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Abstract
There have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nano-
particles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that 
arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the 
direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, 
and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the 
progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, 
RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we 
provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems 
for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in 
the field of tumor therapy.
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Introduction

RGD was first identified as the minimal recognition 
sequence in fibronectin by Pierschbacher and Ruoslahti 
(1984). This sequence was then found in the adhesive extra-
cellular matrices of other cells and has been described as a 
common cell recognition motif (Auzzas et al. 2010). RGD 
is an oligopeptide with a high affinity to the transmembrane 
heterodimer αvβ3 integrin receptor, which is overexpressed 
on activated neoplastic endothelium. Since its introduction 
and first application in the 1980s, it has been used as a stand-
ard tumor angiogenesis targeting ligand (Kunjachan et al. 
2015); integrin-bound RGD peptide has had a great impact 
in the medical, biological, and biophysical sciences, and the 

design and use of synthetic integrin ligand have attracted 
much attention. Most of the current research focuses on 
the discovery of novel integrin-selective ligands and their 
applications in drug delivery, tumor therapy, and tissue engi-
neering. Integrins are essential for a variety of biological 
functions and can also be used as imaging biomarkers to 
evaluate the efficacy of antiangiogenic and antitumor drugs 
(Desgrosellier and Cheresh 2010). RGD targets integrins 
αvβ3, α5β1, and αibβ3, which play a crucial role in tumor 
growth, metastasis, and angiogenesis. Integrins α1β1, α2β1, 
α5β1, α4β1, αvβ3, and αvβ5 have been shown to play an 
important role in regulating tumor angiogenesis. Antagonists 
of integrins αvβ3, α5β1, αvβ5, and α6β4 have shown great 
promise as potential inhibitors of tumor growth, metastasis, 
and angiogenesis (Desgrosellier and Cheresh 2010).

At present, many of the newly discovered RGD-bind-
ing integrin drugs have focused on integrin αvβ3 for the 
treatment of cancer (Desgrosellier and Cheresh 2010), 
ophthalmological diseases (Friedlander et al. 1996), and 
bone diseases (Nakamura et al. 2007) (RGD simulators 
and blocking antibodies to αvβ3 integrin have been shown 
to inhibit bone resorption in vitro and in vivo, indicating 
that this integrin may play an important role in regulating 
osteoclast function (Nakamura et al. 2007)). αvβ3 integrin 
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is preferentially expressed in angiogenic endothelial cells 
(Brooks et al. 1994). Inhibition of integrin αvβ3 by anti-
body, RGD-based cyclic peptide, or nonpeptide mimics 
inhibits tumor angiogenesis. Antagonists of integrins 
αvβ3, α5β1, αvβ5, and α6β4 can act as potential inhibi-
tors of tumor growth, metastasis, and tumor angiogenesis 
(Jin and Varner 2004). Although the safety of molecules 
targeting αvβ3 integrin is generally acceptable, they are 
seldom applied in the treatment of cancer because of 
their low treatment efficacy (Alday-Parejo et al. 2019). 
Integrin αvβ3 has been the most studied integrin over the 
last two decades, and inhibitors of RGD-binding integrin 
αIIbβ3 were among the first to be developed; these include 
tirofiban (Aggrastat), eptifibatide (Integrilin), and the anti-
body Abciximab (ReoPro), which are used to treat acute 
coronary syndrome and thrombotic cardiovascular disease 
(Slack et al. 2022).

Previous studies have shown that integrins exert their 
antitumor effects in the following manners (Duro-Castano 
et al. 2017): (i) promotion of antiangiogenesis by blocking 
the action of integrin through antagonists (Brooks et al. 
1994; Desgrosellier and Cheresh 2010; Weis and Cheresh 
2011a); (ii) blocking tumor metastasis in specific organs 
through the exosomal integrin (Hoshino et al. 2015); and 
(iii) delivering biologics/imaging agents directly to tumor 
sites by ligand targeting (Marelli et al. 2013). RGD is exten-
sively used in cancer treatment as a specific identification 
site for the interaction of integrins with their ligands (Wang 
et al. 2013). Nanoparticles enter solid tumors through inter-
endothelial gaps (Gerlowski and Jain 1986; Matsumura and 
Maeda 1986; Peer et al. 2007) and transendothelial pathways 
(Feng et al. 1999, 2002) in tumor vessels, which suggests 
that nanoparticles can be applied in the treatment of solid 
tumors (Sindhwani et al. 2020). The term nanodelivery sys-
tem refers to the use of various complex materials to form 
nanoscale particles with encapsulated tumor therapeutic 
drugs to passively or actively target organs passively (Zhu 
et al. 2021). The particle size of the nanomedicine can be 
specifically designed in accordance with delivery require-
ments. By changing the size of the nanomedicine (Hu et al. 
2021; Liu et al. 2019, 2020b), it can be delivered to different 
target sites such as tumor and lymph node (Jia et al. 2021; 
Yu et al. 2020a, b).

After appraising peer-reviewed published papers, we 
found that RGD peptides were commonly used to modify 
nanodrug delivery systems. As a ligand, RGD specifically 
recognizes membrane receptors on tumor cells, leading to 
the improved antitumor therapeutic effect of the drug and 
reduced toxic and side effects. In this review, we elucidate 
the interaction between RGD peptide and integrin αvβ3, 
summarize the applications of RGD peptide–modified 
liposomes and polymeric and inorganic nanoparticles in 

tumor therapy, and discuss the safety, current challenges, 
and development prospects of RGD peptide.

Structure and Function of RGD

Structure of RGD

RGD (Fig. 1) is the basic binding motif of at least seven 
integrin receptors (Hynes 2002; Tamkun et al. 1986). RGD 
peptides can be linear or cyclic. Cyclic RGD peptides dis-
play a higher activity compared to linear RGD peptides 
due to their more stable conformation that resists proteoly-
sis (tomograph 2007; Verrier et al. 2002). The specificity 
of the RGD peptide depends on the backbone conforma-
tion, the charged side chains of the Arg and Asp residues, 
and the hydrophobic moieties of the flanks of Asp residues 
(Schaffner and Dard 2003). The RGD motif’s freedom of 
conformation determines its binding strength to the integ-
rin, and molecular dynamics simulations have shown that 
while RGD motifs are mostly exposed to solvents that can 
be bound in all synthetic systems, their flexibility depends 
on the refined geometry (Le et al. 2017). The interaction 
between the RGD peptides and integrin αVβ3 is influenced 
by direction and distance (Dong et al. 2017). Monomer 
RGD peptide is taken up by cells in an unspecific manner, 
whereas poly RGD peptide is thought to be internalized 
via integrin-mediated endocytosis. Kemker et al. (2020) 
demonstrated the potential correlation between the cel-
lular uptake mechanism and molecular mass by double 
derivation of peptide c(RGDw(7Br)K). This suggests that 
PEG coupling can cause integrin-mediated endocytosis of 
monomeric RGD peptide.

