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Abstract
Screening of HLA class II epitope-based peptides as potential vaccine candidates is one of the most rational approach for 
vaccine development against Hendra virus (HeV) infection, for which currently there is no successful vaccine in practice. 
In this study, screening of epitopes from HeV proteins viz matrix, glycoprotein, nucleocapsid, fusion, C protein, V protein, 
W protein and polymerase, followed by highest binding affinity & molecular dynamic simulation of selected T-cell epitopes 
with their corresponding HLA class II alleles has been done. The server ProPred facilitates the binding prediction of HLA 
class II allele specific epitopes from the antigenic protein sequences of HeV. PEPstrMOD server was used for PDB structure 
modeling of the screened epitopes and MODELLER was used for HLA alleles modeling. We docked the selected T-cell 
epitopes with their corresponding HLA allele structures using the AutoDock 4.2 tool. Further the selected docked complex 
structures were optimized by NAnoscale Molecular Dynamics program (NAMD) at 5 ps, with the CHARMM-22 force 
field parameter incorporated in Visual Molecular Dynamics (VMD 1.9.2) and complex structure stability was evaluated by 
calculating RMSD values. Epitopes IRIFVPATN (Nucleocapsid), MRNLLSQSL (Nucleocapsid), VRRAGKYYS (Matrix) 
and VRLKCLLCG (Fusion) proteins have shown considerable binding with DRB1*0806, DRB1*1304, DRB1*0701 and 
DRB1*0301 HLA class II allele respectively. Toxicity, antigenicity and population coverage of epitopes IRIFVPATN, 
MRNLLSQSL, VRRAGKYYS and VRLKCLLCG were analyzed by Toxin Pred, Vexijen and IEDB tool, respectively. The 
potential T-cell epitopes can be utilized in designing comprehensive epitope-based vaccines and diagnostic kits against 
Hendra virus after further in-vivo studies.
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Introduction

Hendra virus (HeV) initially emerged in an outbreak of acute 
respiratory disease amongst horses and humans in Australia, 
1994 (Murray et al. 1995). Patients of these cases were found 
to have infected with close contact to diseased horses. Ini-
tial cases of Hendra infection clinically diagnosed as severe 
respiratory infection (Selvey et al. 1995; Hanna et al. 2006; 
O’Sullivan et al. 1997; Playford et al. 2010). There is no 

specific treatment for human cases of Hendra virus. Flying 
foxes (pteopid bats) considered as the natural reservoir of 
HeV. Transmission of viral infection to humans occurred 
likely due to exposure of mucous membrane or non-intact 
skin to nasal secretions, urine and blood of infected horses 
(Mire et al. 2015). HeV was primarily isolated from infected 
uterine fluid and fetal tissue of bat species Pteropus poli-
cephalus and Pteropus alecto respectively (Halpin et al. 
2000). Equivac Hev, a subunit vaccine from glycoprotein of 
HeV is the only approved licensed vaccine from Australian 
government which is used for prevention of Hev in the horse 
population.

Peptide vaccines are considered an alternative to clas-
sical vaccines that are trying to address issues of possible 
vaccine side effects related to vaccination with a heteroge-
neous multicomponent preparation. The peptide-based vac-
cines include chemical approach to synthesize the selected 
epitopes that are specific and trigger immune responses. 
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Immunoinformatic focuses mainly on prediction of poten-
tial epitopes which brings down the laboratory analysis cost 
& time of potential vaccine candidate. Using immunoin-
formatic tools, immunologist can screen and analyze short 
sequences from the full-length foreign proteins which can 
act as an immunogenic epitopes & facilitating to be a vac-
cine candidate (Li et al. 2014; Kamthania and Sharma 2016). 
Important implication of this study is to screen promiscuous 
T-cell epitopes from HeV proteins viz matrix, glycoprotein, 
nucleocapsid, fusion, C protein, V protein, W protein, and 
polymerase. These predicted promiscuous T-cell epitopes 
may be the promising targets for epitope-based vaccine 
design for HeV.

