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Abstract We investigate the philosophical significance of the existence of
different semantic systems with respect to which a given deductive system
is sound and complete. Our case study will be Corcoran’s deductive system
D for Aristotelian syllogistic and some of the different semantic systems for
syllogistic that have been proposed in the literature. We shall prove that they
are not equivalent, in spite of D being sound and complete with respect to
each of them. Beyond the specific case of syllogistic, the goal is to offer a
general discussion of the relations between informal notions—in this case,
an informal notion of deductive validity—and logical apparatuses such as
deductive systems and (model-theoretic or other) semantic systems that aim
at offering technical, formal accounts of informal notions. Specifically, we will
be interested in Kreisel’s famous ‘squeezing argument’; we shall ask ourselves
what a plurality of semantic systems (understood as classes of mathematical
structures) may entail for the cogency of specific applications of the squeezing
argument. More generally, the analysis brings to the fore the need for criteria
of adequacy for semantic systems based on mathematical structures. Without
such criteria, the idea that the gap between informal and technical accounts of
validity can be bridged is put under pressure.
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1 Introduction

Let us start with a fairly uncontroversial observation. Generally speaking,
a logical system can be viewed from (at least) two equally important but
fundamentally different angles: i) it can be viewed as a pair formed by a
syntax, i.e. a deductive system, and a semantics, i.e. a class of mathematical
structures onto which the underlying language is interpreted; or ii) it can
be viewed as a triad consisting of a syntax, a semantics and the target phe-
nomenon that the logic is intended to capture.! In the first case, both syntax
and semantics are viewed as autonomous mathematical structures, not owing
anything to external elements. In the second case, both syntax and semantics
are accountable towards the primitive target phenomenon, which may be an
informally formulated concept, or even phenomena in the ‘real world’ (e.g.
logics of action, logics of social interaction, quantum logic etc.). Indeed, in the
second case, both syntax and semantics seek to be a ‘model’ in some sense
or another of the target phenomenon. In this paper, we will focus on logical
systems viewed as triads syntax-semantics-target phenomenon.?

Against this background, we investigate the philosophical significance of
the existence of different semantic systems that are ‘matching’ (in the sense
of there being a proof of soundness and completeness) for a given deductive
system. Our case study will be Corcoran’s deductive system D for Aristotelian
syllogistic and some of the different semantic systems for syllogistic that have
been proposed in the literature. But the repercussions of the analysis go well
beyond the case of syllogistic specifically. Rather, they concern the general
topic of the relations between informal notions—in this case, an informal no-
tion of deductive validity—and logical apparatuses such as deductive systems
and (model-theoretic or other) semantic systems that aim at offering technical,
formal accounts of informal notions.

More specifically, we will be interested in Kreisel’s famous ‘squeezing
argument’, which concerns precisely the relations between the three elements
constituting a logic on the present approach (syntax, semantics and target
phenomenon). We shall ask ourselves what a plurality of semantic systems

In fact, in both cases one must also take into account the specific language being used, but for
the sake of brevity we shall not consider the role played by the choice of a specific language for
now (we will talk about it later though). Broadly speaking, the language may be considered as
pertaining to the syntax.

2We here adopt a point of view similar to that of S. Shapiro: “...logic is, at root, a philosophical
enterprise. Since at least the beginning of the twentieth century, however, logic has become a
branch of mathematics as well as a branch of philosophy. [...] Our main question here concerns
how that wonderful mathematics relates to the philosophical targets...”[21, 651] Let us also
remind the reader that, in his seminal paper on logical consequence [26], Tarski also takes an
informal notion of consequence as his starting point (encapsulated in his material conditions
of adequacy: substitutivity and truth-preservation), and then goes on to give it a mathematical
formulation.
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(understood as classes of mathematical structures) may entail for the cogency
of specific applications of the squeezing argument. We shall argue that when-
ever there are reasons to think that the choice of a given semantics for a
target phenomenon has not been adequately justified, the squeezing argument
cannot straightforwardly go through. Indeed, the main thesis of the paper
is that when there are alternative semantic systems available but with very
different characteristics (as is the case of the systems analyzed here), they
cannot all be equally adequate models of the target phenomenon. Relatedly,
showing in what sense the four semantic systems for syllogistic analyzed here
are not equivalent (in spite of system D being sound and complete with respect
to each of them) is the main technical contribution of the paper.

In first instance, it might be thought that the discussion presented here does
not generalize to logical systems other than syllogistic, given that the latter is an
exceedingly simple and expressively weak deductive system. Indeed, it might
be thought that it ‘underdetermines’ its own semantics precisely in virtue of its
weak expressive power. But from the point of view of the present discussion,
the expressive weakness of the deductive system itself is in fact irrelevant, as
the goal is precisely to formulate a semantics that is an adequate model of the
target phenomenon, and thus not a semantics to match the deductive system.
More generally, the analysis brings to the fore the need for criteria of adequacy
for semantic systems based on mathematical structures that aim at capturing a
given target phenomenon—e.g. an informal concept of validity. Without such
criteria, the idea that the gap between conceptual and technical accounts of
validity can be bridged is put under pressure.?

The paper proceeds as follows. We start in Section 2 with a discussion of
Aristotle’s goals and results in the Prior Analytics and of Corcoran’s inter-
pretation of Aristotle’s enterprise. In Section 3 we discuss Kreisel’s squeezing
argument and possible reasons why it may not go through in specific cases. In
Section 4 we present: (i) Corcoran’s deductive system D; (ii) a general frame-
work that allows us to compare the different semantic systems for syllogistic;
and (iii) a discussion of inclusion relations between these different systems;
in particular, we show that they are not extensionally equivalent. Finally, in
Section 5 we argue that this extensional disagreement suggests that they cannot
all be equally adequate semantic systems for syllogistic; we also comment on
Shapiro’s and Etchemendy’s respective views on the philosophy of model-
theory. In conclusion, we argue that these issues jeopardize the cogency of any
instantiation of the squeezing argument whenever the legitimacy of a given
semantics for a logic has not been sufficiently established.

3We do not mean to suggest that there should be a principled set of necessary and sufficient
conditions of adequacy for semantic systems, to be applied ‘across the board’; to some extent,
specific cases will require specific discussions. But we do think that general guidelines are required,
which in turn should reflect our goals when designing a semantics for a logic.
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2 Aristotle and Corcoran
2.1 Aristotle on Syllogistic

At the very beginning of the Prior Analytics, that is before presenting the
details of his deductive system, Aristotle presents a much-discussed general
definition of deduction:

A deduction is a discourse in which, certain things having been supposed,
something different from the things supposed results of necessity because
these things are so. By ‘because these things are so’ I mean ‘resulting
through them’, and by ‘resulting through them’ I mean ‘needing no
further term from outside in order for the necessity to come about’
(Aristotle, Prior Analytics, 24b19-23, quoted from [25]).

An important feature of this general definition is that, although it makes
reference to a discourse, and thus a fortiori to a language, it in fact suggests
that whether a thing stated in a language ‘results of necessity’ from other
things being stated in the same language is independent of the peculiarities
of the language in question.* In particular, as has often been noticed in the
literature,’ this definition is not restricted to the particular class of arguments
which Aristotle is effectively dealing with throughout the Prior Analytics,
namely arguments composed of two premises and one conclusion, all of which
are sentences of the a, i, e or o forms (also known as categorical sentences).

Immediately after presenting the general definition of a deduction,
Aristotle introduces the distinction between perfect and imperfect argu-
ments/deductions.

I call a deduction [perfect]® if it stands in need of nothing else besides
the things taken in order for the necessity to be evident [emphasis added];
I call it [imperfect] if it still needs either one or several additional things
which are necessary because of the terms assumed, but yet were not taken
by means of premises (Aristotle, Prior Analytics, 24b24-27, quoted from

[25]).

Roughly put, a deduction is perfect if the validity of its inferential steps is
immediately evident (think of how one decomposes a proof in all its imme-
diate steps), and imperfect otherwise. Notice that, according to the general
definition of deduction, imperfect deductions are just as valid as perfect
deductions: the conclusion ‘results of necessity’ from the premises in just the

“It is also independent of the contingency of an agent actually performing a deduction. It is in this
sense that it can be said (as Corcoran and others emphasize) that for Aristotle the validity of an
argument is a matter of fact, not an epistemic matter.

SFor example, [25, pp. 109-110].

%The Smith translation, which we follow here, has ‘complete’ and ‘incomplete’, but we prefer
to stick to the more traditional ‘perfect’ vs. ‘imperfect’ terminology precisely because of its
familiarity.
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same way (although of course there are different possible interpretations to
the ‘necessity’ in question). The difference between perfect and imperfect
deductions is an epistemic one, related to whether their validity is made evident
to us.

