a variable-assignment based onℱ�.

The next lemma shows that values under variable-assignments are preserved under
<-bisimulations:

Lemma 14 For all models ℳ and ℳ� (based, respectively, on frames ℱ and

ℱ�), ifℳ
π

� ℳ�, then, for every individual constant, individual variable, n-ary
predicate or n-ary second-order variable σ of L<

E :
π(𝓋ℊ(σ )) = 𝓋�,π(ℊ)(σ ).

Proof of Lemma 14 Suppose σ is an arbitrary individual constant or n-ary predicate.
Then, 𝓋(σ ) = 𝓋ℊ(σ ) and 𝓋�(σ ) = 𝓋�,π(ℊ)(σ ), by Definition 27. By Definition 43,
π(𝓋(σ )) = 𝓋�(σ ). So, π(𝓋ℊ(σ )) = 𝓋�,π(ℊ)(σ ).

Suppose σ is an individual variable or an n-ary second-order variable. Then,
ℊ(σ ) = 𝓋ℊ(σ ), by Definition 27. By Lemma 13, π(ℊ) is a variable-assignment
based on ℱ�. Furthermore, by Definition 27, π(ℊ)(σ ) = 𝓋�,π(ℊ)(σ ). Hence,
π(𝓋ℊ(σ )) = 𝓋�,π(ℊ)(σ ).

So, either way, π(𝓋ℊ(σ )) = 𝓋�,π(ℊ)(σ ). This concludes the proof of Lemma 14.

We now turn to the proof of Theorem 7:

Proof of Theorem 7 The proof is by induction on the complexity of a formula of L<
E .

– ϕ is ζσ1 . . . σn:
ℳ, 𝓉,ℊ � ζσ1, . . . , σn iff 〈𝓋ℊ(σ1), . . . ,𝓋ℊ(σn)〉 ∈ 𝓋ℊ(ζ )(𝓉), by Defini-

tion 28, iff 〈π(𝓋ℊ(σ1)), . . . , π(𝓋ℊ(σn))〉 ∈ π(𝓋ℊ(ζ ))(π(𝓉)), by Definition 43,
iff 〈𝓋�,π(ℊ)(σ1)), . . . ,𝓋�,π(ℊ)(σn))〉 ∈ 𝓋�,π(ℊ)(ζ ))(π(𝓉)), by Lemma 14, iff
ℳ�, π(𝓉), π(ℊ) � ζσ1 . . . σn, by Definition 28;

– ϕ is Loc(s)σ :
ℳ, 𝓉,ℊ � Loc(s)σ iff 𝓋ℊ(σ ) ∈ 𝒹κ,𝓉,ℊ(s), by Definition 28, iff π(𝓋ℊ(σ )) ∈

{π(𝓍) : 𝓍 ∈ 𝒹κ,𝓉,ℊ(s)}, by Definition 43, iff 𝓋�,π(ℊ)(σ ) ∈ 𝒹�
κ�,π(𝓉),π(ℊ)(s)

, by

Lemma 14, iffℳ�, π(𝓉), π(ℊ) � Loc(s)σ , by Definition 28;
– ϕ is σ1 = σ2:

ℳ, 𝓉,ℊ � σ1 = σ2 iff 𝓋ℊ(σ1) ∈ 𝒹κ,𝓉 and 𝓋ℊ(σ1) = 𝓋ℊ(σ2), by Defini-
tion 28, iff π(𝓋ℊ)(σ1) ∈ {π(𝓍) : 𝓍 ∈ 𝒹κ,𝓉} and π(𝓋ℊ(σ1)) = π(𝓋ℊ(σ2)), by
Definition 43, iff 𝓋�,π(ℊ)(σ ) ∈ 𝒹�

κ�,π(𝓉)
and 𝓋�,π(ℊ)(σ1) = 𝓋�,π(ℊ)(σ2), by

Lemma 14, iffℳ�, π(𝓉), π(ℊ) � σ1 = σ2, by Definition 28;
– ϕ is ζ1 = ζ2:

ℳ, 𝓉,ℊ � ζ1 = ζ2 iff 𝓋ℊ(ζ1) = 𝓋ℊ(ζ2), by Definition 28, iff π(𝓋ℊ(ζ1)) =
π(𝓋ℊ(ζ2)), by Definition 43, iff 𝓋�,π(ℊ)(ζ1) = 𝓋�,π(ℊ)(ζ2), by Lemma 14, iff
ℳ�, π(𝓉), π(ℊ) � ζ1 = ζ2, by Definition 28;
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– ϕ is ρ1 < ρ2:
ℳ, 𝓉,ℊ � ρ1 < ρ2 iff 𝓋ℊ(ρ1) and 𝓋ℊ(ρ2) are defined and 𝓋ℊ(ρ1) <𝓉ℱ

𝓋ℊ(σ2), by Definition 28, iff π(𝓋ℊ(ρ1)) and π(𝓋ℊ(ρ2)) are defined and
π(𝓋ℊ(ρ1)) <

π(𝓉)
ℱ� π(𝓋ℊ(ρ2)), by Definition 43, iff 𝓋�,π(ℊ)(ρ1) and

𝓋�,π(ℊ)(ρ2) are defined and 𝓋�,π(ℊ)(σ1)
π(𝓉)
ℱ�𝓋

�,π(ℊ)(ρ2), by Lemma 14, iff

ℳ�, π(𝓉), π(ℊ) � ρ1 < ρ2, by Definition 28;
– ϕ is ¬ψ :

