
Higher-Order Symb Comput (2010) 23:489–506
DOI 10.1007/s10990-011-9075-y

More dependent types for distributed arrays

Wouter Swierstra

Published online: 8 September 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Locality-aware algorithms over distributed arrays can be very difficult to write.
Yet such algorithms are becoming more and more important as desktop machines boast more
and more processors. This paper shows how a dependently-typed programming language
can aid in the development of these algorithms and statically ensure that every well-typed
program will only ever access local data. Such static guarantees can help catch programming
errors early on in the development cycle and maximise the potential speedup that multicore
machines offer. At the same time, the functional specification of effects presented here fa-
cilitates the testing of and reasoning about algorithms that manipulate distributed arrays.

Keywords Dependent types · Agda · Distributed arrays · Type systems · Domain specific
languages

1 Introduction

Computer processors are not becoming significantly faster. To satisfy the demand for more
and more computational power, manufacturers are now assembling computers with multiple
microprocessors. It is hard to exaggerate the impact this will have on software development:
tomorrow’s programming languages must embrace parallel programming on multicore ma-
chines.

Researchers have proposed several new languages to maximise the potential performance
gain that multicore processors offer [1, 6–8, 12, 21]. Although all these languages are dif-
ferent, they share the central notion of a distributed array, where the elements of an array
may be distributed over separate processors or even over separate machines. To write effi-
cient code, programmers must ensure that processors only access local parts of a distributed
array—it is much faster to access data stored locally than remote data on another core.

When writing such locality-aware algorithms it is all too easy to make subtle mistakes.
Programming languages designed specifically for distributed computing, such as X10 [8],

W. Swierstra (�)
Vector Fabrics, Paradijslaan 28, Eindhoven, The Netherlands
e-mail: wouter@vectorfabrics.com

mailto:wouter@vectorfabrics.com


490 Higher-Order Symb Comput (2010) 23:489–506

require all arrays operations to be local. Any attempt to access non-local data results in an
exception. To preclude such errors, X10’s type system guarantees that programs only access
local parts of a distributed array [9, 17]. The proposed type system is fairly intricate and
consists of a substantial number of type rules that keep track of locality information. Proving
meta-theoretical results about such a system, such as the decidability of type checking, is no
trivial result.

This paper explores an alternative avenue of research. Designing and implementing a
type system from scratch is a lot of work. New type systems typically require extensive
proofs of various meta-theoretical results. Instead, this paper shows how to tailor a powerful
type system to enforce certain properties—resulting in a domain-specific embedded type sys-
tem. This type system immediately inherits all the desirable properties of our dependently-
typed host type system, such as subject reduction, decidable type checking, and princi-
ple typing. Functional programmers have studied domain-specific embedded languages for
years [11]; the time is ripe to take these ideas one step further.

Previous work described a pure specification of several parts of the IO monad [23], the
interface between pure functional languages such as Haskell [19] and the ‘real world.’ By
providing functional, executable specifications you can test, debug, and reason about im-
pure programs as if they were pure. When you release the final version of your code, you
can replace these pure specifications with their impure, more efficient, counterparts. In the
presence of dependent types, these specifications can provide even stronger static guarantees
about our programs. To this end, this paper makes several contributions:

– We will begin by giving a pure specification of arrays (Sect. 3). This specification is total:
there is no way to access unallocated memory; there are no ‘array index out of bounds’
exceptions. As a result, these specifications can not only be used to program with, but
also facilitate formal proofs about array algorithms. To make this specification usable, we
must overcome a problem related to the weakening of address locations.

– Distributed arrays pose more of a challenge. Section 4 shows how to enforce locality con-
straints, while still providing programmers with place-shifting operators. The pure speci-
fication is, once again, executable and total: it can be interpreted both as a domain-specific
embedded language for writing algorithms on distributed arrays and as an executable de-
notational model for specifying and proving properties of such algorithms.

– Finally, we will see how programmers may write their own locality-aware control struc-
tures (Sect. 4.3), how to implement simple distributed algorithms using these control
structures (Sect. 4.4), and how to define combinators that describe data distributions
(Sect. 4.5). We will conclude by discussing further work and the limitations of this ap-
proach (Sect. 5).

Throughout this paper, I will use the dependently-typed programming language
Agda [16] as a vehicle of explanation. In fact, using lhs2TeX [13], the sources of this paper
generate an Agda program that can be compiled and executed. In the coming section, I will
briefly introduce the syntax of Agda by means of several examples, as it may be unfamiliar
to many readers.

2 An overview of Agda

Data types in Agda can be defined using a similar syntax to that for Generalized Algebraic
Data Types, or GADTs, in Haskell [20]. For example, consider the following definition of
the natural numbers.



Higher-Order Symb Comput (2010) 23:489–506 491

data Nat : � where
Zero : Nat
Succ : Nat → Nat

There is one important difference with Haskell. We must explicitly state the kind of the data
type that we are introducing; in particular, the declaration Nat : � states that Nat is a base
type.

We can define functions by pattern matching and recursion, just as in any other functional
language. To define addition of natural numbers, for instance, we could write:

_ + _ : Nat → Nat → Nat
Zero + m = m
Succ n + m = Succ (n + m)

Note that Agda uses underscores to denote the positions of arguments when defining new
operators.

Polymorphic lists are slightly more interesting than natural numbers:

data List (a : �) : � where
Nil : List a
Cons : a → List a → List a

To uniformly parameterise a data type, we can write additional arguments to the left of the
colon. In this case, we add (a : �) to our data type declaration to state that lists are type
constructors, parameterised over a type variable a of kind �.