Therefore, in order to account for a limited class of valid arguments,
namely the valid categorical arguments (which are traditionally referred to as
‘syllogisms’), in the Prior Analytics Aristotle proves their validity on the basis
of deductive steps whose validity is (or so he claims) immediately apparent; this
procedure is referred to as ‘perfecting’ or ‘completing’ imperfect syllogisms.’
These evidently valid deductive steps are: the four ‘perfect syllogisms’ in the
first figure (Barbara, Celarent, Darii and Ferio, according to the medieval
terminology); conversion (from ‘Some x is y’ infer ‘Some y is x’, and from ‘No
x is y” infer ‘No y is x’); and subalternation (from ‘All x is y’ infer ‘Some x is
y").8 The basic procedure is to assume the premises of an imperfect syllogism,
and by means of successive applications of the deductive steps listed above,
to reach the desired conclusion, i.e. the conclusion of the syllogism being
perfected.” The underlying assumption is clearly that a chain of valid deductive
steps constitutes a valid deduction. Importantly, though, the deduction of
an imperfect syllogism is not intended to validate the imperfect syllogism in
question; rather, it is intended to make its validity (which is a factual property
of an argument) evident to us.

2.2 A Problem of Completeness

Hence, Aristotle’s general project in the Prior Analytics is essentially that
of ‘perfecting’ valid syllogisms. However, a problem that presents itself im-
mediately, but which is not explicitly addressed by Aristotle, is whether
these deductive rules are sufficient to deduce, and thus to show as valid, all
categorical arguments which are valid according to the definition of a valid
argument at the beginning of the text. Can every imperfect but nevertheless
valid syllogism be shown to be valid by means of a succession of such inferential
steps? In other words, a problem of deductive completeness presents itself for
the Aristotelian project of showing that all valid syllogisms can be perfected
(and thereby their validity made evident to us).

7From now on, we will use the traditional terminology, employing the term ‘syllogism’ to refer to
arguments of this specific class. But the reader must always bear in mind that the general definition
of deduction is not meant to cover only valid arguments in this class.

8These deductive steps are formally presented in Section 4.1. Aristotle proves the validity of
conversions (25a14-26), but as for the perfect syllogisms, he seems to suggest that their validity
is evident on the basis of the principles ‘predicated-of-all’ and ‘predicated-of-none’ formulated
in 24b27-31. Subalternation is related to existential import. Moreover, he sometimes (e.g. with
Baroco and Bocardo) needs to use an indirect proof to perfect a syllogism.

9See [3, Section 4.1].
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The problem of the deductive completeness of Aristotle’s syllogistic system
thus formulated is addressed by J. Corcoran in a series of papers.'® Corcoran
develops a fomalization of Aristotle’s syllogistic based on a natural deduction
system D and on a semantic system consisting of families of non-empty
sets. He proves that system D is sound and complete with respect to this
semantic system,!! and the completeness proof is the (purported) solution
to the problem of deductive completeness. The assumption seems to be that
the semantics of families of non-empty sets is able to accurately capture, at
least extensionally, the underlying notion of validity for this restricted class of
arguments. Whatever argument that is valid according to this semantic system
is valid fout court, and moreover the semantics is (presumably) exhaustive in
that it deems as valid all and only the arguments of the restricted language
which are indeed valid according to the underlying notion. So a proof of
completeness with respect to this semantic system would ensure that D is
deductively complete, i.e. that it can show to be valid exactly those arguments
in this fragment of the language that are indeed valid.

2.3 Choosing a Semantics

But why is it that this particular semantic system provides the right extension
to the underlying notion of validity (for the categorical fragment of the
language)? Of course, the former is a representation of the latter, with a
fair amount of simplification—something that Corcoran himself is well aware
of—and yet he seems to consider it to be an uncontroversial interpretation
for syllogistic onto mathematical structures.'> But clearly, the adequacy of
this representation (even if it is only meant to capture the extension of an
underlying notion of validity) can be brought into question. The adequacy of
the semantic system is as much in need of justification as is that of deductive
system D. If we lack sufficient justification for its adequacy, then it is not
entirely obvious what is accomplished from a philosophical point of view by
means of a proof of completeness such as the one formulated by Corcoran.

In effect, the need to offer adequate justification for the choice of a
given semantic system for syllogistic becomes more pressing in view of the
alternatives available in the literature, in particular the three other semantic
systems for syllogistic that we discuss in Section 4. Given that the semantic
system is summoned to provide an accurate account (at least extensionally)
of the underlying (and presumably unique) informal notion of validity for this
fragment of the language, then the point is pressing when there are competing

10See [6, 7] and Section 4.1 below. Notice that Smiley [22] put forward a similar interpretation of
Aristotelian syllogistic almost simultaneously, which was developed independently of Corcoran’s
investigations.

HSee [5].

12We shall say much more on the issue of the status of semantic systems as ‘models’ in Section 5,
in connection with Etchemendy’s and Shapiro’s respective views on the matter.

@ Springer



Validity, the Squeezing Argument and Alternative Semantic Systems 393

semantic systems with remarkably different characteristics. System D is sound
and complete with respect to each of them, and they are each conceptually
motivated on independent grounds (see Section 4). So how do we ascertain
that a given semantic system is indeed successful in capturing the extension
of the underlying general notion of validity, so as to serve as a yardstick
to evaluate the adequacy of the deductive system with respect to the target
phenomenon?*?

It may seem that the existence of at least four different semantic systems
for syllogistic is not in itself particularly troublesome, that is if these different
semantic systems are all ‘equivalent’, in a relevant sense of ‘equivalent’. But we
will show that the apparent equivalence between these systems (given that D is
sound and complete with respect to each of them) depends crucially on the lim-
ited expressive power of the language underlying D.'* As soon as one considers
languages with more expressive power (with appropriate interpretations of
the additional terminology in each of these classes of structures), one realizes
that these semantic systems do not extensionally coincide—that is, they do not
deem as valid the exact same class of arguments in the extended languages.
And given that the underlying informal notion of validity is intended to be
perfectly general, an extensional disagreement between the different semantic
systems in extended languages would suggest that they could not all have been
equally adequate semantic systems even for the original language.

In summary, Corcoran’s completeness proof will only have the philosophical
significance he attributes to it if there are compelling (independent) reasons
to believe that the semantic system in question is an adequate representation
of the underlying informal notion. But as we shall argue, the availability of
alternative semantic systems forces us to evaluate the adequacy claim more
carefully.

3 The Squeezing Argument
3.1 A Schematic Version of the Squeezing Argument

The issue of the philosophical significance of proofs of (soundness and)
completeness is an important one, and illustrious philosophers/logicians such
as Dummett [9] and Kreisel [13] have given positive answers to the question
whether such technical results have philosophical significance at all. Kreisel, in
particular, offered an argument intended to show that completeness proofs (at

138yllogistic is just one specific case of this issue, and by discussing this relatively simple case we
hope to bring the point home that the lack of adequacy criteria might be a problem for several
other semantic analyses based on mathematical structures.

141n this paragraph we advance some of the claims we will be arguing for in more detail throughout
the paper.
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least in some cases) could be seen as bridging the gap between informal and
technical notions of validity: the much-discussed ‘squeezing argument’.!>

Corcoran does not refer to Kreisel explicitly, but we think that his defense
of the adequacy of deductive system D on the basis of a completeness proof
can be viewed as a variation of Kreisel’s squeezing argument.'® So here is
an outline of the argument, following its presentation in [23].!7 Consider a
theoretically robust but informally formulated concept I (‘T for ‘informal’, not
for ‘intuitive’), typically with somewhat vague borders. Assume that there is a
technical, formal and precisely defined concept D, which can be predicated of
(roughly) the same category of entities e as I, and which, as it turns out, seems
to offer sufficient conditions for an entity to fall under I. Thus:

— IfeisD, theneisI.

Assume moreover that there is another technical, formal and precisely
defined concept S which uncontroversially provides necessary conditions for
something to fall under I. Thus:

— IfeisI, theneisS.

Given these two implications, “the extension of I (vaguely gestured at and
indeterminately bounded though that might be) is at least sandwiched between
the determinately bounded extensions of [D] and [S]” [23]. Now, what makes
squeezing arguments truly interesting is that, in some cases, there is a third
implication whose truth can be established by means of a proof (given that D
and S are technical, mathematically defined concepts):

— Ifeis S, theneisD.

Given this third implication, the informal concept I is ‘squeezed’ between
the two technical concepts, i.e. its extension is shown to coincide with that of
the other two concepts. We thereby obtain a precise, technical formulation of
the boundaries of informal, vague but crucial concept 1.

I5Recent discussions of it can be found in [11, especially Section 2.3], [24, ch. 35] and [23]. Notice
that Kreisel himself does not use the phrase ‘squeezing argument’.