Fmoc-chemistry solidiphase peptide technology is com-
monly used in RGD synthesis (Li et al. 2020a; Dechantsre-
iter et al. 1999) created n-methylated Cyclo(GDF-N (Me)
V-) using Merrifield solid-phase peptide technology. 
Thumshirn et al. (2003) synthesized a polymeric cyclic 
c(-RGDfE-)-peptide and a cyclic pentapeptide ring 

Fig. 1   Structure of Arg–Gly–Asp (RGD)
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(-Arg[Pbf]GlyAsp[t Bu] -D -PheGlu-) by a solid-solution 
method, Cyclo(-RGDfK-) peptide. Kim et al. (2017b) syn-
thesized RGD using solid-phase peptide technology.

Mechanism of RGD Peptide’s Targeted 
Binding to Integrin

Yu et al. (2014) conducted molecular dynamics simu-
lations to further investigate the effect of the structure 
and quantity of RGD peptides on the molecular target-
ing mechanism of RGD-containing peptides and integrin 
αVβ3. Electrostatic interactions between RGD residues 
and metal ions in integrin V3 are primarily responsible for 
target recognition. Cyclic RGD peptides bind to integrin 
V3 more strongly compare to linear RGD. Furthermore, 
the optimal molar concentration ratio of RGD peptides 
to integrin αVβ3 appears to be 2:1, and the RGD peptide 
plays a key role in targeted anticancer drug delivery as an 
integrin αVβ3–targeting peptide (Yu et al. 2014). Both 
linear and circular RGD (cRGD) peptide sequences bind 
to integrins αvβ3 and α5β1 (Kapp et al. 2017; Liu 2009), 
which is important in tumor therapy (Danhier et al. 2012; 
Howe and Addison 2012).

Kapp et al. (2017) demonstrated that the key to binding 
of αIIbβ3 to RGD is to replace the guanidine group in the 
ligand with an amine. As shown in Fig. 2, the guanidine 
group binds to the α-subunit via a forked salt bridge in 
all RGD-binding isoforms, except for αibβ3. Linear RGD 
ligand and the guanidine group of Arg form a bidentate 
salt bridge by binding laterally to the αvβ3 of α-subunit 
Asp218. In addition to this lateral interaction (Asp227 

in α5), an end-to-end interaction between guanidine and 
Gln221 has been observed in the crystal structure of α5β1.

It is generally accepted that most integrins, including 
those expressed on endothelial cells, have “on” and “off” 
states, as illustrated in Fig. 3. The extracellular domain of 
αvβ3 integrins is bent or folded, thereby concealing the 
RGD-binding site and preventing ligand binding, whereas 
the extracellular domains of RGD-bound αvβ3 integrins 
are unbent or straight (Danhier et al. 2012).

Fig. 2   Different binding modes 
of linear RGD peptides to dif-
ferent integrin subtypes. Crystal 
structures of α5β1 (top), αvβ3 
(middle), and αIIbβ3 (bottom) 
in complex with RGD ligands; 
reproduced with permission 
(Kapp et al. 2017)

Fig. 3   Conformational changes of αvβ3 integrin. After activation, the 
extracellular domain extends and straightens to reveal the RGD-bind-
ing domain (star shape); reproduced with permission (Danhier et al. 
2012)
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RGD‑Targeted Nanodrug Delivery System

As one of the most important drug delivery systems, nano-
medicine systems play a crucial role in tumor therapy 
(Farokhzad and Langer 2009). Integrins are important in 
tumor growth, which makes them attractive targets for 
tumor therapy (Desgrosellier and Cheresh 2010). Integrin 
antagonists inhibit tumor growth by affecting tumor cells 
and tumor-associated host cells, particularly angiogenic 
endothelial cells. Integrin antagonists, including mono-
clonal antibodies and RGD peptidomimetics, are currently 
being evaluated in clinical trials (Avraamides et al. 2008). 
RGD has a high affinity for integrin (Kunjachan et al. 2015). 
Therefore, an RGD-functionalized nanodrug delivery system 
can deliver therapeutic drugs with a significant antitumor 
effect. RGD peptide is the most commonly used tripeptide 
that can specifically bind to integrin receptors overexpressed 
in tumor cells (Kunjachan et al. 2015); therefore, peptides 
that contain the RGD sequence are regarded as ideal target-
ing moieties for nanocarriers. RGD can be used to modify 
liposomes, micelles, and inorganic or organic nanoparticles 
(Hu et al. 2016). Here, we discuss the latest relevant exam-
ples of RGD-functionalized nanodrug delivery systems, 
such as RGD-modified liposomes, polymers, and inorganic 
nanoparticles.

Lin et  al. (2019) prepared c(RGDfC)-modified 
Doxorubicin(DOX)-loaded polypeptide vesicles using 
the emulsion solvent evaporation technique. The vesicles 
exhibited higher tumor inhibition rates and lower toxicity 
compared with free DOX, indicating that RGD-modified 
nanomedicine formulations have great potential in the field 
of tumor therapy. Li et al. (2020a) synthesized Ptx-SA-
RGD conjugates and demonstrated that the RGD-modified 
nanofiber delivery system improved the antitumor effect 
of the drug. Fei et al. (2017) prepared RGD-conjugated 
and lipid-coated silicon dioxide nanomaterials (RGD-
LP-CHMSN-ATO) through self-assembly technology 
and improved film hydration method; they showed that 
the RGD-modified nanodrug delivery system can be used 
in tumor therapy and enhance antitumor effects. Hu et al. 
(2015) successfully constructed NAMI-A@MSN-RGD 
with the coupling reaction and lyophilization technology. 
The results showed that NAMI-A@MSN-RGD enhanced 
the antiangiogenesis effect and inhibited cell proliferation, 
migration, invasion, and capillary formation. Peng et al. 
(2020) discovered that iRGD-modified (PCL-b-PVP) nano-
particles exhibited excellent tumor penetration in a mouse 
subcutaneous xenograft model. nRGD-modified DOX-
loaded liposomes showed superior antitumor efficiency 
compared with PEG-modified DOX liposomes, indicating 
that RGD-modified nanodrug delivery systems can be used 
to improve tumor penetration, which makes them attractive 