Just as we defined addition for natural numbers, we can define an operator that appends
one list to another:

append : (a : �) → List a → List a → List a
append a Nil ys = ys
append a (Cons x xs) ys = Cons x (append a xs ys)

The append function is polymorphic. In Agda, such polymorphism can be introduced via the
dependent function space, written (x : a) → y, where the variable x may occur in the type y.
This particular example of the dependent function space is not terribly interesting: it cor-
responds to parametric polymorphism. Later we will encounter more interesting examples,
where types depend on values.

One drawback of using the dependent function space for such parametric polymorphism,
is that we must explicitly instantiate polymorphic functions. For example, the recursive call
to append in the Cons case takes a type as its first argument. Fortunately, Agda allows us to
mark certain arguments as implicit. Using implicit arguments, we could also define append
as in any other functional language:

append : {a : �} → List a → List a → List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Arguments enclosed in curly brackets, such as {a : �}, are implicit: we do not write a to the
left of the equals sign and do not pass a type argument when we make a recursive call. The
Agda type checker will automatically instantiate this function whenever we call it, much



492 Higher-Order Symb Comput (2010) 23:489–506

in the same way as type variables are automatically instantiated in Haskell. By enclosing a
function’s argument in curly brackets, we can explicitly instantiate or pattern match on an
implicit argument.

Besides polymorphic data types, Agda also supports indexed families, a dependently
typed analogue of Haskell’s GADTs. Indexed families, however, are more general as they
also capture data types that are indexed by values instead of types. For example, we can
define the family of finite types:

data Fin : Nat → � where
Fz : {n : Nat} → Fin (Succ n)

Fs : {n : Nat} → Fin n → Fin (Succ n)

The type Fin n corresponds to a finite type with n distinct values. For example, Fin 1 is
isomorphic to the unit type; Fin 2 is isomorphic to Bool. Note that the argument n is left
implicit in both the constructors of Fin. From the types of these constructors, it is easy to
see that Fin 0 is uninhabited. For every n, the Fs constructor embeds Fin n into Fin (Succ n);
the Fz constructor, on the other hand, adds a single new element to Fin (Succ n) that was not
in Fin n. This inductive argument shows that Fin n does indeed have n elements.

Agda has many other features, such as records and a module system, that we will hardly
use in this paper. Although there are a few more concepts we will need, we will discuss them
as they pop up in later sections.

3 Mutable arrays

With this brief Agda tutorial under our belt, we can start our specification of mutable arrays.
We will specify three different operations on arrays: the creation of new arrays; reading from
an array; and updating a value stored in an array. Before we can define the behaviour of these
operations, we need to introduce several data types to describe the layout and contents of
memory. Using these data types, we can proceed by defining an IO type that captures the
syntax of array operations. To program with these operators, we need to resolve a few techni-
cal problems. Finally, we will define a run function that describes how the array operations
affect the heap, assigning semantics to our syntax. This semantics can be used to simu-
late and reason about computations on mutable arrays in a pure functional language. When
compiled, however, these operations should be replaced by their more efficient, low-level
counterparts.

To keep things simple, we will only work with flat arrays storing natural numbers. This
is, of course, a drastic oversimplification. The techniques we present here, however, can
be adapted to cover multidimensional arrays that may store different types of data using a
universe construction, as is done in my PhD thesis [22].

To avoid confusion between numbers denoting the size of an array and the data stored in
an array, we introduce the Data type synonym. Throughout the rest of this paper, we will
use Data to refer to the data stored in arrays; the Nat type will always refer to the size of an
array.

Data : �
Data = Nat

Using the Fin type, we can give a functional specification of arrays of a fixed size by
mapping every index to the corresponding value.



Higher-Order Symb Comput (2010) 23:489–506 493

Array : Nat → �

Array n = Fin n → Data

How should we represent the heap? We need to be a bit careful—as the heap will store
arrays of different sizes its type should explicitly state how many arrays it stores and how
large each array is. To accomplish this, we begin by introducing a data type representing the
shape of the heap:

Shape : �
Shape = List Nat

The Shape of the heap is a list of natural numbers, representing the size of the arrays stored
in memory.

We can now define a Heap data type that is indexed by a Shape. The Empty constructor
corresponds to an empty heap; the Alloc constructor adds an array of size n to any heap of
shape ns to build a larger heap with the layout Cons n ns.

data Heap : Shape → � where
Empty : Heap Nil
Alloc : {n : Nat} → {ns : Shape} → Array n → Heap ns → Heap (Cons n ns)

Finally, we will want to model references, denoting locations in the heap. A value of type
Loc n ns corresponds to a reference to an array of size n in a heap with shape ns. The Loc
data type shares a great deal of structure with the Fin type. Every non-empty heap has a
Top reference; any existing reference can be modified to denote the same location in a larger
heap using the Pop constructor.

data Loc : Nat → Shape → � where
Top : {n : Nat} → {ns : Shape} → Loc n (Cons n ns)
Pop : forall {n k ns} → Loc n ns → Loc n (Cons k ns)

Note that in the type signature of the Pop constructor, we omit the types of three implicit ar-
guments and quantify over them using the forall keyword. When we use the forall-notation,
the types of n, k, and ns are inferred from the rest of the signature by the Agda type checker.
Alternatively, we could also have written the more verbose:

Pop : {n : Nat} → {k : Nat} → {ns : Shape}
→ Loc n ns → Loc n (Cons k ns)

We will occasionally use the forall-notation to make large type signatures somewhat more
legible.