16To be sure, although we will now raise objections to Kreisel’s argument, we find much to
commend in his analysis. For starters, he recognizes that the most fundamental level when dealing
with the matter of validity is the informal, non-technical level, and that technical accounts aim at
capturing underlying non-technical notions, i.e. the target phenomena.

17Smith is here openly criticizing Field’s rendition of the squeezing argument in [11, Section 2.3].
In particular, Smith criticizes Field’s idea of an ‘intuitive’, non-theoretical notion of validity, a
criticism we entirely endorse. The problem with the ‘intuitive’ terminology used in connection
with the squeezing argument by Field, and in fact more generally in philosophy of logic (e.g. by
Etchemendy), is that it overlooks the fact that the initial target phenomenon, as we call it, is in
effect already couched on a significant amount of theorizing, albeit of the ‘informal’ kind.
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3.2 The Squeezing Argument and Validity

It should be clear by now that, when it comes to logical systems conceived
as triads, the informal concept I is precisely the target phenomenon that we
take both syntax and semantics to be (attempted) models of. Whether syntax
or semantics can be viewed as necessary or sufficient conditions specifying the
borders of the target phenomenon (in specific cases) is of course the crux of the
matter; it is the issue of how good a model they are of their target phenomenon.

The squeezing argument is perfectly schematic (as clearly shown in Smith’s
presentation), and different concepts can be used to instantiate it. (For exam-
ple, in [24, ch. 35], it is used in connection with the concept of computability.)
It is in particular often presented in connection with informal conceptions
of validity and their technical counterparts (deductive systems and semantic
systems). For instance: assume an informal notion of validity (for short, I-
validity); a notion of validity as derivability in a given deductive system (for
short, D-validity); and a notion of validity defined by a given technical semantic
apparatus, model-theoretic or otherwise (for short, S-validity). The appeal
of the squeezing argument here lies on the purported intuitiveness of two
premises (the second one is the contrapositive of the second implication above,
which spells out the necessary conditions for informal concept I). Let K be a
set of sentences and d be a sentence (in a given language):

(1) If an argument from K to d is D-valid, then the argument is I-valid.
(2) Ifanargument from K to d is not S-valid, then the argument is not I-valid.

Moreover, it relies on a technical result (if available) for the particular
deductive system and the particular semantic system in question, namely a
proof of completeness:

(3) (Completeness) If the argument from K to d is S-valid, then the argument
is D-valid.

From (1)—(3) it follows that an argument is S-valid iff it is I-valid iff it is
D-valid.

The idea underlying the two premises (1) and (2) seems to be that the
syntactical approach (derivability) is particularly suitable for capturing (an in-
formal notion of) validity, while the semantic approach is particularly suitable
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for capturing (an informal notion of) invalidity.'® This observation is supported
by the quantificational asymmetry between the syntactical and the semantic
notions. That is, from the syntactical point of view, validity corresponds to
an existential claim (there is a derivation from K to d), while invalidity
corresponds to a (negative) universal claim (no derivation is a derivation from
K to d). In contrast, from a semantic point of view, validity corresponds to a
universal claim (all interpretations satisfying K also satisfy d) while invalidity
corresponds to an existential claim (there is an interpretation that satisfies K
but does not satisfy d). Now, insofar as, given our limited cognitive capacities,
dealing with existential claims is far more manageable than dealing with
universal claims, it seems prima facie plausible that there is indeed a tight
connection between the notions of validity and derivability, on the one hand,
and invalidity and counterexamples, on the other hand. And if it is indeed so,
then premises (1) and (2) may appear to be beyond reproach. Here, we shall
focus on (2) and argue that, at least in some important cases, it is not nearly as
uncontroversial as one might think."”

Kreisel [13, p. 154] himself does not offer abundant motivation for (his
version of) (2). He merely says: “on the other hand one does accept [(2)]? the
moment one takes for granted that logic applies to mathematical structures.”
But there are two subtle implications in this assertion: (i) Which mathematical
structures should a given (informal notion of) logic apply to? Does any
mathematical structure fit the bill? Obviously not, but what criteria can be
used to determine the appropriate mathematical structure(s) in each case?
Naturally, there are quite a few different classes of mathematical structures
available: in this paper alone, we consider families of non-empty sets, lattices,
pairs of numbers and first-order models, and it is not at all obvious that the
choice among different alternatives will typically be a straightforward matter.
We shall argue that it is by no means straightforward in the case of syllogistic.
(ii) Even more fundamentally, why should we take for granted that ‘logic’
(whatever it is that Kreisel means by ‘logic’ here) applies to mathematical
structures? This is a substantive claim that would require further support. It
seems to us that the idea of developing logic in connection with mathematical
structures is essentially related to the logicist project of providing logical
foundations to mathematics, and it is not obvious that this assumption should
hold irrestrictly also beyond the scope of the logicist program. After all,
deductive validity is a notion that goes well beyond its possible interpretations
onto mathematical structures.

Kreisel seems to have in mind cases where the ‘obvious’ mathematical struc-
ture presents itself (he focuses explicitly on mathematics and mathematical
logic in his analysis). In the case of axiomatizations of arithmetic, for example,

18This observation is explicitly found in e.g. [9, p. 292], and [8, p. 262].
9We do not mean to imply that (1) is itself uncontroversial, but our focus here is on the connection
between target phenomena and semantic systems.

20K reisel’s version of (2) is a direct implication (as also in Section 3.1 above), not a contrapositive:
in his notation, ViVaVale' — Vo'. Nevertheless, his formulation and (2) are clearly equivalent.
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a mathematical structure (the structure of the natural numbers) is the very
starting point for the analysis, i.e. its target-phenomenon, and the goal is to pro-
vide a syntactical (deductive) description of it by means of an axiomatization.
In such cases, obviously there is an adequate interpretation onto mathematical
structures for the axiomatic system, namely the very structure that was taken as
a starting point. However, in cases where it is not obvious which mathematical
structures (if any) should be used to provide a technical-semantic account of
an informal notion (of validity or otherwise), the intuitive plausibility of (2) is
considerably weakened.?!

3.3 Syllogistic and the Squeezing Argument

Of course, the starting point for the syllogistic deductive system (both in
Aristotle’s own ‘semi-formal’ presentation and in Corcoran’s formalization) is
not a mathematical structure. But what is the target phenomenon in this case?
In other words, what corresponds here to the informal notion of validity, i.e.
I-validity? This is a crucial question to be asked. We follow P. Smith [23] on
the idea that this informal notion will not be ‘pre-theoretical’ in any way; it will
already be a theoretically robust (albeit informal) notion. As we see it, there
are two main candidates: the first candidate is the notion of validity encapsu-
lated in Aristotle’s general definition of a deduction quoted above; the second
candidate is the collection of principles and results formulated throughout the
Prior Analytics. But we maintain (following the interpretation of scholars such
as R. Smith) that the second candidate is itself already an attempt at a (semi-
formal) systematization of the first candidate for a restricted fragment of the
language. Therefore, the actual target phenomenon is ultimately the general
definition of a deduction formulated at the very beginning of the text, in
terms of what follows ‘of necessity’. The theory presented throughout the Prior
Analytics corresponds already to a semi-technical rendition of this notion.

As we interpret it, Corcoran’s argument to the effect that Aristotle’s syllo-
gistic is deductively complete has a slightly different structure from a classical
‘squeezing argument’. It is meant to show (a):

(a) If an argument from K to d is I-valid, it is D-valid.
But his proof only delivers the following:
(b) If an argument from K to d is S-valid, it is D-valid.

To go from (b) to (a), premise (2) of the squeezing argument (or something
equivalent to it) is necessary, that is: “If an argument from K to d is I-valid,
then it is S-valid.”

21 Thus, we concede that, in cases where there are compelling arguments supporting the choice
of a given class of mathematical structures as a semantics for an informal notion, the squeezing
argument may well go through. The bone of contention then becomes when this is indeed the case.
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So in this case the job of the completeness proof is more specifically to
prove the adequacy of the deductive system, i.e. D-validity. But as suggested,
the adequacy of the semantics that Corcoran chooses for his formalization
cannot be taken for granted, i.e. it cannot be taken for granted that it perfectly
captures (even if only extensionally) the underlying notion of validity for the
categorical fragment of the language.”” Now, if there aren’t sufficient grounds
to be confident that a given technical notion of validity (in terms of a semantics
onto mathematical structures) successfully captures the necessary conditions
for the informal target concept, the corresponding instantiation of premise (2)
is not in any way self-evident. This holds in particular of syllogistic, which does
not have an obvious candidate for S-validity.?

That syllogistic does not have an evident candidate for S-validity so as to
allow for the squeezing argument to go through will become patent in the
next section, when we discuss four different semantics for syllogistic that have
been proposed in the literature. Each of them is substantially different from
the others and yet independently motivated. How does one choose between
alternative semantic systems for a given target concept? They cannot all be
equally adequate.

