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Abstract. In this paper, we give an almost sure central limit theorem (ASCLT) version of a maximum limit theorem
(MLT) with an arbitrary sequence {dn, n � 1} of weighted means of max{Xk, k ∈ An}, where {Xn, n � 1} is
a sequence of independent random variables, and {An, n � 1} is a sequence of almost surely finite random subsets
of positive integers independent of {Xn, n � 1}. Thus we generalize the cases considered in the literature: (i) the
nonrandom version of ASCLT for the MLT; (ii) the version of ASCLT for randomly indexed MLT; and (iii) the version
of maximum schema of observed and unobserved random variables. We complete the paper with illustrative examples.
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1 Introduction

The central limit theorem, in its classical form, states that if {Xn, n � 1} is a sequence of independent
identically distributed (i.i.d.) random variables with EXn = 0,EX2

n = 1, then

∑n
i=1Xi√
n

D−→ Φ as n → ∞,

where Φ(x) denotes the standard normal distribution function, and D→ denotes the weak convergence, whereas
the maximum limit theorem states that if {Xn, n � 1} is a sequence of i.i.d. random variables with distribution
function F belonging to one of the classesD1,D2,α orD3,α (for definition, see [13,18] or [9, p. 92, Cases (i)–
(iii)]) with some α > 0, then there exist constants {an, bn, n � 1} such that

an max
1�j�n

Xj + bn
D−→ G as n → ∞, (1.1)
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where G has one of the forms

G1(x) = e−e−x

, G2,α(x) =

{
0, x � 0,

e−x−α

, x > 0,
G3,α(x) =

{
e−(−x)α , x � 0,

1, x > 0,

according to F ∈ D1, F ∈ D2,α, or F ∈ D3,α, respectively.
The simplest version of ASCLT theorem was obtained by Schatte [19] and Brosamler [2] for a sequence of

i.i.d. random variables with somemoment restriction (later weakened by Lacey and Phillip [12] to the existence
of variance only) states that if {Xn, n � 1} is a sequence of i.i.d. random variables such that EX1 = 0 and
EX2

1 = 1, then

lim
n→∞

1

lnn

n∑

i=1

1

i
I

[∑i
k=1Xk√

i
< x

]

= Φ(x) a.s.

ASCLT for maximum limit theorem states that if {Xn, n � 1} is a sequence of i.i.d. random variables with
distribution function F ∈ D1, F ∈ D2,α, or F ∈ D3,α for some α > 0, then

lim
n→∞

1

lnn

n∑

i=1

1

i
I
[
ai max

1�j�i
Xj + bi � x

]
= G(x) a.s.

The maximum limit theorem (MLT) was generalized in the following directions:

(i) Some investigators tried to omit the assumption that {Xn, n � 1} is an i.i.d. sequence. Loynes [14]
proved MLT for the uniformly mixing strictly stationary stochastic processes. Hüsler [7] proved the
MLT for nonstationary sequences but under strong conditions on common distribution with strong
mixing type conditions.

(ii) Mladenović and Piterbarg [16] considered the maximum taken on observed subsets of random vari-
ables. Precisely, if {εn, n � 1} is the sequence of indicators of the events that the corresponding
random variables are observed (they assumed that this sequence is independent of {Xn, n � 1}),
then the limit theorem for the common law of {(max1�i�n, εi=1Xi, max1�i�nXi), n � 1} with an
appropriate norming and centering (assuming stationarity and some two conditions of strong mixing
type) can be obtained (see also [11]).

(iii) In [1], [10], and [9], MLT (in the last two, also ASCLT) for the randomly indexed maxima of ran-
dom variables was considered, that is, for {max1�i�Nn

Xi, n � 1} (with appropriate centering and
norming), where {Nn, n � 1} is a sequence of positive-integer random variables independent of
{Xn, n � 1}

(iv) Some other common laws were also considered. For example, in [3] the common limit law was con-
sidered for appropriately centered and normed sequence {(max1�i�n Xi, min1�i�nXi), n � 1}.