With these data types in place, we can define a data type capturing the syntax of the
permissible operations on arrays. Crucially, the IO type is indexed by two shapes: a value
of type IO a ns ms denotes a computation that takes a heap of shape ns to a heap of shape
ms and returns a result of type a. This pattern of indexing operations by an initial and final
‘state’ is a common pattern in dependently-typed programming [14].



494 Higher-Order Symb Comput (2010) 23:489–506

data IO (a : �) : Shape → Shape → � where
Return : {ns : Shape} → a → IO a ns ns
Write : forall {n ns ms}

→ Loc n ns → Fin n → Data → IO a ns ms → IO a ns ms
Read : forall {n ns ms}

→ Loc n ns → Fin n → (Data → IO a ns ms) → IO a ns ms
New : forall {ns ms}

→ (n : Nat) → (Loc n (Cons n ns) → IO a (Cons n ns) ms) → IO a ns ms

The IO type has four constructors. The Return constructor returns a pure value of type a
without modifying the heap. The Write constructor takes four arguments: the location of an
array of size n; an index in that array; the value to write at that index; and the rest of the
computation. Similarly, reading from an array requires a reference to an array and an index.
Instead of requiring the data to be written, however, the last argument of the Read construc-
tor may refer to data that has been read. Finally, the New constructor actually changes the
size of the heap. Given a number n, it allocates an array of size n on the heap; the second
argument of New may then use this fresh reference to continue the computation in a larger
heap.

The IO data type is a parameterised monad [3]—that is, a monad with return and bind
operators that satisfy certain coherence conditions with respect to the Shape indices.

return : forall {a ns} → a → IO a ns ns
return x = Return x

_ >>= _ : forall {a b ns ms ks}
→ IO a ns ms → (a → IO b ms ks) → IO b ns ks

Return x >>= f = f x
Write a i x wr >>= f = Write a i x (wr >>= f )
Read a i rd >>= f = Read a i (λx → rd x >>= f )
New n io >>= f = New n (λa → io a >>= f )

The return of the IO data type lifts a pure value into a computation that can run on a heap
of any size. Furthermore, return does not modify the shape of the heap. The bind operator,
>>=, can be used to compose monadic computations. To sequence two computations, the
heap resulting from the first computation must be a suitable starting point for the second
computation. This condition is enforced by the type of the bind operator.

To facilitate programming using these array operations, we could define the functions
readArray and newArray as follows:

readArray : forall {n ns} → Loc n ns → Fin n → IO Data ns ns
readArray a i = Read a i Return

newArray : forall {ns} → (n : Nat) → IO (Loc n (Cons n ns)) ns (Cons n ns)
newArray n = New n Return

There is a slight problem with these definitions. As we allocate new memory, the size of the
heap changes; correspondingly, we must explicitly modify any existing pointers to denote
locations in a larger heap. This problem is best illustrated with an example.

Consider the following sequence of array manipulations:

newArray 4 >>= λarray1
→ newArray 8 >>= λarray2
→ readArray array1 Fz



Higher-Order Symb Comput (2010) 23:489–506 495

This allocates two arrays, before performing reading an index from the first array. The
first array, stored at array1, has type Loc 4 (Cons 4 Nil); the second array has type
Loc 8 (Cons 8 (Cons 4 Nil)). When we want to read from the first array after the second allo-
cation, the type checker expects an array location in a heap of shape (Cons 8 (Cons 4 Nil)),
and not Cons 4 Nil. Fortunately, adding a Pop constructor around array1 yields a type cor-
rect program:

newArray 4 >>= λarray1

→ newArray 8 >>= λarray2

→ readArray (Pop array1) Fz

We will refer to this as weakening the reference array1, in line with the usual terminology
used for the weakening rules present in many logics.

Adding these extra Pop constructors by hand is tiresome and error-prone. In the coming
sections, we will see how this process can be automated to some degree.

3.1 Manual weakening

Before we revisit our smart constructors, we need to develop a bit of machinery. We need to
decide how many Pop constructors are necessary to weaken a location to denote a position
in a larger heap. Put differently, we need to prove that one shape is a suffix of a larger shape.
One way to represent such a proof is using an inductive data type:

data IsSuffix : Shape → Shape → � where
Base : forall {ns} → IsSuffix ns ns
Step : forall {m ns ms} → IsSuffix ns ms → IsSuffix ns (Cons m ms)

Every proof that ns is a suffix of ms is built from two constructors Base and Step. The base
case corresponds to stating that every list is a suffix of itself; the step case states that if ns is
a suffix of ms then ns is also a suffix of Cons m ms for any natural number m.

If we have such a proof that ns is a suffix of ms, we can weaken any location of type
Loc n ns to make a new location of type Loc n ms. The weaken function does exactly this:

weaken : forall {n ns ms} → IsSuffix ns ms → Loc n ns → Loc n ms
weaken Base loc = loc
weaken (Step i) loc = Pop (weaken i loc)

It proceeds by induction over the proof argument, adding a Pop constructor for every step.
While the weaken function adds the necessary Pop constructors, there is still no way to
compute its proof argument automatically. There is an alternative representation of such
proofs that does facilitate such automation.

3.2 An alternative proof

In type theory, one way to formulate the proposition that two values are equal is by con-
structing an inhabitant of the following type:

data _ ≡ _ {a : �} (x : a) : a → � where
Refl : x ≡ x



496 Higher-Order Symb Comput (2010) 23:489–506

That is, the only canonical proof that two objects are equal is by reflexivity. This type
plays a fundamental role in intensional type theory [15].