Materials and Methods

Retrieval of Amino Acid Sequence

The amino acid sequences of matrix, glycoprotein, nucle-
ocapsid, fusion, C protein, V protein, W protein and poly-
merase, were retrieved from NCBI protein sequence data-
base (http://www.ncbi.nlm.nih.gov/prote​in). The total of 22 
nucleocapsid, 20 matrix, 22 fusion, 22 glycoprotein, 14 W 
protein, 17 V protein, 15 C protein and 15 polymerase pro-
tein sequences from different HeV strains, available at NCBI 
database were retrieved & downloaded in FASTA format.

Antigenicity Prediction

VaxiJen server (http://www.ddg-pharm​fac.net/vaxij​en/VaxiJ​
en/VaxiJ​en.html) (Doytchinova and Flower 2007) was used 
with default parameters to predict the antigenicity of HeV 
candidate proteins. The threshold value of vaxiJen was set 
to 0.4 (default for viruses). The viral proteins having Vaxi-
jen score above 0.4 values were considered to be antigenic 
in nature. Antigenic proteins were chosen for further study.

Promiscuous T‑Cell Epitope Prediction

The prediction of promiscuous T-cell epitope binder to 
HLA class-II alleles was performed by ProPred (Singh and 
Raghava 2001). ProPred is an on-line web tool; it utilizes 
matrix-based prediction of HLA (Class II alleles) binding 
sites in an antigenic protein sequence.

3D Structure Prediction of Promiscuous T‑cell 
Epitopes

The PEPstrMOD (Singh et al. 2015) method performed to 
find out the tertiary structure of selected small epitope with 

Table 1   Template PDB ID for modeling of selected HLA class II 
alleles

S. no. HLA class II allele PDB ID 
of tem-
plate

1 DRB1*0817 1A6A
2 DRB1*1101 1YMM
3 DRB1*0405 2SEB
4 DRB1*0410 2SEB
5 DRB1*1104 2WBJ
6 DRB1*0301 1A6A
7 DRB1*1301 2WBJ
8 DRB1*0701 1AQD
9 DRB1*1102 2WBJ
10 DRB1*1128 1A6A
11 DRB1*0402 4MDI
12 DRB1*1304 1YMM
13 DRB1*0804 2SEB
14 DRB1*0806 2WBJ

Table 2   IC50 values of alleles with their corresponding predicted potential T-cell epitopes IRIFVPATN, MRNLLSQSL, VRRAGKYYS and 
VRLKCLLCG with an affinity of < 500 nM

T-cell epitope Total no. of 
HLA-peptide 
binders

MHC-I alleles with IC50 values (bracketed) MHC-II alleles with IC50 values (bracketed)

IRIFVPATN 6 HLA-A*02:03(16.00), HLA-A*02:06(439.54), HLA-
A*03:01(334.20),HLA-A*11:01(34.04), HLA-
A*68:01(59.16), HLA-A*68:02(192.75)

–

MRNLLSQSL 9 HLA-A*02:03(11.72), HLA-A*02:06(510.50), 
HLA-A*03:01(340.41), HLA-A*11:01(31.84), 
HLA-A*31:01(411.15), HLA-A*68:01(180.72), 
HLA-B*35:01(408.32)

HLA-DRB*01:01(35.97), HLA-DRB*07:01(428.55)

VRRAGKYYS 7 HLA-A*02:02(179.47), HLA-A*02:06(193.20), 
HLA-A*11:01(75.68), HLA-A*68:01(457.09)

HLA-DRB*01:01(381.94), HLA-
DRB*04:01(210.38), HLA-DRB*07:01(297.17)

VRLKCLLCG 6 HLA-A*02:01(112.46), HLA-A*02:03(151.01), 
HLA-A*02:06(57.94), HLA-A*11:01(123.88), 
HLA-A*68:01(382.82)

HLA-DRB*04:01(51.29)

http://www.ncbi.nlm.nih.gov/protein
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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sequence length of nine residues. The PEPstrMOD tool pre-
diction strategy utilizes the secondary structure data antici-
pated by PSIPRED (Kaur and Raghava 2004) and β-turns 
data anticipated by BetaTurns (Jones et al. 1999).

