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Abstract
Campylobacter jejuni is a spiral-shaped Gram-negative and microaerophilic bacteria that causes bacterial diarrhea world-
wide. Due to its complicated antigenic nature, lack of proper animal models, and a poor understanding of its pathogenicity 
there is no vaccine against C. jejuni. The most effective way of reducing the number of Campylobacter infections is by 
developing protective vaccines for humans. Due to the increasing resistance against antibiotics of bacterial strains epitopes-
based vaccine could be the best approach to trigger an effective immune response. Immunoinformatics methods can be an 
alternative approach for developing epitope-based vaccine which is able to elucidate humoral and cell-mediated immune 
response inside the host body. Reverse vaccinology approach analyses the entire protein sequences of the pathogen using 
bioinformatics tools to select target proteins for their high-throughput expression and validation. Here in this research study, 
three epitopes MSNVYAYRF, LSDDINLNI and ATSTSTITL have been identified as the most potential epitopes binding 
with HLA-B*58:01, HLA-A*01:01 and HLA-B*07:02 MHC class I allele, respectively. With the help of Autodock vina, 
these three epitopes have shown the lowest binding energies and form the most complex docked structure covering the maxi-
mum number of populations worldwide. Thus, we suggest these peptides may have a good potential if further presented for 
experimental analysis and can be proved to be helpful against C. jejuni infections causing diarrhea.
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Introduction

Campylobacter jejuni is a Gram-negative spiral-shaped 
bacteria which is one of the leading causes of foodborne 
bacterial diseases worldwide. The isolation of C. jejuni was 
accomplished from human feces in 1968 (Dekeyser et al. 
1972). Since its discovery, C. jejuni remains the most fre-
quent cause of infectious diarrhea affecting over 450 mil-
lion people every year throughout the world, attributing a 
large economic burden (Friedman et al. 2000). It is most 
commonly found in animal feces and therefore poultry is 
the major reservoir (Young et al. 2007). Diarrhea is the 
third leading cause of childhood mortality in India and it is 

responsible for 13% of all death per year in children under 
5 year of age killing in an estimated 300,000 children per 
year in India. Campylobacter infection affects more than 
1.3 million people every year (CDC 2017). According to 
WHO report, diarrheal diseases are the most common infec-
tion resulting from unhygienic food causing 550 million peo-
ple falling ill yearly out of which 220 million children below 
the age of 5 years and it is one of the key global causes of 
diarrheal diseases (WHO 2018). C. jejuni infects the organ-
ism by penetrating the gastrointestinal mucus, then adher-
ing to the gut enterocytes and induced diarrhea by toxin 
release mainly enterotoxin and cytotoxin that correlate 
with the severity of enteritis (Gallardo et al. 1998; Wallis 
1994). The limited data on the treatment of C. jejuni infec-
tion suggested that ciprofloxacin, erythromycin, and fluo-
roquinolones may shorten the duration of symptoms. How-
ever, treatment failure associated with the emergence of the 
quinolone-resistant strain of C. jejuni has been documented 
(Van et al. 2003). For the permanent solution with the infec-
tion of C. jejuni, there is need of a powerful vaccine that 
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could provide immunity against it but till now no vaccine is 
available against campylobacter.

Reverse vaccinology is the best approach in terms of 
medical sciences that involves the use of genomic informa-
tion with the use of computer for the preparation of vaccines 
without culturing microorganism (Kanampalliwar et al. 
2013; Tang et al. 2012). This method helps in the develop-
ment of vaccines that were previously difficult or impossible 
to make and therefore can lead to the discovery of the unique 
epitope-based vaccine that will improve existing vaccine 
technology (Sette and Rappuoli 2010). It allows the selec-
tion of antigenic regions from the pathogenic genomes and 
the most antigenic regions could be developed as potential 
vaccine candidates to trigger protective immune responses 
(Ada et al. 2018). Production of peptide or epitopes based 
vaccines are easy in comparison to the conventional vaccine 
and it is also more specific, cost-effective, less time consum-
ing and safe (Kumar et al. 2015). An epitope-based vaccine 
recently drawn much attention in treating infectious diseases 
(Yang and Yu 2009). Immunization based on epitope-based 
vaccines is more powerful in stimulation of the cellular and 
humoral immune response (Bijker et al. 2007). These types 
of vaccines consist of highly immunogenic T and B cells 
epitopes, which provoke cytotoxic T cells (CTL),  TH or B to 
specific epitopes (Baloria et al. 2012; Akhoon et al. 2011). 
B and  TH cells play an important role in the induction of a 
protective immune response in many bacterial infections; 
thus, determination of peptides that induce T and B cells 
response is the crucial requirement for the design of effec-
tive epitope-based vaccines (Gupta et al. 2010, 2012). Due 
to the heterogeneous virulence nature of C. jejuni infection, 
there is a lack of proper animal models that can replicate 
the gastroenteritis caused by C. jejuni in humans. C. jejuni 
vaccine candidates that have been or are in clinical devel-
opment include killed the whole cell, protein subunit, and 
capsule-conjugate products (Man 2011). A recombinant pro-
tein vaccine by the name ACE 393 has been tested in Phase 
II human challenge study but its efficacy failed to demon-
strate protection (Riddle and Guerry 2016). To validate the 
analysis, two standard antigens were taken as control (CadF 
and FlpA) which helps in the colonization of the gut that 
is promoted by flagellum-mediated motility and binding to 
host tissue such as fibronectin (Flanagan et al. 2009; Jin 
et al. 2001).