(v) MLT for multiindex fields was considered in [4] and [5].

On the other hand, in ASCLT the sequence {1/n, n � 1} of norming coefficients of summands is often
replaced by a general nonincreasing sequence of positive reals {dn, n � 1}).

The ASCLT for MLT is mostly independent of MLT. Usually, it suffices to consider MLT. We explain this
statement by recalling [5, Theorem 2.1]:

Theorem 1. Let {Yn, n � 1} be a sequence of a.s. bounded random variables with EYn = 0, n ∈ N. Assume
that for some nonnegative nonincreasing sequence {dn, n ∈ N} such that

d1 > 0,
∑

n∈N
dn = ∞,
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and for some 1 < γ < 2 and every 1 � i � j, we have

∑

i�k�j

∑

i�l�j

dkdl|EYkYl| � C

(
j∑

k=i

dk

)γ

,

∞∑

n=1

dn

D3−γ
n

< ∞,

whereDn =
∑n

i=1 di. Then

1

Dn

n∑

k=1

dkYk
a.s.−→ 0 as n → ∞.

If MLT (1.1) holds with a norming sequence {dn, n � 1} instead of {1/n, n � 1}, then we have

1

Dn

n∑

k=1

dkP
[
ak max

1�j�k
Xj + bk < x

]
→ G(x) as n → ∞

for every x ∈ R such that G is continuous at x. Furthermore, if Theorem 1 holds with

Yn = I
[
an max

1�j�n
Xj + bn < x

]
−P

[
an max

1�j�n
Xj + bn < x

]
,

then ASCLT for MLT also holds:

1

Dn

n∑

k=1

dkI
[
ak max

1�j�k
Xj + bk < x

]
a.s.−→ G(x) as n → ∞,

In many cases, the assumptions of Theorem 1 and MLT are strictly connected.
Let {An, n ∈ N} be a sequence of random subsets of N independent of {Xn, n ∈ N}. Fundamentals of

random set theory can be found in Matheron’s classic book [15] or in Molchanov’s book [17]. For arbitrary
random or nonrandom set A, we denote by |A| the cardinality of A, and we also denote

M(A) =

{
maxi∈AXi if A �= ∅,
−∞ if A = ∅. (1.2)

All random and nonrandom sets A considered in this paper are such that |A| is a random variable, and thus
M(A) is possibly not defined on the set of measure 0 only.

If A ∩B = ∅ a.s., then the maximum defined this way satisfies the condition

M(A ∪B) = max
{
M(A),M(B)

}
;

in particular, M(A) = M(A ∪ ∅).
In this paper, we prove the ASCLT for the maximum limit theorem of the form

lim
n→∞

1

Dn

n∑

i=1

diI
[
aiM(Ai) + bi � x

]
= G(x) a.s., (1.3)

where {dn, n � 1} is a nonincreasing sequence of positive reals, Dn =
∑n

i=1 di, n � 1, {an, n � 1} is
a sequence of positive reals, {bn, n � 1} is a sequence of arbitrary reals, and μ is a probability measure
corresponding to the distribution function G such that μ(x) = 0, and the following MLT holds:

lim
n→∞P

[
anM(An) + bn � x

]
= G(x).
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Note that for a sequence of random indices {Nn, n � 1} and An = {1, 2, 3, . . . , Nn}, the result (1.3)
generalizes the ASCLT for maximum theorem in [10] and [9]. Furthermore, if {εn, n � 1} is the sequence of
indicators of the event that the corresponding random variable is observed and

An =
⋃

εi=1
1�i�n

{i}, n � 1, (1.4)

then (1.3) generalizes the results presented in [16] and [11].
These results are analogous to that obtained recently by Krajka and Gdula [6] for classical ASCLT.
In the whole paper, C is a constant, possibly different in different places. For random variables X and Y ,

by π(X,Y ) we denote the Ky Fan metrics

π(X,Y ) = inf
{
ε > 0: P

[|X − Y | > ε
]
< ε

}
.

