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Abstract
Arguably, the proposition thatMark Twain is Samuel Clemens and the proposition that
water is H2O are both a posteriori. Nevertheless, they both seem to be necessary. Ever
since Davies and Humberstone (Philos Stud 38(1):1–31, 1980), it has been known
that two-dimensional semantics can account for this fact. But two-dimensionalism
isn’t the only theory on the market that purports to do so. In this paper, I will look at
two alternatives, one by Scott Soames and one byKathrinGlüer-Pagin and Peter Pagin,
and argue that both of them fail. Regarding the former, I argue that the conceptually
possible but metaphysically impossible worlds one is required to postulate are hard
to conceive of on closer inspection. As for the latter, the proposal doesn’t work for
certain modal sentences, and I show that it cannot be easily amended.

Keywords A priori · A posteriori · Necessity · Proper names · Natural kind
predicates · Two-dimensional semantics · Switcher semantics

1 Introduction

Consider the sentences

(1) Mark Twain is Samuel Clemens.

and

(2) If something is a quantity of water then it’s a quantity of H2O-molecules.

Intuitively, both express a posteriori truths. Nevertheless, the following sentences are
generally taken to be true:

(3) Necessarily, Mark Twain is Samuel Clemens.

and
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(4) Necessarily, if something is a quantity of water then it’s a quantity of H2O-
molecules.

Ever since Davies and Humberstone (1980), it has been known that two-dimensional
semantics can account for this fact. The trick is to interpret every name a in a model
M = 〈W , D, I 〉 (where W is a set of possible worlds and D is a domain of objects)
as a function I (a) : W → D rather than as an object I (a) ∈ D, and each n-
place predicate P as a function I (P) : W × W → P(Dn) rather than as a function
I (P) : W → P(Dn), and to evaluate each expression relative to a pair of worlds
rather than just a single world, in the following way:

(5) a. �a�M,u,w = I (a)(u).
b. �P�M,u,w = I (P)(u)(w).
c. �Pa1. . .an�M,u,w = 1 iff 〈�a1�M,u,w, . . . , �an�M,u,w〉 ∈ �P�M,u,w.
d. �¬ϕ�M,u,w = 1 iff �ϕ�M,u,w = 0.
e. �ϕ ∧ ψ�M,u,w = 1 iff �ϕ�M,u,w = 1 and �ψ�M,u,w = 1.
f. ��ϕ�M,u,w = 1 iff, for all w′ ∈ W , �ϕ�M,u,w′ = 1.

By saying that a sentence ϕ is true simpliciter in a model M and a world u ∈ W
iff �ϕ�M,u,u = 1, and that ϕ is a priori true in a model iff it’s true simpliciter in all
worlds in the model, one can interpret the names and predicates in (1) and (2) to yield
the desired result.

But two-dimensionalism isn’t the only theory on themarket that purports to account
for the distinction between necessary and a priori truths. In this paper, I will look at
two alternatives, one by Scott Soames (which I will call Metaphysically impossible
worlds) and one by Kathrin Glüer-Pagin and Peter Pagin (which I will call Switcher
semantics), and argue that both of them fail.

2 Metaphysically impossible worlds

On the face of it, the phenomenon of a posteriori necessities seems to suggest that
there are epistemic or conceptual possibilities that aren’t metaphysically possible. Or,
in possible worlds parlance, that there are conceptually possible worlds that aren’t
metaphysically possible. In a standard possible worlds framework, the idea would
then be to treat metaphysical possibility as some kind of restricted possibility, anal-
ogous to natural or nomic possibility (possibility according to the laws of nature).
Metaphysical possibility would then be something like possibility according to the
laws of metaphysics. The most liberal form of possibility is conceptual possibility.
Indeed, this is what Lycan (2009, p. 78) takes to be “the standard picture of logical
space”:

Consider the standard picture of logical space, featuring ever-larger concentric
circles. We can start with the usual three grades of possibility, nomic, metaphys-
ical, and conceptual; the nomically possible worlds are a proper subset of the
metaphysically possible, which in turn are a proper subset of the conceptually
possible.
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First of all, the standard picture of logical space has a general problem. Say that
M = 〈W , D, R, I 〉 is a model of a language with a metaphysical necessity operator
�, where W is a set of conceptually possible worlds, D is a domain of objects,
R ⊆ W × W is an accessibility relation and I is an interpretation function. On the
standard picture, there is a proper subset U ⊂ W consisting of the metaphysically
possible worlds such that

(6) ��ϕ�M,w = 1 iff, for all w′ ∈ U , �ϕ�M,w′ = 1.