ℳ, 𝓉,ℊ � ¬ψ iff ℳ, 𝓉,ℊ �� ψ , by Definition 28, ℳ, 𝓉,ℊ �� ψ iff
ℳ�, π(𝓉), π(ℊ) �� ψ , by I.H.,ℳ�, π(𝓉), π(ℊ) �� ψ iffℳ�, π(𝓉), π(ℊ) �
¬ψ , by Definition 28;

– ϕ is ψ ∧ χ :
ℳ, 𝓉,ℊ � ψ ∧ χ iff ℳ, 𝓉,ℊ � ψ and ℳ, 𝓉,ℊ � χ , by Defini-

tion 28, iff ℳ�, π(𝓉), π(ℊ) � ψ and ℳ�, π(𝓉), π(ℊ) � χ , by I.H., iff
ℳ�, π(𝓉), π(ℊ) � ψ ∧ χ , by Definition 28;

– ϕ is ∀vψ :
ℳ, 𝓉,ℊ � ∀vψ iff for all 𝓍 ∈ 𝒹κ,𝓉:ℳ, 𝓉,ℊ[v/𝓍] � ψ , by Definition 28,

iff for all 𝓍 ∈ 𝒹κ,𝓉:ℳ�, π(𝓉), π(ℊ[v/𝓍]) � ψ , by I.H., iff for all 𝓍 ∈ 𝒹κ,𝓉:
ℳ�, π(𝓉), π(ℊ)[v/π(𝓍)] � ψ , by Definition 44, iff for all 𝓍 ∈ 𝒹�

κ�,π(𝓉)
:

ℳ�, π(𝓉), π(ℊ)[v/𝓍] � ψ , by Definition 43, iffℳ�, π(𝓉), π(ℊ) � ∀vψ , by
Definition 28;

– ϕ is ∀V ψ :
ℳ, 𝓉,ℊ � ∀V ψ iff for all𝒳 ∈ 𝒟n

κ :ℳ, 𝓉,ℊ[V/𝒳 ] � ψ , by Definition 28,
iff for all 𝒳 ∈ 𝒟n

κ : ℳ
�, π(𝓉), π(ℊ[V/𝒳 ]) � ψ , by I.H., iff for all 𝒳 ∈

𝒟n
κ :ℳ

�, π(𝓉), π(ℊ)[V/π(𝒳 )] � ψ , by Definition 44, iff for all𝒳 ∈ 𝒟�,n

κ� :

ℳ�, π(𝓉), π(ℊ) � ψ[V/𝒳 ], by Definition 43, iffℳ�, π(𝓉), π(ℊ) � ∀V ψ ,
by Definition 28;

– ϕ is ∀sψ :
ℳ, 𝓉,ℊ � ∀sψ iff for all 𝓅 ∈ 𝒫 : ℳ, 𝓉,ℊ[s/𝓅] � ψ , by Definition 28,

iff for all 𝓅 ∈ 𝒫 : ℳ�, π(𝓉), π(ℊ[s/𝓅]) � ψ , by I.H., iff for all 𝓅 ∈ 𝒫 :
ℳ�, π(𝓉), π(ℊ)[s/π(𝓅)]) � ψ , by Definition 44, iff for all 𝓅 ∈ 𝒫 �:
ℳ�, π(𝓉), π(ℊ)[s/𝓅] � ψ , by Definition 43, iffℳ�, π(𝓉), π(ℊ) � ∀sψ , by
Definition 28;

– ϕ is Hψ :
ℳ, 𝓉,ℊ � Hψ iff for all 𝓉′ ∈ 𝒯 s. t. 𝓉′ ≤ 𝓉: ℳ, 𝓉′,ℊ � ψ , by Defi-

nition 28, iff for all t ′ ∈ 𝒯 s. t. 𝓉′ ≤ 𝓉: ℳ�, π(𝓉′), π(ℊ) � ψ , by I.H., iff
for all t ′ ∈ 𝒯 s. t. π(𝓉′) ≤ π(𝓉): ℳ�, π(𝓉′), π(ℊ) � ψ , by Definition 43,
iff for all t ′ ∈ 𝒯 � s. t. 𝓉′ ≤ π(𝓉):ℳ�, 𝓉′, π(ℊ) � ψ , by Definition 43, iff
ℳ�, π(𝓉), π(ℊ) � Hψ , by Definition 28;

– ϕ is Gψ :
ℳ, 𝓉,ℊ � Gψ iff for all 𝓉′ ∈ 𝒯 s. t. 𝓉 ≤ 𝓉′: ℳ, 𝓉′,ℊ � ψ , by Defi-

nition 28, iff for all t ′ ∈ 𝒯 s. t. 𝓉 ≤ 𝓉′: ℳ�, π(𝓉′), π(ℊ) � ψ , by I.H., iff
for all t ′ ∈ 𝒯 s. t. π(𝓉) ≤ π(t ′): ℳ�, π(𝓉′), π(ℊ) � ψ , by Definition 43,
iff for all t ′ ∈ 𝒯 � s. t. π(𝓉) ≤ t ′: ℳ�, 𝓉′, π(ℊ) � ψ , by Definition 43, iff
ℳ�, π(𝓉), π(ℊ) � Gψ , by Definition 28.
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The <-bisimulation relation will be used to prove that timeless parthood and
immediate parthood are not definable in the E-theory solely in terms of parthood.
Our proof will rely on the following theorem:

Theorem 8 Suppose that there are models ℳ and ℳ� (based, respectively on
framesℱ andℱ�), 𝓉 ∈ 𝒯 , 𝓍1, . . . ,𝓍n ∈ 𝒹κ,𝓉 ∪ ⋃

n∈N𝒟 n
κ and π such that:

1. ℳ
π

�ℳ�;
2. ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] � ζv1 . . . vn; and
3. ℳ, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) �� ζv1 . . . vn.