We use the notations x∨ y = max{x, y} and x∧ y = min{x, y} for x, y ∈ R. For two σ-fields σ1 and σ2, we
also denote

α(σ1, σ2) = sup
{∣
∣P[A ∩B]−P[A]P[B]

∣
∣, A ∈ σ1, B ∈ σ2

}
,

2 Main results

Theorem 2. Let {Xn, n � 1} be a sequence of independent random variables, let {An, n � 1} be a se-
quence of random sets independent of {Xn, n � 1}, let {an, n � 1} be a sequence of positive reals, and let
{bn, n � 1} be a sequence of arbitrary reals such that

anM(An) + bn
D−→ G as n → ∞ (2.1)

for some nondegenerate distribution functionG. Assume that for some nonnegative nonincreasing sequence of
reals {dn, n � 1}, Dn =

∑n
i=1 di is divergent to infinity, and for some 1 < γ < 2 and every positive integer

i � j, we have
∑

i�k�j

∑

i�l�j

dkdl(θk,l ∧ θl,k) � C

( ∑

i�k�j

dk

)γ

, (2.2)

where θ is defined by one of the following formulas:

(i) θk,l = α
(
σ(Ak), σ(Al)

)
+ π

(
alM(Al), alM(Al \Ak)

)
, k, l ∈ N,

or
(ii) θk,l = α

(
σ(Ak), σ(Al \ Ak)

)
+ π

(
alM(Al), alM(Al \ Ak)

)
, k, l ∈ N,

or for some sequence of positive integers {δk, k � 1},

(iii) θk,l = α
(
σ(Ak), σ(Al \ Ak+δk)

)
+ π

(
alM(Al), alM(Al \Ak)

)

+ π
(
alM(Al), alM(Al \ Ak+δk)

)
, k, l ∈ N,

and
∑∞

n=1 dn/D
3−γ
n < ∞. Then

lim
n→∞

1

Dn

n∑

i=1

diI
[
aiM(Ai) + bi < x

]
= G(x) a.s. (2.3)

Lith. Math. J., 63(2):190–202, 2023.



194 T. Krajka

For an arbitrary sequence of random variables {Xn, n � 1}, a random or nonrandom but not empty
(P[An = ∅] = 0, n � 1) sequence {An, n � 1} of subsets of N, and a sequence of reals {an, n � 1}, we
denote

pk,l = inf
ε>0

{(
p(l, k, ε) ∧ p(k, l, ε)

) ∨ ε
}
, p(l, k, ε) = P

[
alM(Ak ∩Al) > ε+ alM(Al \ Ak)

]
.

We list some properties of pk,l:

(i) pk,l � π(alM(Ak ∩Al), alM(Al \Ak)) ∧ π(akM(Ak ∩Al), akM(Ak \ Al)),
(ii) pk,k = 1,
(iii) pk,l = 0 if Ak ∩Al = ∅,
(iv) pk,l = pl,k,
(v) pk,l does not satisfy the triangle inequality.

We focus on property (i). The evaluation by the Ky Fan metrics (right-hand side of (i)) is simpler, but the
difference of the left- and right-hand sides is essential. In Example 1, we construct a sequence of random
variables {Xn, n � 1}, random sets {An, n � 1}, and subsequences {kn, ln, n � 1} for which pkn,ln → 0
but π(alnM(Akn

∩Aln), alnM(Aln \ Akn
)) → 1 as n → ∞. It follows from the fact that for l � k, the term

M(Al \Ak) is relatively greater than the term M(Ak ∩Al), and thus P[alM(Ak ∩Al) > ε+ alM(Al \Ak)]
can be small, but P[alM(Al \ Ak) > ε+ alM(Al ∩Ak)] can be large.