Assume, moreover, that

(7) ϕ is a priori true inM iff ϕ is true in all conceptually possible worlds in M.

Arguably,

(8) It’s a priori true that: if Mark Twain is HermanMelville, then necessarily, Mark
Twain is Herman Melville.

but

(9) It’s not a priori true that: Mark Twain isn’t Herman Melville.

Granted as much, it follows that

(10) Necessarily, Mark Twain is Herman Melville.

using the classical interpretation of negation and implication.1 What this shows is that
the standard picture, “featuring ever larger concentric circles”, at least needs modifica-
tion. Metaphysical possibility is better understood as a relation R ⊆ W ×W between
worlds than as a propertyU ⊆ W . Relative to each conceptually possible world, there
is a set of metaphysically possible worlds. Indeed, the standard interpretation of the
necessity operator in modal logic takes this form:

(11) ��ϕ�M,w = 1 iff, for all w′ ∈ W such that wRw′, �ϕ�M,w′ = 1.

But even on this modification, the standard picture is problematic. One prominent
proponent, Scott Soames, writes (Soames 2006, p. 291):

Empirical evidence is required to rule out certain impossible, but nevertheless
coherently conceivable and epistemologically relevant, world-states which (i)
cannot be known a priori not to obtain, and (ii) are such that the necessary a
posteriori truths are false with respect to those world-states.33

and adds in footnote 33 that

I here assume that names […] rigidly designate the same thing with respect to
all world-states, metaphysically possible or not.

1 By (7) and (9), there’s w ∈ W such that �Mark Twain is Herman Melville�M,w = 1. By (8), it follows
that �Necessarily, Mark Twain is Herman Melville�M,w = 1. By (6), we get �Mark Twain is Herman
Melville�M,w′ = 1 for all w′ ∈ U .
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According to this picture, while water is H2O in all metaphysically possible worlds,
there are conceptually possible worlds in which it’s not. This is supposed to explain
why (2) is a posteriori. I will return to the question of whether this is a reasonable
move to make or not. Either way, the same strategy obviously won’t work for identity
claims like (1), at least not if names are treated as rigid designators. Soames bites the
bullet by denying that (1) is a posteriori. In order to account for the fact that a perfectly
rational and competent speaker nevertheless may fail to recognize its truth, he argues
for the (in my view highly implausible) thesis that (Soames 2006, p. 279):

Sentences S1 and S2 may mean the same thing, and express the same proposi-
tion p, even though a competent speaker who understands both sentences, and
associates them with p, does not realize that they express the same proposition.

As a case in point, we can let S1 be Mark Twain is Mark Twain, and let S2 be Mark
Twain is Samuel Clemens.

Returning to (2), Soames accepts that this sentence is a posteriori. On his view, that
means there is a conceptually possible but metaphysically impossible world in which
an object is both a pure quantity of water and a pure quantity of XYZ. But, as Jackson
(2010, p. 91) argues, the existence of such a world is actually hard to conceive of.
For suppose there is one. Either the object in question is water, or it isn’t. If it is, it’s
H2O. But being both H2O and XYZ is conceptually impossible, just as being both
H2O and C5H5OH (ethanol) is conceptually impossible. It’s conceptually impossible
for a quantity to both contain carbon atoms and not contain carbon atoms. Therefore,
contrary to our assumption, the world in which this is supposed to take place will
be conceptually impossible. But if, on the other hand, the object in question isn’t
water, but only superficially likewater, then the world in question isn’t metaphysically
impossible, again contrary to our assumption.