Modeling of HLA Class II Alleles

The sequences of alleles viz DRB1*1304, DRB1*0804, 
DRB1*0405, DRB1*0806, DRB1*0402, DRB1*0701, 
DRB1*1301, DRB1*1104, DRB1*1102. DRB1*0410, 
DRB1*1128, DRB1*1101, DRB1*0301, & DRB1*0817 
were downloaded from IMGT/HLA database (http://www.
ebi.ac.uk/ipd/imgt/hla/allel​e.html) (Robinson et al. 2012). 
BLASTP program (Altschul et al. 1990) was used to find 
the templates for these allele sequences and respective PDB 
IDs (Table 1) retrieved from Protein Data Bank (http://www.
rcsb.org/pdb). MODELLER 9.17 (Šali et al. 1995) was used 
for homology modeling of HLA alleles. Five models were 
generated by modeller software and the best model chosen 
based on their lowest predicted discrete optimized protein 
energy (DOPE) score. The modeled alleles overall quality 
was determined using Ramachandran plot analysis utilizing 
PROCHECK (Laskowski et al. 1993), which detect the geo-
metrical orientation of each amino acid residues with respect 
to stereochemical parameters.

Molecular Docking

AutoDock 4.2 (Morris et al. 1998) was utilized to form the 
docking complex of predicted T-cell epitopes and HLA 

alleles. In case of rigid protein & flexible ligand during auto-
dock, the Lamarckian Genetic Algorithm (LGA) was used. 
The best conformation of docked complex was chosen on the 
basis of minimum binding energy and best fitting of epitope-
HLA allele complex with highest number of H-bonds forma-
tion. Python Molecular Viewer (Sanner et al. 1999) used to 
visualize the docked complex of HLA allele with predicted 
T cell epitope.

Docked Complex Stability Validation by MD 
Simulation

NAMD used for MD simulation of selected docked complex 
(Phillips et al. 2005). VMD analyses & view the results of 
MD simulation & also interface with NAMD (Humphrey 
et al. 1996). Protein structure file (psf) was made using the 
topology files and initial pdb files of the HLA II allele- 
epitope docked complex utilizing psfgen package of VMD. 
NAMD created the trajectory DCD file. The result of simu-
lation was analyzed by calculation the Root mean square 
deviation (RMSD) of the docked complex. The rmsd.dat file 
contains the value of RMSD which was further analyzed by 
Microsoft office excel.

Toxicity Prediction of the Selected T‑Cell Epitopes

ToxinPred (http://crdd.osdd.net/ragha​va/toxin​pred/) 
(Gupta et  al. 2013) was utilized to calculate toxicity 
of predicted T- cell epitopes. ToxinPred is an in-silico 
method to predict toxic/non-toxic peptides. ToxinPred 
was run with default parameters and only non-toxic 
T-cell epitopes were selected for further study.

HLA‑Distribution Analysis

MHCPred (http://www.ddg-pharm​fac.net/mhcpr​ed/MHCPr​
ed/) was utilized to select the high affinity HLA class II 
binder for selected epitopes with their IC50 (half maximal 
inhibitory concentration) value. The alleles having cut-off 
value of IC50 between 0.01 and 500 nM were selected.

Table 3   Conservancy analysis 
using Conservation across 
antigen tool of IEDB revealed 
that all the four chosen epitopes 
are 100% conserved across 
all the HeV strain’s respective 
protein sequences retrieved 
from NCBI database

S. no. Protein name Amino acid sequence 
of selected epitope

Selected 
epitope 
length

Position Percent of protein sequence 
match at identity ≥ 100%

1 Nucleocapsid IRIFVPATN 9 35–43 100.00% (22/22)
2 Nucleocapsid MRNLLSQSL 9 217–225 100.00% (22/22)
3 Matrix VRRAGKYYS 9 243–251 100.00% (20/20)
4 Fusion VRLKCLLCG 9 6–14 100.00% (22/22)