as a potential nanodrug delivery system in the field of tumor 
therapy. Nanoparticle accumulation in tumors can improve 
the efficacy of antitumor therapy, peptide ligands on nano-
particles provide affinity for receptors on cancer cell sur-
face, and peptide-functionalized nanoparticles can actively 
target cancer cells, leading to enhanced antitumor therapy 
(Fernandes et al. 2015; Long et al. 2020) developed RGD-
HSA-RVT nanoparticles for the treatment of ovarian cancer 
using a high-pressure homogenizer and emulsion solvent 
evaporation method. The RGD-HSA-RVT nanoparticles 
demonstrated a high tumor inhibition rate. Xu et al. (2017) 
modified nanoparticles with iRGD peptide to promote the 
penetration of nanoparticles into tumor tissues and their 
accumulation in tumor cells.

In general, RGD-targeted nanodrug delivery systems can 
improve chemotherapy drug efficacy, reduce side effects, 
and improve antitumor efficiency (Hu et al. 2015; Li et al. 
2020a; Lin et al. 2019; Wei et al. 2020). The high affinity 
between RGD and αv integrin promotes tumor cell uptake of 
RGD-modified nanomaterials, thereby enhancing tumor pen-
etration of RGD-modified nanomaterials (Peng et al. 2020) 
and improving antitumor efficiency (Fernandes et al. 2015).

RGD‑Modified Liposomes

Liposomes are nanophospholipid bubbles with a lipid 
bilayer. They can prevent rapid drug degradation and reduce 
toxicity when lipophilic/hydrophilic drugs are incorporated 
(Bulbake et  al. 2017; Torchilin 2005). By utilizing the 
unique properties of liposomes, the drug efficacy can be 
enhanced by increasing metabolism and absorption, reduc-
ing elimination rate, and extending biological half-life 
(Estanqueiro et al. 2015; Kesharwani et al. 2021).

RGD-modified liposomes are still in an early develop-
ment stage for targeted mediated therapy. To date, they have 
received little attention in clinical trials. However, RGD-
modified liposomes have the ability to target cancer cells and 
release drugs in precise and necessary ways for cancer treat-
ment (Sheikh et al. 2022). As previously stated, RGD pep-
tides are capable of recognizing integrins, and integrins are 
overexpressed in many cancers. Therefore, many researchers 
have sought to combine the benefits of RGD with the proper-
ties of liposomes to create RGD-functionalized liposomes in 
order to study the effect of RGD-functionalized liposomes 
on tumor growth. The applications of RGD-modified 
liposomes in tumor therapy are shown in Table 1.
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RGD‑Modified Polymeric Nanoparticles

Polymeric drug delivery systems have grown in popularity 
since 1960 (Kamaly et al. 2016). Polymer-based nanocar-
riers with polymer properties and colloidal sizes are clas-
sified as (i) polymer micelles, (ii) polymeric objects, (iii) 
polymer hydrogels, and (iv) polymer dendrimers (Andreu 
and Arruebo 2018; Chen et al. 2017; das Neves et al. 2015; 
Kamaly et al. 2016). RGD-modified polymers in combina-
tion with αvβ3 integrins have been extensively studied for 
tumor therapy (Cheng and Ji 2019). Polymeric nanoparticles 
composed of natural materials, semi-synthetic polymers, and 
synthetic polymers have been extensively studied (Andreu 
and Arruebo 2018). The applications of RGD-modified pol-
ymer nanoparticles in tumor therapy are shown in Table 2.

Li et  al. (2022) prepared Arg-Gly-Asp-d-Tyr-
Lys(cRGDyK)-conjugated silicon phthalocyanine by 
covalently connecting RGD to silicon phthalocya-
nine. It was demonstrated that Arg-Gly-Asp-d-Tyr-
Lys(cRGDyK)-conjugated silicon phthalocyanine had 
a great anti–breast cancer effect. The RGD peptide was 
covalently bound to the surface of carboxylate-function-
alized carbon nanotubes (fCNT), and the topoisomerase I 
inhibitor camptothecin (CPT) was encapsulated in fCNT 
(CPT@fCNT-RGD). It was found that CPT@fCNT-RGD 
could be applied in targeted tumor therapy with a higher 
tumor inhibition rate (Koh et al. 2019; Xiao et al. 2012) 
prepared H40-DOX-cRGD- 64 Cu and discovered that 
H40-DOX-cRGD- 64 Cu exhibited a higher tumor inhibi-
tion rate in a xenograft tumor mouse model. Chen et al. 
(2017) prepared cRGD-SS-NGS by modifying polymer 

Table 1   RGD-modified liposome formulations

Binding motif Preparation 
method

Formulation Cancer/cancer cell 
type

Particle size (nm) Zeta-potential 
(mV)

References

RGD Thin-film hydra-
tion and extru-
sion

MC-T-DOX Pancreatic cancer 100.00 – Wei et al. (2020)

cRGDfK Lipid film hydra-
tion method

RGD-PEG-LPs OSRC-2 cells 127.00 ± 2.00 − 19.00 ± 3.00 Kibria et al. (2013)

cyclic RGD Solvent injection 
method

RGD-MEND Renal cell carci-
noma

115.00 ± 10.00 − 18.00 ± 4.00 Sakurai et al. 
(2014)

RGD Solvent evapora-
tion method

RGD-modified 
PTX-CUR LPs

A549 120.6 ± 10.83 − 5.62 ± 1.13 Jiang et al. (2018a)

RGD The thin-film 
hydration method

RGD-liposomal 
EPO906

rhabdomyosar-
coma

100.00 – Scherzinger-Laude 
et al. (2013)

RGD The thin-film 
hydration method

RGD-SSLs-SHK Breast cancer 117.53 ± 3.05 − 15.37 ± 0.91 Wen et al. (2018)

DSPE-PEG2000-
RGD

The thin-film 
hydration method

DSPE-PEG2000-
RGD-LPs/QCT

A549 93.90 ± 6.20 − 21.50 ± 0.40 Zhou et al. (2018)

RGDm The film disper-
sion method, 
ultrasonication 
disperse and 
extrusion

RGDm-SSL-DOX Melanoma B16 
tumors

120.00 – Xiong et al. (2005)