4 Semantic Systems
4.1 Corcoran’s System

Corcoran introduces Aristotelian syllogistic along the lines of familiar pre-
sentations of modern logical systems, i.e. in terms of a formal language, a
deductive system and a semantic system.”* We will discuss them in turn, but
notice that instead of one, we will present four different semantic systems.
The vocabulary of the formal language consists of a set R := {a, ¢, I, 0}, and
a non-empty set V. The set of categorical sentences, Py, consists of those and

22Corcoran seems to go from ‘valid’ tout court to ‘semantically valid’.“[T]he Aristotelian system
is seen to be complete in the sense that every valid argument expressible in his system admits of
a deduction within his deductive system; i.e. every semantically valid argument is deducible” [7, p.
85, emphasis added].

23R. Williams discusses difficulties with (2) for some nonclassical logics in a blog post dated May
15th 2008, available at http://theoriesnthings.wordpress.com/2008/05/15/squeezing-arguments/. He
says: “Kreisel gave a famous and elegant argument for why we should be interested in model-
theoretic validity. But I'm not sure who can use it.” We argue here that the logician interested in
syllogistic is not one of those who can use it. In a sense, the squeezing argument cannot help you
precisely when you need it most, i.e. in cases where it is unclear what semantic system, if any, is
adequate for the task at hand (e.g. some non-classical logics, as discussed by Williams).

24The present exposition of Corcoran’s system is adapted from [5, 7].
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only those expressions of the form xay, xey, xiy, xoy where x, y € V, and where
X ;é y'25

In the language of categorical sentences there is no propositional negation;
the key notion is the semantic notion of contradiction. We assume a (meta-)
function called the contradictory of function, denoted by ¢ : Py — Py, defined
as follows:

xoy ifd = xay,
c(d) = Xiy %fd = xf'zy,
xey ifd = xiy,
xay ifd = xoy,

It is easy to see that c(c(d)) = d for every d € Py.
The deductive system consists of the following natural deduction rules:?®

zay zey
o 2 ay ™ an xaz (qv) xaz
yvex — —
xay xey
xiy zay zey
V) — (V) «xiz (VD) xiz
yix Xiy xoy
Definition 1 We say that a sequence (py, ..., p,) of categorical sentences is a
direct deduction of d from K if d = p,, and for each i € {1, ..., n} one of the
following holds:
1. pie K,or

2. There exists j < i such that p; is obtained from p; using rules (I), (II), or
(V), or

3. Thereexist j, k < isuch that p; is obtained from p; and py using (III), (IV),
(VI), or (VII).

25This last requirement is actually important, both from a historical and from a mathematical
perspective. First, it is a moot point between Corcoran and f.ukasiewikz [15] whether Aristotle
actually considered reflexive sentences, also known as self-predication, in his syllogistic system—
e.g. xax. According to Corcoran, throughout Aristotle’s works we can find only one use of negative
reflexive sentences; Aristotle never discusses positive reflexive sentences [7, p. 99]. Moreover,
if such reflexive sentences are allowed, the natural deduction system will not be complete with
respect to the interpretation of the categorical sentences onto families of non-empty sets (see
footnote 27).

26Rules (I) and (V) are known in the tradition as the conversion rules; Rule (II) is known as
subalternation; Rules (IIT), (IV), (VI), and (VII) are known as the perfect syllogisms—in the
medieval terminology, Barbara, Celarent, Darii and Ferio respectively.
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Definition 2 We say that a sequence (p;, ..., p,) of categorical sentences is an
indirect deduction of d from K if there exists a j < n such that p, = c(p;) and
foreachi € {1, ..., n} one of the following holds:

1. pie K+c(d),or

2. There exists j < i such that p; is obtained from p; using rules (I), (II), or
(V), or

3. Thereexist j, k < isuch that p; is obtained from p; and py using (III), (IV),
(VI), or (VII).

We say that K p d if and only if there exists either a direct or an indirect
deduction of d from K. The logical system so defined is called D. It is a
well-known fact (Aristotle himself seemed to be aware of it) that system D
is redundant; for example, it can be proved that D is indeed equivalent to a
much simpler system which consists only of rules (I)-(IV), which Corcoran
named system RD.

On the present account, semantic systems for syllogistic are based on the
notion of interpretation functions. In turn, an interpretation function is based
on two elements: (i) a set M, and (ii) a function g : V — M. An interpretation
is defined as a function [-] a4 : Pv — {0, 1} that assigns a truth-value to every
categorical sentence based on the terms in V, according to their interpretations
under g. It does so by defining when the value of a sentence under it is 1:

1. [xay]m, = 1if and only if g(x) A g(y) holds,

2. [xey]m, = 1if and only if g(x) E g(y) holds,

3. [xiy]m, = 1if and only if g(x) E g(y) does not hold,
4. [xoy]m, = 1if and only if g(x) A g(y) does not hold.

In other words, [-]a, says that xay is true if and only if some relation A
between g(x) and g(y) holds. It also says that xey is true if and only if some
other relation E between g(x) and g(y) holds. The rest of the definition follows
from the requirement that a and o, and e and i be contradictory sentences,
respectively. Given that the interpretation is based on these relations, we
will sometimes write [[]]’;42, to emphasize this dependency. But before we
formulate the general definition of a semantic system for D, a few more steps
are required.
Letd € Py, K € Py, and let [-] y ¢, be an interpretation function:

— If [d]mg = 1, we say that [-] a4 is a true interpretation of d.

—  Wesay that [-] y is a true interpretation of K if [-] ¢ is a true interpreta-
tion of d, for each d € K.

— With respect to a class C of interpretation functions, K ¢ d if and only if
for every interpretation function [-] 7 in C, if [-] p,¢ is a true interpretation
of K, itis also a true interpretation of d.

A semantic system for D is a class of interpretation functions. Here, we are
onlyinterested in specific classes, namely, the matching classes of interpretation
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functions for D. A matching class C of interpretation functions for D is a class
of interpretation functions such that D is (strongly) sound and complete with
respect to it, that is, such that for all K and d, K Fp d iff K =¢ d.

In the next sections we discuss a number of examples of classes of inter-
pretation functions with these characteristics, and we shall also look into the
structure among these classes.

4.2 Different Semantics for D

4.2.1 Corcoran’s Semantics

We start with Corcoran’s semantic system for D, based on families of non-
empty sets (see [7], Section 3, pp. 103ff). Let M = {U;};c; be a family of non-
empty sets with non-empty index set I, and let g: V — M. We define the

interpretation function -] : Py — {0, 1} as follows:

Definition 3

—_

[xay]m,, = 1if and only if g(x) € g(y),
[xey]mg = 1if and only if g(x) N g(y) = 9,
[xiy]m,, = 1if and only if g(x) N g(y) # ¥,
[xoy]mg = 1 if and only if g(x) Z g(y),

Rl

The soundness proof is straightforward. The completeness proof can be
found in [5].>” We shall refer to the class of interpretation functions based on
families of non-empty sets as CSet.

With respect to Corcoran’s semantic system, two kinds of claims must be
kept apart: (a) exegetical claims and (b) claims about the adequacy of the
semantics. With respect to (a), Corcoran esteems that truth values of sentences
are ‘determined extensionally’,”® and this gives him good reasons to maintain

that the interpretation of terms should be given by non-empty sets.?’

2TFrom the previous definitions it is not hard to see that there is no d € Py such that § = d. In
other words, there is no d such that [d] s, = 1 for every g and every M. However, if we were to
leave out the requirement that x # y in the definition of Py, we would have ¢ = xax and ¢ = xix,
since g(x) € g(x) and g(x) N g(x) # ¥ both hold for any g: V — M and any M. This is precisely
why it was said in footnote 25 that the issue of reflexive sentences is important from a mathematical
perspective. But in fact, it is not difficult to solve the problem: it is sufficient to introduce a new
‘empty’ rule with which we can produce the reflexive sentence xax from an empty set of premises
—see [18].

28The full quote is:“Aristotle regarded the truth-value of the non-modal categorical sentences as
determined extensionally (Prior Analytics, 24a26 ff)” [7, p. 103].

29With respect to non-empty sets: “Since Aristotle held that every secondary substance must
subsume at least one primary substance (Categories, 2a34-2b7) ... [, then g] is a function which
assigns a non-empty set to each member of [V]” [7, p. 104]. See also his note 13 on the issue of
existential import.
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The adequacy claim for this semantic system (issue (b)) might be based
on a number of observations. First, it is standard mathematical practice to
define mathematical objects and structures in terms of set theory. Second,
such an extensional interpretation fits in well with the traditional semantic
interpretation of syllogisms in terms of Venn diagrams. Third, for many terms,
though not for all, it makes sense to conceive of their meaning as corresponding
to sets of entities. So indeed, this extensional interpretation of syllogistic is in
many senses quite plausible. However, in Section 5 we will argue that it is not
uncontroversial.