Whenever we pattern match on an equality proof, we learn how two values are related.
For example, suppose we want to write the following function:

subst : {a : �} → (P : a → �) → (x : a) → (y : a) → x ≡ y → P x → P y

What patterns should we write on the left-hand side of the definition? Clearly, any argument
of type x ≡ y must be Refl. As soon as we match on that argument, however, we learn
something about x and y, i.e., they must be the same. We will write this as follows:

subst P x .x Refl px = · · ·

The pattern .x means ‘the value of this argument can only be equal to x.’ Such ‘dot-patterns’
appear naturally once you start programming with data types indexed by values.

We can decide whenever two shapes are equal, that is, we can define a function with the
following type:

decEqShape : (s : Shape) → (t : Shape) → Either (s ≡ t) ((s ≡ t) → ⊥)

Here Either denotes the disjoint sum of two types and ⊥ is the empty type. The definition of
decEqShape is fairly unremarkable. We traverse the lists s and t, comparing every element.
If the elements of both lists are equal at every position, the entire lists are equal; if the lists
have different lengths or store different elements, the two shapes are distinct.

Using this function, we can define the following function that checks whether or not one
list is a suffix of another:

_ ≤ _ : Shape → Shape → Bool
Nil ≤ s = True
Cons u s ≤ Nil = False
Cons u s ≤ Cons v t with decEqShape (Cons u s) (Cons v t)
Cons u s ≤ Cons .u .s | Inl Refl = True
Cons u s ≤ Cons v t | Inr q = (Cons u s) ≤ t

Here we use a with clause, a local pattern match similar to Haskell’s case expressions. In the
inductive step, we make a call to the auxiliary function decEqShape. On the next lines we
repeat the left-hand side of the function definition, followed by the new patterns Inl Refl and
Inr q. We separate the new patterns introduced by the with clause from the original function
arguments by a vertical bar. If we learn that the two lists are equal, it follows that the first
list is a suffix of the second. Otherwise, we continue with a recursive call.

Now we can reflect any Bool into � as follows:

So : Bool → �

So True = ()

So False = ⊥
Using this definition, we give an alternative definition of the IsSuffix predicate: a shape s is
a suffix of a shape t if and only if So (s ≤ t) is inhabited. This alternative definition is equiv-
alent to the definition using IsSuffix. Proving the equivalence in one direction corresponds
to defining a function with the following type:



Higher-Order Symb Comput (2010) 23:489–506 497

equiv : (s : Shape) → (t : Shape) → So (s ≤ t) → IsSuffix s t

The definition is reasonably straightforward: we pattern match on s and t, using the proof
argument to kill off any impossible branches.

So why go through all this effort to write an equivalent representation of the inductive
IsSuffix data type? The two forms of proof are useful for different reasons:

IsSuffix s t By defining the proof as an inductive data type, we can pattern match on proofs.
We use this to define the weaken function. Unfortunately, we need to write an inhabitant of
IsSuffix by hand to pass to the weaken function.

So (s ≤ t) By defining the ≤-operator we have written a function that decides when one list
is a suffix of another. In particular, for any pair of closed shapes s ≤ t reduces to either True
or False. Correspondingly, the type So (s ≤ t) is either trivial or uninhabited.

The central idea behind our smart constructors is to weaken using the inductive repre-
sentation, but to require a trivial implicit witness.

3.3 Smart constructors

With this in mind, we revise our smart constructors for reading from and writing to refer-
ences. These smart constructors now require an implicit proof that s is a suffix of t. Using
our equiv function, we can compute the inductive representation of such a proof. Using this
inductive representation, we can weaken locations as necessary.

readArray : forall {n ns ms} → {p : So (ns ≤ ms)}
→ Loc n ns → Fin n → IO Data ms ms

readArray {n} {ns} {ms} {p} a i = Read (weaken (equiv ns ms p) a) i Return

The beauty of this solution is that Agda will automatically instantiate implicit arguments
of type (). In other words, for any closed IO term a programmer need not worry about
passing proof arguments. For example, we can now write:

f : IO Nat Nil (Cons 8 (Cons 4 Nil))
f = newArray 4 >>= λarray1

→ newArray 8 >>= λarray2

→ readArray array1 Fz

The smart constructors will now automatically weaken array1 after array2 has been allo-
cated.

Unfortunately, not all in the garden is rosy. If we have an open term, Agda will warn you
that it cannot find a suitable proof argument. For example, consider the following function
that reads the first and only location of any array storing a single element:

readOne : {ns : Shape} → Loc 1 ns → IO Nat ns ns
readOne a = readArray a Fz

While any particular call to readOne is safe, Agda fails to automatically deduce that So (ns ≤
ns) reduces to the unit type. Even though it is clearly true for any particular choice of ns and
we can fill in the proof argument manually, the techniques we have outlined here fail to
provide the required proof automatically.

Without more language support it is unlikely that we can avoid this restriction.



498 Higher-Order Symb Comput (2010) 23:489–506

3.4 Denotational model

We have described the syntax of array computations using the IO data type, but we have
not specified how these computations behave. Recall that we can model arrays as functions
from indices to natural numbers:

Array : Nat → �

Array n = Fin n → Data

Before specifying the behaviour of IO computations, we define several auxiliary functions
to update an array and lookup a value stored in an array.

lookup : forall {n ns} → Loc n ns → Fin n → Heap ns → Data
lookup Top i (Alloc a _) = a i
lookup (Pop k) i (Alloc _ h) = lookup k i h

The lookup function takes a reference to an array l, an index i in the array at location l, and
a heap, and returns the value stored in the array at index i. It dereferences l, resulting in
a function of type Fin n → Data; the value stored at index i is the result of applying this
function to i.

