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Transition densities of spectrally positive Lévy processes

Łukasz Leżaj1
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Abstract. We deduce the asymptotic behavior of transition densities for a large class of spectrally one-sided Lévy pro-
cesses of unbounded variation satisfying mild condition imposed on the second derivative of the Laplace exponent or,
equivalently, on the real part of the characteristic exponent. We also provide sharp two-sided estimates on the density
when restricted additionally to processes without Gaussian component.
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1 Introduction

The aim of this paper is to discuss the behavior of the transition densities of spectrally one-sided Lévy processes
of unbounded variation or, in other words, spectrally one-sided processes that are not subordinators with drift.
Such processes, due to their specific structure, find natural applications in financial models, in particular,
insurance risk modeling and queue theory, and therefore they have been intensively analyzed from that point
of view. The prominent example here and, at the same time, one of the first questions we would like to ask in the
financial setting is the so-called exit problem, the identification of the distribution of the pair (τI ,XτI ), where
I is an open interval, which has been intensively discussed over last decades. We refer to prominent works
of Zolotarev [26], Takács [25], Emery [5], and Rogers [21]. Vast majority of results is expressed in terms of
so-called scale functions, which have been of independent interest later on; see, for example, [10] or [16].
Also, specific structure of spectrally one-sided processes considerably simplifies the fluctuation theory, which
for general Lévy processes is rather implicit. For details, we refer to books of Bertoin [1, Sects. VI, VII],
Kyprianou [17], or Sato [23]. This short list is far from being complete, and for further discussion, we refer to
the works mentioned and the references therein.

The abundant number of papers related to financial applications stays in stark contrast with the fact that
surprisingly little is known about transition densities of general spectrally one-sided Lévy processes, although
it seems that such knowledge can potentially be an important and useful tool. We may find, for example,
asymptotic series expansion for the particular case of stable processes in the book of Zolotarev [27, Thm. 2.5.2]
or the asymtotics with a fixed time variable under rather implicit assumptions in a recent article by Patie and
1 The author was partially supported by the National Science Centre Poland: grant 2016/23/B/ST1/01665.
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Vaidyanathan [18], but to the author’s best knowledge, general results are not obtained. Therefore the purpose
of this paper is filling this gap in the theory and analysis of the behavior of the transition densities of spectrally
one-sided Lévy processes in a feasibly wide generality.

Let us briefly describe our results. From theoretical point of view, the absence of negative (positive) jumps
allows us to exploit techniques involving the Laplace transform, which can be easily proved to exist (see
e.g., the book of Bertoin [1, Sect. VII]). We exploit that property in the first part, where we concentrate on
the asymptotic behavior of the transition density, which is covered by Theorem 1. Note that the result is very
general, as the only assumption is the lower scaling property with indexα > 0. In particular, we assume neither
the upper scaling property nor the absolute continuity of the Lévy measure ν(dx). Note that the independent
sum of Brownian motion and a subordinator satisfying the scaling condition is admissible. The case α = 2
is also included. Recall that without Gaussian component, the condition of having unbounded variation is
tantamount to satisfying the integral condition (see Preliminaries for elaboration)

∫

(0,∞)

(1 ∧ x) ν(dx) = ∞. (1.1)

In fact, if this is the case, then the assumption α > 0 may seem superfluous at first sight, as the integrability
condition (1.1), roughly speaking, requires enough singularity of order at least 1. We may, however, construct
a bit pathological example of a Lévy process of unbounded variation but with lower scaling index strictly
smaller than 1. We refer the reader for details to Remark 1 and Example 2, but we highlight here that such
processes are also included. Let us note in passing that, in some cases, it is easier to impose scaling condition
on the real part of the characteristic exponent instead of on the second derivative of the Laplace exponent.
These two are in fact equivalent, and we state that result in Corollary 6. If any of them is true, then by (4.5)
and (4.6) we have, for some x0 � 0,

x2ϕ′′(x) ≈ Reψ(x), x � x0.

Here ϕ is the Laplace exponent, and ψ is the characteristic exponent of Lévy process. Admittedly, one of the
strengths of Theorem 1 lies in the fact that the expression in the exponent is given explicitly and there is no
hidden unknown constant. Nonetheless, in view of the equation above, we can substitute the Laplace exponent
with characteristic exponent, if necessary, at the cost of losing an exact formula and implicit constant, which
will appear instead.