4.2.2 Martin’s Semantics

But of course, CSet is not the only class of interpretation functions with respect
to which D is sound and complete. It is equally possible to define a class of
interpretation functions based on meet semi-lattices in such a way that D is
sound and complete with respect to it, as proposed by John Martin [19].

In order to obtain a class of interpretation functions based on meet semi-
lattices it is sufficient to replace Definition 3 with Definition 4:

Definition 4 Let (L, A,0) be a bound meet semilattice with 0 as its least
element, M=L—{0}, and g:V— M. The interpretation function can now be
defined as follows:

[xay]m,s = 1if and only if g(x) A g(y) = g(x),
[xey]m,e = 1if and only if g(x) A g(y) =0,
[xiy]m,, = 1if and only if g(x) A g(y) # 0,
[xoy]m.g = 1if and only if g(x) A g(y) # g(x),

A=

We shall refer to the class of such interpretation functions as C Lat. It has
been proved that D is sound and complete with respect to CLat [18]. The
adequacy of this semantic system can be argued for on the basis of a few
observations.

Martin’s [19] focus is on the notion of abstraction, which he views as equally
crucial for both Aritstotelian and Neoplatonic logic.’* However, there are
substantial differences between how each of these traditions interprets the
notion of abstraction. Martin thinks that the best way to analyze the differences
is algebraically: he claims that underlying the notion of abstraction is the notion
of order, which can be captured algebraically. This is why Martin is interested

30«From its earliest days in logic, abstraction has been closely tied to concepts of order and to
various unary operations interpreting negation ... This collection explores this notion of order and
its related operations” [19, p. xi].
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in meet semi-lattices: his interest stems from the fact that they are the minimal
algebraic structures with which an order relation can be defined.’!

Indeed, the concept of abstraction seems to be at the core of syllogistic. For
example, we can view the truth of xay categorical sentences as determined
by the increasing order of abstraction between x and y. (In fact, a similar
idea seems to underlie Leibniz’ analysis of categorical sentences—see below).
Support for the view that the notion of validity of categorical syllogistic seems
to rely on the properties of abstraction comes from the observation that the
ordering determined by abstraction is inversely related to the sets of objects to
which the terms apply.*? In fact, the entire syllogistic system can be accounted
for by means of very basic principles of monotonicity,*® which again reinforces
the idea that order is the crucial concept. Finally, the class of meet semi-lattices
captures the most general framework that can deal with order relations; such
a framework can be fruitfully exploited to account for the concept of ecthesis
and for the problem of existential import of categorical sentences [19, ch. 2].

4.2.3 Leibniz’s Semantics

One question prompted by the framework proposed in [18] is whether the
class of interpretation functions appropriate for D is composed exclusively of
interpretations that are instances of Definition 4. The answer to this question is
negative: there are several other classes of interpretation functions with respect
to which D is sound and complete, but which are not contained in Clat, as we
will show in Section 4.3.

One such class can be built on the basis of Leibniz’s ‘characteristic numbers’.
Leibniz made several attempts to formulate interpretations for Aristotelian
syllogistic. The one presented here is the most interesting one (see, for
instance, On Characteristic Numbers in [14]), for which a completeness proof
has been given [4]. The interpretation function for this class, adapted from
Definition 1.3.1 of [4, p. 545], is the following:

Definition 5 Let M C N? be such that if (n, «) € M, then n and « are coprime.
We call any such set a set of characteristic numbers. Let g: V — M. Let us

31«“Though it diverges from the linear notion of the Pythagorean-Neoplatonists, abstraction in
Arristotle’s theory of definition is also algebraic. As developed by Porphyry in the Isagoge and by
others in the Middle Ages, Aristotle’s theory holds that a difference combines with a genus to
define a species. The process may be viewed algebraically. There is a function, essentially a lattice
meet operation A, that is defined on pairs consisting of a difference D and a genus G to produce
a value that is a species S: D A G = S. As will become clear, A possesses the minimal properties
necessary for defining an order in the usual way” [19, p. xiii].

32«Moreover, although the definitional intension of the genus is literally part of that of the species,
the species as a set of objects in the world is a subset of the genus viewed as a set” [19, p. 39].

33 As also suggested by the foundational role attributed to the principles ‘predicated-of-all’ and
‘predicated-of-none’ by Aristotle himself.
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suppose that g(x) = (n, o) and g(y) = (m, B). The interpretation function can
now be defined as follows:

[xay]m,, = 1if and only if m|n and B,

[xey]m¢ = 1if and only if either n and B, or m and « are not coprime,
[xiy]m,, = 1 if and only if #n and B are coprime and so are m and «,
[xoy]me = 1if and only if eithern fmor B fo.

L=

We shall call CLeib the class defined by Definition 5. The adequacy for this
semantic system may be argued for with a few observations. To begin with,
and as mentioned above, there seems to be a connection between categorical
sentences of the form xay and the ‘degree’ of abstraction between x and y.
This is neatly captured by Leibniz in terms of characteristic numbers. That
two numbers x and y are a-related means that the characteristics of y are part
of the characteristics of x—i.e. the characteristic numbers of y are divisors
of the characteristic numbers of x. This in turn neatly reflects Leibniz’ own
metaphysical views in terms of monads and their attributes.

Moreover, recall that Aristotle’s project (as interpreted by Corcoran) is
essentially epistemological, that is, to show that a given syllogism is valid.
This epistemological component is Leibniz’ leading motivation for developing
the system of characteristic numbers. In fact, once characteristic numbers for
terms are found, resolving a syllogism is no more than performing a number of
arithmetical operations, a calculation.>* Thus, the certainty of valid syllogistic
steps can be compared to the certainty of arithmetic.?

Another point brought up by Leibniz to motivate his system is the generality
of numbers, and how they can be applied across the board to any subject
matter. In a sense, this gives numbers a pride of place as an epistemological
tool, thus suggesting that a semantic system for syllogistic based on (pairs of)

numbers is perfectly ‘adequate’.3

34« .. [A] calculus that deals with subject matter can be separated from a formal calculus. For

although I discovered that one can assign a characteristic number to each term or notion (with
whose help to calculate and to reason will, in the future, be the same) in fact, on account of
the marvelous complexity of things, I cannot yet set forth the true characteristic numbers ...
Nevertheless, I reflected, the form of inferences can be dealt with in a calculus and demonstrated
with fictitious numbers.” [14, p. 10-11] See also [17].

3«For although people can be made worse off by all other gifts, correct reasoning alone can
only be for the good. Moreover, who could doubt that reasoning will finally be correct, when it
is everywhere as clear and certain as arithmetic has been up until now?” [14, p. 8]

36«There is an old saying that God made everything in accordance with weight, measure, and
number. But there are things which cannot be weighted, namely, those that lack force and power
[vis ac potentia], and there are also things that lack parts and thus cannot be measured. But
there is nothing that cannot be numbered. And so number is, as it were, metaphysical shape, and
arithmetic is, in a certain sense, the Statics of the Universe, that by which the powers of things are
investigated” [14, p. 5].
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4.2.4 A Semantics Induced by D

Another class of interpretation functions appropriate for D is what we shall
call CMod. This class consists of all the interpretation functions based on
first-order models of a theory called Tgp [1], which is directly induced from
D. This theory has been used to prove the minimality of RD [1] and to
clarify the relations existing between D and tukasiewicz’s formalization of
Aristotelian logic [2]. The theory is defined as follows: we use a similarity type
T = {A, E} without equality symbol,?” with only two binary relations. Let the
set of variables of the language be equal to V.

We call Trp the theory defined by the following axioms, which are straight-
forward translations of rules (I)-(IV) of the deductive system:

A, Vx,y(xEy <> yEXx)

A, Vx,y(xAy - —(xEy))

Az Vx,y,2(yAz AxAy — xAZ)
Ay Vx,y,2(yEz AXxAy — xEZ)

Definition 6 Let M = (M, AM, EM) be a model of Tgp and g:V— M. The
interpretation function can now be defined as follows:

1. [xay]m, = 1if and only if M = xAy[g],
2. [xey]m, = lif and only if M = xEy[g],
3. [xiy[m, = lif and only if M [ xEy[g],
4. [xoy]m, = lif and only if M = xAy|g],

D’s soundness with respect to CMod follows from the soundness of rules
(I)-(IV), and this in turn follows from the fact that every interpretation
function comes from a model of Tgp. The completeness proof can be found
in [2]. In a sense, CMod is not very ‘adequate’, as it is essentially induced
from the deductive system itself; but it has been useful to prove general
properties of syllogistic and formalizations thereof. So while it may not be the
most conceptually entrenched of the semantic systems discussed here, it is not
obvious on what grounds it could be excluded as a legitimate semantic system
for syllogistic. Indeed, C Mod is based on first-order models, which are widely
used to formulate semantic systems for a variety of logics. In fact, many seem to
view first-order models as the most adequate class of mathematical structures
for the purposes of formulating a semantics for any given (first-order) language
(see Section 5).