Presumably, this is why Soames (2007, p. 257) prefers to think of possible worlds
as a maximally a priori consistent sets of Russellian propositions, rather than the
other way around. Say that WATER is the property of being a pure quantity of water,
H2O is the property of being a pure quantity of H2O, and XYZ is the property of
being a pure quantity of XYZ. It’s perhaps easier to conceive of the existence of such
a set containing both 〈WATER, o〉 and 〈XYZ, o〉, than to accept the existence of a
conceptually possible but metaphysically impossible world in which an object o is
both a pure quantity of water and a pure quantity of XYZ. However, if science is
right (modulo some niceties concerning the actual chemical composition of water),
the property of being a pure quantity of water is identical to the property of being a
pure quantity of H2O, in which case 〈WATER, o〉 = 〈H2O, o〉. Every set of Russellian
propositions containing the former will then also contain the latter. But any set of
Russellian propositions containing both 〈H2O, o〉 and 〈XYZ, o〉 will (arguably) be a
priori inconsistent, contrary to what Soames thinks.
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3 Switcher semantics

A different, but one-dimensional, explanation of the necessary a posteriori has been
offered by Glüer and Pagin (2006, 2008, 2012). In order to explain why (1) is a pos-
teriori, names have non-constant intensions. As in the case of the two-dimensional
framework, this is formally consistent with any kind of meta-semantic story about
reference determination (causal or descriptivist). Undeterred by Kripke’s epistemic
argument, however, the authors prefer to think of reference of a name as determined
by some traditional cluster of descriptions. In order to explain the truth of (3), the �-
operator functions as an evaluation switcher, evaluating sentences containing names
with respect to the referents the names have in the actual world, rather than the ref-
erents they have in the world of evaluation. Something similar happens in the case of
predicates, which is supposed to explain why (4) is true and (2) is a posteriori.

I will now present a simplified version of their semantic theory. We will also ignore
variables and quantifiers. The simplificationswill notmatter formy argument.Amodel
M = 〈W , D, w∗, I 〉 has a set W of possible worlds, a domain D of objects and a
distinguished member w∗ ∈ W (the actual world). The interpretation of a name a
is a function I (a) : W → D, and the interpretation of an n-place predicate P is a
pair I (P) = 〈Im(P), Iu(P)〉 of functions Im(P) : W → P(Dn) and Iu(P) : W →
P(Dn). The extension Im(=)(w) = Iu(=)(w) of the identity predicate is the identity
relation on D for all w ∈ W .

The idea is for Im(P) to be the manifest property (or relation) associated with P ,
while Iu(P) is the underlying property (or relation) that realizes Im(P) in the actual
world w∗. Since one and the same manifest property (being watery, for instance)
may be realized by different underlying properties in other worlds (XYZ-worlds, for
instance), it may be the case that Im(P)(w) �= Iu(P)(w) when w �= w∗. For certain
predicates (the single-property associated ones), it will be the case that Im(P) =
Iu(P). But for others (the dual-property associated ones), it will not. Examples of
single-property associated predicates in English are bachelor, unmarried, H2O and
the identity predicate. Examples of dual-property associated predicates are natural
kind predicates such as water and tiger. In order to deal with certain Twin Earth
scenarios, the authors have a context parameter in their semantics. Since it will not be
relevant to my discussion, I have omitted it here.

Truth for sentences is definedbyusing twovaluation functions, apossibilist function
�·�P and an actualist function �·�A, as follows:
(12) a. �a�PM,w

= I (a)(w).

b. �P�PM,w
= Im(P)(w).

c. �Pa1. . .an�PM,w
= 1 iff 〈�t1�PM,w

, . . . , �tn�PM,w
〉 ∈ �P�PM,w

.

d. �¬ϕ�PM,w
= 1 iff �ϕ�PM,w

= 0.

e. �ϕ ∧ ψ�PM,w
= 1 iff �ϕ�PM,w

= 1 and �ψ�PM,w
= 1.

f. ��ϕ�PM,w
= 1 iff, for all w′ ∈ W , �ϕ�AM,w′ = 1.