RGD The thin-film 
hydration method

RGD-SSL-PTX The SKOV-3 
human ovarian 
cancer cell line

120.00 – Zhao et al. (2009)

RGD The thin-film 
hydration method

RGD-LP-PTX PC-3 cells 95.00 ± 6.40 − 2.63 ± 1.17 Cao et al. (2015)

RGD The thin-film 
hydration method

EPO906-RGD-
liposomes

Neuroblastoma 
and rhabdomyo-
sarcoma

100 – Scherzinger-Laude 
et al. (2013)

RGDm7 The lipid film 
hydration method

50R-LIPO-DOX; 
50R10D-LIPO-
DOX

Circulating tumor 
cells (CTCs)

99.70 ± 1.02; 
112.40 ± 2.55

− 24.30 ± 0.65; − 
27.70 ± 0.46

Song et al. (2020)

cRGD, RGDf[N-
Met]C

Lipid film hydra-
tion and extru-
sion method

RGD-Dox-TSL B16Bl6 (murine 
melanoma) cells

85.00 – Dicheva et al. 
(2015)

RGD Freeze-drying 
method

Majzoub et al. 
(2014)
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nanogel with cRGD using reverse nanoprecipitation, 
“click” reaction, and cRGD coupling method. cRGD-SS-
NGS was able to bind to v3 integrin, which was overex-
pressed in human glioblastoma U87-MG cells. This led to 
the targeted release of DOX and higher lethality against 
U87-MG cells.

In summary, RGD-modified polymeric nanoparticles 
are promising for improving the selective delivery of drugs 
to tumor tissues.

RGD‑Modified Inorganic Nanoparticles

Even though inorganic materials are not biodegradable, 
due to their unique physical and chemical properties, they 
have advantages in drug delivery applications that include 
ease of preparation, versatility, good storage stability, and 
biocompatibility. Thus, inorganic materials are widely 
used to deliver various drugs (Andreu and Arruebo 2018). 
Because of their well-defined structure and biocompatibil-
ity, mesoporous silica nanoparticles can be used in tumor 
therapy (Luo et al. 2014; Shen et al. 2015; Xing et al. 2012). 
Furthermore, mesoporous silica nanoparticles with targeted 

Table 2   RGD-mediated polymeric nanoparticles

Binding motif Preparation method Formulation Cancer/cancer cell 
type

Particle size (nm) Zeta potential (mV) Ref.

cRGDfK Inverse nanopre-
cipitation, “click” 
reaction, and 
cRGD conjugation

cRGD-SS-NGs U87-MG cells 142.00 – Chen et al. (2017)

cRGDfC Emulsion polymeri-
zation and cRGD 
conjugation

βCD-PAMAM-
PEG-cRGD

U87-MG cells 35.00–54.00 – Saraswathy et al. 
(2015)

cRGDfK Self-assembly 
method and cRGD 
conjugation

NHAc-FI-PEG-
RGD/DOX

U87-MG cells 5.40 20.40 (pH = 5), 0 
(pH = 7), − 26.80 
(pH = 10)

He et al. (2015)

cRGDfC Organic synthesis PAM-PBLG-b-
PEG-cRGD

HepG2 cells 78.20 − 6.30 Tang et al. (2017)

iRGD Hydration film 
method

iRGD-PS-PTX MKN-45P and 
CT26 cells/Peri-
toneal carcinoma-
tosis

233.00 − 2.70 Simón-Gracia et al. 
(2016)

RGD Organic synthesis RGD-PAMAM -ce6 A375 cells 28.00 0.80 Yuan et al. (2015)
cRGDfK Chemical conjuga-

tion reaction
cRGD-gPEG-Ce6 SKOV-3/KB cells 3.00–4.00 − 6.00 Kim et al. (2017a)

RGD Emulsion polymeri-
zation

RGD-DEPt MDA-MB-231 cells 1.40 37.00 Zhou et al. (2016)

RGD Lyophilization RGD-modified Au 
PENPs

U87-MG cells 200.00–350.00 4.80–13.20 Kong et al. (2017)

RGD The clip photo-
chemistry method-
ology and RGD 
conjugation

CPEG RGD H1299 cells 191.00–211.00 – Ragelle et al. (2015)

RGD Organic synthesis RPgWSC/pDNA PC-3 cells 178.40 – Kim et al. (2017b)
cRGD cRGD conjugation MN-anti-miR10b MDA-MB-231 

human breast 
adenocarcinoma 
cells

/ – Yigit et al. (2013)

RGD Covalent and conju-
gation

CPT@fCNT-RGD A375 and MCF7 
cells

5.04 – Koh et al. (2019)

cRGD Conjugation H40-DOX-cRGD-
64Cu

U87MG human 
glioblastoma cells

65.00 – Xiao et al. (2012)

RGD Conjugation Ptx-SA-RGD Gastric cancer cells 
MGC803

1540.00–1760.00 −0.53 Li et al. (2020a)

RGD Conjugation RGD-tk-Epo B PC-3, HCT116, and 
L929 cells

85.73 – Xia et al. (2020)
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peptides have been extensively studied for drug delivery 
(Chen et al. 2016; Hu et al. 2016; Yang and Yu 2016).

Murugan et al. (2016) used the sol-gel method and cRGD 
coupling to prepare CPMSN by loading topotecan (TPT) and 
quercetin (QT) into 65–75 nm mesoporous silica nanopar-
ticles modified with polyacrylic acid (PAA)/chitosan (CS) 
containing cRGD. CPMSN was applied for the treatment of 
breast cancer. Cheng et al. (2010) prepared A647@MSN-
RGD-PdTPP nanoparticles with a high affinity for αvβ3 inte-
grin on cancer cells, which can be used for tumor therapy. 
The applications of RGD-modified inorganic nanoparticles 
in tumor therapy are shown in Table 3.

In summary, RGD peptide exhibits excellent specific 
binding ability for ανβ3 integrin. Furthermore, RGD-mod-
ified polymer and liposome nanovehicles and inorganic 
nanoparticles have been extensively studied in the field of 
drug delivery systems for cancer therapy, especially for 
chemotherapy. In this context, many outstanding results have 
been achieved, demonstrating that RGD-modified polymers, 
liposomes, and inorganic nanoparticles have broad applica-
tion prospects and enormous development value as nano-
vehicles. With rapid developments in molecular biology, 
genetic science, pharmacy, and other related disciplines, 
there will surely be comprehensive and in-depth research 
with regard to applications of RGD-modified polymers, lipo-
some nanovehicles, and inorganic nanoparticles in the field 
of cancer treatment.