Next, we restrict ourselves to processes of unbounded variation without Gaussian component and focus on
upper and lower estimates on the transition density. Whereas the former, covered by Theorem 2, requires no
additional assumptions and is independent of the previous results, the latter, consisting of Lemmas 3 and 4,
requires apparently stronger conditions, α � 1 and α > 1, respectively. They provide local and tail lower
estimates on the transition density, and the proof of the latter relies strongly on Theorem 1. As above, we point
out that the condition α � 1 is not very restrictive in the class of processes of unbounded variation. Finally,
we merge all previous results in Theorem 4 to obtain sharp two-sided estimates. They require both lower and
upper scaling condition with indices strictly separated from 1 and 2, that is, 1 < α � β < 2. Let us note here
that in contrast to symmetric processes, where a lot is already known, the general nonsymmetric case is still
under development. It usually requires either implying familiar structure or imposing complex assumptions
on the process; see, for example, [8, 12, 13, 14, 15, 19] and the references therein. Recently, estimates for
subordinators in a general setting were obtained (see, e.g., [3, 4, 7]). Still we are not aware of any paper that
comprehensively treats the transition densities of general spectrally one-sided Lévy processes of unbounded
variation. By inspecting the proofs of Lemmas 3 and 4, Theorem 3, and Proposition 9 we see that covering the
limit cases using our methods is not possible, and it is not very surprising, as in general, they usually require
more sophisticated methods or sometimes even a completely different approach. Nonetheless, the asymptotic
behavior displayed by Theorem 1 covers both α = 1 and α = 2.

The paper is organized as follows. In Section 2, we introduce our setting and prove some basic properties of
the Laplace exponent ϕ. Section 3 is devoted to the proof of the asymptotic behavior of the transition density.
Upper and lower estimates are derived in Section 4, whereas in Section 5, we combine all previous results to
obtain sharp two-sided estimates on the transition density.
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2 Preliminaries

NOTATION. Throughout the paper, c, c1, C1, . . . denote positive constants, which may vary from line to line.
By c = c(a) we mean that the constant c depends only on one parameter a. For two functions f, g : (0,∞) �→
[0,∞], we write f ≈ g if the quotient f/g stays between two positive constants. Analogous rule is applied to
symbols � and �. We set a ∧ b = min{a, b} and a ∨ b = max{a, b}. The Borel sets on R are denoted by
B(R).

LetX = (Xt: t � 0) be a spectrally positive Lévy process, that is, a Lévy process on R with only positive
jumps that is not a subordinator with drift. There is a function ψ : R �→ C such that for all t > 0 and ξ ∈ R,

EeiξXt = e−tψ(ξ).

There are σ � 0, b ∈ R, and σ-finite measure ν on (0,∞) satisfying
∫
(0,∞)(1 ∧ x2) ν(dx) < ∞ such that for

all ξ ∈ R,

ψ(ξ) = σ2ξ2 − iξb−
∫

(0,∞)

(
eiξx − 1− iξx1x<1

)
ν(dx). (2.1)

By ϕ we denote the Laplace exponent ofX, that is,

Ee−λXt = etϕ(λ), λ � 0. (2.2)

By holomorphic extension we can see that

ϕ(λ) = σ2λ2 − bλ+

∫

(0,∞)

(
e−λx − 1 + λx1x<1

)
ν(dx). (2.3)

Let us introduce a symmetric, continuous, and nondecreasing majorant of Reψ,

ψ∗(r) = sup
|z|�r

Reψ(z), r > 0,

and its generalized inverse function ψ−1(s) = sup{r > 0: ψ∗(r) = s}. Then we have

ψ∗(ψ−1(s)
)
= s, ψ−1

(
ψ∗(s)

)
� s.

Note that if
∫
(0,1) x ν(dx) < ∞, then the underlying process has almost surely bounded variation, and we can

rewrite (2.1) as follows:

ψ(ξ) = σ2ξ2 − iξb0 −
∫

(0,∞)

(
eiξx − 1

)
ν(dx),

where b0 = b +
∫
(0,1) x ν(dx). If this is the case, then Xt = Bt + b0t + Tt, where B is a Brownian motion,

and T = (Tt: t � 0) is a subordinator, that is, a one-dimensional Lévy process with nondecreasing paths that
starts from 0. Although it is usually clear from the setting, to avoid unnecessary confusions, we assume in the
whole paper that X is of unbounded variation. By [23, Thms. 21.9, 24.10] this is true either when σ > 0 or
when the following condition is satisfied:

∫

(0,1)

x ν(dx) = ∞. (2.4)

Lith. Math. J., 62(1):43–68, 2022.
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Therefore in this paper, we exclude the case where X is a subordinator with drift. However, the independent
sum of Brownian motion and a subordinator is included. For results concerning heat kernel estimates for
subordinators, we refer the reader to [7] and the references therein.