Now that we have at hand a number of classes of interpretation functions,
that is, a number of different semantic systems for D, we can investigate

3TThe consequence of leaving out the equality symbol is that the atomic sentences are only of the
form xAy or xEy.
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whether there is some structure among these classes, i.e. whether some classes
are subclasses of others (Section 4.3).

4.3 Finding Some Structure

So far we have four classes of interpretation functions with respect to which
D is sound and complete. These are CSet, CLat, C Leib, and CMod. What are
the relations among them? The first step to address this question is to note that
if C; and C, are two classes of interpretation functions with respect to which
D is sound and complete, and if [-[ s, € Ci, then there exists [-[}, , € C> such

that [d]u ¢ = [d])y . for every d.*® That is, they all provide the same truth-
preserving patterns, as is to be expected from their respective completeness
theorems (but of course, only as long as the arguments considered are exclu-
sively formulated in the language underlying D).

These classes are all different from one another, however, in that the
truth conditions they assign to categorical sentences are provided by different
structural information in each case. For example, let M = p(S) — {4, S} be
the family of all subsets of a given set S (| S |> 1) that are different from ¢
and S, and let g: V — M. Starting from these M and g we can define truth
conditions for categorical sentences on the basis of the inclusion relation.
The interpretation function thus defined, which we will call -] ¢, belongs to
CSet. On the other hand, if we consider the same interpretation function as
a member of CLat, it will provide truth conditions on the basis of the meet
operator, which is obtained from the operation of intersection between sets.
This is not, however, the only lattice that can be accommodated to such M
and g. By taking the reciprocal of the subset relation on M U {S§} we obtain a
different meet semi-lattice, where S is its least element. Call this lattice M |.
Hence, [-]um,,, belongs to CLat and it assigns truth conditions to categorical
sentences on the basis of the same M and g as [-] 7 ¢, but according to different
structural information. Of course, the truth conditions that [-]y ¢ and [-]am, ¢
define are quite different. For example, by Definitions 3 and 4 it follows that,
for any x and y such that g(x) # g(y), [xay] s, = 1iff [xay]s, ¢ = 0.

The upshot of these considerations is, firstly, that we must always bear in
mind the superindexes A and E for each interpretation function, as they bring
out the structural information according to which truth conditions are defined.
Secondly, we can immediately observe a difference between CSet and C Lat.
On the one hand, -], , is a member of CLat that is not a member of CSet.

38This follows straightforwardly from the fact that all these classes are such that D is sound and
complete with respect to them. Therefore, given [-] 7, in one of them, the set K := {d : [d]y, =
1} is maximally consistent, and hence it has a true interpretation in all the other classes.
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Moreover, given that not all families of non-empty sets are such that their
inclusion relation allows us to obtain a meet operator from the operation of
intersection, there are members of CSet that are not members of CLat. A
simple example is the following:

g() 9(y)
Micq by {b,¢c}

0

The sets {a, b} and {b, c} have a non-empty intersection, {b }, which does not
belong to the family M. A fortiori, M is not a meet semi-lattice.

This does not mean that we cannot find a lattice structure over such M and
g- We can, but the meet operator to be found would not coincide with the
operation of intersection. This is a case parallel to [-] ¢ and [-] ,,, mentioned
above. As a consequence, we have shown that CSet and C Lat are not included
in one another, yet their intersection is non-empty ([-]s,¢ belongs to both
classes).

Similar conclusions can be drawn concerning the classes C Lat and C Leib.
Some interpretation functions in the latter class could be shown to have a meet
semi-lattice structure, such as the following:

Take 1 < N € N and let the set of characteristic numbers be M := {(2", 3") :
0 < n < N}.%° Define (L, A, 0) as follows:

— Let 0 be an arbitrary symbol.

— Define (2", 3") A (2™, 3") := (max{n, m}, max{a, B}), and define (2", 3") A
0:=0.

- L=MuU{0}.

It is not hard to see that L is a meet semi-lattice inducing the right ordering
relation. That is, if [-] 4, is the interpretation function in CLeib based on M
and g above, then for all x, y:

[xaylmg =1 iff gx) Ag(y) =g,
and

[xeylmeg=1 iff g(x) Ag(y)=0.

Since the completeness proof for CLeib requires V finite, we cannot take 7 to range over all
N. From this example, it can be seen that the order always has a maximum, and therefore, the
construction presented in [4] cannot handle infinite cases such as K = {xjaxz, xpaxs, ...}.
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Moreover, there are also interpretation functions in CLeib that are not in
C Lat. Consider the following counterexample M, similar to the counterexam-
ple in the case of CSet:

g9(z) 9(y)
Mi3.7,2.11) (3-5,2-13)

0

The pair (3, 2) stands in the a relation to both (3-7,2-11) and (3-5,2-13)
according to Definition 5, yet it does not belong to M. A similar reasoning as
above can show that any meet-semilattice structure we can find in L will not
coincide with the one obtained from the a relation.*

There is no relation of inclusion between CSet and CLeib, because the in-
terpretation functions in each class are based on structures that are altogether
different: sets, in the case of CSet, and pairs of numbers, in the case of C Leib.

Finally, we can show that the three classes CSet, CLat and CLeib are
subclasses of CMod. In fact, we can show that any class of interpretation
functions with respect to which D is sound and complete will be a subclass of
CMod. Let C be aclass of interpretation functions. If D is sound with respect to
C, any interpretation [[]]‘;‘,Ig € C must make valid all the rules of D. Therefore,
the model M = (M, A, E) turns out to be a model of Tgp. Given that the
interpretation function that we construct from M = (M, A, E) and g is the
same as [[~}]‘;,1’§, it follows that C is a subclass of CMod. This means that CMod
is the largest class that D is sound with respect to. Since D is complete with
respect to CMod, we obtain that CMod is the largest class of interpretations
with respect to which D is sound and complete—which is not surprising, as
CMod was induced from D.

40Since this fact is less trivial that in the case of CSet, we give here a full proof: Suppose towards
contradiction that there is a meet semilattice (L, A, 0) such that M = L — {0}. Also, suppose that
for all x, y:

[xaylmg =1 iff g(x) A gy) =g,

and
[xeylme=1 1iff g Ag(y)=0.

Now, following the diagram above with the obvious assignment g, we have that [xay]y,; = 0 and
[yax]am.g = 0. Therefore, g(x) A g(y) # g(x) and g(x) A g(y) # g(y) [recall that A is commutative].
It follows from here, and from the requirement that A be the meet of a semilattice, that g(x) A
g(y) should be an element of the lattice. But since it cannot be either g(x) or g(y), it must be
0. Therefore, [xey]a,e = 1. On the other hand, by definition of e in Definition 5, [xey]y,, =0
[because the opposite coordinates in both characteristic numbers are coprime]. We have reached
a contradiction. Therefore, there is no meet-semilattice over M satisfying the equations above.
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That CMod is strictly larger than CLat follows from the existence of an
interpretation [-] , such that [-]y, € CMod, but [-]y, & CLat. We can use
here the following model B = (M, AB, EB):

M =1{b1,bs, b3, b4}
AP ={(b1,b3), (b2, b1), (b1, b3), (b3, b1), (b2, b3), (b3, b),
(b1,b1), (b2, b2), (b3, b3), (ba, ba)}
xEBy < xABy does not hold

This model can be represented in the following diagram:

Q T g
b1 b3
.o /@
b by

We also need an assignment function g : V — M in order to construct an in-
terpretation function [-] .. We assume that g(x) = b, and g(y) = b3. Clearly
[-Im.s € CMod. Now, assume towards contradiction that [-]y ¢ € CLat. This
implies that there is a bound meet-semilattice (L, A) with least element O such
that M = L — {0} and such that [xay] s, = 1iff g(x) A g(y) = g(x). On the one
hand we have:

BE=xAylgl iff [xaylue=1 iff gx)Ag(y)=gkx) iff by Abz=0b,
(1)

But on the other hand we have:

B yAx(gl iff [yax]uye=1 iff g(y)Agx) =g(y) iff b3 Ab,=bs;

(2)
Since the left-hand sides of Eqgs. 1-2 are true, we obtain b, A b3 = b, and
bs A b, = bs. Because the A of any meet-semilattice is commutative, we can
conclude that b, = b3, which is a contradiction.