Remark 1. If, under the assumptions of Theorem 2 (i) or (ii), we have

∑

i�k�j

∑

i�l�j

dkdl(αk,l ∨ αl,k) � C

( ∑

i�k�j

dk

)γ

,

with αk,l = α(σ(Ak), σ(Al)) or αk,l = α(σ(Ak), σ(Al \ Ak)), respectively, then condition (2.2) can be
replaced by

∑

i�k�j

∑

i�l�j

dkdlpk,l � C

( ∑

i�k�j

dk

)γ

.

In case (i), this holds when {An, n � 1} is a sequence of independent random sets, whereas in case (ii), for
example, in schema considered in [16] with the i.i.d. sequence {εn, n � 1}. Then αk,l = αl,k = 0.

The applications of three different versions of Theorem 2 depend on the structure of dependency of the
sets {An, n � 1}. Case (i) is “better” to apply for weakly dependent sets {An, n � 1}, whereas cases (ii)
and (iii) are more convenient in the cases where {An, n � 1} is a sequence of increasing random sets with
respect to the inclusion (i.e., Ak ⊂ Al a.s. for k < l) with independent (case (ii)) or weakly dependent (case
(iii)) increments ({Al \ Ak, l � k, l, k > 1}). It is suitable for schema considered in [16] (definition (1.4))
with independent (case (ii)) or weakly dependent (case (iii)) {εn, n � 1}. Note that in case (ii) for weakly
dependent {εn, n � 1}, (2.2) fails. Indeed, when {εn, n � 1} are α-mixing with

α = inf
j∈N

α
(
σ(εj), σ(εj+1)

)
> 0,

as σ(εk) ⊂ σ(ε1, ε2, . . . , εk), σ(Ak) = σ(ε1, ε2, . . . , εk), σ(Al \ Ak) = σ(εk+1, . . . , εl), we have

∑

i�k�j

∑

i�l�j

dkdl(αk,l ∧ αl,k) � α

( ∑

i�k�j

dk

)2

> Cα

( ∑

i�k�j

dk

)γ

for every γ < 2 (recall that Dj −Di−1 → ∞ as j → ∞).
Illustrative examples of application of Theorem 2(i) and (ii) are given in Examples 2 and 3, respectively, in

the last section.
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3 Proofs

Denote by Lip(R) the set of bounded Lipschitz functions on R with the norm ‖g‖BL = ‖g‖∞ + ‖g‖L < ∞,
where ‖g‖∞ is the supremum norm, and

‖g‖L = sup
x �=y

|g(x) − g(y)|
|x− y| .

Proof of Theorem 2. By (2.1) andDn =
∑n

i=1 di, to obtain (2.3), it suffices to prove that

lim
n→∞

1

Dn

n∑

i=1

di
(
I
[
aiM(Ai) + bi > x

]−P
[
aiM(Ai) + bi > x

])
= 0 a.s.

On the other hand, from Theorem 1 and comments below this theorem it suffices to prove that

∑

i�k�j

∑

i�l�j

dkdl
∣
∣Cov

(
I
[
akM(Ak) + bk > x

]
, I

[
alM(Al) + bl > x

])∣
∣ � C

( ∑

i�k�j

dk

)γ

. (3.1)

Obviously, the indicator function is bounded but not continuous. However, instead, we may consider the func-
tions

gδ(x) =

⎧
⎪⎨

⎪⎩

0 if x < − δ
2 ,

1
δx+ 1

2 if − δ
2 � x � δ

2 ,

1 if x > δ
2 ,

since gδ(x) → I[x > 0] as δ ↓ 0. Thus for (3.1), we will prove that

∑

i�k�j

∑

i�l�j

dkdl
∣
∣Cov

(
Yk(Ak), Yl(Al)

)∣
∣ � C

( ∑

i�k�j

dk

)γ

,

where Yi(A) = g(aiM(A) + bi) for any positive integers i and j, 1 < γ < 2, and any Lipschitz function
g ∈ {gδ , 0 < δ < 1}.