By differentiating (2.3) twice we can easily deduce that ϕ is convex, and since P(X1 � −1) > 0 (in
view of [23, Thm. 24.10]), we have ϕ(λ) → ∞ as λ → ∞. However, it is not necessarily positive. Indeed,
differentiating (2.2) with respect to λ, setting t = 1, and taking the limit as λ → 0+, we have

EX1 = −ϕ′(0+) = b+

∫

[1,∞)

x ν(dx). (2.5)

We see that EX1 ∈ (−∞,+∞]. In particular, if EX1 > 0, then ϕ < 0 in a neighborhood of the origin. Let
θ0 be the largest root of ϕ. Similarly, let θ1 = inf{s > 0: ϕ′(s) > 0}. We have θ1 � θ0, and the equality may
occur only for the case θ0 = θ1 = 0. Note that there is always a root of ϕ at λ = 0 and, due to convexity of ϕ,
at most one root for λ > 0, precisely, in the case θ1 > 0. By the Wiener–Hopf factorization we get that ϕ is
necessarily of the form

ϕ(λ) = (λ− θ0)φ(λ), (2.6)

where φ is the Laplace exponent of a (possibly killed) subordinator, known as an ascending ladder height
process, with the Lévy measure γ given by

γ
(
(x,∞)

)
= eθ0x

∞∫

x

e−θ0uν
(
(u,∞)

)
du.

See [10, Sect. 4] and the references therein. It is known that φ is a Bernstein function, that is, a function in C∞
such that its derivative is completely monotone (see, e.g., [24] for a thorough analysis).

Following Pruitt [20], we define the concentration functionsK and h by setting

K(r) =
σ2

r2
+

1

r2

∫

(0,r)

s2 ν(ds), r > 0,

and

h(r) =
σ2

r2
+

∫

(0,∞)

(
1 ∧ s2

r2

)
ν(ds), r > 0.

Clearly, h(r) � K(r). Note that by the Fubini–Tonelli theorem

h(r) = 2

∞∫

r

K(s)s−1 ds. (2.7)

Furthermore, by [6, Lemma 4], for all r > 0,

1

24
h
(
r−1

)
� ψ∗(r) � 2h

(
r−1

)
. (2.8)

Moreover, if the Lévy measure ν(dx) has a monotone density ν(x), then obviously, for any r > 0,

rν(r) � K(r) � h(r).
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Let us introduce the notions of almost monotonicity and scaling property, which are ubiquitous in the paper.
First, a function f : [x0,∞) �→ [0,∞) is almost increasing on (x1,∞) for some x1 � x0 if there is c ∈ (0, 1]
such that for all y � x > x1, f(y) � cf(x). Similarly, it is almost decreasing on (x1,∞) if there is C � 1
such that for all y � x > x1, f(y) � Cf(x).

We say that a function f : [x0,∞) �→ [0,∞) has weak lower scaling property at infinity if there are α ∈
R, c ∈ (0, 1], and x1 � x0 such that for all λ � 1 and x > x1, f(λx) � cλαf(x). In such case, we
write f ∈ WLSC (α, c, x1). Analogously, we say that f has a weak upper scaling property at infinity (f ∈
WUSC (β,C, x1)) if there are β ∈ R, C � 1, and x1 � x0 such that for all λ � 1 and x > x1,

f(λx) � Cλβf(x).

A convenient equivalent definition of scaling property is provided in [2]. Namely, f ∈ WLSC(α, c, x1) if and
only if the function (x1,∞) 	 x �→ f(x)x−α is almost increasing. Analogously, f ∈ WUSC (β,C, x1) if and
only if the function (x1,∞) 	 x �→ f(x)x−β is almost decreasing. Finally, a function f : [x0,∞) �→ [0,∞)
has a doubling property on (x1,∞) if there are x1 � x0 and C � 1 such that for all x > x1,

C−1f(x) � f(2x) � Cf(x).