Effects of RGD on Adhesion and Migration 
of Tumor Cells

RGD is the smallest cell adhesion peptide sequence found 
in fibronectin (Pierschbacher and Ruoslahti 1984). Not only 
can RGD initiate cell adhesion, but it can also selectively 
process certain cell reactions. The motif of the RGD peptide, 
its density, and arrangement on the surface contribute to 
successful cell attachment. In addition, RGD can influence 
specific cellular behavior (Hersel et al. 2003). Appropriate 
RGD-modified nanomaterials can inhibit tumor metastasis 
by inhibiting cell migration (Liu et al. 2020a). Furthermore, 
RGD can be specifically recognized and bound by integrin 
to inhibit the integrin signaling pathway and prevent tumor 
cell adhesion, migration, invasion, and proliferation, result-
ing in antitumor effects (Yang et al. 2021). RGD peptide can 
bind to integrin receptors competitively and inhibit tumor 
cell migration (Yang et al. 2021). rLj-RGD3 can block the 
adhesion, migration, and invasion of ovarian cancer cell line 
HeyA8 (Zheng et al. 2017; Wen et al. 2018) synthesized 
RGD-SSLs-SHK for the treatment of breast cancer, they 
found that in comparison with SSLs-SHK, RGD-SSLs-SHK 
inhibited cell proliferation, migration, invasion, and adhe-
sion by lowering MMP-9 expression and NF-B p65 levels.

RGD‑Induced Tumor cell Apoptosis

RGD peptide can induce apoptosis in a dose-dependent 
manner, thereby inhibiting the proliferation of endothe-
lial cells (Hamdan et al. 2019). RGD peptide–modified 
and DOX-loaded selenium nanoparticles (RGD-NPs) are 

Table 3   RGD-mediated inorganic nanoparticles

Binding motif Preparation method Formulation Cancer/cancer cell 
type

Particle size (nm) Zeta potential (mV) References

K4YRGD Atomization MSN@Alg micro-
spheres

HepG2 cells 20.00–30.00 – Liao et al. (2014)

cRGD Passive PEGylation 
and active cRGD 
conjugation

c-RGD-LPAgNPs U87MG cancer 
cells

20.90 ± 4.60 − 30.00 Sun et al. (2014)

cRGD Sol-gel method and 
cRGD conjugation

CPMSNs Triple-negative 
breast cancer 
(MDA-MB-231)

65.00–75.00 + 42.80 Murugan et al. 
(2016)

cRGDyK cRGDyK conjunc-
tion

A647@MSN-RGD-
PdTPP

MCF-7 and 
U87-MG cells

100.00 – Cheng et al. (2010)

N 3 -GRG-
DSGRGDS-
NH 2

Sol-gel method 
and synthesis of 
peptide-capped 
MSNs via

DOX@MSN-SS-
RGD

U87 MG and COS 
7 cells

100.00 + 24.30 Li et al. (2015)

RGD RGD conjugation RGD-LP-CHMSN HepG2, MCF-7 and 
LO2 cells

100.67 ± 1.14 35.00 ± 0.75 Fei et al. (2017)

RGD One-pot synthesis GTe-RGD A375 220.00 – Huang et al. (2020)
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a nanodelivery system capable of inducing apoptosis and 
cell cycle arrest in Human Umbilical Vein Endothelial 
Cells(HUVECs) (Fu et al. 2016). rLj-RGD3 can inhibit 
the proliferation of ovarian cancer cell line HeyA8 by 
inducing apoptosis (Zheng et al. 2017; Wen et al. 2018) 
synthesized RGD-SSLs-SHK for the treatment of breast 
cancer; when compared with SSLs-SHK, RGD-SSLs-SHK 
induced cell apoptosis by decreasing Bcl-2 expression and 
increasing Bax expression. Babu et al. (2017) prepared 
PLGA-CNP-RGD, which triggered more lung cancer cell 
apoptosis and induced G2/M cell cycle arrest compared 
with nontargeted preparations.

RGD Inhibits Tumor Angiogenesis

Angiogenesis plays an important role in the occurrence 
and development of a variety of tumors. Angiogenesis 
imaging can help with early tumor detection and treat-
ment response assessment.

RGD has a high affinity for the transmembrane heter-
odimer αvβ3 integrin receptor, which is overexpressed 
on activated neoplastic endothelial cells. Thus, the tumor 
vascular endothelium is damaged after active (vascular) 
targeting of the αvβ3 integrin receptor by gold nanopar-
ticles and subsequent irradiation (Kunjachan et al. 2015). 
RGD peptide can recognize and specifically bind αvβ3 
and αvβ5 integrins, which contribute to tumor vascular 
system accumulation or their associated binding (David 
2017; Kapp et al. 2017).

Thumshirn’s team synthesized the first synthetic, highly 
active, and selective αvβ3 receptor antagonist, cyclo 
(-RGDfV-), and derivation resulted in an N-alkylated 
cyclic peptide ring (-RGDf[NMe]V-) that has entered 
Phase II clinical trials as an angiogenesis inhibitor (Cilen-
gitide, code EMD 121,974, Merck) (Thumshirn et  al. 
2003). This derivate inhibits tumor migration and angio-
genesis by utilizing RGD competitively binding to integrin 
receptors (Yang et al. 2021).

In addition, RGD-functionalized nanomaterials inhibit 
angiogenesis by promoting cell apoptosis, and the strat-
egy of using RGD-functionalized Mesoporous silica 
nanoparticles(MSNs) as NAMI-A carrier is an effective 
way to enhance cancer-targeted antiangiogenesis (Hu 
et al. 2015; Hood et al. 2002) highlighted antiangiogenic 
therapy targeting αvβ3 via nonpeptide mimetics of RGD 
coupled to nanoparticles. Hida et  al. (2016) delivered 
VEGFR2 siRNA by using RGD-MEND nanoparticles to 
inhibit tumor growth by antiangiogenesis. RGD-modified 
D (KLAKLAK) 2 can specifically bind to αvβ3 integrin 
receptor overexpressed on tumor endothelial cell surface, 
leading to the death of endothelial cells and destroying 
tumor blood vessels, thereby inhibiting tumor cell growth 

(Ellerby et al. 1999; Smolarczyk et al. 2006).Researchers 
have constructed a fusion protein containing prothrom-
bin and the αvβ3 endothelial cell receptor (tCoa-RGD), 
and injection of tCoa-RGD caused extensive thrombus 
formation in a mouse xenograft tumor model, leading to 
extensive tumor necrosis (Jahanban-Esfahlan et al. 2017; 
Fu et al. 2016) prepared RGD-modified and DOX-loaded 
selenium nanoparticles (RGD-NPS), which could induce 
apoptosis and cell cycle arrest in HUVECs, thereby inhib-
iting MCF-7 tumor growth and tumor angiogenesis in nude 
mice.