(13) a. �a�AM,w
= I (a)(w∗).

b. �P�AM,w
= Iu(P)(w).
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c. �Pa1. . .an�AM,w
= 1 iff 〈�t1�AM,w

, . . . , �tn�AM,w
〉 ∈ �P�AM,w

.

d. �¬ϕ�AM,w
= 1 iff �ϕ�AM,w

= 0.

e. �ϕ ∧ ψ�AM,w
= 1 iff �ϕ�AM,w

= 1 and �ψ�AM,w
= 1.

f. ��ϕ�AM,w
= 1 iff, for all w′ ∈ W , �ϕ�AM,w′ = 1.

A sentence ϕ is true in the actual world iff �ϕ�PM,w∗ = 1. For each sentence ϕ, let

[ϕ]P = {w ∈ W : �ϕ�PM,w
= 1} and [ϕ]A = {w ∈ W : �ϕ�AM,w

= 1} be its
possibilist and acutalist intension, respectively. We say that a sentence ϕ is contingent
iff ∅ �= [ϕ]P �= W , it’s necessary iff [ϕ]P = W , and its necessitation is true iff �ϕ is
true in the actual world. All these notions are of course relative to a model.

Now, assuming that Mark Twain (t) is Samuel Clemens (c), and provided that M
is the intended interpretation, it will indeed be the case that

(14) �t = c�PM,w∗ = 1.

and

(15) ��t = c�PM,w∗ = 1.

Moreover, as long as there is a world w ∈ W such that I (t)(w) �= I (c)(w), we have

(16) �t = c�PM,w
= 0.

whichmeans that (1) is contingent. This is also supposed to explainwhy it’s a posteriori.
Glüer and Pagin (2012, p. 177) hypothesizes that, on the assumption that a sentence
ϕ is true (in the actual world), its modal and epistemic status will be determined by
the so-called NN-pattern, in their terminology:

(17) ϕ necessary necessitation
a priori necessary yes true
a posteriori necessary no true
a priori contingent yes false
a posteriori contingent no false

from which it follows that

(18) ϕ is a priori true iff ϕ is necessary.

Arguably, however, this hypothesis is false. The sentence

(19) �t = c

will be necessary according to the semantics (although it’s intuitively not a priori),
and

(20) �t = c → t = c

will not be necessary according to the semantics (although it’s intuitively a priori).
Both sentences violate the NN-pattern, and they belong to the fragment for which the
semantics is defined.
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A posteriori necessities in one dimension 147

Moreover, assuming that the hypothesis (18) is correct, the set of a priori truths
will not be closed under what the authors take to be the appropriate notion of logical
consequence (real-world consequence2), since (20) is true in the actual world of all
models (it’s real-world valid). The authors seem to be aware of this problem, however.
As they point out,

(21) a = b → �a = b

will be real-world valid, and yet contingent on their semantics.
It’s therefore not clear how apriority is to be defined relative toM. I will now look

at three alternatives, and argue that none of them can succeed. Obviously, this is no
proof that apriority cannot be defined within the framework of switcher semantics. If
such a claim were to be proven at all, it would first have to be made precise. I shall
not attempt to provide such a precisification here. I will merely show that the notion
in question is hard to define in terms of the possibilist and actualist intensions of the
expressions involved.

3.1 By closure

Perhaps the scope of (18) should be limited to non-modal sentences, and the set of
a priori truths thus defined extended to modal sentences by closure under real-world
consequence? Then (20) would come out as a priori. But the suggestion will not work
for the following reason. Even if the sentence

(22) Bachelor(a) → Unmarried(a)

is included in the set of a priori non-modal truths, its necessitation (which, intuitively,
is also a priori)

(23) �(Bachelor(a) → Unmarried(a))

is not a real-world consequence of it. To see why, suppose M = 〈W , D, w∗, I 〉 is
the intended interpretation of our language, and letM′ = 〈W , D, w∗, I ′〉 be just like
M except that, for some w �= w∗, I ′(a)(w∗) ∈ I ′

u(Bachelor)(w) and I ′(a)(w∗) /∈
I ′
u(Unmarried)(w). Clearly, all the non-modal a priori truths relative toMwill be true
in the actual world ofM′, but (23) will be false.