In the present study, screening of the whole genome in 
search of probable antigens was performed by using the RV 
approach. Immuno-informatics or computational biology has 
added an unavoidable contribution to design epitope-based 
vaccines (Gupta et al. 2011). In this context, identification 
of potential epitopes from an antigen protein by in silico 
methods can be considered in such vaccines reducing the 
lengthy process for discovery of appropriate epitopes (Sriv-
astava et al. 2011). Instead of selecting individual proteins, 

the RV approach analyses the entire protein sequences of 
the pathogen using bioinformatics tools to select target pro-
teins for their high-throughput expression and validation 
in animal models. The wide application of computational 
method provides an easy way to identify the epitopes of 
highly antigenic protein. Vaxign, a server that predicts the 
novel antigen which can be used as potential candidates for 
designing vaccine (Yongqun and Mobley 2010). Predicted 
epitopes will be further examined for different physiochem-
ical and immunogenic properties as well as three-dimen-
sional structural modeling and the docking studies will be 
performed to investigate the strong binding interaction with 
MHC I alleles. Nowadays, many online servers are avail-
able for predicting B and T cell epitopes. In this respect, 
the Immune Epitope Database (IEDB) server website (Vita 
et al. 2010) provides tools to predict both B and T cells 
epitopes. Other online servers such as ProPred (Singh and 
Raghava 2001), MHCpred (Guan et al. 2003) and SVMHC 
(Donnes and Elofsson 2002) have different tools for finding 
T cell epitopes. In order to examine the binding capability 
of these predicted epitopes with their corresponding alleles 
and population coverage analysis were performed.

Methodology

The C. jejuni strain NCTC 11,168 has a circular chromo-
some of 1,641,481 base pairs (30.6% G+C) that encodes 
1680 proteins (Parkhill et  al. 2000). The most striking 
feature of this strain was the presence of hypervariable 
sequences and lack of repetitive DNA sequences within this 
genome. The steps involved in the screening of the complete 
genome have been portrayed in Fig. 1.

Retrieval of Proteome Data and Identification 
of Antigens

The complete proteome of diarrheagenic campylobacter 
jejuni strain NCTC 11,168 was isolated from UniProt data-
base having proteome id UP000000799 (http://www.unipr 
ot.org/prote omes/) showing the total number of 1680 pro-
tein coding sequences with their complete protein informa-
tion. Adhesin Probability > = 0.51 of the filtered antigens 
are screened from the complete proteome of Campylobacter 
jejuni through Vaxign Server (Xiang and He 2009) (http://
www.violi net.org/vaxig n/index .php). Vaxign is a web-based 
software that works on the principle of reverse vaccinol-
ogy and predicts the vaccine targets by computing the com-
plete genome using default parameters. This server uses the 
default cutoff value of 0.51 to predict adhesion probability 
of the vaccine candidate. The adhering capability of the 
pathogenic strain is an important characteristic in causing 

http://www.uniprot.org/proteomes/
http://www.uniprot.org/proteomes/
http://www.violinet.org/vaxign/index.php
http://www.violinet.org/vaxign/index.php
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infection and therefore considered to be the major target in 
the development of vaccine.

Prediction of Antigenic and Allergic Properties

Selected proteins were further subjected to VaxiJen tool 
for the characterization of the antigenic nature of protein 

(Doytchinova et al. 2007). VaxiJen is the first server to pre-
dict the protective antigens mainly based on their physico-
chemical properties of proteins irrespective of the sequence 
alignment. In order to achieve high accuracy of prediction, 
only those proteins that show above 0.51 cut off scores were 
selected and therefore 49 proteins were calculated for analy-
sis. These antigenic proteins sequences were also tested for 

Fig. 1  Flowchart portraying the 
screening of potential vaccine 
candidates from the Campylo-
bacter jejuni genome 

Retrieval of complete proteome of NCTC 11168 strain of Campylobacter jejuni from 

UniProt database

Prediction of 82 proteins out of 1680 proteins by Vaxign server at a cut off value 0.51

Characterization of 49 antigenic proteins through Allergen FP and VaxiJen tools

Characterization of 5 most immunogenic proteins above 0.8 VaxiJen scores and 2 

control antigens by ABTM pro, TMHMM tools, NetCTL 1.2  and  Net MHC pan 4.0

Screening of epitopes binding to MHC I alleles through VaxiJen tool and 7 epitopes >=1.1 

scores were only selected

Characterization of 7 epitopes suitable as vaccine candidates by MHC Pred 2.0 , Toxin Pred, 

ProtParam tool

Prediction of HLA allele binding percentile score of 7 predicted  epitopes by IEDB MHC I 

prediction tool using Stabilized matrix method

Structure modeling and validation of predicted epitopes were done by using Modeller 9.18,

PEPstrMod , RAMPAGE and ProSA analysis

Docking between the epitopes and alleles  was done by Autodock vina and visualized through 

Autodock tools and chimera 1.12

Population coverage analysis by IEDB conservancy tool to cover maximum population 

Worldwide

Selection of promising vaccine candidates
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their allergenicity prediction by using Allergen FP v.1.0 tool 
available at http://www.ddg-pharm fac.net/Aller genFP /index 
.html. It is a novel fingerprint based approach that differenti-
ates between the allergens and non-allergens (Dimitrov et al. 
2014).