Table 4   VaxiJen Results of antigenicity

Protein Overall antigen prediction

Nucleocapsid 0.5385 (Probable ANTIGEN)
Matrix 0.4422 (Probable ANTIGEN)
Fusion 0.5529 (Probable ANTIGEN)
Glycoprotein 0.5380 (Probable ANTIGEN)
W protein 0.4747 (Probable ANTIGEN)
nonstructural protein V 0.4978 (Probable ANTIGEN)
nonstructural protein C 0.3540 (Probable NON-ANTIGEN)
Polymerase 0.4843 (Probable ANTIGEN)

http://www.ebi.ac.uk/ipd/imgt/hla/allele.html
http://www.ebi.ac.uk/ipd/imgt/hla/allele.html
http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
http://crdd.osdd.net/raghava/toxinpred/
http://www.ddg-pharmfac.net/mhcpred/MHCPred/
http://www.ddg-pharmfac.net/mhcpred/MHCPred/
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Population Coverage Analysis

IEDB (Immune Epitope Database and Analysis Resource) 
population coverage tool (http://tools​.immun​eepit​ope.org/
tools​/popul​ation​/iedb_input​) (Bui et al. 2006) was used to 
study the worldwide geographical population coverage by the 
selected epitopes and HLA Class II alleles pair as resulted 
from MHCPred (Table 2). Default parameters were set while 
running the tool. IEDB conservancy tool consist data set fre-
quencies of 3245 alleles for 115 countries, 21 ethnicities and 
16 geographical areas. The prediction was taken utilizing the 
most resent information to set from Allele Frequency Net 
Database (Gonzalez-Galarza et al. 2010) at IEDB.

Conservancy Analysis of Selected Epitopes

To find out the degree of conservation, all the selected 
epitopes were aligned against all respective source protein 
sequences retrieved from NCBI database using EBI-clustal 
Omega program (Sievers et al. 2011). The Multiple sequence 
alignment (MSA) was visualized using Jalview (Waterhouse 
et al. 2009). Conservancy analysis was again performed for 
the selected T-cell epitopes by conservancy tool of IEDB 
(Table 3) (Bui et al. 2007).

Table 5   ProPred predicted T-cell epitope for HLA Class II with binding scores

Protein name Accession no. (NCBI) Amino acid 
length

Start position Epitopes HLA class II alleles Propred (% of 
highest score)

Nucleocapsid NP_047106 532 128 MRILKTARE DRB1*0410 84.04
DRB1*0806 75.58
DRB1*0405 73.4
DRB1*1304 68.89

34 IRIFVPATN DRB1*1304 62.22
DRB1*0806 61.63

476 LNLRSRLAA DRB1*0817 55.45
216 MRNLLSQSL DRB1*0701 51.72

Matrix NP_047110 352 242 VRRAGKYYS DRB1*1301 57.95
DRB1*0301 55.26

261 MKLQFSLGS DRB1*0421 52.22
277 IKINGVISK DRB1*1104 51.81
195 FRRNNAIAF DRB1*0701 54.31

Fusion NP_047111 546 493 MIILYVLSI DRB1*1104 73.49
315 VLIRNTLIS DRB1*0402 73.96

5 VRLKCLLCG DRB1*0806 66.28
314 FVLIRNTLI DRB1*0701 68.1

Glycoprotein NP_047112 604 316 IRLAVRPKS DRB1*0301 63.16
152 LKIHECNIS DRB1*1301 60.23
474 LRVQWRNNS DRB1*1102 60.71

W protein YP_007188593 447 355 LRLREPPQS DRB1*0806 63.95
V protein NP_047108 457 355 LRLREPPQS DRB1*0804 68.75

DRB1*0806 63.95
304 VRRKDSLMQ DRB1*0806 70.93

DRB1*0817 68.32
DRB1*0804 66.25

Polymerase NP_047113 2244 1169 FLILNRLLS DRB1*1305 82.76
DRB1*1128 82.76
DRB1*1101 81.93

468 MYMKDKALS DRB1*0804 82.5
DRB1*0806 76.74

http://tools.immuneepitope.org/tools/population/iedb_input
http://tools.immuneepitope.org/tools/population/iedb_input
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Results and Discussion

Antigenicity Prediction

Amino acid sequences of matrix, glycoprotein, nucleocapsid, 
fusion, C protein, V protein, W protein and polymerase pro-
teins were screened by VaxiJen. All the proteins were found 
antigenic except one nonstructural protein C which is nonan-
tigenic at threshold value 0.4 (default threshold for viral pro-
teins) (Table 4). Fusion protein had been predicted as highest 
antigenic with score of 0.5529 among all candidate proteins.