Then, ζ is not explicitly definable in the E-theory solely in terms of <.

Proof of Theorem 8
Suppose that

(A) There are modelsℳ,ℳ�, time 𝓉 ∈ 𝒯ℳ , elements 𝓍1, . . ., 𝓍n ∈ 𝒹ℳ,κ,𝓉 ∪⋃
n∈N𝒟 n

κ , and a function π such that:

(i) ℳ
π

�ℳ�;
(ii) ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] � ζv1 . . . vn; and
(iii) ℳ�, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) �� ζv1 . . . vn.

Suppose also, for reductio, that ζ is explicitly definable solely in terms of<. Then:

(B) There is some formula ϕ of L<
E (whose only free variables are v1, . . ., vn) such

that, for every modelℳ: �ℳ A∀v1 . . . ∀vn(ϕ ↔ ζv1 . . . vn).

From (B) it follows that:

(1) ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] � ϕ iff ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] �
ζv1 . . . vn; and

(2) ℳ�, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) � ϕ iff
ℳ�, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) � ζv1 . . . vn.

Now, (i) and Theorem 7 imply that:
ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] � ϕ iffℳ�, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) � ϕ

The conjunction of this result with (1) and (2) implies that:
ℳ, 𝓉,ℊ[v1/𝓍1, . . . , vn/𝓍n] � ζv1 . . . vn iff

ℳ�, π(𝓉), π(ℊ[v1/𝓍1, . . . , vn/𝓍n]) � ζv1 . . . vn

But this contradicts the conjunction of (ii) and (iii). Hence, the reductio assump-
tion is false. ζ is not definable in the E-theory solely in terms of <. This concludes
the proof of Theorem 8.

A.2 Undefinability of Timeless Parthood and Immediate Parthood

Here’s how we’ll appeal to Theorem 8 to show that timeless parthood and immediate
parthood are not definable in the E-theory solely in terms of parthood. We will begin
by characterising a frame ℱ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤〉 and a model ℳ based on ℱ .
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Then, we will define a bisimulation betweenℳ and itself. Finally, we will show that
there is a time 𝓉 ∈ 𝒯 , a variable-assignment ℊ based onℱ and objects 𝓍 and 𝓎 in
𝒹κ,𝓉 such that:

– ℳ, 𝓉,ℊ[x/𝓍, y/𝓎] � x � y, yet,
– ℳ, π(𝓉), π(ℊ[x/𝓍, y/𝓎]) �� x � y,

and

– ℳ, 𝓉,ℊ[x/𝓍, y/𝓎] � x � y, yet,
– ℳ, π(𝓉), π(ℊ[x/𝓍, y/𝓎]) �� x � y,

From Theorem 8 it will follow that none of timeless parthood and immediate
parthood is definable in the E-theory solely in terms of parthood.

A.2.1 The Model

Our model will be based on the following frame:

Definition 45
Letℱ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤〉, where:
– 𝒯 = {1, 2};
– 1 ≤ 2;
– 𝒹0,1 = 𝒹0,2 = {𝒶,𝒷};
– 𝒫 = {𝓈};
– 𝒹0,1,𝓈 = 𝒹0,2,𝓈 = {𝒶,𝒷};
– κ = ω.

The modelℳ is defined as follows:

Definition 46 Letℳ = 〈𝒯 ,𝒫 ,𝒹0, κ, ≤,𝓋〉 where:
– 𝓋(σ ) = 𝒶, for every individual constant σ ;
– For every n ∈ N, every n-ary predicate ζ , and every 𝓉 ∈ 𝒯 : 𝓋(ζ ) = ∅.

Other models based onℱ would have been equally appropriate.
We will now distinguish a few elements definable in terms of frameℱ :

Definition 47 Let:

– 𝒢𝒶𝒷 and 𝒢𝒷𝒶 be functions from𝒯 to ℘(ℬ0) such that:

– 𝒢𝒶𝒷 (1) = {𝒶}, 𝒢𝒶𝒷 (2) = {𝒷};
– 𝒢𝒷𝒶(1) = {𝒷}, 𝒢𝒷𝒶(2) = {𝒶}.

– ℊ𝒶𝒷 and ℊ𝒷𝒶 be a functions from𝒯 toℬ0 such that:

– ℊ𝒶𝒷 (1) = 𝒶, ℊ𝒶𝒷 (2) = 𝒷;
– ℊ𝒷𝒶(1) = 𝒷, ℊ𝒷𝒶(2) = 𝒶;
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– ℯ1 = 〈ℊ𝒶𝒷 ,𝒢𝒶𝒷 〉;
– ℯ2 = 〈ℊ𝒷𝒶,𝒢𝒷𝒶〉;
– ℛ : 𝒯 → ℘(ℬ1 ×ℬ1 ×ℬ1):

– ℛ(1) =ℛ(2) = {〈𝒶,ℯ1,ℯ2〉, 〈𝒷,ℯ1,ℯ2〉};
– ℯ3 = 〈λ𝓉.𝒶, λ𝓉.ℯ1, λ𝓉.ℯ2,ℛ〉;
– ℯ4 = 〈λ𝓉.𝒷, λ𝓉.ℯ1, λ𝓉.ℯ2,ℛ〉.