Prediction of T Cell Epitopes

The binding capability of the T cell epitopes with HLA class 
I alleles were checked by using NetCTL 1.2 tool (Larsen 
et al. 2007) and Net MHC pan 4.0 (Vanessa et al. 2017). 
NetCTL 1.2 server predicts CTL epitopes in any given pro-
tein sequences, proteasomal C terminal cleavage and TAP 
transport efficiency. This server allows for the predictions 
of CTL epitopes restricted to 12 MHC class I supertype. It 
uses the different algorithm for prediction of MHC class I 
binding and proteasomal cleavage by using artificial neural 
networks and TAP transport efficiency prediction through 
weight matrix method. To confirm the predicted peptides 
analyze through NetCTL 1.2 server it was further validated 
by using Net MHC pan 4.0. This server predicts binding 
of peptides to an MHC molecule of the antigenic sequence 
using artificial neural networks (ANNs).

To confirm the most probable epitopes with the higher 
confidence level, the final peptides were analyzed again 
through VaxiJen v2.0 web server and peptides that have 
shown high scores were selected for the analysis. High 
scorer peptides showing score > = 1.1 were shortlisted for 
the toxicity prediction. On the basis of these scores, best 
vaccine candidates were selected for further analysis.

Characterization of Target Proteins as a Vaccine 
Candidate

SPAAN is a non-homology based software program that is 
based on the properties of the sequence presented. It identi-
fies top-scoring novel adhesins with the high level of confi-
dence, therefore, the adhesion property of the antigens was 
checked by SPAAN (Sachdeva et al. 2005). Localization 
of these proteins was predicted by PSORT b 3.0 (Yu et al. 
2010). PSORTb has remained the most precise bacterial pro-
tein, subcellular localization (SCL) predictor which analyzed 
the subcellular localization by using multiple analytical 
modules. Prediction of the subcellular localization of pro-
teins through computational approach is a valuable tool for 
genome analysis and annotation and it can provide informa-
tion regarding its function in an organism. Transmembrane 
regions were also checked by TMHMM method (Krogh 
et al. 2001). TMHMM is a membrane protein topology pre-
diction method and works on the principle of hidden Markov 
model. It predicted the number of transmembrane helices 
within the protein sequences and discriminate between solu-
ble and membrane proteins with the high level of accuracy.

Prediction of Physiochemical Properties of Proteins

Identification of physical and chemical properties have 
been performed by ProtParam tool (Gasteiger et al. 2005). 
These parameters include molecular weight, theoretical pI, 
extinction coefficient, estimated half-life, instability index, 
aliphatic index and grand average of hydropathicity. ABT-
Mpro is a server that characterizes whether a given protein 
sequence is a transmembrane protein or not. It further identi-
fies the probabilities of the transmembrane protein predicted 
by ABTMpro being an alpha-helical transmembrane protein 
or a Beta Barrel transmembrane protein. It consists of a Sup-
port Vector Machine, which utilizes features such as amino 
acid composition and properties, reduced alphabet composi-
tion, predicted secondary structure, evolutionary information 
etc. ABTM pro is available at http://scrat ch.prote omics .ics.
uci.edu/.

IEDB Percentile Score Calculation of Predicted 
Epitopes

Binding affinities of the peptides were calculated by IEDB 
tool by applying Stabilized Matrix Method against the MHC 
restricted HLA alleles (Peters and Sette 2005). Toxicity of 
all the selected peptides were examined by Toxin Pred tool 
(Gupta et al. 2013). Toxin Pred is an in silico tool that pre-
dicts and design the toxic as well as non-toxic peptides. 
Here, in our study, we require non-toxic peptides, therefore, 
computational methods are useful in predicting the toxicity 
of peptides but also facilitate the designing of better useful 
peptides with lower toxicity level (Khan et al. 2017). This 
tool not only discriminates against toxic peptides from non-
toxic peptides but also save time and money.

Molecular Modeling of HLA Alleles and Epitopes

The three-dimensional structure of the epitopes was 
designed by using PEPstrMOD (Kaur et al. 2007), a server 
that predicts the 3D structures of the small peptide as well 
as peptides having non-natural residues, terminal modifi-
cations, cyclization, and post-translational modifications, 
etc. The sequence of HLA alleles was downloaded from 
IPD-IMGT/HLA Database (Robinson et al. 2015). The 3-D 
structures of these HLA alleles were modeled by Modeller 
9.18 (Sali et al. 1995). MODELLER is used for homology or 
comparative modeling of the three-dimensional structures of 
the proteins and provides an alignment of a protein sequence 
to be modeled with their known structural template. It auto-
matically calculates five models and the best of all model 
was selected on the basis of their lowest DOPE score. The 
most acceptable model was further validated by RAMPAGE 

http://www.ddg-pharmfac.net/AllergenFP/index.html
http://www.ddg-pharmfac.net/AllergenFP/index.html
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
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and ProSA analysis (Wiederstein and Sippl 2007). This tool 
is widely used to check 3D models of protein structures for 
potential errors.

Molecular Docking Analysis of the Peptide and HLA 
Allele Complex

After structural modeling, docking of the selected peptides 
with their favored HLA alleles was performed by using 
AutoDock Vina (Trott and Olson 2010). The tool generates 
9 docked conformations that were ranked on the basis of 
binding energy, torsion energy, geometry and electrostatic 
energy. The best output was finalized on the basis of highest 
binding energy score. AutoDock Vina did considerably bet-
ter in terms of speed and accuracy. Preparation of ligand and 
protein was done by using Autodock 4.2 of MGL tool 1.5.4. 
The chimera tool was used for the visualization of the 3-D 
structure with their Binding position, H-bonding between 
the HLA alleles and peptides.