Next, we define a pair of functions to update the contents of an array.

updateArray : {n : Nat} → Fin n → Data → Array n → Array n
updateArray i d a = λj → if i ≡ j then d else a j

updateHeap : forall {n ns}
→ Loc n ns → Fin n → Data → Heap ns → Heap ns

updateHeap Top i x (Alloc a h) = Alloc (updateArray i x a) h
updateHeap (Pop k) i x (Alloc a h) = Alloc a (updateHeap k i x h)

The updateArray function overwrites the data stored at a single index. The function
updateHeap updates a single index of an array stored in the heap. It proceeds by derefer-
encing the location on the heap where the desired array is stored and updates it accordingly,
leaving the rest of the heap unchanged.

We now have all the pieces in place to assign semantics to IO computations. The run
function below takes a computation of type IO a ns ms and an initial heap of shape ns as
arguments, and returns a pair consisting of the result of the computation and the final heap
of shape ms.

data Pair (a : �) (b : �) : � where
pair : a → b → Pair a b

run : forall {a ns ms} → IO a ns ms → Heap ns → Pair a (Heap ms)
run (Return x) h = pair x h
run (Read a i rd) h = run (rd (lookup a i h)) h
run (Write a i x wr) h = run wr (updateHeap a i x h)

run (New n io) h = run (io Top) (Alloc (λi → Zero) h)

The Return constructor simply pairs the result and heap; in the Read case, we lookup the
data from the heap and recurse with the same heap; for the Write constructor, we recurse
with an appropriately modified heap; finally, when a new array is created, we extend the



Higher-Order Symb Comput (2010) 23:489–506 499

heap with a new array that stores Zero at every index, and continue recursively. Note that,
by convention, the Top constructor always refers to the most recently created reference. Our
smart constructors will add additional Pop constructors when new memory is allocated.

We refer to this specification as a denotational model. Agda is a programming language
based on a consistent type theory. In a sense, the run function constitutes a denotational
semantics of mutable arrays. By implementing these semantics in Agda, we build an exe-
cutable denotational model in Agda’s type theory.

3.5 Example

Using our smart constructors and the monad operators, we can now define functions that
manipulate arrays. For example, the swap function exchanges the value stored at two indices:

swap : forall {n ns} → Loc n ns → Fin n → Fin n → IO () ns ns
swap a i j = readArray a i >>= λvali

→ readArray a j >>= λvalj
→ writeArray a i valj
>> writeArray a j vali

In a dependently-typed programming language such as Agda, we can prove properties of
our code. For example, we may want to show that swapping the contents of any two array
indices twice, leaves the heap intact :

swapProp : forall {n ns}
→ (l : Loc n ns) → (i : Fin n) → (j : Fin n) → (h : Heap ns)
→ (h ≡ snd (run (swap l i j >> swap l i j) h))

The proof requires a lemma about how updateHeap and lookupHeap interact and is not
terribly interesting in itself. The fact that we can formalise such properties and have our
proof verified by a computer is much more exciting.

4 Distributed arrays

Arrays are usually represented by a continuous block of memory. Distributed arrays, how-
ever, can be distributed over different places—where every place may correspond to a dif-
ferent core on a multiprocessor machine, a different machine on the same network, or any
other configuration of interconnected computers.

We begin by determining the type of places, where data is stored and code is executed.
Obviously, we do not want to fix the type of all possible places prematurely: you may want
to execute the same program in different environments. Yet regardless of the exact number
of places, there are certain operations you will always want to perform, such as iterating
over all places, or checking when two places are equal.

We therefore choose to abstract over the number of places in the module we will define
in the coming section. Agda allows modules to be parameterised:

module DistrArray (placeCount : Nat) where

When we import the DistrArray module, we are obliged to choose the number of places.
Typically, there will be one place for every available processor. From this number, we can
define a data type corresponding to the available places:



500 Higher-Order Symb Comput (2010) 23:489–506

Place : �
Place = Fin placeCount

The key idea underlying our model of locality-aware algorithms is to index computa-
tions by the place where they are executed. The new type declaration for the IO monad
corresponding to operations on distributed arrays will become:

data DIO (a : �) : Shape → Place → Shape → � where

You may want to think of a value of type DIO a ns p ms as a computation that can be
executed at place p and will take a heap of shape ns to a heap of shape ms, yielding a final
value of type a.

We strive to ensure that any well-typed program written in the DIO monad will never ac-
cess data that is not local. The specification of distributed arrays now poses a twofold prob-
lem: we want to ensure that the array manipulations from the previous section are ‘locality-
aware,’ that is, we must somehow restrict the array indices that can be accessed from a
certain place; furthermore, X10 facilitates several place-shifting operations that change the
place where certain chunks of code are executed. As we shall see in the rest of this section,
both these issues can be resolved quite naturally.

4.1 Regions, points, and distributed arrays

Before we define the DIO monad, we need to introduce several new concepts. In what fol-
lows, we will try to stick closely to X10’s terminology for distributed arrays. Every array is
said to have a region associated with it. A region is a set of valid index points. A distribution
specifies a place for every index point in a region.

Once again, we will only treat flat arrays storing natural numbers and defer any discus-
sion about how to deal with more complicated data structures for the moment. In this simple
case, a region merely determines the size of the array.