In summary, with regard to the mechanism of RHD 
in tumor treatment, we can conclude that RGD inhibits 
the regeneration and migration of tumor cells by affect-
ing tumor cell adhesion and migration, and inhibits the 
growth of tumor cells by inducing tumor cell apoptosis 
and inhibiting tumor angiogenesis.

Application of RGD in the Treatment 
of Various Tumors

Because RGD can recognize integrin ανβ3, a series of RGDs 
have been synthesized for tumor cell targeting. As previously 
mentioned, integrin ανβ3 is expressed on angiogenic blood 
vessels and tumor cells, and it plays an important role in 
tumor growth, metastasis, and angiogenesis. Thus, the devel-
opment of RGD peptide–functionalized nanodrug delivery 
systems has a promising future in the field of tumor therapy 
(Fu et al. 2019). Table 4 summarizes the antitumor effects 
of RGD.

Exogenous RGD peptide effectively inhibits the bind-
ing of ligand and integrin, thereby inhibiting tumor cell 
angiogenesis and migration, and it can also be used to mark 
tumors and deliver anticancer drugs (Danhier et al. 2012; 
Garanger et al. 2007; Zitzmann et al. 2002). In comparison 
with NC@PDA-PEG or free paclitaxel, NC@PDA-PEG-
RGD can better promote drug accumulation in the tumor and 
thus better inhibit tumor growth, indicating the superiority 
of RGD peptide–modified nanodrug delivery system therapy 
in lung cancer (Huang et al. 2019).

In conclusion, RGD-functionalized nanoparticles have 
the potential to inhibit tumor cell proliferation, migration, 
invasion, and adhesion, and RGD-modified nanodrug deliv-
ery systems have the potential to target drug delivery. Thus, 
using RGD-modified nanodrug delivery systems to achieve 
targeted cancer therapy is a very promising approach. RGD 
peptide and its derivatives–functionalized nanoparticles have 
widely been used in cancer therapy.

Twelve RGD-targeted drugs have been studied in clinical 
trials since 2006. Cilengitide (an RGD-containing integrin 
antagonist) (Feng et al. 2014) has been developed as a cancer 
therapeutic agent, and phase I clinical trials have revealed its 
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favorable safety profile (Nabors et al. 2007) (https://​www.​
clini​caltr​ialsr​egist​er.​eu/​ctr-​search/​search for “Cancer AND 
RGD”). (On November 22, 2022, the database was queried.)

RGD for Tumor Imaging and Diagnosis

Over the last few decades, several radiolabeled RGD 
peptides targeting integrin αvβ3 have been prepared and 
optimized for positron emission tomography (PET) and 

single-photon emission computed tomography (SPECT) 
imaging (Liu and Wang 2013). RGD peptide can be used 
to modify the nanodrug delivery system for tumor imaging. 
cRGD cyclic peptide is a polypeptide with active target-
ing properties. A number of preclinical experiments have 
shown that cRGDyK combined with imaging agents (e.g., 
microvesicles, magnetic resonance contrast agents, fluores-
cein) (Guo et al. 2020; Zhang et al. 2017c, 2018) can effec-
tively improve the sensitivity of contrast agents to tumor 
imaging.

Table 4   RGD-Targeted agents are used in cancer therapy

Binding motif Loaded drug Components Cancer/cancer cell type References

RGD Cisplatin CPFT-RGD A549 Yadav et al. (2023)
cRGD Camptothecin (CPT)/DOX/

DOX
CPT@fCNT-RGD/H40-

DOX-cRGD/RGD-SPIO@
MSN NPs

A357/ U87MG/ HepG2 Koh et al. (2019); Xiao 
et al. (2012);

Zhao et al. (2023)
N-Methylated cyclic RGD miRNA MN-anti-miR10b MDA-MB-231 Yigit et al. (2013)
RGD Paclitaxel NC@PDA-PEG-RGD A549 Huang et al. (2019)
c(RGDfE) Gemcitabine c(RGDfE)–pMMSNs BxPC-3 Sun et al. (2015)
RGDm7 Doxorubicin (DOX) R-LIPO, D-LIPO and RD-

LIPO
Jurket cells Song et al. (2020)

RGD Epothilone B RGD-tk-Epo B Human prostatic cancer cell 
line (PC-3)

Xia et al. (2020)

RGD Paclitaxel (Ptx) and tetran-
drine (Tet)

Ptx-SA-RGD and P/T-NFs The gastric cancer cell line 
MGC-803

Li et al. (2020a)

RGD Doxorubicin and cilengitide MC-T-DOX BxPC-3 Wei et al. (2020)
RGD Camouflaged graphene oxide 

quantum dots (GOQDs), 
doxorubicin, and Gama-
bufotalin

GTDC@MR NPs Triple-negative breast cancer 
(TNBC)

Fan et al. (2020)

RGD Doxorubicin (DOX) RGD-PCD/DOX NPs HepG2 Huang et al. (2014)
cRGD-PEG2000-DSPE Paclitaxel (PTX) RGD-KLA/PTX-Lips 4T1 tumor Sun et al. (2017)
RGD Arsenic trioxide RGD-LP-CHMSN-ATO H22 tumor Fei et al. (2017)
cRGD Gefitinib R-RBC@GEF-NPs A549 Wen et al. (2021)
RGD Norcantharidin RGD-LPH-NCTD Triple-negative breast cancer 

(TNBC)
Li et al. (2019)

iRGD (internalizing RGD) Hypocrellin B (HB) HB-PA Breast tumor Jiang et al. (2018b)
RGD Epothilone B (Epo B) RGD-tk-Epo B PC-3 Xia et al. (2020)
RGD Tellurium (Te) GTe-RGD Breast cancer Huang et al. (2020)
RGD mTHPC mTHPC@VeC/T-RGD NP Colorectal cancer (CRC) Yuan et al. (2021)
RGD Gold nanoparticles (t-NP) t-NP Human pancreatic adenocar-

cinoma cell line Capan-1 
(ATCC HTB-79)