We observe without proof that the following holds of the elements just charac-
terised:

Observation 1
1. ℯ1 ∈ 𝒹1,1 7. ℯ2 ∈ 𝒹1,1,𝓈
2. ℯ1 ∈ 𝒹1,2 8. ℯ2 ∈ 𝒹1,2,𝓈 15. ℯ3 ∈ 𝒹2,2,𝓈

3. ℯ1 ∈ 𝒹1,1,𝓈 9.ℛ ∈ D3
1 14. ℯ4 ∈ 𝒹2,1

4. ℯ1 ∈ 𝒹1,2,𝓈 10. ℯ3 ∈ 𝒹2,1 15. ℯ4 ∈ 𝒹2,2
5. ℯ2 ∈ 𝒹1,1 11. ℯ3 ∈ 𝒹2,2 16. ℯ4 ∈ 𝒹2,1,𝓈
6. ℯ2 ∈ 𝒹1,2 12. ℯ3 ∈ 𝒹2,1,𝓈 17. ℯ4 ∈ 𝒹2,2,𝓈

Observation 2 ∀𝓍 ∈ℬκ , ∀𝓉 ∈ 𝒯 : 𝓍 <𝓉ℱ ℯ3 iff 𝓍 <𝓉ℱ ℯ4.

The embodiments ℯ3 and ℯ4 will play a crucial role in showing the undefinability
of timeless parthood and of immediate parthood in terms of parthood. As will be
shown,ℳ is <-bisimilar to itself via a <-bisimulation π that maps 𝒶 to itself and
maps ℯ3 to ℯ4. Yet, 𝒶 is a timeless part of ℯ3, even though 𝒶 is not a timeless part
of ℯ4. Similarly, 𝒶 is an immediate part of ℯ3, even though 𝒶 is not an immediate
part of ℯ4. In conjunction with Theorem 8, this result shows that timeless parthood
and immediate parthood are not definable in terms of parthood. We now turn to the
definition of the <-bisimulation π .

A.2.2 The<-bisimulation

We begin by defining the set of all partial functions,ℋi , from 𝒯 toℬi , for each i

such that 0 ≤ i < κ:

Definition 48 For each i such that 0 ≤ i < κ , let:
– ℋi = {𝒽 : 𝒯 →ℬi};
– ℋκ = ⋃

i<κ ℋi .

The <-bisimulation π will be defined in terms of the following function between
entities defined in terms of the frameℱ :

Definition 49 (θ -Function)
Let θ be a function with domainℬκ ∪𝒟+

κ ∪ℋκ simultaneously defined as follows:
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1. ∀x ∈ℬκ :

(a) If 𝓍 ∈ℬ0, then θ(𝓍) = 𝓍;
(b) If 𝓍 �∈ℬ0, then:

(i) if 𝓍 �= ℯ3 and 𝓍 �= ℯ4, then
θ(𝓍) = 〈θ(𝓂1), . . . , θ(𝓂n), θ(𝒳 )〉,
where 𝓍 = 〈𝓂1, . . . ,𝓂n,𝒳 〉;

(ii) if 𝓍 = ℯ3, then θ(𝓍) = ℯ4;
(iii) if 𝓍 = ℯ4, then θ(𝓍) = ℯ3;

2. ∀𝒳 ∈ 𝒟κ , 𝓉 ∈ 𝒯 :
θ(𝒳 )(𝓉) = {〈θ(𝓍1), . . . , θ(𝓍n)〉 : 〈𝓍1, . . . ,𝓍n〉 ∈ 𝒳 (𝓉)};

3. ∀𝒽 ∈ℋκ : ∀𝓉 ∈ 𝒯 , θ(𝒽)(t) = θ(𝒽(𝓉)).

We now show that relevant restrictions of θ turn out to be bijections:

Lemma 15 (Bijections) For every i < κ and 𝓉 ∈ 𝒯 and n ∈ N:

1. θ 	𝒹i,𝓉 is a bijection from𝒹i,𝓉 to𝒹i,𝓉;
2. θ 	𝒹i,𝓉,𝓈 is a bijection from𝒹i,𝓉,𝓈 to𝒹i,𝓉,𝓈;
3. θ 	𝒟𝓃𝒾 is a bijection from𝒟𝓃

𝒾 to𝒟𝓃
𝒾 ;

4. θ 	ℋi
is a bijection fromℋi toℋi .

Proof of Lemma A.2.2

1.(a) (∀𝓍 ∈ 𝒹i,𝓉 : θ(𝓍) ∈ 𝒹i,𝓉):
Suppose, for reductio, that there is a least ordinal i < κ such that θ(𝓍) �∈ 𝒹i,𝓉,
for some 𝓉 ∈ 𝒯 and𝓍 ∈ 𝒹i,𝓉. Clearly,𝓍 �= 𝒶,𝓍 �= 𝒷,𝓍 �= ℯ3 and𝓍 �= ℯ4.
So, i is a successor ordinal j + 1, 𝓍 = 〈𝓂1, . . . ,𝓂n,𝒳 〉, by Definition 7,
and θ(𝓍) = 〈θ(𝓂1), . . . , θ(𝓂n), θ(𝒳 )〉, by Definition 49.

Suppose 𝓍 is an n-ary rigid embodiment. Then: (i) θ(𝓂l ) is a con-
stant function from 𝒯 to ℬj , for each 1 ≤ l ≤ n, by Definitions 4,
49 and the reductio assumption; (ii) θ(𝒳 ) ∈ 𝒟𝓃

𝒿 , by Definitions 4, 49
and the reductio assumption; and (iii) 〈𝓂1(𝓉), . . . ,𝓂n(𝓉)〉 ∈ 𝒳 (𝓉) if
and only if 〈θ(𝓂1)(𝓉), . . . , θ(𝓂n)(𝓉)〉 ∈ θ(𝒳 )(𝓉), by Definition 49. But
〈𝓂1(𝓉), . . . ,𝓂n(𝓉)〉 ∈ 𝒳 (𝓉), since 𝓍 ∈ 𝒹j+1,𝓉, by Definition 7. So,
〈θ(𝓂1)(𝓉), . . . , θ(𝓂n)(𝓉)〉 ∈ θ(𝒳 )(𝓉). So, θ(𝓍) is an n-ary rigid embod-
iment in 𝒹j+1,𝓉, by Definitions 4 and 7. But this contradicts the reductio
assumption.