Promiscuous T‑cell Epitope selection and analysis

Antigenic HeV proteins were subjected to Propred for 
selection of HLA Class II specific T- cell epitopes binders. 
Epitopes showing highest score with the maximum number 
of HLA Class II alleles binders were selected at a threshold 
value of 4% (Table 5).

Toxicity Prediction of the Peptide Epitopes

ToxinPred (Gupta et al. 2013) used for toxicity prediction 
of selected T- cell epitopes. ToxinPred tool is a unique 

in-silico method based on Support Vector Machine (SVM) 
in predicting toxicity of peptides along with important 
physico-chemical properties viz hydropathicity, hydro-
philicity, hydrophobicity, charge and molecular weight. 
The selected epitopes were subjected to ToxinPred and 
only non-toxic T-cell epitopes were selected for further 
studies (Table 6).

Structure Modeling of T‑cell Epitopes and Alleles

3D structures of selected epitopes were predicted by 
PEPstrMOD. Modeller 9.17 was employed to generate 
homology model of alleles: DRB1*1304, DRB1*0804, 
DRB1*0405, DRB1*0806, DRB1*0402, DRB1*0701, 
DRB1*1301, DRB1*1104, DRB1*1102. DRB1*0410, 
DRB1*1128, DRB1*1101, DRB1*0301, & DRB1*0817; 
template used (PDB ID): 1YMM, 2SEB, 2SEB, 2WBJ, 
4MDI, 1AQD, 2WBJ, 2WBJ, 2WBJ, 2SEB, 1A6A, 
1YMM, 1A6A & 1A6A respectively (Table  1). PRO-
CHECK was utilized to analyze selected models quality. 
Ramachandran result of HLA alleles model (DRB1*0701, 
DRB1*0301,DRB1*1304 and DRB1*0806 alleles) form-
ing best HLA allele-epitope complex, based on docking 
study (Table 7), is shown in Fig. 1 a–d.

Table 6   Toxicity prediction of the peptides by ToxinPred

Peptide sequence SVM Score Prediction Hydroph-obicity Hydropathicity Hydrophilicity Charge Mol. wt

MRILKTARE − 1.61 Non-toxin − 0.41 − 0.57 0.69 2.00 1117.50
IRIFVPATN − 1.23 Non-toxin 0.02 0.83 − 0.59 1.00 1030.36
LNLRSRLAA − 1.09 Non-toxin − 0.26 0.19 0.01 2.00 1013.33
MRNLLSQSL − 1.32 Non-toxin − 0.20 0.02 − 0.30 1.00 1061.40
VRRAGKYYS − 0.95 Non-toxin − 0.43 − 1.19 0.30 3.00 1099.37
MKLQFSLGS − 0.98 Non-toxin − 0.02 0.32 − 0.40 1.00 1010.35
IKINGVISK − 1.02 Non-toxin − 0.02 0.58 − 0.04 2.00 0971.35
FRRNNAIAF − 0.97 Non-toxin − 0.26 − 0.26 − 0.16 2.00 1108.38
MIILYVLSI − 0.99 Non-toxin 0.42 2.79 − 1.53 0.00 1064.54
VLIRNTLIS − 0.77 Non-toxin 0.02 1.26 − 0.62 1.00 1028.40
VRLKCLLCG − 0.69 Non-toxin − 0.05 1.31 − 0.32 2.00 1004.45
FVLIRNTLI − 0.74 Non-toxin 0.12 1.66 − 0.93 1.00 1088.50
IRLAVRPKS − 1.22 Non-toxin − 0.32 − 0.11 0.41 3.00 1039.41
LKIHECNIS − 0.64 Non-toxin − 0.11 0.04 − 0.04 0.50 1056.38
LRVQWRNNS − 0.61 Non-toxin − 0.48 − 1.47 0.02 2.00 1172.44
LRLREPPQS − 0.72 Non-toxin − 0.46 − 1.38 0.66 1.00 1095.39
LRLREPPQS − 0.72 Non-toxin − 0.46 − 1.38 0.66 1.00 1095.39
VRRKDSLMQ − 1.26 Non-toxin − 0.55 − 1.20 0.88 2.00 1132.47
LRMMEVLKE − 1.47 Non-toxin − 0.22 0.02 0.48 0.00 1148.58
LQFLKKLGK − 0.70 Non-toxin − 0.18 − 0.16 0.14 3.00 1074.52
FLILNRLLS − 1.28 Non-toxin 0.09 1.52 − 0.89 1.00 1088.50
MYMKDKALS − 0.96 Non-toxin − 0.21 − 0.44 0.23 1.00 1086.45
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Binding Energy Determination of Epitope & HLA 
Class II Allele