Region : �
Region = Nat

As we have seen in the previous section, we can model array indices using the Fin data type:

Point : Region → �

Point n = Fin n

To model distributed arrays, we now need to consider the distribution that specifies where
this data is stored. In line with existing work [9], we assume the existence of a fixed dis-
tribution. Agda’s postulate expression allows us to assume the existence of a distribution,
without providing its definition.

postulate
distr : forall {n ns} → Loc n ns → Point n → Place

We have implemented several of X10’s combinators for defining distributions, which we
will present shortly.



Higher-Order Symb Comput (2010) 23:489–506 501

Now that we have all the required auxiliary data types, we proceed by defining the DIO
monad. As it is a bit more complex than the data types we have seen so far, we will discuss
every constructor individually.

The Return constructor is analogous to one we have seen previously for the IO monad: it
lifts any pure value into the DIO monad.

Return : {p : Place} → {ns : Shape} → a → DIO a ns p ns

The Read and Write operations are more interesting. Although they correspond closely to
the operations we have seen in the previous section, their type now keeps track of the place
where they are executed. Any read or write operation to point pt of an array l can only be
executed at the place specified by the distribution. This invariant is enforced by the types of
our constructors:

Read : forall {n ns ms}
→ (l : Loc n ns) → (pt : Point n)

→ (Data → DIO a ns (distr l pt) ms)
→ DIO a ns (distr l pt) ms

Write : forall {n ns ms}
→ (l : Loc n ns) → (pt : Point n) → Data
→ DIO a ns (distr l pt) ms
→ DIO a ns (distr l pt) ms

In contrast to Read and Write, new arrays can be allocated at any place.

New : forall {p ns ms}
→ (n : Nat)
→ (Loc n (Cons n ns) → DIO a (Cons n ns) p ms)
→ DIO a ns p ms

Finally, we add a constructor for a place-shifting operator. Using this At operator lets us
execute a computation at another place.

At : forall {p ns ms ps}
→ (q : Place) → DIO () ns q ms → DIO a ms p ps → DIO a ns p ps

Note that we will discard the result of the computation that is executed at another place. We
therefore require this computation to return an element of the unit type.

We can add our smart constructors for each these operations, as we have done in the
previous section. We can also show that DIO is indeed a parameterised monad. We have
omitted the definitions of the return and bind operators for the sake of brevity:

return : forall {ns a p} → a → DIO a ns p ns

_ >>= _ : forall {ns ms ks a b p}
→ DIO A ns p ms → (A → DIO B ms p ks) → DIO B ns p ks

It is worth noting that the bind operator >>= can only be used to sequence operations at the
same place.



502 Higher-Order Symb Comput (2010) 23:489–506

4.2 Denotational model

To run a computation in the DIO monad, we follow the run function defined in the previ-
ous section closely. Our new run function, however, must be locality-aware. Therefore, we
parameterise the run function explicitly by the place where the computation is executed.

run : forall {a ns ms}
→ (p : Place) → DIO a ns p ms → Heap ns → Pair a (Heap ms)

run p (Return x) h = pair x h
run .(distr l i) (Read l i rd) h = run (distr l i) (rd (lookup l i h)) h
run .(distr l i) (Write l i x wr) h = let h′ = updateHeap l i x h

in run (distr l i) wr h′
run p (New n io) h = run p (io Top) (Alloc (λi → Zero) h)

run p (At q io1 io2) h = run p io2 (snd (run q io1 h))

Now we can see that the Read and Write operations may not be executed at any place.
Recall that the Read and Write constructors both return computations at the place distr l i.
When we pattern match on a Read or Write, we know exactly what the place argument of the
run function must be. Correspondingly, we do not pattern match on the place argument—we
know that the place can only be distr l i, as is indicated by the dot-pattern.

The other difference with respect to the previous run function, is the new case for the At
constructor. In that case, we sequence the two computations io1 and io2. To do so, we first
execute the io1 at q, but discard its result; we continue executing the second computation io2
with the heap resulting from the execution of io1 at the location p. Conform to previous pro-
posals [10], we have assumed that io1 and io2 are performed synchronously—executing io1
before continuing with the rest of the computation. Using techniques to model concurrency
that we have presented previously [23], we believe we could give a more refined treatment of
the X10’s globally asynchronous/locally synchronous semantics and provide specifications
for X10’s clocks, finish, and force constructs.

4.3 Locality-aware combinators

Using the place-shifting operator at, we can define several locality-aware control structures.
With our first-class distribution and definition of Place, we believe there is no need to define
more primitive operations.

The distributed map, for example, applies a function to all the elements of a distributed
array at the place where they are stored. We define it in terms of an auxiliary function, for,
that iterates over all the indices of an array:

for : forall {n ns p} → (Point n → DIO () ns p ns) → DIO () ns p ns
for {Succ k} dio = dio Fz >> (for {k} (dio . Fs))
for {Zero} dio = return ()

dmap : forall {n ns p} → (Data → Data) → Loc n ns → DIO () ns p ns
dmap f l = for (λi → at (distr l i) (readArray l i >>= λx

→ writeArray l i (f x)))

Besides dmap, we implement two other combinators: forallplaces and ateach. The
forallplaces operation executes its argument computation at all available places. We define
it using the for function to iterate over all places. The ateach function, on the other hand,



Higher-Order Symb Comput (2010) 23:489–506 503

is a generalisation of the distributed map operation. It iterates over an array, executing its
argument operation once for every index of the array, at the place where that index is stored.

forallplaces : forall {p ns}
→ ((q : Place) → DIO () ns q ns) → DIO () ns p ns

forallplaces io = for (λi → at i (io i))

ateach : forall {n ns p}
→ (l : Loc n ns) → ((pt : Point n) → DIO () ns (distr l pt) ns)
→ DIO () ns p ns

ateach l io = for (λi → at (distr l i) (io i))

