
Higher-Order Symb Comput (2011) 24:1–2
DOI 10.1007/s10990-011-9069-9

E D I TO R I A L

Editorial

Julia Lawall · Germán Puebla · Germán Vidal

Published online: 3 June 2011
© Springer Science+Business Media, LLC 2011

Partial evaluation and Program Manipulation (PEPM) has been held as a conference, sym-
posium or workshop most years since 1991, under the sponsorship of ACM SIGPLAN.
This volume comprises extended versions of five of the papers presented at the PEPM 2009
workshop [1], held in Savannah, Georgia, USA, in January 2009. All papers were rigorously
reviewed by at least three reviewers. Reflecting the wide scope of PEPM, this special issue
includes articles on type inference for Java and for Verilog, on the definition of program
analyses, on program optimization, and on aspect-oriented programming.

The problem of incomprehensible error messages has long plagued users, particularly
new users, of statically typed functional languages, and with the introduction of generics,
now plagues Java programmers. “Improving type error messages for Generic Java,” by Nabil
El Boustani and Jurriaan Hage, shows a number of examples in which the behavior of stan-
dard compilers is difficult to understand or even inconsistent. It then proposes a postproces-
sor to be integrated into the Java type system that collects information about type constraints
in order to produce more comprehensible type error messages. Numerous examples are pro-
vided and the approach has been implemented in JastAdd.

Abstract interpretation is a well known approach for program analysis: first, the opera-
tional semantics of a programming language is specified and, then, a terminating approxi-
mation of this semantics is derived. However, it is often the case that both the specification
of the semantics and the associated approximation should be changed in order to obtain
different analyses, and this may require considerable ingenuity. In “Logical approximation
for program analysis,” Robert Simmons and Frank Pfenning introduce a novel approach

J. Lawall (�)
DIKU, University of Copenhagen, Copenhagen, Denmark
e-mail: julia@diku.dk

G. Puebla
Universidad Politécnica de Madrid, Boadilla del Monte, Spain

G. Vidal
MiST, DSIC, Universitat Politécnica de Valéncia, Valencia, Spain

mailto:julia@diku.dk


2 Higher-Order Symb Comput (2011) 24:1–2

based on ordered logic to specify interpreters for programming languages in the style of
substructural operational semantics. These specifications can then be automatically trans-
lated to linear logical specifications in such a way that control flow information is exposed
and can be manipulated by an eventual approximation. A meta-approximation theorem is
established that ensures that approximations compute abstractions when interpreted as sat-
urated logic programs. The relative ease of encoding of two different analyses suggests the
new technique can be used to derive other program analyses.

Hardware description involves complex repetitive low-level coding, making it an attrac-
tive target for program generation. Indeed, the Verilog hardware description language pro-
vides generative features. Nevertheless, generative code is not checked until it is elaborated,
which is a time-consuming process, and Verilog is tolerant of some type inconsistency er-
rors, even though these are likely bugs. “Static consistency checking for Verilog wire inter-
connects,” by Cherif Salama, Gregory Malecha, Walid Taha, Jim Grundy and John O’Leary,
tackles this problem by defining a dependent type system for Verilog generative code, and
by resolving the constraints induced by this type system using satisfiability modulo theo-
ries (SMT) technology. They prove type preservation and type safety for a core language,
and show that type inference is efficient in practice for circuits implementing a number of
standard arithmetic operations.

A common pattern in functional programming relies on the well known producer/consu-
mer scheme, where one function produces some intermediate data structure that is then con-
sumed by another function. Despite the conceptual advantages of this programming pattern,
producing intermediate data structures may also degrade the efficiency of the program. An
alternative approach in a lazy functional setting is based on using circular programs, where
the argument of a function call may also appear in its result. In “Shortcut fusion rules for the
derivation of circular and higher-order programs,” Alberto Pardo, João Fernandes and João
Saraiva present new shortcut fusion rules for the derivation of circular and higher-order pro-
grams from programs that follow the producer/consumer pattern. The transformed programs
construct no intermediate data structures and are thus more efficient in general. Moreover,
the formulation of the rules is general enough to be instantiated for a wide class of algebraic
data types and monads.

In recent years, there have been a number of proposals for integrating aspect-oriented
programming into pure, lazy functional languages. As an aspect represents an orthogonal
concern to that of the base program, the structure of the base program should not be influ-
enced by the possibility of integrating an aspect. This poses a complication in the case of
pure functional languages, as the side effects that are performed by many common uses of
aspect-oriented programming, such as logging, require that the entire program be written in
a monadic style. “Side-effect localization for lazy, purely functional languages via aspects,”
by Kung Chen, Shu-Chun Wang, Jia-Yin Lin, Meng Wang, and Siau-Cheng Khoo, proposes
a technique for automatically introducing the use of monads in this case. They prove that
this monadification preserves the property of noninterference between the aspect and the
base program. In this, they propose an approach to ensure that an aspect does not affect the
evaluation order of the program, preserving the lazy semantics.

We would like to thank all of the reviewers who helped with the paper selection process,
both for the PEPM 2009 workshop and for this special issue.

References

1. Puebla, G., Vidal, G. (eds.): In: ACM SIGPLAN Workshop on Partial Evaluation and Program Manipu-
lation (PEPM 2009), Savannah, Georgia, USA, January 2009. ACM Press


	Editorial
	References