Suppose instead that 𝓍 is a variable embodiment. Then: (i) θ(𝒳 ) is an
individual concept in 𝒟 1

j , by Definitions 6, 49 and the reductio assumption;
(ii) θ(𝓂1) ∈ ℋj , by Definition 6, Definition 49 and the reductio assump-
tion; (iii) θ(𝒳 )(𝓉) = {θ(𝓂1)(𝓉)} if θ(𝓂1)(𝓉) is defined and otherwise
θ(𝒳 )(𝓉) = ∅, for every 𝓉 ∈ 𝒯 , by Definition 6, Definition 49 and the reduc-
tio assumption; (iv) 𝓂1(𝓉) ∈ 𝒳 (𝓉) if and only if θ(𝓂1)(𝓉) ∈ θ(𝒳 )(𝓉),
by Definition 49. But 𝓂1(𝓉) ∈ 𝒳 (𝓉), since 𝓍 ∈ 𝒹j+1,𝓉, by Definition 7.
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So, θ(𝓂1)(𝓉) ∈ θ(𝒳 )(𝓉). So, θ(𝓍) is a variable embodiment in 𝒹j+1,𝓉, by
Definitions 6 and 7. But this contradicts the reductio assumption.

Therefore, the reductio assumption is false. Hence, for every i < κ and
𝓉 ∈ 𝒯 : θ(𝓍) ∈ 𝒹i,𝓉, for every 𝓍 ∈ 𝒹i,𝓉;

1.(b) (∀𝓍,𝓎 ∈ 𝒹i,𝓉: θ(𝓍) = θ(𝓎) ⇒ 𝓍 = 𝓎):
Suppose, for reductio, that there is a least ordinal i < κ such that θ(𝓍) =
θ(𝓎) and 𝓍 �= 𝓎, for some 𝓍, 𝓎 in 𝒹i,𝓉 and 𝓉 ∈ 𝒯 . Clearly, i is a
successor ordinal j + 1, where j ≥ 2. So, by the reductio assumption,
and Definitions 7 and 49, there are 𝓍 = 〈𝓂𝓍

1 , . . . ,𝓂𝓍
n ,𝒳 〉 ∈ 𝒹j+1,𝓉

and 𝓎 = 〈𝓂𝓎
1 , . . . ,𝓂𝓎

n ,𝒳 〉 ∈ 𝒹j+1,𝓉 such that 𝓍 �= 𝓎 and θ(𝓍) =
〈θ(𝓂𝓍

1 ), . . . , θ(𝓂𝓍
n ), θ(𝒳 )〉 = θ(𝓎) = 〈θ(𝓂𝓎

1 ), . . . , θ(𝓂𝓎
n ), θ(𝒴 )〉. By

the reductio assumption and Definition 49, θ(𝓂𝓍
l ) = θ(𝓂𝓎

l ), for every l such
that 1 ≤ l ≤ n, and θ(𝒳 ) = θ(𝒴 ). But then, θ(𝓍) = θ(𝓎). Yet, this con-
tradicts the reductio assumption. So, for every ordinal i < κ and 𝓉 ∈ 𝒯 :
∀𝓍,𝓎 ∈ 𝒹i,𝓉: θ(𝓍) = θ(𝓎) ⇒ 𝓍 = 𝓎;

1.(c) (∀𝓎 ∈ 𝒹i,𝓉∃𝓍 ∈ 𝒹i,𝓉: θ(𝓍) = 𝓎):
Suppose, for reductio, that there is a least ordinal i < κ and a 𝓎 ∈ 𝒹i,𝓉

such that for every 𝓍 ∈ 𝒹i,𝓉, θ(𝓍) �= 𝓎. Clearly, i is a successor ordinal
j +1, where j ≥ 2. So, 𝓎 = 〈𝓂𝓎

1 , . . . ,𝓂𝓎
n ,𝒴 〉, by Definition 7. Now, by the

reductio assumption, there are𝓂𝓍
1 , . . .,𝓂

𝓍
n and𝒳 such that𝓂𝓎

1 = θ(𝓂𝓍
1 ),

. . .,𝓂𝓎
n = θ(𝓂𝓍

n ) and𝒴 = θ(𝒳 ). Let 𝓍 = 〈𝓂𝓍
1 , . . . ,𝓂𝓍

n ,𝒳 〉. Suppose 𝓎
is a rigid embodiment in 𝒹j+1,𝓉. Then, for every l such that 1 ≤ l ≤ n,𝓂𝓍

l

is a constant function from𝒯 toℬj ,𝒳 ∈ 𝒟 n
j and 〈𝓂𝓍

1 (𝓉), . . . ,𝓂𝓍
n (𝓉)〉 ∈

𝒳 (𝓉), by the reductio assumption and Definitions 4, 7 and 49. So, 𝓍 is a
rigid embodiment in 𝒹j+1,𝓉, by Definitions 4 and 7. Suppose instead that 𝓎
is a variable embodiment in𝒹j+1,𝓉. Then,𝒳 is an individual concept in𝒟 1