So the rest of the proof is proceeded for the functions g of the above type.
Due to the definition of the maximum of random variables (1.2), for such function gδ, we will con-

sider all the evaluations and probabilities in the following part of a proof on the event Z = {Al �= ∅,
Ak �= ∅} because Cov(Yk(Ak)I[Ω \ Z], Yl(Al)I[Ω \ Z]) = 0. To prove this fact, let us take the subset
{ω: Al = ∅} of Ω \ Z = [Al = ∅] ∪ [Ak = ∅] (by symmetry similar computations can be proceeded for the
subset {ω: Ak = ∅}). On such a subset, from the definitionM(Al) = −∞, as al > 0, we have

Yl(Al) = gδ
(
alM(Al) + bl

)
= 0.

Now we will prove the following facts:

(A) For every random set B, we have

E
∣
∣
(
E
(
Yk(Ak)

∣
∣ Ak)−EYk(Ak)

)(
Yl(B)−EYl(B)

)∣
∣ � 4α

(
σ(Ak), σ(B)

)‖g‖2∞.

(B) For all random sets B and C ,

E
∣
∣
(
E
(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
)(
Yl(B)− Yl(C)

)∣
∣

� 2‖g‖∞
(
2‖g‖∞ + ‖g‖L

)
π
(
alM(B), alM(C)

)
,
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E
∣
∣
(
Yk(Ak)−EYk(Ak)

)(
Yl(B)− Yl(C)

)∣
∣

� 2‖g‖∞
(
2‖g‖∞ + ‖g‖L

)
π
(
alM(B), alM(C)

)
.

(C) We have

E
(
E
(
Yk(Ak)

∣
∣ Ak

)− Yk(Ak)
)
Yl(Al \ Ak) = 0.

Proof of fact A. From Theorem 17.2.1 of Ibragimov and Linnik [8, p. 306, Chap. 17] we have
∣
∣E(UV )−EUEV

∣
∣ � 4αU,V ‖U‖∞‖V ‖∞

for any random variables U and V . Putting U = E(Yk(Ak)|Ak) and V = Yl(B) and recalling that EU =
EYk(Ak), we get the statement.

Proof of fact B. Taking π = π(alM(B), alM(C)), this fact follows from

E
∣
∣Yl(B)− Yl(C)

∣
∣ � E

∣
∣Yl(B)− Yl(C)

∣
∣ I

[
al
∣
∣M(B)−M(C)

∣
∣ > π

]

+E
∣
∣Yl(B)− Yl(C)

∣
∣I
[
al
∣
∣M(B)−M(C)

∣
∣ � π

]

� 2‖g‖∞P
[
al
∣
∣M(B)−M(C)

∣
∣ > π

]
+ ‖g‖Lπ

� 2‖g‖∞π + ‖g‖Lπ
and the evaluations

∣
∣E

(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
∣
∣ � 2‖g‖∞,

∣
∣Yk(Ak)−EYk(Ak)

∣
∣ � 2‖g‖∞.

Proof of fact C. Let us remark that because {Xn, n � 1} is a sequence of independent random variables, for
arbitrary nonrandom disjoint sets B and C , the random variablesM(B) andM(C) are independent. Because
{An, n � 1} and {Xn, n � 1} are independent, for any T ∈ N, we have

∣
∣E

(
E
(
Yk(Ak)

∣
∣ Ak

)− Yk(Ak)
)
Yl(Al \Ak)

∣
∣

�
∣
∣
∣
∣

∑

Bk,Bl⊂N

|Bk|<T, |Bl|<T

E
(
E
(
Yk(Bk)

∣
∣ Bk

)− Yk(Bk)
)
Yl(Bl \Bk)P[Ak = Bk, Al = Bl]

∣
∣
∣
∣

+P
[|Ak| � T

]
+P

[|Al| � T
]

� P
[|Ak| � T

]
+P

[|Al| � T
]
,

and now taking the limit as T → ∞, the right-hand side converges to 0 due to the tightness of random variables
|Ak| and |Al|.