Thus, we obtain the following structure among the classes CSet, CLeib,
CLat, and CMod:
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5 Looking for an Adequate Semantics*!
5.1 A Merely Apparent Harmony

Thus, the four semantic systems for syllogistic presented here are not ex-
tensionally equivalent, in the sense that the structural information that the
interpretation functions carry in each semantic system differs. And yet, D is
sound and complete with respect to each system, which means that they all
agree on what can be expressed and proved in D. But we cannot assume
that D successfully captures (in the sense of being extensionally equivalent)
Aristotle’s general definition of deduction (even for the restricted fragment
of the language in question), as this is precisely what must be established.
(This was Corcoran’s very goal in his formalization.) So it might well be
that the disagreements between the different semantics are in fact substantive
for the informal notion of (in)validity after all, but that such facts cannot
be expressed in the very simple language underlying D. In other words, the
apparent agreement between the four semantic systems which follows from the
fact that D is sound and complete with respect to each of them is very likely
just a consequence of the limited expressive power of the underlying language.

Given that D is ‘blind’ to the differences between the different semantic
systems, these differences may become apparent only with a richer, more
expressive language. But should we be concerned with such differences, given
that they do not appear to be relevant from the point of view of the fragment
of the language we are interested in? Well, we should, precisely because the
informal notion of validity (deduction) that is the starting point of the whole
enterprise—its target phenomenon—is not restricted to a given language; it is
meant to be perfectly general.

Moreover, the language underlying D is very limited indeed. In the history
of logic, several proposals to extend the basic categorical language have been
put forward; in particular, logicians have investigated the logical properties of
extended categorical languages including negative terms (e.g. ‘non-man’), sin-
gular terms and modalities. (Such developments are particularly conspicuous
in the later Latin medieval tradition.) Thus, extending the categorical language
is in no way a ‘historical abnormality’. And yet, from the point of view of such
extended languages, the four semantic systems presented here no longer agree,
even for very simple extensions. It is known for instance [12] that Leibniz’s
semantic system in terms of pairs of numbers no longer functions once negative
terms are introduced. Hence, the extended deductive system with negative
terms is no longer sound and complete with respect to semantic system C Leib.
But the deductive system formulated with this extended language is sound and

#INotice the use of an indefinite article: we do not contend that there is necessarily one single
adequate semantics in each case.
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complete with respect to CSet.*> Similarly, if the language is extended so as to
allow for reflexive sentences, then the extended deductive system will not be
sound and complete with respect to CSet, as already mentioned, but it will be
sound and complete with respect to CMod.*

In other words, by enriching the language, the apparent harmony between
the four semantic systems in question is disrupted. They no longer agree on
the class of arguments deemed valid (for the extended language), and thus
can no longer all be sound and complete with respect to the new deductive
system. Therefore, clearly they cannot all be adequate semantic systems for
extended syllogistic systems, which also means (if the extension of the language
is conservative) that they were not all adequate in the first place; but the
limited language of categorical arguments is not sufficiently fine-grained to
‘see’ this. Recall that we are here interested in the cogency of premise (2) of the
squeezing argument, i.e. in the connections between the target phenomenon—
an informal notion of validity—and semantic counterparts in terms of mathe-
matical structures. This connection should not depend on how expressive the
language underlying a given deductive system is, as a specific language is not
a relevant element for this relation. But by increasing the expressive power of
the language underlying the deductive system in question, we realize that the
four semantic systems in fact disagree substantially with each other on how
best to characterize the target phenomenon.

5.2 Etchemendy on Choosing a Semantics

At this point, we must ask ourselves what it takes for a semantics to be an
adequate semantics, or in other words, what it is that a semantics is trying to
capture or to be a model of. J. Etchemendy and S. Shapiro are among those
who have discussed this issue. Etchemendy has famously criticized what he
views as a ‘“Tarskian’ notion of logical consequence, which he characterizes
as an ‘interpretational’ approach* in contrast with his preferred ‘represen-
tational’ approach.> One of the features of the interpretational approach
as described by Etchemendy is its language dependence: the meaning of a
compound expression is given by the semantic values of its parts, and the
interpretational procedure is entirely dependent on the logical vs. non-logical
partition, which typically varies from language to language. Now, insofar as
we here endorse the idea that the connection between a semantics and a
target phenomenon should not be language-dependent, we are also inter-
ested in a ‘representational’ approach to model-theory and formal semantics

4The negation operator on terms can be easily interpreted by means of the complement operation
on sets with respect to the union of the family of non-empty sets.

For details, see [2].

440n this approach, the focus is on the language in which the relation of logical consequence is
expressed: a sentence is a logical consequence of a set of sentences iff on every interpretation of
their non-logical vocabulary, whenever the premises are true, so is the conclusion.

40n how Etchemendy understands this notion, see quote just below.
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more generally. But what is the rationale behind designing a semantics for
a given language according to the representational approach? Here is what
Etchemendy says on the matter:

I called this view of model theory ‘representational’ because the set-
theoretic structures are seen as full-fledged representations: models of
the world. [...] According to the representational view, our goal in
constructing a semantics is to devise a class of models that represents all
logically possible ways the world might be that are relevant to the truth
or falsity of sentences in the language, and to define a relation of truth
in a model that satisfies the following constraint: a sentence ¢ should
be true in model M if and only if ¢ would be true if the world were
as depicted by M, that is, if M were an accurate model. The models
are designed to represent the world in a particularly straightforward
way, and this is important. Any individual model represents a logically
possible configuration of the world and any two (non-isomorphic) models
are logically incompatible: at most one can be accurate. But jointly,
they are meant to represent all of the possibilities relevant to the truth
values of sentences in the language. In other words, if we’ve designed
our semantics right, the models impose an exhaustive partition on the
possible circumstances that could influence the truth of our sentences.
[10,287] (emphasis added)

Of course, Etchemendy does not claim that model-theory offers a perfectly
faithful picture of the world and of ways the world might be; model-theoretic
structures are simplified representations, picking out only the elements that
are relevant for the truth-value of sentences. Still, that model-theory can offer
representations of ways the world might be, and what is more, that it can
exhaust the class of these possibilities, is a very strong claim indeed. Why is
it that the particular structure of model-theoretic constructions is an adequate
tool to represent the world? This is a substantive quasi-metaphysical claim,
and while Etchemendy is well aware of its substantiveness (see footnote 19,
[10, 288]), in his essay he “set[s] aside [this] important question”. What if the
actual deep structure of the world is not as model-theory assumes it to be? This
could well be the case.

Etchemendy does not mention alternative semantic systems for first-order
logic, e.g. the one provided by category theory [16]. But one may wonder why
he (presumably) considers model-theory to be more adequate as a semantics
for first-order logic than these alternatives, i.e. as a tool to represent logically
possible configurations of the world.*® In effect, against the background of a
situation where there is more than one viable alternative as a semantics for

46 As pointed out by an anonymous referee, the problem is not just Etchemendy’s—it is (almost)
everybody’s problem. The adequacy of model-theory as a representation of logically possible
configurations of the world is indeed a crucial and complex matter, but for reasons of space a
detailed discussion of it cannot be offered here.
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a logic (in view of a given target phenomenon), it becomes patent that they
cannot all be equally good representations of the class of logically possible
configurations of the world. Just as there are different, competing theories of
the physical world in physics which cannot all be ‘right’, if what a semantics
does is to represent and depict possible configurations of the world, then
different semantics will offer different and possibly incompatible accounts of
the ways the world can be.

Indeed, the four semantic systems for syllogistic presented here presuppose,
or at least suggest, rather different metaphysical positions: CSef could be
viewed as relying on an ‘Aristotelian’ metaphysical conception of the world
(in the sense of the ontology presented in the Categories); CLat suggests a
(neo-)Platonic view of reality; C Leib is particularly compatible with Leibniz’
own conception of a world made of monads containing infinite attributes; and
CMod, insofar as it is based on first-order models, relies on the assumption that
model-theory is a privileged way of representing the world. Now, they cannot
possibly all be equally adequate; on this view of what it means to formulate
a semantics for a logic, they are ultimately competing views on the nature
of metaphysical reality. And even if what is at stake is only how the truth
of propositions is affected, they clearly do not agree with each other either.
They agree with each other with respect to sentences in the original categorical
language, but they begin to disagree as soon as the language is extended.

If we follow Etchemendy’s account, when we do formal semantics, i.e. when
we design a semantics for a given logic, we are (or should be) in fact engaging
in substantive metaphysical investigations. Now, these investigations should of
course satisfy the standards of philosophical rigor to be recommended for this
kind of inquiry. As it stands, however, Etchemendy’s analysis simply states
that model-theory aptly represents different possible configurations of reality
without getting into the details of why the fitting is (presumably) so successful;
further argumentation would be required so as to establish this thesis (as
[10, 288, fn. 19] realizes himself).*” Clearly, the choice of a given class of
mathematical structures as the semantics for a given logic entails a form of
ontological commitment.