4.4 Example

We will now show how to write a simple algorithm that sums all the elements of a distributed
array. To do so efficiently, we first locally sum all the values at every place. To compute the
total sum of all the elements of the array, we add together all these local sums. In what
follows, we will need the following auxiliary function, increment:

increment : forall {n ns p}
→ (l : Loc n ns) → (i : Fin n) → Nat → (distr l i ≡ p) → DIO () ns p ns

increment l i x Refl = readArray l i >>= λy → writeArray l i (x + y)

Note that increment is a bit more general than strictly necessary. We could return a computa-
tion at distr l i, but instead we choose to be a little more general: increment can be executed
at any place, as long as we have a proof that this place is equal to distr l i. The ≡ −type is
inhabited by single constructor Refl.

We can use the increment function to define a simple sequential sum function:

sum : forall {n ns p} → Loc n ns → Loc 1 ns → DIO () ns p ns
sum l out = ateach l (λi → readArray l i >>= λn

→ at (distr out Fz) (increment out Fz n Refl))

The sum function takes an array as its argument, together with a reference to a single-celled
array, out. It reads every element of the array, and increments out accordingly.

Finally, we can use both these functions to define a parallel sum:

psum : forall {n ns}
→ (l : Loc n ns) → (localSums : Loc placeCount ns)
→ ((i : Place) → distr localSums i ≡ i)
→ (out : Loc 1 ns) → DIO Nat ns (distr out Fz) ns

psum l localSums locDistr out
= ateach l (λi → (readArray l i >>= λn

→ increment localSums (distr l i) n (locDistr (distr l i))))
>>sum localSums out
>>readArray out Fz

The psum function takes four arguments: the array l whose elements you would like to
sum; an array localSums that will store the intermediate sums; an assumption regarding the
distribution of this array; and finally, the single-celled array to which we write the result.



504 Higher-Order Symb Comput (2010) 23:489–506

For every index i of the array l, we read the value stored at index i, and increment the
corresponding local sum. We then add together the local sums using our previous sequential
sum function, and return the final result. We use our assumption about the distribution of the
localSums array when calling the increment function. Without this assumption, we would
have to use the place-shifting operation at to update a (potentially) non-local array index.

There are several interesting issues that these examples highlight. First of all, as our
at function only works on computations returning a unit type, the results of intermediate
computations must be collected in intermediate arrays.

More importantly, however, whenever we want to rely on properties of the global distri-
bution, we need to make explicit assumptions in the form of proof arguments. This is rather
unfortunate: it would be interesting to research how a specific distribution can be associ-
ated with an array when it is created. This would hopefully allow for a more fine-grained
treatment of distributions and eliminate the need for explicit proof arguments.

4.5 Defining distributions

Throughout this section we have assumed the existence of a distribution, specifying how an
array is distributed over the available places. Several built-in distributions are provided by
X10, some of which we will now define. For the moment, we focus on defining a distribution
of a single array, that is, functions of type Fin n → Place.

There are two atomic distributions: the constant distribution maps all the points of an
array to a single place; the unique distribution maps the i-th index of an array to the i-th
place.

constDistr : {n : Nat} → Place → Point n → Place
constDistr p = λi → p

unique : Point placeCount → Place
unique i = i

We can compose any two such distributions, to form a larger distribution:

compose : forall {n m}
→ (Point n → Place) → (Point m → Place) → (Point (n + m) → Place)

Although the definition of compose is a bit tricky, there is a particularly elegant definition in
the literature using views [2]. Of course, we can iterate the compose operator:

cycle : {n : Nat}
→ (k : Nat) → (Point n → Place) → (Point (k ∗ n) → Place)

cycle Z f ()

cycle (Succ k) f i = compose f (cycle k f ) i

In the case where k is equal to Zero, we need to define a function of type Fin Zero → Place.
As Fin Zero has no inhabitants, this function will never be applied and we may omit the
definition accordingly.

Using similar combinators, we can define distributions over all arrays, exploiting the
obvious similarity between Loc and Fin. There are several other distributions supported by
X10, that can be implemented along the same lines.



Higher-Order Symb Comput (2010) 23:489–506 505

5 Discussion

Using a dependently-typed host language, we have seen how to implement a domain-specific
library for distributed arrays, together with an embedded type system that guarantees all ar-
ray access operations are both safe and local. In contrast to existing work [10], there is no
specific set of type rules; instead, equivalent properties are enforced by a general-purpose
language with dependent types. We have defined semantics for our library in the form of
a total, functional specification. Although this semantics may not take the form of deduc-
tion rules, they are no less precise or concise. Besides these functional specifications are
both executable and amenable to computer-aided formal verification. More generally, this
approach can be extended to other domains: a dependently-typed language accommodates
domain specific libraries with their own embedded type systems [18].

Having said this, there are clearly several serious limitations of this work as it stands. First
and foremost, I have assumed that every array only stores natural numbers, disallowing more
complex structures such as multi-dimensional arrays. This can be easily fixed by defining
a more elaborate Shape data type. In its most general form, the Shape data type could be
defined as a list of types; a heap then corresponds to a list of values of the right type. I have
decided to impose this restriction for the purpose of presentation. I believe that there is no
fundamental obstacle preventing us from incorporating the rich region calculus offered by
X10 in the same fashion.