j ,
𝓂𝓍

1 ∈ ℋj , ∀𝓉 ∈ 𝒯 :𝓂1(𝓉) is defined if and only if𝒳 (𝓉) = {𝓂1(𝓉)}, and
𝓂𝓍

1 (𝓉) ∈ 𝒳 (𝓉), by the reductio assumption and Definitions 6, 7 and 49. So,
𝓍 is a variable embodiment in 𝒹j+1,𝓉. Either way, θ(𝓍) = 𝓎, where 𝓍 ∈
𝒹j+1,𝓉. But this contradicts the reductio assumption. So, for every ordinal
i < κ and 𝓉 ∈ 𝒯 , ∀𝓎 ∈ 𝒹i,𝓉∃𝓍 ∈ 𝒹i,𝓉: θ(𝓍) = 𝓎.

Therefore, for every ordinal i < κ and 𝓉 ∈ 𝒯 , θ 	𝒹i,𝓉 is a bijection from
𝒹i,𝓉 to𝒹i,𝓉.

2.(a) (∀𝓍 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) ∈ 𝒹i,𝓉,𝓈):
Suppose, for reductio, that there is a least ordinal i such that θ(𝓍) �∈ 𝒹i,𝓉,𝓈,
for some 𝓍 ∈ 𝒹i,𝓉,𝓈 and 𝓉 ∈ 𝒯 . Clearly, 𝓍 �= 𝒶, 𝓍 �= 𝒷, 𝓍 �= ℯ3 and 𝓍 �=
ℯ4. So, i is a successor ordinal j+1,𝓍 = 〈𝓂1, . . . ,𝓂n,𝒳 〉, by Definition 8,
and θ(𝓍) = 〈θ(𝓂1), . . . , θ(𝓂n), θ(𝒳 )〉, by Definition 49. Since𝓍 ∈ 𝒹i,𝓉,𝓈,
there is some 𝓂l such that 𝓂l (𝓉) ∈ 𝒹j,𝓉,𝓈, by Definition 8. So, by the
reductio assumption and Definition 49, there is some l such that 1 ≤ l ≤ n

and θ(ml(𝓉)) = θ(ml)(𝓉) ∈ 𝒹j,𝓉,𝓈. But then, θ(𝓍) ∈ 𝒹j+1,𝓉,𝓈 = 𝒹i,𝓉,𝓈, by
Definition 8. This contradicts the reductio assumption. Therefore, the reductio
assumption is false: for every i < κ and 𝓉 ∈ 𝒯 , ∀𝓍 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) ∈ 𝒹i,𝓉,𝓈.

2.(b) (∀𝓍,𝓎 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) = θ(𝓎) ⇒ 𝓍 = 𝓎):
Suppose, for reductio, that there is a least ordinal i < κ and such that θ(𝓍) =
θ(𝓎) and yet 𝓍 �= 𝓎, where 𝓍 and 𝓎 belong to 𝒹i,𝓉,𝓈. Hence, there are 𝓍
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and 𝓎 ∈ 𝒹i,𝓉 such that θ(𝓍) = θ(𝓎), by Definition 8 and yet 𝓍 �= 𝓎.
But this contradicts the claim that θ 	𝒹i,𝓉 is a bijection from 𝒹i,𝓉 to 𝒹i,𝓉.
Contradiction. So, the reductio assumption is false: for every ordinal i < κ

and 𝓉 ∈ 𝒯 , ∀𝓍,𝓎 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) = θ(𝓎) ⇒ 𝓍 = 𝓎.
2.(c) (∀𝓎 ∈ 𝒹i,𝓉,𝓈∃𝓍 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) = 𝓎):

Suppose, for reductio, that there is a least i < κ and a 𝓎 ∈ 𝒹i,𝓉,𝓈 such that,
for every 𝓍 ∈ 𝒹i,𝓉,𝓈, θ(𝓍) �= 𝓎. Clearly, i is a successor ordinal j + 1,
where j ≥ 2. So, 𝓎 = 〈𝓂𝓎

1 , . . . ,𝓂𝓎
n ,𝒴 〉, by Definition 8. So, there is an

𝓍 = 〈𝓂𝓍
1 , . . . ,𝓂𝓍

n ,𝒳 〉 ∈ 𝒹j+1,𝓉 such that θ(𝓍) = 𝓎, since θ 	𝒹i,𝓉 is a
bijection and 𝓎 ∈ 𝒹j+1,𝓉, by Definition 8. Now, from the reductio assump-
tion and Definition 49 it follows that, for every l such that 1 ≤ l ≤ n,
𝓂y

l ∈ 𝒹j,𝓉,𝓈 if and only if 𝓂x
l ∈ 𝒹j,𝓉,𝓈. But there is some l such that

𝓂y
l (𝓉) ∈ 𝒹j,𝓉,𝓈, by Definition 8, since 𝓎 ∈ 𝒹j+1,𝓉,𝓈. Therefore, there is

some l such that𝓂x
l (𝓉) ∈ 𝒹j,𝓉,𝓈. But then, 𝓍 ∈ 𝒹j+1,𝓉,𝓈, by Definition 8.

This contradicts the reductio assumption. So, for every ordinal i < κ , 𝓉 ∈ 𝒯
∀𝓎 ∈ 𝒹i,𝓉,𝓈∃𝓍 ∈ 𝒹i,𝓉,𝓈: θ(𝓍) = 𝓎.

Therefore, for every ordinal i < κ and 𝓉 ∈ 𝒯 , θ 	𝒹i,𝓉,𝓈 is a bijection from
𝒹i,𝓉,𝓈 to𝒹i,𝓉,𝓈.