The interaction studies of selected T-cell epitopes with 
their respective highest ProPred scorer HLA class II 
allele binders were predicted by utilizing Autodock 4.2 
(Table 7). Amongst the docked complexes, nucleocapsid 
protein peptide IRIFVPATN were dock with two alleles 
DRB1*0806 & DRB1*1304 and nucleocapsid protein pep-
tide MRNLLSQSL with DRB1*0701 allele formed stable 
complexes having binding energy value of − 1.88 kcal/
mol, − 2.56 kcal/mol and − 2.76 kcal/mol respectively. 
Matrix protein peptide VRRAGKYYS was docked with 
DRB1*0301 HLA allele, it showed binding energy value 
of − 1.01 kcal/mol. Fusion protein peptide VRLKCLLCG 

was docked with DRB1*0806 HLA allele and has shown 
binding energy value of − 1.51 kcal/mol Figs. 2, 3, 4, 5 
and 6 respectively. The docked complexes were visualized 
by Python molecular viewer.

Docked Complex Stability Validation & RMSD Plot

The lowest binding energy docked complexes of T-cell 
epitope & HLA Class II allele were subjected to MD simu-
lation by NAMD. The RMSD plot of docked complexes 
IRIFVPATN-DRB1*0806, IRIFVPATN-DRB1*1304, 
MRNLLSQSL-DRB1*0701, VRRAGKYYS-DRB1*0301 
and VRLKCLLCG-DRB1*0806 showed the highest peak 
at 0.95 Å, 0.98 Å, 0.99 Å, 1.02 Å and 1.01 Å RMSD (Fig. 7 
a–c, 8, 9) respectively.

Table 7   Binding energy determination by autodock

Protein name Epitope HLA Class II allele Binding energy Intermo-
lecular 
energy

Internal energy Torsional energy Vdw-
lbDesolv 
energy

Electro-
static 
energy

Nucleocapsid MRILKTARE DRB1_0410 4.01 − 7.93 − 8.58 11.93 − 6.28 − 1.65
DRB1_0806 2.66 − 9.28 − 7.49 11.93 − 6.95 − 2.33
DRB1_0405 2.28 − 9.66 − 7.2 11.93 − 9.5 − 0.16
DRB1_1304 3.91 − 8.02 − 7.12 11.93 − 7.44 − 0.58

IRIFVPATN DRB1_1304 − 2.56 − 11.51 − 7.83 8.95 − 11.25 − 0.26
DRB1_0806 − 1.88 − 10.82 − 6.55 8.95 − 10.92 − 0.1

LNLRSRLAA DRB1_0817 0.13 − 10.01 − 6.01 10.14 − 9.43 − 0.59
MRNLLSQSL DRB1_0701 − 2.76 − 13.8 − 6.82 11.04 − 13.86 − 0.06

Matrix VRRAGKYYS DRB1_1301 1.12 − 1.32 − 7.87 10.44 − 9.030 − 0.29
DRB1_0301 − 1.01 − 11.45 − 7.88 10.44 − 11.38 − 0.07

MKLQFSLGS DRB1_0421 − 0.15 − 10.59 − 6.86 10.44 − 10.02 − 0.57
IKINGVISK DRB1_1104 − 0.62 − 11.06 − 5.7 10.44 − 9.79 − 1.28
FRRNNAIAF DRB1_0701 − 0.65 − 11.09 − 9.0 10.44 − 11.07 − 0.01

Fusion MIILYVLSI DRB1_1104 1.06 − 9.08 − 10.05 10.14 − 8.78 − 0.3
VLIRNTLIS DRB1_0402 − 0.24 − 10.38 − 8.75 10.14 − 10.31 − 0.07
VRLKCLLCG DRB1_0806 − 1.51 − 11.66 − 8.25 10.14 − 11.39 − 0.26
FVLIRNTLI DRB1_0701 − 0.73 − 11.17 − 7.76 10.44 − 11.31 − 0.14