Note here that a nonincreasing function with weak lower scaling property and nondecreasing function with
weak upper scaling property have a doubling property. In particular, ϕ′′ ∈ WLSC(α− 2, c, x0) has a doubling
property.

2.1 Properties of the Laplace exponent ϕ

First, note that by differentiating (2.3) and using the inequality xe−x � 1 − e−x, x > 0, we get that for all
λ � 0,

ϕ(λ) � λϕ′(λ). (2.9)

Furthermore, if θ0 > 0, then −ϕ is positive and concave on (0, θ1). Thus, for all x � θ1 and λ � 1,

−ϕ(x)− (−ϕ(λx)
)
� (1− λ)x

(−ϕ′(λx)
)
.

Thus, by (2.9), for all x � θ1 and λ � 1,

λ
(−ϕ(x)

)
� −ϕ(λx). (2.10)

Proposition 1. There are C1, C2 � 1 such that ϕ′ ∈ WUSC (1, C1, 2θ1 ∧ θ0) and ϕ ∈ WUSC (2, C2, 2θ0).
Furthermore, if θ0 = 0 and ϕ′(0) = 0, then C1 = C2 = 1, that is. for all x > 0 and λ � 1,

ϕ′(λx) � λϕ′(x) and ϕ(λx) � λ2ϕ(x).

Proof. Let λ � 1. First, note that by the monotonicity of ϕ′′, for all x > θ1,

ϕ′(λx)− ϕ′(λθ1) =
λx∫

λθ1

ϕ′′(s) ds = λ

x∫

θ1

ϕ′′(λs) ds � λ

x∫

θ1

ϕ′′(s) ds = λ
(
ϕ′(x)− ϕ′(θ1)

)
.

Thus we get the claim for ϕ′ in the case θ1 = 0 and ϕ′(0) = 0. If θ1 = 0 but ϕ′(0) > 0, then we clearly have
ϕ′(0) � λϕ′(x) for all x > 0 and λ � 1, and we get the claim with C1 = 2. Finally, if θ1 > 0, then it remains
to prove that there is c > 0 such that for all x > 2θ1 ∧ θ0 and λ � 1,

ϕ′(λθ1) � cλϕ′(x). (2.11)

Lith. Math. J., 62(1):43–68, 2022.
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Since ϕ′(θ1) = 0, by the monotonicity of ϕ′′ and ϕ′ we obtain

ϕ′(λθ1) =
λθ1∫

θ1

ϕ′′(s) ds � (λ− 1)θ1ϕ
′′(θ1) � λθ1ϕ

′′(θ1) � cλϕ′(x),

where c = (θ1ϕ
′′(θ1))/ϕ′(2θ1 ∧ θ0), and (2.11) follows. Now, with the first part proved, a similar argument

applies to the second and therefore is omitted. 
�
Proposition 2. There is C = C(ϕ) � 1 such that for all x > 2θ0, we have

ϕ(x) � xϕ′(x) � Cϕ(x). (2.12)

Furthermore, for all x > 2θ1,

2ϕ′(x) � xϕ′′(x).

Proof. We first note that the first inequality of (2.12) follows from (2.9). Let x > 2θ0 and 1 � b < a. By the
monotonicity of ϕ′ we have ϕ(ax) − ϕ(bx) � x(a − b)ϕ′(bx). Put b = 1 and a = 2. By Proposition 1 we
have

xϕ′(x)
ϕ(x)

� ϕ(2x)

ϕ(x)
− 1 � 4C̃ − 1,

where C̃ is taken from Proposition 1, and the first part follows. For the proof of the second part, it remains to
note that by the monotonicity of ϕ′′, for x > 2θ1 we have

ϕ′(x)
xϕ′′(x)

� ϕ′(x)− ϕ′(θ1)
xϕ′′(x)

=
1

x

x∫

θ1

ϕ′′(s)
ϕ′′(x)

ds � 1− θ1
x
.

Thus for x > 2θ1, we get the claim. 
�
Corollary 1. There is c = c(ϕ) > 0 such that for all x ∈ (0, θ0/2) ∪ (2θ0,∞),

∣∣ϕ(x)∣∣ � cx2ϕ′′(x).

The implied constant c depends only on θ0.

Proof. In view of Proposition 2, it remains to prove that if θ0 > 0, then there is c > 0 such that for all
x < θ0/2,

−ϕ(x) � cx2ϕ′′(x). (2.13)

From (2.6) we have ϕ′′(x) = 2φ′(x) + (θ0 − x)(−φ′′(x)). By [11, Lemma 3.9.34], for any n ∈ N+,

φ(λ) � (−1)n+1

n!
λnφ(n)(λ), λ > 0.