3. The claim that for every i < κ , θ 	𝒟𝓃𝒾 is a bijection from 𝒟𝓃
𝒾 to 𝒟𝓃

𝒾 is a
straightforward consequence of the fact that for every i < κ and 𝓉 ∈ 𝒯 ,
θ 	𝒹i,𝓉 is a bijection from𝒹i,𝓉 to𝒹i,𝓉;

4. The claim that for every i < κ , θ 	ℋi
is a bijection from ℋi to ℋi is a

straightforward consequence of the fact that for every i < κ and 𝓉 ∈ 𝒯 ,
θ 	𝒹i,𝓉 is a bijection from𝒹i,𝓉 to𝒹i,𝓉.

Our final result about the θ function concerns the preservation of parthood under
the θ function:

Lemma 16 For every 𝓍,𝓎 ∈ 𝒹κ,𝓉 ∪𝒟κ , for every 𝓉 ∈ 𝒯 : 𝓍 <𝓉ℱ 𝓎 if and only if
θ(𝓍) <𝓉ℱ θ(𝓎).

Proof of Lemma 16
(⇒): Suppose, for reductio, that there are 𝓍,𝓎 ∈ 𝒹κ,𝓉 ∪𝒟κ such that 𝓍 <𝓉ℱ 𝓎 and
θ(𝓍) �<𝓉ℱ θ(𝓎), for some 𝓉 ∈ 𝒯 . Then, there is a least ordinal i such that 𝓍 <𝓉ℱ 𝓎
and θ(𝓍) �<𝓉ℱ θ(𝓎), for some 𝓍,𝓎 ∈ 𝒹i,𝓉 ∪ ⋃

n∈N
⋃

n∈N𝒟 n
i and 𝓉 ∈ 𝒯 . Now, i

is a successor ordinal j + 1, where j > 2, since ℯ3 and ℯ4 share the same parts, by
Observation 2, and θ(𝓎) = 𝓎 for every 𝓎 ∈ℬ2 such that 𝓎 �= ℯ3 and 𝓎 �= ℯ4.

So, 𝓎 = 〈𝓂𝓎
1 , . . . ,𝓂𝓎

n ,𝒴 〉, by Definition 7. Now, either 𝓍 = 𝒴 , or else
𝓍 ≤𝓉ℱ 𝓂𝓎

l (𝓉), for some l such that 1 ≤ l ≤ n. If 𝓍 = 𝒴 , then, 𝓍 <𝓉ℱ 𝓎.
But then, θ(𝓍) = θ(𝒴 ) <𝓉ℱ θ(𝓎) = 〈θ(𝓂𝓎

1 ), . . . , θ(𝓂𝓎
n ), θ(𝒴 )〉. So, suppose

that 𝓍 ≤𝓉ℱ 𝓂𝓎
l (𝓉). If 𝓍 = 𝓂𝓎

l (𝓉), then θ(𝓍) = θ(𝓂𝓎
l (𝓉)) = θ(𝓂𝓎

l )(𝓉) =
〈θ(𝓂𝓎

1 ), . . . , θ(𝓂𝓎
n ), θ(𝒴 )〉. So, suppose instead that 𝓍 <𝓉ℱ 𝓂𝓎

l (𝓉). Then, by
the reductio assumption, θ(𝓍) <𝓉ℱ θ(𝓂𝓎

l )(𝓉). But θ(𝓂𝓎
l )(𝓉) <𝓉ℱ θ(𝓎) =

〈θ(𝓂𝓎
1 ), . . . , θ(𝓂𝓎

n ), θ(𝒴 )〉. Hence, θ(𝓍) <𝓉ℱ θ(𝓎), by the Definition of <𝓉ℱ .
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But this contradicts the reductio assumption. Therefore, for every 𝓍,𝓎 ∈ 𝒹κ,𝓉 ∪
𝒟κ , for every 𝓉 ∈ 𝒯 : 𝓍 <𝓉ℱ 𝓎 only if θ(𝓍) <𝓉ℱ θ(𝓎).

(⇐): Suppose, for reductio, that there are 𝓍,𝓎 ∈ 𝒹κ,𝓉 ∪𝒟κ such that 𝓍 �<𝓉ℱ 𝓎
and θ(𝓍) <𝓉ℱ θ(𝓎), for some 𝓉 ∈ 𝒯 . Then, there is a least ordinal i such that
𝓍 �<𝓉ℱ 𝓎 and θ(𝓍) <𝓉ℱ θ(𝓎), for some 𝓍,𝓎 ∈ 𝒹i,𝓉 ∪ ⋃

n∈N
⋃

n∈N𝒟 n
i and 𝓉 ∈ 𝒯 .

Now, i is a successor ordinal j+1, where j > 2, since ℯ3 and ℯ4 share the same parts,
by Observation 2, and θ(𝓎) = 𝓎 for every 𝓎 ∈ℬ2 such that 𝓎 �= ℯ3 and 𝓎 �= ℯ4.