Glycoprotein IRLAVRPKS DRB1_0301 − 0.22 − 10.37 − 6.58 10.14 − 10.05 − 0.32
LKIHECNIS DRB1_1301 3.76 − 6.98 − 10.91 10.74 − 6.68 − 0.3
LRVQWRNNS DRB1_1102 1.53 − 10.1 − 8.87 11.63 − 9.72 − 0.38

W protein LRLREPPQS DRB1_0806 − 0.38 10.53 − 7.13 10.14 − 10.64 − 0.11
V protein LRLREPPQS DRB1_0804 − 0.76 − 10.9 − 9.86 10.14 − 11.36 − 0.46

DRB1_0806 0.94 − 9.2 − 7.63 10.14 − 9.33 − 0.13
VRRKDSLMQ DRB1_0806 2.87 − 9.36 − 8.99 12.23 − 8.98 − 0.38

DRB1_0817 4.28 − 7.98 − 8.49 12.23 − 8.04 − 0.06
DRB1_0804 1.98 − 10.25 − 7.44 12.23 − 10.35 − 0.1

Polymerase FLILNRLLS DRB1_1305 0.29 − 10.45 − 6.52 10.74 − 10.02 − 0.43
DRB1_1128 − 0.55 − 11.29 − 7.46 10.74 − 4.62 − 0.16
DRB1_1101 0.9 − 9.84 − 8.61 10.74 − 9.77 − 0.07

MYMKDKALS DRB1_0804 2.38 − 8.96 − 7.89 11.34 − 6.71 − 2.25
DRB1_0806 2.13 − 9.2 − 9.37 11.34 − 7.03 − 2.18
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Fig. 1   Ramachandran plot of protein model: a DRB1*0701, b DRB1*0301, c DRB1*1304, d DRB1*0806

Fig. 2   Docked complex of Nucleocapsid protein peptide IRIFVPATN 
with DRB1*0806 allele

Fig. 3   Docked complex of Nucleocapsid protein peptide IRIFVPATN 
with DRB1*1304 allele
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Population Coverage Estimation of Predicted T‑Cell 
Epitopes

MHCPred (Guan et al. 2003) was employed to predict the 
potential HLA allele binders for selected T cell epitopes 
IRIFVPATN, MRNLLSQSL, VRRAGKYYS and VRLK-
CLLCG, along with their interacting affinity with IC50 
value to be < = 500 nM (Table 2). IEDB tool predicted the 
four epitopes IRIFVPATN, MRNLLSQSL, VRRAGKYYS 
and VRLKCLLCG have population coverage of 40.24%, 
56.78%, 36.82% and 57.08% respectively for total world 
population (Table 8). Highest coverage of 59.74%, 53.24% 
and 66.78% for epitope IRIFVPATN, VRRAGKYYS and 
VRLKCLLCG respectively were found for population 
of the Northeast Asia. Epitope MRNLLSQSL has high-
est coverage of 70.28% in the population of South Asia. 
The results of high population coverage suggested that the 
putative T-cell epitopes cover vast majority of geographic 
population.

Fig. 4   Docked complex of 
Nucleocapsid protein peptide 
MRNLLSQSL and DRB1*0701 
allele Formation of one H-bond 
with SER123 (OG) and peptide 
MET1(N)

Fig. 5   Docked complex 
of Matrix protein pep-
tide VRRAGKYYS and 
DRB1*0301 allele. Formation 
of one H-bond with PHE13 (O) 
and peptide SER9 (N)

Fig. 6   Docked complex of Fusion protein peptide VRLKCLLCG 
with DRB1*0806 allele
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Epitope Conservation and Variability Analysis

The degree of conservation of epitope in protein sequences 
provides an important insight about its conservancy through 
evolution and hence its applicability as an epitope-based 

vaccine candidate against different strains of the infecting 
organism. MSA result of best predicted epitopes IRIFV-
PATN and MRNLLSQSL from nucleocapsid, VRRAG-
KYYS from Matrix and VRLKCLLCG from Fusion proteins 
showed that epitopes were well conserved in their entire 
source protein sequences from different strains of HeV avail-
able at NCBI databank. The MSA results were visualized 
using Jalview (Fig. 10 a–d). Results were further verified 
by IEDB epitope conservation analysis tool. It was found 
that predicted epitopes amino acid sequence were 100% con-
served amongst all the NCBI protein sequence of the source 
protein of HeV (Table 3).