Worldwide Population Coverage Analysis

The frequency of distribution of human HLA alleles binding 
to MHC molecules was predicted by MHC Pred (Guan et al. 
2003) and their conservancy analysis among the predicted 
epitopes was carried out by IEDB population coverage tool 
(Bui et al. 2006). All the parameters were set to default val-
ues that have a dataset containing the total number of 3245 
alleles for 16 geographical areas, 21 ethnicities, and 115 
countries. The predicted antigenic epitopes with their cor-
responding HLA alleles were submitted to this database and 
it determines the percentage of the number of population 
interacting to a given set of epitopes.

Results and Discussion

Identification of Protective Antigens 
and Antigenicity Prediction

In the present study, the screening of complete proteome of 
C. jejuni in order to identify protective antigens with higher 
affinity was done by Vaxign server. Identification of a set of 
82 proteins was shortlisted on the basis of adhesion value 
above 0.51 which indicates the adhesion properties of the 
filtered proteins. Subsequently, the next step is the filter-
ing of predicted proteins via VaxiJen to select only those 
sequences having the high probability of antigenic epitopes. 
Out of 82 proteins, 49 proteins were predicted as potential 
antigens and furthermore can be characterized by their aller-
gic properties with AllergenFP tool to exclude the allergens 
proteins. The non-allergens with high VaxiJen scores above 

Table 1  Screening of complete proteome through Vaxign server by 
keeping the cut off value > = 0.51 and further filtered by using Vaxi-
Jen and AllergenFP

S. no. Uniprot id VaxiJen Allergen FP

1 Q0PCA5 0.3867 Allergen
2 Q0PC76 0.5793 Allergen
3 Q0PC48 0.371 Non-allergen
4 Q0PC46 0.5572 Non-allergen
5 Q0PC44 0.7782 Allergen
6 Q0PC26 0.5479 Non-allergen
7 Q0PC23 0.6809 Non-allergen
8 Q9PIZ3 0.3871 Non-allergen
9 Q0PBY5 0.4596 Non-allergen
10 Q0PBW1 0.5736 Non-allergen
11 Q0PBV8 0.6633 Non-allergen
12 Q0PBT9 0.2171 Allergen
13 Q0PBT8 0.3796 Non-allergen
14 Q0PBD5 0.6475 Non-allergen
15 Q0PBB5 0.4647 Allergen
16 Q0PBA4 0.5608 Non-allergen
17 Q0PB95 0.5547 Allergen
18 Q0PB90 0.8359 Non-allergen
19 Q0PB82 0.8586 Non-allergen
20 Q0PB28 0.3158 Non-allergen
21 Q9PHW6 0.7146 Non-allergen
22 Q0PAV5 0.5272 Allergen
23 Q0PAV3 0.2984 Non-allergen
24 Q0PAT7 0.3391 Allergen
25 Q0PAS3 0.7902 Non-allergen
26 Q0PAS1 0.4407 Non-allergen
27 Q0PAN9 0.7387 Non-allergen
28 Q9PHM1 0.4427 Non-allergen
29 Q0PAM0 0.5649 Allergen
30 Q9PPM0 0.6974 Non-allergen
31 P96747 0.5544 Non-allergen
32 Q0PAE4 0.5087 Non-allergen
33 Q0PAE2 0.4144 Non-allergen
34 Q0PAE1 0.6852 Allergen
35 Q0PAE0 0.7900 Allergen
36 Q0PAB4 0.5206 Non-allergen
37 Q0PA94 0.2177 Non-allergen
38 Q0PA76 0.5452 Allergen
39 Q0PA73 0.3329 Non-allergen
40 Q0PA31 0.9818 Non-allergen
41 Q0PA24 0.3475 Allergen
42 Q0PA18 0.4531 Non-allergen
43 Q0PA11 0.6976 Non-allergen
44 Q0P9Z2 0.4270 Non-allergen
45 Q0P9Z1  0.5586 Allergen
46 Q46121 0.5656 Non-allergen
47 Q0P9Y3 0.2010 Non-allergen
48 Q0P9W3 0.7357 Non-allergen
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0.8 were selected for the further analysis- Q0PB90, Q0PB82, 
Q0PA31, Q0P914, Q0P8F1 (Table 1).

Characterization of Target Antigens as Potential 
Vaccine Candidates

To characterize predicted antigens as good vaccine can-
didates, we have applied various computational methods 
to distinguish their immunological properties (Khan et al. 
2018). The SPAAN program (Sachdeva et al. 2005) is 
applied to calculate the adhesion property of the target 
antigens, all the 5 proteins were predicted as adhesions. 

Outer membrane surface proteins were considered to be 
a good choice for vaccine development and so the predic-
tion of localization of these proteins was done by PSORT 
b 3.0. Usually, proteins having more than two transmem-
brane region are not considered a good vaccine candidate 
due to the difficulty in cloning expressing and purifying. 
Here we had used the TMHMM method which clearly 
depicted that all the 5 selected proteins were having 
less than 1 transmembrane region. Since it is difficult to 
clone, express and purify protein antigens with 1 or more 
TM region and is a major obstacle in the potential vac-
cine candidates selection. Furthermore, ABTM pro was 
applied to predict alpha helix and beta barrel transmem-
brane proteins with the overall accuracy of 97% (Singh 
et al. 2017) (Table 2).