3.2 By induction

Perhaps one could say that (19) is a posteriori because its immediate constituent is
contingent, and that (23) is a priori because its immediate constituent is necessary?
Perhaps, but a different explanation would then be needed for ��t = c, which is also
intuitively a posteriori although its immediate constituent is necessary, and for (20),

2 ϕ is a real-world consequence of � iff there’s no model M = 〈W , D, w∗, I 〉 such that �ψ�M,w∗ = 1
for all ψ ∈ � but �ϕ�M,w∗ = 0. Likewise, ϕ is real-world valid iff it’s a real world consequence of the
empty set of premises. Cf. Glüer and Pagin (2006, pp. 517–518). Observe that if a set of sentences is closed
under real-world consequence, it will contain every real-world valid sentence.
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which is intuitively a priori although one of its immediate constituents is contingent.
Perhaps one could instead say that (19) is a posteriori because the embedded sentence is
a posteriori? Perhaps, but it’s not clear how thatwould help us dealwith (20). In general,
it’s impossible to determine the a priori status of a sentence in switcher semantics by
looking at the a priori status of its immediate constituents and their intensions. To
see why, let t be the name Mark Twain and c be the name Samuel Clemens. Relative
to some model M = 〈W , D, w∗, I 〉, such that I (t)(w∗) = I (c)(w∗), suppose we
want to define the characteristic functions AT and AF of the set of a priori truths and
falsehoods in an intuitively satisfyingmanner, and thatwewant to do it inductively over
the complexity of sentences using their possibilist and actualist intensions. Presumably,
the base clauses of such a definition would be

(24) a. AT (Pa1, . . . , an) = 1 iff [Pa1. . .an]P = W
b. AF(Pa1, . . . , an) = 1 iff [Pa1. . .an]P = ∅

Also, the inductive clauses for negation would presumably be

(25) a. AT (¬ϕ) = AF(ϕ)

b. AF(¬ϕ) = AT (ϕ)

The precise nature of these clauses will not matter for my argument, and are given
for the purpose of illustration only. As for the operators ∨ and � (the other operators
are assumed to be defined in terms of them), we assume that there are functions
T∨, F∨, T�, F� such that

(26) a. AT (ϕ ∨ ψ) =
T∨(AT (ϕ), AT (ψ), AF(ϕ), AF(ψ), [ϕ]P, [ψ]P, [ϕ]A, [ψ]A)

b. AF(ϕ ∨ ψ) =
F∨(AT (ϕ), AT (ψ), AF(ϕ), AF(ψ), [ϕ]P, [ψ]P, [ϕ]A, [ψ]A)

and

(27) a. AT (�ϕ) = T�(AT (ϕ), AF(ϕ), [ϕ]P, [ϕ]A)

b. AF(�ϕ) = F�(AT (ϕ), AF(ϕ), [ϕ]P, [ϕ]A)

respectively. This is tantamount to assuming that the a priori status of a sentence can
be determined by the a priori status of its immediate constituents and their possibilist
and acutalist intensions. We will now show that this cannot be done in an intuitively
satisfying manner. To this end, let T be the intuitively a priori true sentence �t = t ,
and let C be the intuitively a posteriori true sentence�t = c. Intuitively, we thus want
it to be the case that

(28) a. AT (T ) = 1
b. AT (C) = 0

Now, let P be some intuitively a posteriori sentence unrelated to T and C , e.g. It’s
raining. Since every sentence ϕ is equivalent to (ϕ ∧ P) ∨ (ϕ ∧ ¬P) in propositional
logic, we want it intuitively to be the case that
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(29) a. AT ((T ∧ P) ∨ (T ∧ ¬P)) = AT (T )

b. AT ((C ∧ P) ∨ (C ∧ ¬P)) = AT (C)

Moreover, since P is neither a priori true nor a priori false, we also want it to be the
case that