In case (i), from (B), (C), and (A) we have

Cov
(
Yk(Ak), Yl(Al)

)
= E

((
Yk(Ak)

)−E
(
Yk(Ak)

∣
∣ Ak)

)(
Yl(Al)− Yl(Al \ Ak)

)

+E
((
Yk(Ak)

)−E
(
Yk(Ak)

∣
∣ Ak)

)(
Yl(Al \Ak)−EYl(Al)

)

+E
(
E
(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
)(
Yl(Al)−EYl(Al)

)

� Cπ
(
alM(Al), alM(Al \ Ak)

)
+ Cα

(
σ(Ak), σ(Al)

)

= Cθk,l.
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In case (ii), using (B), (C), and (A), we have

Cov
(
Yk(Ak), Yl(Al)

)
= E

(
Yk(Ak)−EYk(Ak)

)(
Yl(Al)− Yl(Al \ Ak)

)

+E
(
Yk(Ak)−E(Yk(Ak)

∣
∣ Ak)

)(
Yl(Al \ Ak)−EYl(Al)

)

+E
(
E
(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
)(
Yl(Al \ Ak)−EYl(Al \ Ak)

)

+E
(
E
(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
)(
EYl(Al \Ak)−EYl(Al)

)

� Cπ
(
alM(Al), alM(Al \ Ak)

)
+ Cα

(
σ(Ak), σ(Al \Ak)

)

= Cθk,l.

In the last case (iii), we use (B), (C), (B), and (A):

Cov
(
Yk(Ak), Yl(Al)

)
= E

(
Yk(Ak)−EYk(Ak)

)(
Yl(Al)− Yl(Al \ Ak)

)

+E
(
Yk(Ak)−E

(
Yk(Ak)

∣
∣ Ak)

)(
Yl(Al \ Ak)−EYl(Al)

)

+E
(
E(Yk(Ak)

∣
∣ Ak)−EYk(Ak)

)(
Yl(Al \ Ak)− Yl(Al \Ak+δk)

)

+E
(
E(Yk(Ak)

∣
∣ Ak)−EYk(Ak)

)(
Yl(Al \ Ak+δk)

)−EYl(Al \ Ak+δk)

+E
(
E
(
Yk(Ak)

∣
∣ Ak

)−EYk(Ak)
)(
EYl(Al \Ak+δk)−EYl(Al)

)

� Cπ
(
alM(Al), alM(Al \ Ak)

)
+ Cα

(
σ(Ak), σ(Al \ Ak+δk)

)

+ Cπ
(
alM(Al), alM(Al \ Ak+δk)

)

= Cθk,l.

Note that by symmetry

Cov
(
Yk(Ak), Yl(Al)

)
� C(θk,l ∧ θl,k),

which by Theorem 1 ends the proof of Theorem 2. ��
Proof of Remark 1. Obviously, we can evaluate

θl,k ∧ θk,l � (αk,l ∨ αl,k) + (πk,l ∧ πl,k),

where πk,l = π(alM(Al), alM(Al \Ak)). BecauseM(Al) = max{M(Ak ∩Al), M(Al \Ak)} and because

P
[∣
∣al

(
M(Al)−M(Al \ Ak)

)∣
∣ > ε

]
=

{
0 ifM(Al ∩Ak) < M(Al \ Ak),

P[al(M(Al ∩Ak)−M(Al \Ak)) > ε] otherwise

� P
[
alM(Ak ∩Al) > ε+ alM(Al \Ak)

]
,

it follows that πl,k � infε>0 p(l, k, ε)∨ε and πk,l � infε>0 p(k, l, ε)∨ε, and thus πl,k∧πk,l � pk,l, which ends
the proof. ��

4 Examples and applications

Example 1. Let {an, n � 1} be a sequence of positive reals, and put an =
∑n

i=1 ai. Let {Yn, n � 1} be
a sequence of independent random variables with laws

P[Yn � x] =

{
1 for x > 0,

eanx for x � 0.
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Then for the sets {An = {1, 2, 3, . . . , n}, n � 1}, we have P[anM(An) < x] = G3,1(x), and therefore for
l � k,

P
[
alM(Ak ∩Al) > ε+ alM(Al \ Ak)

]

� P
[
M(Ak ∩Al) > M(Al \ Ak)

]
=

0∫

−∞
e(al−ak)x deakx =

ak
al

.