5.3 Shapiro: What is a Semantics a Model of?

Shapiro makes similar suggestions in [20] and [21]. He introduces the con-
cepts of a semantics being ‘correct’ and ‘adequate’, taking the class of valid
arguments in natural language as the yardstick against which these properties

4TFor example, if borders in the world happen to be fuzzy and vague rather than sharp and
clear-cut (i.e. the thesis of metaphysical vagueness), then model-theory is clearly a bad model
of metaphysical reality. It presupposes that an object either belongs or does not belong to a given
class, i.e. it presupposes sharp boundaries. But again, for reasons of space, we are unable to offer
a detailed discussion of reasons why model-theory may be a bad model of metaphysical reality.
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are established for a given semantics.*® Premise (2) of the squeezing argument
corresponds to Shapiro’s notion of a semantics being ‘adequate’. Shapiro raises
a version of the very question we are concerned with here: “What is model-
theoretic semantics a model of?” (But notice that we here do not restrict
ourselves to model-theory; we also consider other kinds of mathematical
structures that can be used to formulate a semantics for a logic.) The gist of
his reply to this question is essentially in the spirit of Etchemendy’s views:

From this perspective, an interpretation in the model theory represents a
way the world might be—a possible world—and the relation of satisfac-
tion tells us which formulas would be true, had the world been that way.
[21, 663]

But what does he mean by ‘a way the world might be’? Here, Shapiro makes
an interesting but controversial claim:

What does matter for model-theoretic consequence is the size of each
interpretation. The class of interpretations represents the range (or a
range) of sizes the universe might be. I submit that this is the only
modality that is registered in model-theoretic consequence. [21, 663]

He argues for this claim on the basis of the isomorphism property common
to “any model-theoretic semantics worthy of the name”. But if this is true,
then model-theoretic semantics is in fact a rather limited tool for representing
possibilities, i.e. ways the world might be. Arguably, it severely undergenerates
with respect to possibilities, as it conflates different possibilities which may
be genuinely different but which happen to have the same ‘size’. It may also
overgenerate, at least from the point of view of a strict finitist for example, if it
allows for possibilities of infinite sizes (see comments on the consequences of
a semantics that undergenerates or overgenerates below). Shapiro, however,
takes model-theoretic semantics to be ‘adequate’, i.e. to validate premise (2)
of the squeezing argument:

In other words, the model-theoretic semantics is adequate if each inter-
pretation in the semantics corresponds to a genuinely possible world.
In light of the isomorphism property, all that adequacy requires is that
each interpretation represents a possible size of the universe. [...] I take it
for granted that the interpretations of standard model theory are indeed
legitimate possibilities for first- and higher-order languages, and so for
these languages at least, model-theoretic consequence is adequate. [21,
664] (emphasis added)

Now, as already suggested, we believe that this kind of optimism is directly
related to the fact that alternatives to model-theoretic semantics for first- and

4Of course, the issue is that ‘valid arguments in natural language’ is an extremely elusive and
unstable class; this is why, among other reasons, we do not refer to such a class when speaking
of our target phenomenon, and instead take Aristotle’s ‘informal” but thoroughly ‘theoretical’
definition of a valid deduction as our starting point.
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higher-order logics are not sufficiently taken into account. This is at least to
some extent a historical-sociological fact; it is quite plausible that other classes
of mathematical structures would be equally ‘adequate’ following Shapiro’s
own criteria, and yet would be significantly different from the standard model-
theoretic semantics in their representations of “ways the world might be”.

5.4 Different Ways Things Can Go Wrong for a Semantics

Here, in contrast, we have presented four different semantic systems for syllo-
gistic; they all agree on the extension of the class of arguments deemed valid for
the restricted categorical language, but they disagree as soon as rather simple
extensions of the language are undertaken (e.g. the inclusion of negative terms
or of reflexive sentences). Now, these extensions of the language should in
principle not affect the connection between target phenomenon and semantics,
which is presumably what grounds premise (2) of the squeezing argument. So
if the role of premise (2) is to supply the necessary condition(s) for something
to fall under the informal concept in question, these four different semantic
systems cannot be equally well-positioned for the job. And given that we do
not seem to have the means to adjudicate between them, this at least suggests
that, even when there is only one ‘standard’ semantic system for a given
language (e.g. model-theoretic semantics for first-order logic), we cannot really
be sure that it is adequate, i.e. that it really exhausts the class of *ways the world
might be’.

It might be argued that the ‘problem’ originates with the informal concept
itself, which, in virtue of its fuzzy borders, does not allow for a unique set of
necessary conditions to be formulated. This may well be, but in this case, the
choice of a technical formulation of such necessary conditions is a theoretical,
substantive choice, going beyond what is afforded by the informal concept
itself. In this case, there is room for discussion on which aspects of the
informal notion should prevail over others. Alternatively, one may contend
that the role of a semantics when formulating a logic is not that of being a
representation of different possible configurations inasmuch as relevant for
the target phenomenon. But what is its role then, if it is not meant to be a
model, in some sense or another, of the target phenomenon?*

Going back to Aristotle’s definition of a valid deduction, there is no doubt
that a framework which is able to represent all possible configurations of the
world would be a very convenient device. The *follows of necessity’ clause in
the definition is very naturally interpreted as metaphysical necessity: in a valid
argument, if things are as the premises say they are, they cannot but be as
the conclusion says they are. But obviously, for a given semantic system to be

“The problem of the adequacy of a given semantics with respect to its target phenomenon is
very general indeed; it does not concern exclusively semantics for first-order logic or syllogistic.
To mention just one further example, the semantics of dynamic epistemic logic reflects a highly
idealized and somewhat contrived conception of how human agents actually reason and cognize.
Its adequacy as a model of its target phenomenon is far from uncontroversial.
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able to perform this function, it must represent all and only the situations that
could obtain (in the sense relevant for the target phenomenon in question),
and extensional inadequacy may come about in different ways:

— The semantic system may undergenerate: it may fail to represent all the
possible situations, and thus may rule-in as valid arguments that are not
actually valid. This situation would not affect (2), as it would not have any
effect on the matter of invalidity; it would though affect purely semantic
accounts of validity.

— The semantic system may overgenerate: it may represent ‘situations’ that
are not real situations from the point of view of the target phenomenon,
thus possibly ruling out as invalid (on the basis of such imaginary ‘situa-
tions’) arguments that are in fact valid (i.e. according to the target phenom-
enon). Circumstances of over-generation would immediately affect the
intuitive plausibility of (2): if there are too many items in a given semantic
system, we simply cannot be sure that a purported counterexample is a
‘real’ counterexample, and thus that S-invalidity implies I-invalidity.

— The semantic system may misrepresent the range of possibilities alto-
gether, being a construction where nothing or hardly anything that it was
meant to be a model of is still to be found. In this case it is even clearer
that the plausibility of (2) is threatened; if the semantics is an aberration
in some sense or another, in which sense is it really entitled to provide
counterexamples to validity?

In summary, the difficulties encountered so far suggest that the semantic
approach based on interpretations onto mathematical structures may simply
not be suitable to account for the informal notion of validity at least in the
particular case of syllogistic. In fact, this seems to hold in all cases where there
is no obvious, uncontroversial interpretation of the target phenomenon onto
mathematical structures from the start, in the sense that e.g. the structure of
the natural numbers is the intended interpretation for Peano arithmetic. In
such cases, the plausibility of premise (2) is severely weakened, and any form
of squeezing argument cannot straightforwardly go through.

6 Conclusion

The results we present here are essentially negative: there is as of yet no
uncontroversial candidate for the semantic side of a technical analysis of the
notion of syllogistic validity, precisely because there are no clear guidelines or
criteria of what it means for a semantics to be adequate. A positive conclusion
that could be drawn is that it is perhaps best to approach syllogistic purely from
a proof-theoretical point of view. Indeed, some interesting work has already
been done in this direction, such as [19]. But we leave this as a suggestion
rather than as a conclusion strictly following from our results.

As we have argued, the choice of a particular class of mathematical struc-
tures as the appropriate semantic rendering of a given target-phenomenon is
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as much in need of justification as the formulation of a deductive system. And
if there is no such justification available, what is the significance of a proof
of completeness with respect to a particular semantics? In such cases, there is
no guarantee that premise (2) of the squeezing argument will hold, as there
is no guarantee that the relevant target-phenomenon has been adequately
captured by the technical apparatus. Now, if the squeezing argument does not
go through in virtue of the absence of adequate justification for premise (2), a
proof of completeness will not have the philosophical significance that it might
otherwise have had.

More generally, perhaps the main conclusion to be drawn from these
considerations is that we simply cannot take for granted the adequacy of any
semantic system based on mathematical structures as the ‘correct’ semantics
underlying a given informal notion (of validity or otherwise)—that is, if the
mathematical structure in question was not the very starting point for the
analysis. What is to ensure the adequacy of the chosen semantic system? We
do not seem to have sufficiently clear criteria here. To our knowledge, only
Etchemendy and Shapiro have offered sustained analyses of these issues, but
clearly they still require further scrutiny.
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