Kunjachan et al. (2019)

cRGD Doxorubicin (DOX) H40-DOX-cRGD U87MG Xiao et al. (2012)
RGD magnetosomes Magnetosomes@RGD The B16F10 melanoma cells Hafsi et al. (2020)
RGDyc Paclitaxel NC@PDA-PEG-RGD A549 Huang et al. (2019)
RGD Paclitaxel MSNs-NH 2 -FA-RGD Human breast cancer cells 

MCF-7
Yan et al. (2020)

RGD Gemcitabine RGD-PEG3500-DSPE GEM 
LPs

Ovarian cancer (SKOV3 
cells)

Tang et al. (2019)

RGD Doxorubicin Dox/P(RGD) NC Ovarian cancer cells 
(CAOV-3 cells)

Hadad et al. (2020b)

RGD Shikonin (RGD-SSLs-SHK Breast cancer Wen et al. (2018)

https://www.clinicaltrialsregister.eu/ctr-search/search
https://www.clinicaltrialsregister.eu/ctr-search/search
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Zhao et al. (2019) evaluated 68Ga-labeled dimer and 
trimer cyclic RGD peptides as PET radiotracers; these 
have a similar αvβ3 binding affinity to RGD trimers, and 
the biodistribution properties of Ga radiotracers depend on 
RGD peptides and radiometal chelates. Schnell et al. (2009) 
demonstrated that 18 F-labeled glycosylated ARG peptide 
[18 F]Galacto-RGD could be used for glioma imaging. Zhao 
et al. (2016) reported that 99 m Tc-4P-RGD 3 and 99 m Tc-
3P-RGD 2 were radioactive tracers that could be used for 
tumor imaging as well as noninvasive monitoring of αvβ3 
expression. Both preclinical and clinical studies have shown 
that radiolabeled RGD peptides (e.g., 99 m Tc-3P-RGD 

2, 18 F-Alfatide-I, and 18 F-Alfatide-II) could be used as 
molecular imaging probes for early cancer detection and to 
monitor tumor angiogenesis (Liu 2015; Yang et al. 2014) 
investigated the use of RGD radioactive tracer to monitor 
tumor angiogenesis. A double-ring RGD called cRGD-ACP-
K was used as a PET radioactive tracer for tumor imaging 
(Park et al. 2014).

In conclusion, RGD can be used in conjunction with 
imaging agents to aid in the early detection and differen-
tiation of tumors. As previously stated, because RGD has 
a high specific affinity for αvβ3 integrin, which is overex-
pressed in tumor neovascularization, RGD can be used as 

Table 5   RGD drugs in clinical trials

Note: Table 5 shows RGD drugs in clinical trials, with all information sourced from https://​clini​caltr​ials.​gov/

Drug Classification Indications Clinical trial phase Date NCT No.

68Ga-NODAGA-RGD 
PET/CT

Radiotherapy Potential for neovascu-
larization in patients 
following tumor 
pathology (pathologi-
cal angiogenesis)

Phase 1 28th Jan. 2016–14th 
June 2022

NCT02666547

Ad5-Delta 24RGD Adenovirus Ovarian carcinoma, 
primary peritoneal 
carcinoma

Phase 1 21st Nov. 2007–26th Jan. 
2011

NCT00562003

Ad5.SSTR/TK.RGD Adenovirus Ovarian carcinoma Phase 1 25th Aug. 2009–13th 
Feb. 2013

NCT00964756

Delta-24-RGD-4 C Adenovirus Glioma Phase 1 9th Dec. 2008–16th Jul. 
2018

NCT00805376

Delta-24-RGD Adenovirus Glioma Phase 1, Phase 2 20th Apr. 2012–9th Mar. 
2015

NCT01582516

Delta-24- RGD and 
Temozolomide

Adenovirus Glioma Phase 1 8th Oct. 2013–24th Oct. 
2017

NCT01956734

68Ga-AlfatideII Radiotherapy Lung cancer, tubercu-
losis

Phase 1, Phase 2 Mar. 2014–Oct. 2014 NCT02481726

DNX-2401 and Inter-
feron gamma (IFN-γ)

Virus Glioma Phase 1 22nd Jul. 2014–16th Jul. 
2018

NCT02197169

[F-18]RGD-K5 Molecular imaging tracer Metastatic breast cancer; 
metastatic colorectal/
rectal cancer; non-
squamous non-small 
cell lung cancer

Phase 2 2nd Oct. 2009–22nd 
Aug. 2012

NCT00988936

RGD PET/CT Molecular imaging tracer Oropharyngeal squa-
mous cell carcinoma

Phase 2 22nd Nov. 2019–1st Sep. 
2023

NCT04222543

Flotegatide (18 F) or 
RGD (68Ga)

Radiotherapy Advanced head and neck 
cancer; advanced non-
small cell lung cancer

Phase 2 20th Mar. 2015–20th 
Sep. 2018

NCT02325349

DNX-2401  A transgenic oncolytic 
adenovirus

Glioma Phase 2 14th Jun. 2016–15th Jul. 
2021

NCT02798406

99mTc-3PRGD2 Radiodiagnostics prepa-
ration

Lung cancer Phase 3 18th Jan. 2020–27th Apr. 
2022

NCT04233476

18 F-ALF-NOTA-
PRGD2

Antiangiogenesis Gastric carcinoma, non-
small cell lung cancer, 
esophageal cancer, 
breast cancer, ovarian 
cancer, cervical cancer

Phase 4 27th Dec. 2018–20th 
Feb. 2018

NCT03384511

https://clinicaltrials.gov/
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a carrier to transport radiotracer to integrin αvβ3 on tumor 
cells.

RGD peptides are widely used in a variety of physi-
ological and pathological processes, most notably in 
tumor diagnosis and treatment and in anticancer drug 
development (Huang et al. 2019; Koh et al. 2019; Sun 
et al. 2015; Xiao et al. 2012; Yigit et al. 2013). It has 
been reported that many cancer cells and tumor vascular 
surfaces overexpress αvβ3 integrin (Pierschbacher and 
Ruoslahti 1984). RGD peptides have a high affinity for 
αvβ3 and can be attracted to tumor angiogenesis regions 
(Hadad et al. 2020a), which implies that RGD-modified 
nanodrug delivery systems can be used for tumor imaging 
and therapy (Dubey et al. 2004; Fu et al. 2016; Weis and 
Cheresh 2011b). For targeted drug delivery, linear RGD 
or cyclic RGD are commonly used in conjunction with 
nanoparticles (Yin et al. 2014).