Hence, for x < θ0/2,

−ϕ(x) = (θ0 − x)φ(x) � φ(x) � xφ′(x) � x2φ′(x). (2.14)

Moreover, (θ0 − x)φ(x) � (θ0 − x)x2(−φ′′(x)), which, together with (2.14), implies (2.13), and the claim
follows. 
�
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Now we deduce some properties of ϕ and its derivatives following from scaling properties.

Proposition 3. Suppose ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Assume that
ϕ′(θ1) = 0. Then ϕ′ ∈ WLSC(α− 1, c, x0 ∨ θ1) and ϕ ∈ WLSC(α, c, x0 ∨ θ0).

Proof. We proceed as in the proof of Proposition 1. Let λ � 1 and x > θ1∨x0. By the weak scaling property
of ϕ′′ we have

ϕ′(λx) � ϕ′(λx)− ϕ′(λ(θ1 ∨ x0)
)
=

λx∫

λ(θ1∨x0)

ϕ′′(s) ds = λ

x∫

θ1∨x0

ϕ′′(λs) ds

� cλα−1

x∫

θ1∨x0

ϕ′′(s) ds = cλα−1
(
ϕ′(x)− ϕ′(θ1 ∨ x0)

)
,

and the claim follows for the case θ1 � x0. If θ1 < x0, then by differentiating (2.3) we conclude that
ϕ′(λ) → ∞ as λ → ∞. Since it is also monotone, there is x1 > x0 such that ϕ′(x) � 2ϕ′(x0) for all
x > x1, and, consequently, ϕ′ ∈ WLSC(α− 1, c̃, x1) for some c̃ ∈ (0, 1]. Finally, using the continuity and
positivity of ϕ′, we can extend the scaling area to (x0,∞) at the expense of worsening the constant. The proof
of the weak scaling property of ϕ follows by an analogous argument. 
�
Proposition 4. Let ϕ be the Laplace exponent of a spectrally positive Lévy process of infinite variation such
that ϕ′(θ1) = 0. Then ϕ′ ∈ WLSC (τ, c, x0) for some c ∈ (0, 1], x0 � θ1, and τ > 0 if and only if
ϕ′′ ∈ WLSC (τ − 1, c′, x1) for some c′ ∈ (0, 1] and x1 � 0. The first condition implies the latter with
x1 = x0, while the latter yields the first with x0 = x1 ∨ θ1. Furthermore, if ϕ′ ∈ WLSC(τ, c, x0), then there
is C � 1 such that for all x > x0 ∨ 2θ1,

C−1ϕ′(x) � xϕ′′(x) � Cϕ′(x). (2.15)

Proof. Assume first that ϕ′′ ∈ WLSC(τ − 1, c′, x1). We claim that (2.15) holds. In view of Proposition 2, it
suffices to prove the first inequality. First, let x > 2θ1 ∨ x1. By the weak scaling property of ϕ′′ we have

ϕ′(x)− ϕ′(θ1 ∨ x1)

xϕ′′(x)
=

1

x

x∫

θ1∨x1

ϕ′′(s)
ϕ′′(x)

ds � 1

c′xτ

x∫

θ1∨x1

sτ−1 ds � 1

c′τ
.

Thus we get (2.15) if x1 � θ1. If this is not the case, note that since ϕ′′ ∈ WLSC (τ − 1, c, x1) and τ > 0,
the function (x1,∞) 	 x �→ xϕ′′(x) is almost increasing. Thus for x > 2x1 > 0, xϕ′′(x) � c2x1ϕ

′′(2x1).
Since ϕ′′ is continuous and positive on [x1, 2x1], we get that xϕ′′(x) � 1 for all x > x1, and (2.15) follows.
The scaling property of ϕ′ is now an immediate consequence.

Now assume that ϕ′ ∈ WLSC (τ, c, x0). By the monotonicity of ϕ′′, for 0 < b < a,

ϕ′(ax)− ϕ′(bx)
ϕ′(x)

� x(a− b)ϕ′′(bx)
ϕ′(x)

.