Prediction and Analysis of MHC Restricted T Cell 
Epitopes

Epitopes that are capable of inducing T-cell immune 
response are considered to be a good vaccine candidate. In 
the recent years, all the efforts have been devoted to the 
identification of MHC restricted T cell epitopes (Singh 
et al. 2010). For the identification of these epitopes, amino 
acid sequences of all the predicted proteins were subjected 
to Net CTL 1.2 for T- cell epitope prediction keeping the 
combined epitope prediction score of 0.75 (Tables 3 and 4). 
Thus, 5 predicted antigens sequences along with two con-
trol proteins were screened for their promiscuous HLA class 
I-restricted supertype binding epitopes using the NetCTL 
algorithm. The control antigen proteins were included in 
the study to compare the epitope density/immunogenicity 
level of the predicted antigens. Cytotoxic T cells are con-
sidered to be important in the immune system’s response 
to disease as they have the capability to recognize defective 
cells by binding to peptides presented on the cell surface 
by MHC (Major Histocompatibility Complex) class I mol-
ecules (Huber et al. 2014). To validate the peptides predicted 
through the NetCTL algorithm another latest more precise 
server Net MHC pan 4.0 were applied and results were com-
pared by comparing the peptides scores. The threshold for 
the strong binders was kept at its default value 0.5 and there-
fore peptides showing below this values were considered to 
be the weak binder (Tables 5 and 6). In addition, the selected 
epitopes were further subjected to VaxiJen server in order 
to predict their antigenicity to elicit an effective immune 
response. As the epitopes displaying the top scores > = 1.1 
were selected and low score binders were eliminated as 
shown in Table 7.

We have presented all the selected 7 epitopes to MHC 
Pred and IEDB to predict the binding energies to their cor-
responding HLA alleles. Peptides binding to MHC class I 

Table 1  (continued)

S. no. Uniprot id VaxiJen Allergen FP

49 Q9PNZ0 0.3095 Non-allergen
50 Q0P9T3 0.5119 Allergen
51 Q0P9T1 0.2535 Non-allergen
52 P45492 0.6514 Non-allergen
53 Q0P9N2 0.6710 Non-allergen
54 P0C633 0.5108 Non-allergen
55 Q0P9B4 0.4059 Non-allergen
56 Q0P921 0.4279 Allergen
57 Q0P920 0.3031 Non-allergen
58 Q0P914 0.8535 Non-allergen
59 Q0P904 0.5283 Non-allergen
60 Q0P8Z8 0.3073 non-allergen
61 P80672 0.6142 Allergen
62 Q0P8Y7 0.6484 Allergen
63 Q0P8W8 0.4104 Non-allergen
64 P56964 0.7211 Non-allergen
65 P56963 0.7571 Non-allergen
66 Q0P8Q8 0.5676 Allergen
67 Q0P8Q1 0.6954 Non-allergen
68 Q0P8M8 0.6550 Non-allergen
69 Q9PMJ8 0.7886 Allergen
70 Q9PMJ7 0.5131 Non-allergen
71 Q0P8F1 0.8564 Non-allergen
72 Q0P8E9 0.6043 Non-allergen
73 Q0P893 0.4293 Non-allergen
74 Q0P893 0.4283 Non-allergen
75 Q0P807 0.4955 Allergen
76 Q0P7×9 0.4177 Allergen
77 Q0P7×5 0.7783 Non-allergen
78 Q0P7W4 0.4375 Non-allergen
79 Q0P7W1 0.3830 Non-allergen
80 Q0P7V2 0.7041 Allergen
81 Q0P7R9 0.2355 Non-allergen
82 Q0P7Q2 0.7888 Non-allergen

Proteins highlighted in bold fonts are selected above 0.8 VaxiJen 
score
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Table 2  Adhesion probability of target proteins, localization, and transmembrane helices prediction

Antigen no. Uniprot id Localization Adhesin 
(probability)

Predicted TM protein using ABTM 
pro

Number of predicted 
transmembrane regions

α helix β barrel Total

1 Q0PB90 Putative periplasmic protein 0.566 0.0657 0.7674 0.1667
Non TM

0

2 Q0PB82 Extracellular 0.537 0.0355 0.03494 0.9294
Non TM

0

3 Q0PA31 Unknown 0.547 0.1324 0.0184 0.8490
Non TM

0

4 Q0P914 Unknown 0.636 0.0848 0.01739 0.8977
Non TM

0

5 Q0P8F1 Unknown 0.647 0.1036 0.0158 0.8805
Non TM

0

CadF Q0P8D9 Outer membrane 0.481 0.0147 0.9815 0.0037
Non TM

0

FlpA P45492 Outer membrane 0.624 0.0920 0.1161 0.7917
Non TM

0

Table 3  Prediction of antigenic 
epitopes through Net CTL 
1.2 for A supertypes

Protein Id A1 A2 A3 A24 A26

Q0PB90 LSDDINLNI
(175: 2.0521)

VLLSSLVAV
(4: 1.3484)

LLSTGLFAK
(14: 1.3731)

KYPDMTFTM
(98: 1.6860)

NVKGNFKDY
(44: 1.4057)

Q0PB82 QVDKQIEDY
(22: 2.9105)

LLNDLLNAI
(119: 1.2336)

QMSNVYAYR 
(76: 1.0439)

NYAQMSNVY
(73: 1.0942)

NSNSNLSNY
(66: 1.1849)

Q0PA31 NSLNSLSQY
(5: 1.2310)

SLNSLSQYV
(6: 1.2814)

– – KIVELTAKM
(97: 1.2555)

Q0P914 – AIFSTTTKV
(12: 1.1968)

RSYAWQKMR
(68: 1.1824)

QYKKNEETL
(79: 1.1841)

AVREDFRSY
(62: 1.2367)

Q0P8F1 MINPIQQSY
(1: 1.3776)

– MINPIQQSY
(1: 1.3149)

– DTKATAAAI
(52: 0.8306)

Q0P8D9 ITPTLNYNY
(25: 2.3761)