So, 𝓎 = 〈𝓂𝓎
1 , . . . ,𝓂𝓎

n ,𝒴 〉, by Definition 7, and θ(𝓎) =
〈θ(𝓂𝓎

1 ), . . . , θ(𝓂𝓎
n ), θ(𝒴 )〉. Now, either θ(𝓍) = θ(𝒴 ), or else θ(𝓍) ≤𝓉ℱ

θ(𝓂𝓎
l )(𝓉) = θ(𝓂𝓎

l (𝓉)), for some l such that 1 ≤ l ≤ n. If θ(𝓍) = θ(𝒴 ),
then, 𝓍 = 𝒴 , since θ 	𝒟𝓃𝒿 is a bijection between 𝒟𝓃

𝒿 and 𝒟𝓃
𝒿 . But then,

clearly, 𝓍 = 𝒴 <𝓉ℱ 〈𝓂𝓎
1 , . . . ,𝓂𝓎

n ,𝒴 〉. Suppose θ(𝓍) ≤𝓉ℱ θ(𝓂𝓎
l )(𝓉). If

θ(𝓍) = θ(𝓂𝓎
l (𝓉)), then 𝓍 = 𝓂𝓎

l (𝓉), since θ 	𝒹j,𝓉 is a bijection between
𝒹j,𝓉 and 𝒹j,𝓉. So, 𝓍 = 𝓂𝓎

l (𝓉) <𝓉ℱ 〈𝓂𝓎
1 , . . . ,𝓂𝓎

n ,𝒴 〉. So, suppose that
θ(𝓍) <𝓉ℱ θ(𝓂𝓎

l )(𝓉). Then, by the reductio assumption, 𝓍 <𝓉ℱ 𝓂𝓎
l (𝓉). But

𝓂𝓎
l (𝓉) <𝓉ℱ 𝓎 = 〈𝓂𝓎

1 , . . . ,𝓂𝓎
n ,𝒴 〉. Hence, 𝓍 <𝓉ℱ 𝓎, by the Definition of <𝓉ℱ .

But this contradicts the reductio assumption. Therefore, for every 𝓍,𝓎 ∈ 𝒹κ,𝓉 ∪
𝒟κ , for every 𝓉 ∈ 𝒯 : 𝓍 <𝓉ℱ 𝓎 if θ(𝓍) <𝓉ℱ θ(𝓎).

We are now in a position to define the <-bisimulation π :

Definition 50 (π Function)
Let π be a function with domainℬκ ∪ ⋃

n∈N𝒟 n
κ ∪𝒯 ∪𝒫 such that:

– ∀𝓍 ∈ℬκ : π(𝓍) = θ(𝓍);
– ∀𝒳 ∈ 𝒟 n

κ : π(𝒳 ) = θ(𝒳 );
– ∀𝓉 ∈ 𝒯 : π(𝓉) = 𝓉;
– ∀𝓅 ∈ 𝒫 : π(𝓅) = 𝓅;

The following lemma states that π is indeed a <-bisimulation betweenℳ andℳ:

Lemma 17 ℳ
π

�ℳ.

Proof of Lemma 17 The satisfaction of conditions 1-9 of Definition 43 is a straight-
forward consequence of Definitions 49 and 50 and Lemmas A.2.2 and 16. Therefore,

ℳ
π

�ℳ.

The last result required for the application of Theorem 8 is the following:

Lemma 18
1. (a) ℳ, 1,ℊ[x/𝒶, y/ℯ3] � x � y

(b) ℳ, π(1), π(g[x/𝒶, y/ℯ3]) �� x � y;
2. (a) ℳ, 1,ℊ[x/𝒶, y/ℯ3] � x � y;

(b) ℳ, π(1), π(g[x/𝒶, y/ℯ3]) �� x � y.
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Proof of Lemma 18
1. (a) Clearly,𝒶�1

ℱ ℯ3, by Definition 9, since λ𝓉.𝒶 is the first element of ℯ3 =
〈λ𝓉.𝒶, λ𝓉.ℯ1, λ𝓉.ℯ2,ℛ〉 and 𝒶 = λ𝓉.𝒶(1) is such that 〈𝒶,ℯ1,ℯ2〉 ∈
ℛ(1); So,ℳ, 1,ℊ[x/𝒶, y/ℯ3] � x � y;

(b) π(𝒶) �π(1)
ℱ π(ℯ3) if and only if 𝒶 �1

ℱ ℯ4. Now, ℯ4 =
〈λ𝓉.𝒷.λ𝓉.ℯ1, λ𝓉.ℯ2,𝒳 〉 and 𝒶 �= λ𝓉.𝒷(1) = 𝒷, 𝒶 �= λ𝓉.ℯ1(1) = ℯ1
and 𝒶 �= λ𝓉.ℯ2(1) = ℯ2. So, 𝒶 ��1

ℱ ℯ4, by Definition 9. Hence,

π(𝒶) ��π(1)
ℱ π(ℯ3). Therefore,ℳ, π(1), π(ℊ[x/𝒶, y/ℯ3]) �� x � y

2. (a) Clearly, 𝒶 �1ℱ ℯ3, by Definition 13, since 𝒶 �1
ℱ ℯ3 and ℯ3 is a rigid

embodiment. So,ℳ, 1,ℊ[x/𝒶, y/ℯ3] � x � y;
(b) π(𝒶) �π(1)

ℱ π(ℯ3) if and only if 𝒶 �1ℱ ℯ4. The only immediate parthood
sequence at time 1 linking 𝒶 to ℯ4 is 𝒶 �1

ℱ ℯ1 �1
ℱ ℯ4. But ℯ1 is not

a rigid embodiment. So, not: 𝒶 �1ℱ ℯ4. Hence, not: π(𝒶) �π(1)
ℱ π(ℯ3), by

Definition 13. So,ℳ, π(1), π(g[x/𝒶, y/ℯ3]) �� x � y.

A straightforwardly corollary of the above results is the undefinability in the E-
theory of timeless parthood and immediate parthood in terms of parthood. Theorem 2
is thus an immediate consequence of Theorem 8, Lemma 18 and Definitions 27
and 28.
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