In consequence,

pk,l �
ak ∧ al
ak ∨ al

, k, l ∈ N.

On the other hand,

π
(
alM(Ak ∩Al), alM(Al \Ak)

)
= inf

ε>0

{(
al − ak

al
e−εak/al +

ak
al

e−ε(al−ak)/al

)

∨ ε

}

.

Now putting, for example, {an = 1, kn = �ln(n)�, ln = n, n � 1}, we see that

lim
n→∞π

(
alnM(Akn

∩Aln), alnM(Aln \Akn
)
)

= lim
n→∞

n− �ln(n)�
n

e−ε �ln(n)�
n +

�ln(n)�
n

e−ε(n−�ln(n)�)/n = 1,

lim
n→∞ pkn,ln = lim

n→∞
�ln(n)�

n
e−ε(n−�ln(n)�)/n = 0.

Example 2. Let {Vn, n�1} be a Rademacher sequence of α-mixing random variables such that P[Vn=1]<1
and P[Vn = 1] = p = 1−P[Vn = 0] > 0 with

αn = sup
k

α
(
σ(Vk), σ(Vk+n)

)

satisfying
∑

i�k�j

∑

i�l�j

α|k−l|
kl

� lnγ
j

i− 1
.

Let {Xn, n � 1} be a sequence of independent random variables, independent of {Vn, n � 1}, such that

P[X2n < x] =

⎧
⎨

⎩

1 if x > 0,

1− x2 if − 1 � x � 0,

0 otherwise,
n � 1,

and

P[X2n−1 < x] =

{
1, if x > 0,

e(
√
n−√

n−1)x if x � 0.

If

An =

{
{1, 3, 5, . . . , 2n − 1} if Vn = 1,

{2, 4, 6, . . . , 2n} if Vn = 0,
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then
√
nM(An)

D−→ pG3,1() + (1− p)G3,2() = G(), say, as n → ∞.

From Example 1 we have

P
[
M(Ak ∩ Al) � M(Al \ Ak) + ε, Vk = Vl = 1

]
�

{√
k
l if k < l,

1 otherwise,

whereas for k < l,

P
[
M(Ak ∩Al) � M(Al \ Ak) + ε, Vk = Vl = 0

]

� P
[
M(Ak ∩ Al) � M(Al \ Ak)

]
=

0∫

−1

(
1− u2

)l−k
d
(
1− u2

)k
=

k

l
�

√
k

l
,

and

P
[
M(Ak ∩Al) � M(Al \Ak) + ε, Vk = 0, Vl = 1

]

= P
[
M(Ak ∩ Al) � M(Al \ Ak) + ε, Vk = 1, Vl = 0

]
= 0,

as in these cases Ak ∩ Al = ∅. Thus

pk,l � 2

√
k ∧ l

k ∨ l
,

and by the Cauchy–Maclaurin theorem

∑

i�k�j

∑

i�l�j

1

kl

√
k ∧ l

k ∨ l
� 2

j∑

k=i

j∑

l=k

1

k1/2l3/2
� 2

j∑

k=i

1√
k

∞∑

l=k

1

l3/2

� C

j∑

k=i

1

k
� C ln

j

i− 1
� C lnγ

j

i− 1

for every γ > 1. Thus

lim
n→∞

1

lnn

n∑

i=1

1

i
I
[√

iM(Ai) < x
]
= G(x)

for every x ∈ R.

Example 3. Let {Xn, n � 1} be an i.i.d. sequence of random variables with the exponential distribution
function F (x) = 1 − e−x. Let {εn, n � 1} be an i.i.d. sequence of random variables independent of the
previous one and such that P[ε1 = 1] = s = 1 − P[ε1 = 0]. We put an = 1, bn = − lnn, dn = 1/n, and
Dn = lnn. Let {An, n � 1} be a sequence of random sets such as in (1.4).