FLCLGLASV
(5: 1.1864)

ISFGFGGKK
(165:1.4998)

GYHFDDFWL
(51: 1.3995)

SVANELEKY
(271: 2.2164)

P45492 SSDSYTLSF
(164:3.1484)

KLSSDSYTL
(162:1.2548)

KANASISIK
(105:1.4030)

KFYNAKLNF
(190:1.1063)

NLKEDLLNY
(205:1.6233)

Table 4  Prediction of antigenic epitopes through Net CTL 1.2 for B supertypes

B7 B8 B27 B39 B44 B58 B62

Q0PB90 ATSTSTITL
(167: 0.9280)

MKKVLSSL
(1: 1.3003)

KRSDFKAT
(160: 0.7754)

GKEKIGFSL
(147: 1.0677)

– KIKRSDFKF
(158: 1.2032)

KIKRSDFKF
(158: 0.9472)

Q0PB82 RFRQNEGL
(84: 0.8202)

– YRTISSYEY
(5: 1.6122)

EQSKNNTL
(112: 1.3676)

NEQSKNNL
(111: 1.1593)

MSNVYAYF
(77: 1.8605)

AQMSNVYAY 
(75: 1.4850)

Q0PA31 APAQALNQ
(61: 1.1685)

EIQAKIVEL
(93: 0.9351)

– SKNQEQNL
(25: 1.0289)

– – SQIATLNAQ
(118: 0.8641)

Q0P914 AVREDFRY
(62: 0.7932)

QYKKNEEL
(79: 0.9944)

FRSYAWQM
(67: 1.0970)

SADEFQAL
(26: 1.4030)

NEETLLNL
(83: 1.2517)

– AVREDFRSY
(62: 1.3854)

Q0P8F1 – QSYVANTAL
(7: 0.9343)

– QSYVANTL
(7: 1.5950)

– KASKIAEQI
(36: 1.0795)

MINPIQQSY
(1: 1.3496)

Q0P8D9 TPTLNYNF
(26: 1.2191)

KIKEIAKVL
(230: 1.3936)

RRVDAKFIL
(310: 1.7497)

FRLSDSLAL
(134: 2.0143)

GEKFYFYL
(97: 2.1167)

ISLEGHFGF
(210: 1.9197)

WVSTLGISF
(159: 1.3660)

P45492 LPFIMFSML
(358: 1.2713)

NIKIRSNEI
(93: 1.4201)

YKLNLDLKF
(316: 1.0957)

FLSIGIAVL
(6: 1.6274)

YENQLNQV
(30: 1.4166)

KSIQSNLVF
(124: 2.0329)

SMLMGGASF
(364: 1.4943)
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alleles (IC50) ≤ 500 nM were selected for the further analy-
sis. The solubility of all the selected epitopes was predicted 

by the ProtParam tool and molecular weight, as well as other 
properties, were mentioned in Table 8.

The result from toxicity prediction clearly shows that 
all the selected antigenic epitopes are non-toxic in nature 
(Table 9).

Modeling and Refinement of the Identified Peptides 
and MHC Alleles

The three-dimensional structural information of proteins 
plays a significant role in providing the insight information 
on their molecular functions and identification of their bind-
ing sites. Mapping of the 3-D structure of the MHC I HLA 
alleles—HLA-A*01:01, HLA-A*24:03, HLA-B*07:02, 
HLA B*39:01, and HLA-*58:01 with respect to its highest 
scoring epitopes were generated by Modeller 9.18 which 
used the template base model that was retrieved from Pro-
tein Data Bank. In order to refine the quality of structures 

Table 5  Prediction of antigenic 
epitopes through Net MHC pan 
4.0 for A supertypes

Protein id A1 A2 A3 A24 A26

Q0PB90 LSDDINLNI
(175: 0.729)

VLLSSLVAV
(4: 0.924)

LLSTGLFAK
(14: 0.7055)

KYPDMTFTM
(98: 0.9765)

NVKGNFKDY
(44: 0.44087)

Q0PB82 QVDKQIEDY
(22: 0.9558)

LLNDLLNAI
(119: 0.8682)

– NYAQMSNVY
(73: 0.4090)

NSNSNLSNY
(66: 0.4364)

Q0PA31 NSLNSLSQY
(5: 0.5518)

SLNSLSQYV
(6: 0.8445)

SLNSLSQYV
(6: 0.5884)

– NSLNSLSQY
(5: 0.3310)

Q0P914 – TLLNKLFTT
(86: 0.6868)

AIFSTTTKK
(12: 0.8881)

QYKKNEETL
(79: 0.5182)

AVREDFRSY
(62: 0.5847)

Q0P8F1 MINPIQQSY
(1: 0.8238)

– ALNTNRIDK
(14: 0.6516)

– MINPIQQSY
(1: 0.7634)

Q0P8D9 HTDNIGSRAY 
(251: 0.9953)

VLFGADNNV
(13: 0.8909)

TINPTFQEK
(222: 0.7813)

TYLSAIKGI
(86: 0.8464)

DVGEKFYFY
(95: 0.7927)

P45492 YLDNLDIKFY
(183: 0.9781)

KLSSDSYTL
(162: 0.8464)

KIRSNEIYK
(95: 0.8745)

NYLDNLDIKF
(182: 0.9496)

NLKEDLLNY
(205: 0.5140)

Table 6  Prediction of antigenic epitopes through Net MHC pan 4.0 for B supertypes

B7 B8 B27 B39 B44 B58 B62

Q0PB90 ATSTSTITL
(167:0.0914)