Other Applications of RGD

RGD is currently used as a tumor diagnosis or tumor target-
ing marker. It is also used for biomaterial functionalization 
(Sani et al. 2021), enhancement of retinal tissue develop-
ment (Hunt et al. 2017) and osteogenesis (Chen et al. 2015), 
antithrombotic effect (Bardania et al. 2019; Li et al. 2020b; 
Wu et al. 2020), and promotion of phagocytic activity of 
microglia (Dashdulam et al. 2020). It can be used to support 
the growth, recruitment, and migration of endothelial cells 
in vitro (Blindt et al. 2006). RGD peptides can also promote 
cell adhesion to matrix, prevent apoptosis, and accelerate 
tissue regeneration, and are widely used in tissue engineer-
ing (Wang et al. 2013).

RGD-alginate scaffolds can be used for neural retina and 
derivation transplantation (Hunt et al. 2017). The RGD-CS/
HA scaffold’s osseointegration ability and biomechanical 
properties are comparable to those of normal bone tissue 
(Chen et al. 2015). In the early stages of acute kidney injury, 
EV-RGD hydrogel attenuates the histopathological dam-
age, reduces tubular damage, and promotes cell prolifera-
tion (Zhang et al. 2020). Bardania investigated the in vitro 
cytotoxicity and hemocompatibility of RGD-modified 
nanoliposomes (RGD-MNL) encapsulated with a highly 
effective antiplatelet drug (eptifibatide), and revealed that 
the RGD-MNL preparation had no obvious cytotoxicity to 
normal cells or erythrocytes and had the potential to pro-
tect and enhance the activity of antiplatelet drugs (Bardania 
et al. 2019; Li et al. 2020b) created a low-molecular-weight 
peptide based on RGD-hirudin to prevent thrombosis. Wu 
et al. designed and prepared TTQ-PEG-c (RGD), a novel 
organic near-infrared second window (NIR-II) probe that 
targets the glycoprotein IIb/IIIa receptor (GPIIb /IIIa). It has 
high NIR-II intensity, good stability, activates platelets, and 

specifically targets thrombus formation in vitro and in vivo, 
providing a potential tool for noninvasive diagnosis of early 
thrombus (Wu et al. 2020; Dashdulam et al. 2020) discov-
ered that an OPN peptide (OPNpt7R, VPNGRGD) contain-
ing seven amino acids of RGD increased the phagocytosis 
activity of microglia cells to the same extent as OPNpt20, 
and that the RGD motif was critical for this function. Qu 
et al. (2019) fixed RGD on Hydroxybutyl chitosan (HBC) 
and synthesized HBC-RGD hydrogel, which can promote 
bone marrow-derived mesenchymal stem cells (BMSCs) 
adhesion and proliferation on the hydrogel to cure keloid. 
Blindt et  al. (2006) demonstrated that cRGD promoted 
endothelial cell growth, recruitment, and migration in vitro.

Overall, RGD ligands have great potential, but due to 
insufficient research, only a few approaches have been 
developed for treatment.

Safety of RGD

Because of their inherent safety, biocompatibility, and tar-
geting ability, RGD peptides hold a unique position among 
all active targeting ligands developed to date. Many studies 
have found no obvious toxicity after RGD treatment. Zhang 
et al. (2017b) determined the safety of RGD-Flt23k nano-
particle treatment with RGD-functionalized nanoparticles 
without detecting hematological toxicity or systemic inflam-
mation, indicating that RGD-functionalized nanoparticles 
have some safety profile. [68Ga]NODAGA-RGD has good 
tolerance and metabolic stability in the human body, accord-
ing to Haubner et al. (2016). With a half-life of 12 min, 
18 F-RGD-K5 is rapidly cleared by the renal system and is 
metabolically stable in human blood 90 min after injection 
(Doss et al. 2012; Zhang et al. 2017a) investigated the safety 
and clinical diagnostic value of 68Ga-BBN-RGD PET/CT in 
prostate cancer patients, discovering that the drug was safe 
and well tolerated in all healthy volunteers and recruited 
patients, with no adverse events after injection.

In summary, RGD peptides are a potential cancer thera-
peutic target due to the biocompatibility and targeting prop-
erties of RGD peptides. RGD peptides have a certain safety 
profile, but some adverse reactions still occur during use, 
so they need to be monitored and studied for a long time in 
clinical trials.

Conclusions

RGD peptide–modified nanodrug delivery systems are 
widely used in the field of tumor treatment. RGD peptides 
have an excellent specific binding ability to v3 integrin. In 
the field of nanodrug delivery systems for cancer therapy, 
particularly chemotherapy, RGD-modified liposomes, 
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polymers, and inorganic nanoparticles have been extensively 
studied. Many outstanding outcomes have been obtained. 
However, the design of RGD-targeted nanocarriers still has 
a lot of room for improvement. RGD liposomes are still in 
the early stages of development for target-mediated therapy; 
for example, nonspecific binding to serum and immune sys-
tem recognition may render RGD-functionalized liposomes 
ineffective. RGD-modified liposomes have received little 
attention in clinical trials to date, which may be due to their 
instability and low drug loading. Furthermore, we believe 
that the low drug-loading capacity and poor in vivo stabil-
ity that RGD-modified polymers and inorganic nanoparti-
cles typically exhibit are two major challenges to overcome. 
Because tumors and patients are heterogeneous, designing 
RGD-targeted liposomes, polymers, and inorganic nanocar-
riers that can be targeted to different patients and tumors 
remains a difficult task. Furthermore, in vitro specificity is 
not always consistent with in vivo specificity, because the 
intracellular environment of tissues is very complex.

Regardless of clinical success, current RGD–integrin 
drug discovery efforts may facilitate future research by pro-
viding a new set of well-characterized tools. These studies 
could result in the successful development of integrin-tar-
geting drugs. As nanocarriers, RGD-modified liposomes, 
polymers, and inorganic drugs have broad application pros-
pects and high development value. RGD-modified inorganic, 
polymer, and liposome nanodelivery systems in the field of 
cancer treatment require more comprehensive and in-depth 
research in molecular biology, genetic science, pharmacy, 
and other related disciplines.
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