Furthermore, the pure model is rather naive. It would be interesting to explore a more
refined model, where every place maintains its own heap. As our example in the previ-
ous section illustrated, assuming the presence of a global distribution does not scale well.
Decorating every array with a distribution upon its creation should help provide locality-
information when it is needed.

We have not discussed how code in the IO or DIO monad is actually compiled. At the
moment, Agda can only be compiled to Haskell. Agda does provide several pragmas to
customise how Agda functions are translated to their Haskell counterparts. The ongoing
effort to support data parallelism in Haskell [4, 5] may therefore provide us with a most
welcome foothold.

The domain-specific language for manipulating arrays presented in this paper contains
an operation for the allocation of memory, but no operation for memory deallocation. The
system presented here assumes garbage collection is handled automatically. This is not a
fundamental limitation of this approach: in principle, dependently typed programming lan-
guages can enforce any invariant that can be described in constructive predicate logic. In
particular, we could extend the shape data type not only capture the amount of data that has
been allocated, but also record the locations that are still valid. Any memory access opera-
tion then needs to provide a proof that the location being accessed has not been deallocated.
Where this is certainly feasible, there is still a substantial challenge in engineering a solu-
tion that does not put a strain on the programmer to provide explicit proofs or clutter type
signatures with too much information.

There are many features of X10 that have not been discussed here at all. Most notably,
I have refrained from modelling many of X10’s constructs that enable asynchronous com-
munication between locations, even though I would like to do so in the future.

Finally, it is necessary to explore larger examples to acquire a better understanding of
how this approach scales. At the moment, I cannot predict how efficient the resulting code
will be; nor do I know how difficult it will be to reason about large, realistic distributed
algorithms.



506 Higher-Order Symb Comput (2010) 23:489–506

Acknowledgements A previous version of this article was published at the Symposium on Trends in Func-
tional Programming in 2008. Thorsten Altenkirch, my PhD supervisor, suggested this line of research and
helped prepare our original submission, for which I am grateful. I would also like to thank the anonymous
reviewers for their valuable comments on both versions of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., Steele, G.L. Jr., Tobin-Hochstadt, S.: The
Fortress language specification. Technical report, Sun Microsystems, Inc. (2005)

2. Altenkirch, T., McBride, C., Morris, P.: Generic programming with dependent types. In: Backhouse,
R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) Spring School on Datatype-Generic Programming. LNCS,
vol. 4719. Springer, Berlin (2007)

3. Atkey, R.: Parameterised notions of computation. In: Proceedings of the Workshop on Mathematically
Structured Functional Programming (2006)

4. Chakravarty, M.M.T., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal—nested data-parallelism in
Haskell. In: Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference. LNCS, vol. 2150
(2001)

5. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data parallel Haskell: a
status report. In: Proceedings of the 2007 Workshop on Declarative Aspects of Multicore Programming
(2007)

6. Chamberlain, B.L., Choi, S.-E., Lewis, E.C., Lin, C., Snyder, L., Weathersby, D.: ZPL: a machine inde-
pendent programming language for parallel computers. Softw. Eng. 26(3) (2000)

7. Chamberlain, B., Deitz, S., Hribar, M.B., Wong, W.: Chapel. Technical report, Cray Inc. (2005)
8. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar, V.:

X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA ’05 (2005)
9. Grothoff, C., Palsberg, J., Saraswat, V.: Safe arrays via regions and dependent types. doi:10.1.1.98.8038

10. Grothoff, C., Palsberg, J., Saraswat, V.: A type system for distributed arrays. Unpublished draft
11. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. 28 (1996)
12. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: POPL ’00: Proceedings of the 27th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 199–213 (2000)
13. Löh, A.: lhs2TeX. http://people.cs.uu.nl/andres/lhs2tex/
14. McKinna, J., Wright, J.: A type-correct, stack-safe, provably correct, expression compiler in Epigram.

J. Funct. Program. doi:10.1.1.105.4086
15. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory: An Introduction.

Oxford University Press, London (1990)
16. Norell, U.: Towards a practical programming language based on dependent type theory. PhD thesis,

Chalmers University of Technology (2007)
17. Nystrom, N., Saraswat, V., Palsberg, J., Grothoff, C.: Constrained types for object-oriented languages. In:

OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications, pp. 457–474 (2008)

18. Oury, N., Swierstra, W.: The power of Pi. In: ICFP ’08: Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Functional Programming (2008)

19. Jones, S.P. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cambridge University Press,
Cambridge (2003)

20. Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type inference for
GADTs. In: ICFP ’06: Proceedings of the 11th ACM SIGPLAN International Conference on Functional
Programming (2006)

21. Scholz, S.-B.: Single assignment C—efficient support for high-level array operations in a functional
setting. J. Funct. Program. 13(6), 1005–1059 (2003)

22. Swierstra, W.: A functional specification of effects. PhD thesis, University of Nottingham (2009)
23. Swierstra, W., Altenkirch, T.: Beauty in the beast: a functional semantics of the awkward squad. In:

Proceedings of the ACM SIGPLAN Haskell Workshop (2007)

http://dx.doi.org/10.1.1.98.8038
http://people.cs.uu.nl/andres/lhs2tex/
http://dx.doi.org/10.1.1.105.4086

	More dependent types for distributed arrays
	Abstract
	Introduction
	An overview of Agda
	Mutable arrays
	Manual weakening
	An alternative proof
	Smart constructors
	Denotational model
	Example

	Distributed arrays
	Regions, points, and distributed arrays
	Denotational model
	Locality-aware combinators
	Example
	Defining distributions

	Discussion
	Acknowledgements
	References