NGKIKRSDF
(1: 0.5402)

– AHTDVGFI
(29: 0.6864)

AEFKLDVI
(63: 0.8640)

KIKRSDFF
(158:0.4837)

LQISNVKNF
(40: 0.4848)

Q0PB82 – SMRAQSASV
(93: 0.5828)

YRTISSYEY
(5: 0.8454)

EQSKNNTL
(112: 0.3531)

NEQSKNTL
(111:0.7600)

MSNVYAF
(77: 0.8339)

AQMSNVYAY 
(75: 0.9628)

Q0PA31 APAQALAQ
(61: 0.1260)

EIQAKIVEL
(93: 0.7279)

– SKNQEQNL
(25: 0.5084)

AEIQAKIEL
(92: 0.9841)

KSIESQITL
(114:0.5260)

–

Q0P914 – KVKEKNTSA
(19: 0.4188)

FRSYAWQM
(67: 0.4681)

SADEFQAL
(26: 0.5405)

NEETLLNL
(83: 0.8009)

– AVREDFRSY
(62: 0.9394)

Q0P8F1 – QIKNGTYKI
(43: 0.1682)

– – TENDKASKI
(32: 0.4912)

KASKIAEQI
(36: 0.8176)

MINPIQQSY
(1: 0.9279)

Q0P8D9 RAKSVANL
(268: 0.5712)

KIKEIAKVL
(230: 0.4036)

NRYAPGIRL
(42: 0.9795)

FRLSDSLAL
(134: 0.9592)

GEKFYFYL
(97: 0.7079)

KTTDITRTY 
(79: 0.9595)

KTTDITRTY 
(79: 0.8374)

P45492 LPFIMFSML
(358: 0.3616)

NIKIRSNEI
(93: 0.8720)

– QQDPKISSF
(151: 0.3784)

YENQLNQV
(30: 0.9662)

KSIQSNLVF
(124: 0.9483)

SMLMGGASF
(364: 0.9092)

Table 7  Total number of epitopes selected on the basis of high Vaxi-
Jen score above 1.1

S. no. Epitopes HLA allele VaxiJen

1 LSDDINLNI HLA-A*01:01 2.11
2 KYPDMTFTM HLA-A*24:03 1.14
3 ATSTSTITL HLA-B*07:02 1.28
4 GKEKIGFSL HLA-B*39:01 1.13
5 KIKRSDFKF HLA-B*58:01 1.77
6 MSNVYAYRF HLA-B*58:01 1.90
7 APAQALNAQ HLA-B*07:02 1.29
8 ITPTLNYNY(+) HLA-A*01:06 1.45
9 KANASISIK(+) HLA-A*30:01 1.57
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generated through MODELLER, these were further sub-
jected to RAMPAGE tool. The analysis indicated that all the 
modeled structure’s residues were > 90% in their respective 
favored region, and therefore approved the quality of the 
predicted models. Furthermore, the three selected protein 
models were validated through ProSA analysis (Fig. 2). 
Now it came to light that only segments of antigenic pro-
tein or epitopes were enough to induce the desired immune 
response in comparison to the whole protein (Huber et al. 
2014).

Binding Energy Calculation of the HLA 
Allele‑Epitope Complex

Using Autodock vina, the docking of the predicted set of 
epitopes and HLA allele was performed. Different ten con-
formations were generated by Autodock vina showing the 
binding interaction and the best conformation was selected 

on the basis of binding energy score. The lower binding 
energy is stronger the bonding interaction between HLA 
allele and epitope. The protein and the ligand prepara-
tion was done by using Autodock 4.2 tool and PDB files 
were converted into the PDBQT files required for docking 
through Autodock vina. The interactions between MSN-
VYAYRF binding with HLA-B*58:01, LSDDINLNI with 
HLA-A*01:01 and ATSTSTITL with HLA-B*07:02 are 
shown in Table 10. The binding energies are − 9.2, − 7.6 and 
− 7.4 kcal/mol, respectively. Along with these epitopes, two 
best peptides from the control antigens were also docked to 
compare the docking result, ITPTLNYNY(+) shown − 7.7 
score and KANASISIK(+) shown − 7.5 score respectively. 
Three epitopes with the best energies were selected and were 
analyzed by Chimera 1.2 tool and docked complex was gen-
erated and visualized through Chimera as shown in Figs. 3, 
4 and 5.

Table 8  Prediction of vaccine 
candidate parameters through 
Prot Param tool

Epitope Molecular weight Instability index pI Hydropathicity

LSDDINLNI 1016.12 57.71 3.56 0.200
KYPDMTFTM 1133.34 24.73 5.83 − 0.567
ATSTSTITL 893.99 8.89 5.57 0.633
GKEKIGFSL 978.16 − 9.98 8.59 − 0.200
KIKRSDFKF 1168.40 49.99 10.29 − 1.156
MSNVYAYRF 1150.32 56.86 8.34 − 0.078
APAQALNAQ 882.97 51.69 5.57 − 0.122
ITPTLNYNY(+) 1098.22 8.89 5.52 − 0.478
KANASISIK (+) 931.10 − 0.54 10.00 − 0.033

Table 9  Selection of vaccine candidates using MHC Pred and IEDB tools to check their binding affinity to the maximum number of HLA alleles 
and toxicity prediction through Toxin Pred tool