Then, as it was shown in Example 2.1 [16, p. 1979, Eq. 2.7], taking the limit as y → ∞, we have

M(An)− lnn
D−→ e−se−x

.

Since Ak ⊂ Al and Ak ∩Al = Ak for l > k, we have, for l � k,

p(k, l, ε) � P
[
M(Ak) > M(Al \ Ak)

]
= Ik,l, say.
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We have

Ik,l =

∞∫

0

k∑

i=1

l−k∑

j=0

P
[|Ak| = i

]
P
[|Al \Ak| = j

]
P
[
M(Ak) = x

∣
∣ |Ak| = i

]

× P
[
M(Al \Ak) � x

∣
∣ |Al \ Ak| = j

]
dx.

Because |Al| and |Al \ Ak| have the binomial distribution with l and l − k trials, respectively, and probability
of success equal to s (we denote these distributions by B(l, s) and B(l − k, s)), we have

P
[
M(Ak) = x

∣
∣ |Ak| = i

]
=

dF i(x)

dx
= ie−xF i−1(x),

P
[
M(Al \Ak) � x

∣
∣ |Al \ Ak| = j

]
= F j(x),

P
[|Al| = i

]
= P

[
B(l, s) = i

]
, P

[|Al \ Ak| = j
]
= P

[
B(l − k, s) = j

]
.

Since
∞∫

0

ie−x
(
1− e−x

)i+j−1
dx =

i

i+ j
,

we have

Ik,l =

k∑

i=1

l−k∑

j=0

P
[
B(k, s) = i

]
P
[
B(l − k, s) = j

] i

i+ j
.

Furthermore, for positive integers i and j, we have

i

i+ j
� 1 ∧ i

j
. (4.1)

Let us choose t such that 1 < t < s. Then from Chebyshev’s inequality and (4.1) we have

Ik,l �
k∑

i=1

P
[
B(k, s) = i

]
(

P
[
B(l − k, s) �

⌊
t(l − k)

⌋
] +

l−k∑

j=�t(l−k)�+1

i

j
P
[
B(l − k, s) = j

]
)

� P
[
B(l − k, s) � t(l − k)

]
+

EB(k, s)

t(l − k)

= P
[
B(l − k, s)−EB(l − k, s) � −(s− t)(l − k)

]
+

ks

t(l − k)

� P
[∣
∣B(l − k, s)−EB(l − k, s)

∣
∣ � (s − t)(l − k)

]
+

ks

t(l − k)

� Var(B(l − k, s))

(s − t)2(l − k)2
+

ks

t(l − k)
=

s(1− s)

(s− t)2(l − k)
+

ks

t(l − k)
.

Now taking t = s/2, we have

Ik,l �
4(1− s)

s(l − k)
+

2k

l − k
� C

k

l − k
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with C = 2max(2, 4(1 − s)/s). Using the estimate

pk,l � C

⎧
⎪⎨

⎪⎩

k
l if 2k < l,
l
k if 2l < k,

1 if l < 2k < 4l,

we have

∑

i�k�j

∑

i�l�j

1

kl
pk,l �

∑

i�k�j

∑

2k�l�j

C

l2
+

∑

i�k�j

∑

i�l��k/2�

C

k2
+

∑

i�k�j

∑

� k

2
��l�2k

C

kl
.

Now by the Cauchy–Maclaurin theorem we get

∑

i�k�j

∑

i�l�j

1

kl
pk,l � C

(
1

2
+

1

2
+ 2 ln 2

)

ln
j

i− 1
,

and thus (2.2) holds for arbitrary 1 < γ < 2.
Finally, as

1 + C

∞∑

n=2

1

n ln3−γ n
< ∞,

we get

lim
n→∞

1

lnn

n∑

i=1

1

i
I
[
max
εk=1
1�k�i

Xi − ln i < x
]
= e−se−x

.
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