Conclusion

This study identified the potential nanomer T-cell epitopes 
as a vaccine candidate for Hendra virus. T-cell epitopes 
IRIFVPATN (nucleocapsid), MRNLLSQSL (nucle-
ocapsid), VRRAGKYYS (matrix) and VRLKCLLCG 
(fusion) were found to have considerable binding with 
DRB1*0806, DRB1*1304, DRB1*0701, DRB1*0301 
and DRB1*0806 HLA class II alleles respectively. The 
chosen epitopes have shown 100% conservancy throughout 
all the respective protein sequences from different strains 
of HeV. These epitopes have shown to have high binding 
affinity with HLA class II alleles, stable complex forma-
tion tendency with HLA class II allele as confirmed by 
MD simulation results and significant worldwide popula-
tion coverage. All these results make these epitopes to be 
a potential candidate for epitope-based vaccine develop-
ment against HeV infection. Hence reported epitopes may 
undergo further in-vivo trials to develop vaccine against 
HeV infection.

Fig. 7   Graph displaying MD simulation of Nucleocapsid peptide a 
IRIFVPATN with DRB1*0806 complex with RMSD highest peak at 
0.95 Å. b IRIFVPATN with DRB1*1304 allele complex with RMSD 

highest peak at 0.98 Å. c MRNLLSQSL and DRB1*0701 allele com-
plex with RMSD highest peak at 0.99 Å

Fig. 8   Graph displaying MD simulation of Matrix peptide VRRAG-
KYYS and DRB1*0301 allele complex with RMSD highest peak at 
1.02 Å

Fig. 9   Graph displaying MD simulation of Fusion peptide VRLK-
CLLCG with DRB1*0806 allele complex with RMSD highest peak 
at 1.01 Å
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Table 8   Estimated Population 
coverage of predicted T 
cell epitopes IRIFVPATN, 
MRNLLSQSL, VRRAGKYYS 
and VRLKCLLCG based on 
MHC-I and MHC-II data using 
IEDB

Area/population Epitope (%) for class I and II coverage

IRIFVPATN MRNLLSQSL VRRAGKYYS VRLKCLLCG

World 40.24% 56.78% 36.82% 57.08%
East Asia 32.96% 55.25% 34.61% 49.84%
Northeast Asia 59.74% 66.58% 53.24% 66.78%
South Asia 50.55% 70.28% 49.78% 48.22%
Southeast Asia 50.61% 56.60% 46.23% 60.26%
Southwest Asia 29.87% 44.08% 29.28% 43.16%
Europe 41.31% 61.57% 35.32% 59.62%
East Africa 26.00% 25.20% 23.80% 24.39%
West Africa 45.81% 42.46% 28.78% 31.79%
Central Africa 25.19% 36.65% 26.61% 18.14%
North Africa 29.96% 48.82% 34.06% 36.68%
South Africa 39.42% 33.74% 42.58% 21.14%
West Indies 35.01% 49.11% 19.93% 42.58%
North America 35.23% 56.04% 37.08% 57.29%
Central America 0.77% 11.22% 3.65% 0.00%
South America 29.76% 46.12% 27.22% 37.50%
Oceania 40.20% 44.67% 37.35% 47.43%
Average (standard deviation) 36.04% (12.70%) 47.36% (14.46%) 33.31% (11.48%) 41.29% (17.27%)

Fig. 10   Degree of Conservancy using MSA showed that Epitopes 
a IRIFVPATN (Nucleocapsid) b MRNLLSQSL (Nucleocapsid) c 
VRRAGKYYS (Matrix) d VRLKCLLCG (Fusion) were 100% con-

served in all the protein sequences obtain from different isolated HeV 
strains worldwide. Yellow colored rectangle shows conserved nano-
mer epitopes
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