(30) AT (T ∧ P) = AT (T ∧ ¬P) = AF(T ∧ P) = AF(T ∧ ¬P) =
= AT (C ∧ P) = AT (C ∧ ¬P) = AF(C ∧ P) = AF(C ∧ ¬P) = 0

According to switcher semantics, T and C have the same intensions, i.e. [T ]P = [C]P
and [T ]A = [C]A. It follows that
(31) a. [T ∧ P]P = [C ∧ P]P

b. [T ∧ P]A = [C ∧ P]A
c. [T ∧ ¬P]P = [C ∧ ¬P]P
d. [T ∧ ¬P]A = [C ∧ ¬P]A

By (26-a), (30) and (31), we then get

(32) AT ((T ∧ P) ∨ (T ∧ ¬P)) = AT ((C ∧ P) ∨ (C ∧ ¬P))

contradicting (28) and (29).
This shows that we cannot determine whether a sentence is a priori by looking only

at its constituents one level down in the construction tree with respect to the values of
AT , AF and their intensions [·]P and [·]A. This generalizes: there is no finite number n
such that it always suffices to look n level down. To see why, define the unary operator∧i recursively:

(33) a.
∧0

ϕ = ϕ ∧ ϕ.
b.

∧i+1
ϕ = (

∧i
ϕ) ∧ (

∧i
ϕ).

Assuming that AT and AF are invariant under propositional logical equivalence, we
intuitively want it to be the case that

(34) AT (
∧n

(T ∧ P) ∨ ∧n
(T ∧ ¬P)) = 1.

and

(35) AT (
∧n

(C ∧ P) ∨ ∧n
(C ∧ ¬P)) = 0.

However, at each level 1 ≤ k ≤ n in the construction tree, the constituents of the
sentences in (34) and (35) will be identical with respect to the values of AT , AF , [·]P
and [·]A, and the tree structures will be identical down to level n.

3.3 By variance

As a last resort, one could of course suggest the following. Suppose M =
〈W , D, w∗, I 〉 is the intended interpretation of our language. Define the class of mod-
els
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(36) [M]≈ = {〈W , D, w, I 〉 : w ∈ W }.
The reader may observe that [M]≈ = {M′ : M ≈ M′}, where ≈ is the relation
of variance introduced by Davies and Humberstone (1980, p. 2).3 One could then
perhaps say that

(37) ϕ is a priori true (false) iff ϕ is true (false) in the actual world of M′ for all
M′ ∈ [M]≈.

That would indeed make (19) a posteriori, and make (20) a priori. But it would still
make

(38) �(Water(a) → H2O(a))

a priori, the reason being that Iu(Water) = Iu(H2O) for all M′ ∈ [M]≈. This high-
lights the fact that, in order to make the analytic/synthetic distinction for sentences
involving natural kind predicates, it seems one needs to specify a two-dimensional
intension for each such predicate. It doesn’t seem enough to specify two one-
dimensional intensions for each of them, as in the case of switcher semantics.

A more general problem with the variance approach, however, is that it looks a
lot like two-dimensionalism in disguise. Glüer and Pagin (2006, p. 530) take it to
be a crucial difference between switcher semantics and two-dimensionalism that a
sentence like

(39) The teacher of Alexander is the actual teacher of Alexander.

will be a priori in two-dimensional semantics, but not in switcher semantics (on the
standard interpretation of the actuality operator). But on the present definition of
apriority, this difference vanishes. (39) will still be contingent in the technical sense,
but the notion of contingency will have lost its explanatory role. As we saw in the
previous section, it’s hard to see how this notion can play a role in determining the a
priori status of sentences in switcher semantics.

4 Conclusion

Postulating the existence of conceptually possible but metaphysically impossible
worlds doesn’t seem to help in accounting for the phenomenon of a posteriori neces-
sities, especially not if names are treated as rigid designators. Either way, some of the
conceptually possible worlds needed are hard to conceive of on closer inspection. As
for switcher semantics, the original proposal doesn’t work for certainmodal sentences,
and I have shown that it cannot be easily amended. The lesson, I take it, is that it’s
hard to explain the phenomenon of a posteriori necessities by merely assigning two
one-dimensional intensions to each expression. At least in the case of natural kind
predicates, one seems to need the whole two-dimensional matrix.

3 The relation is defined as follows: for anymodelsM1 = 〈W1, D1, w
∗
1 , I1〉 andM2 = 〈W2, D2, w

∗
2 , I2〉

with w∗
1 ∈ W1 and w∗

2 ∈ W2, we haveM1 ≈ M2 just in case W1 = W2, D1 = D2 and I1 = I2.
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