Epitope No.of 
HLA 
binders

HLA-allele Toxicity score Toxicity prediction

LSDDINLNI 7 HLA-A01:01,HLA-A02:02,HLA-A02:06,HLA-A11:01,HLA-A31:01,HLA-
A68:01, HLA-A*02:50

− 1.07 Non-toxin

KYPDMTFTM 10 HLA-A*24:03, HLA-A*24:02, HLA-A*02:50, HLA-A*02:01,HLA-A*02:02, 
HLA-A*02:03,HLA-A*02:06,HLA-A*11:01,HLA-A*68:01,HLA-B*35:01

− 0.52 Non-toxin

ATSTSTITL 10 HLA-A*02:50, HLA-B*15:02,HLA-A*01:01,HLA-A*02:02,HLA-
A*02:03,HLA-A*02:06,HLA-A*03:01,HLA-A*11:01,HLA-A*68:01

− 1.19 Non-toxin

GKEKIGFSL 9 HLA-A*02:50, HLA-B*15:02, HLA-A*02:02,HLA-A*02:03,HLA-A*02:06, 
HLA-A*03:01, HLA-A*11:01,HLA-B*35:01

− 1.04 Non-toxin

KIKRSDFKF 10 HLA-A*02:50, HLA-B*15:02, HLA-A*32:01,HLA-A*02:02,HLA-
A*02:06,HLA-A*03:01,HLA-A*11:01, HLA-A*68:01,HLA-B*35:01

− 0.73 Non-toxin

MSNVYAYRF 12 HLA-A*32:01, HLA-A*02:50, HLA-B*15:02, HLA-B*15:01, HLA-
A*26:02,HLA-A*02:03, HLA-A*03:01,HLA-A*11:01,HLA-A*31:01,HLA-
A*68:01,HLA-A*68:02,HLA-B*35:01

− 1.24 Non-toxin

APAQALNAQ 7 HLA-A*02:50, HLA-B*07:02, HLA-A*02:02, HLA-A*02:03,HLA-
A*02:06,HLA-A*11:01,HLA-A*68:02

− 0.95 Non-toxin
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Worldwide Population Coverage Analysis

Population coverage analysis was performed for selected 
epitopes along with their corresponding MHC-I alleles 
predicted through IEDB tool. The three predicted epitopes 
MSNVYAYRF, LSDDINLNI and ATSTSTITL have shown 
the immune response elicitation of the 56.35%, 42.41%, 
and 53.11% total world population. Maximum population 

coverage was for observed for epitope MSNVYAYRF to 
be 70.91% (Fig. 6), epitope LSDDINLNI to be 56.39% 
(Fig. 7) and epitope ATSTSTITL to be 66.85% (Fig. 8) were 
found in the population of Northeast Asia. These epitopes 
have shown no population coverage in the region of South 
Africa. The results from population coverage analysis ana-
lyzed through IEDB tool clearly indicate the distribution of 
epitopes in the different region.

Fig. 2  ProSA analysis all selected protein chains in PDB determined 
by X-ray crystallography (light blue) or NMR spectroscopy (dark 
blue) with respect to their length. a HLA-A*01:01 allele representing 

− 7.27 Z score b HLA-B*07:02 allele representing − 7.17 Z score c 
HLA-B*58:01 allele representing − 7.92 Z score
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Conclusion

The computational approach can be the helpful method in 
predicting the best epitopes on the basis of their antigenic 
nature, non-toxigenic score, interacting with the maximum 
number of HLA alleles and with higher population cover-
age in vaccine development. Considering all the above 
parameter, three epitopes MSNVYAYRF, LSDDINLNI 
and ATSTSTITL predicted to have the most considerable 
binding with HLA-B*58:01, HLA-A*01:01 and HLA-
B*07:02 MHC class I allele and lowest binding energy val-
ues providing stability to the peptide and MHC complex. 
Therefore, these peptide candidates can be further sug-
gested for experimental laboratory analysis for the devel-
opment of an effective vaccine against diarrhea. Screen-
ings through experimental methods are time-consuming 

and laborious and therefore can be replaced by reverse 
vaccinology based immunoinformatics approach. There-
fore, the current study used in silico methods to reduce 
the time-consuming laboratory experiments and to avoid 
a hit and trial method. Thus, our findings can be helpful 
in developing vaccines against C. jejuni infection after 
experimentally tested in the laboratory.

Table 10  Binding energy calculation of the best-identified epitopes 
interacting with HLA alleles by using Autodock vina

Epitope HLA allele Binding ener-
gies (Kcal/
mol)

LSDDINLNI HLA-A*01:01 − 7.6
KYPDMTFTM HLA-A*24:03 − 6.5
ATSTSTITL HLA-B*07:02 − 7.4
GKEKIGFSL HLA-B*39:01 − 6.5
KIKRSDFKF HLA-B*58:01 − 7.4
MSNVYAYRF HLA-B*58:01 − 9.2
APAQALNAQ HLA-B*07:02 − 7.2
ITPTLNYNY(+) HLA-A*01:06 − 7.7
KANASISIK(+) HLA-A*30:01 − 7.5

Fig. 3  The docked complex of epitope MSNVYAYRF with HLA 
allele HLA-B*58:01 visualized through Chimera 1.12

Fig. 4  The docked complex of epitope LSDDINLNI with HLA allele 
HLA-A*01:01 visualized through Chimera 1.12

Fig. 5  The docked complex of epitope ATSTSTITL with HLA allele 
B*07:02 visualized through Chimera 1.12
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Fig. 6  Worldwide population 
conservancy analysis for epitope 
MSNVYAYRF through IEDB 
server
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Fig. 7  Worldwide population 
conservancy analysis for epitope 
LSDDINLNI through IEDB 
server
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Fig. 8  Worldwide population 
conservancy analysis for epitope 
ATSTSTITL through IEDB 
server
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