Put b = 1. Then by the scaling property of ϕ′ we have

x(a− 1)ϕ′′(x)
ϕ′(x)

� ϕ′(ax)
ϕ′(x)

− 1 � caτ − 1

for all x > x0. Thus for a = 21/τ c−1/τ , we obtain that ϕ′(x) � xϕ′′(x) for all x > x0, which, combined with
Proposition 2, yields (2.15), and the scaling property of ϕ′′ follows. This completes the proof. 
�
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Combining Propositions 2, and 4, we immediately obtain the following corollary.

Corollary 2. Let ϕ be the Laplace exponent of a spectrally positive Lévy process of infinite variation such
that ϕ′(θ1) = 0. Then ϕ ∈ WLSC(α, c, x0) for some c ∈ (0, 1], x0 � θ0, and α > 1 if and only if
ϕ′′ ∈ WLSC(α− 2, c′, x1) for some c′ ∈ (0, 1] and x1 � 0. The first condition implies the latter with
x1 = x0, while the latter yields the first with x0 = x1 ∨ θ0. Furthermore, if ϕ ∈ WLSC(α, c, x0), then there
is C � 1 such that for all x > x0 ∨ 2θ0,

C ′−1ϕ(x) � x2ϕ′′(x) � C ′ϕ(x).

Lemma 1. Suppose ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. There is a constant
C > 0 such that for all x > x0,

Cϕ′′(x) � σ2 +

∫

(0,1/x)

s2 ν(ds).

Proof. First, assume that σ = 0; the extension to any σ is immediate. Let f : (0,∞) �→ R be the function
defined as

f(t) =

∫

(0,t)

s2 ν(ds).

Note that by the Fubini–Tonelli theorem, for x > 0, we have

Lf(x) =
∞∫

0

e−xt

∫

(0,t)

s2 ν(ds) dt =

∫

(0,∞)

s2
∞∫

s

e−xt dt ν(ds) = x−1ϕ′′(x).

Since f is nondecreasing, for any s > 0,

ϕ′′(x) = xLf(x) �
∞∫

s

e−tf

(
t

x

)
dt � e−sf

(
s

x

)
.

Hence for any u > 2,

ϕ′′(x) =
u∫

0

e−sf

(
x

s

)
ds+

∞∫

u

e−sf

(
x

s

)
ds � f

(
u

x

)
+

∞∫

u

e−s/2ϕ′′
(
x

2

)
ds.

Therefore setting x = λu > 2x0, by the weak scaling property of ϕ′′ we have

f

(
1

λ

)
� ϕ′′(uλ)− 2e−u/2ϕ′′

(
uλ

2

)
�

(
2α−2c− 2e−u/2

)
ϕ′′

(
uλ

2

)
.

At this stage, we choose u > 2 such that 2α−2c − 2e−u/2 � 2−2c. Then again, by the weak scaling property
of ϕ′′, for λ > x0,

f

(
1

λ

)
� c2−2ϕ′′

(
uλ

2

)
�

(
c

u

)2

ϕ′′(λ),

which ends the proof. 
�
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Since

K

(
1

x

)
� ex2ϕ′′(x),

by Lemma 1 we immediately obtain the following corollary.

Corollary 3. Suppose ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then there is C � 1
such that for all x > x0,

Cx2ϕ′′(x) � K

(
1

x

)
� ex2ϕ′′(x).

Before embarking on our main results, let us prove a key lemma, which provides control on the real part of
the holomorphic extension of the Laplace exponent.

Lemma 2. Suppose that ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then there exists
C > 0 such that for all w > x0 and λ ∈ R,

Re
(
ϕ(w) − ϕ(w + iλ)

)
� Cλ2

(
ϕ′′(|λ| ∨ w

))
.

Proof. By the integral representation (2.3), for λ ∈ R, we have

Re
(
ϕ(w) − ϕ(w + iλ)

)
= σ2λ2 +

∫

(0,∞)

(1− cos λs)e−ws ν(ds).

In particular, we see that the expression above is symmetric in λ. Thus it suffices to consider λ > 0. Moreover,
we infer that

Re
(
ϕ(w)− ϕ(w + iλ)

)
� λ2

(
σ2 +

∫

(0,1/λ)

s2e−ws ν(ds)

)
. (2.16)

By Lemma 1 we obtain, for λ � w,

Re
(
ϕ(w) − ϕ(w + iλ)

)
� λ2

(
σ2 +

∫

(0,1/λ)

s2 ν(ds)

)
� λ2ϕ′′(λ).

If w > λ > 0, then by (2.16)

Re
(
ϕ(w) − ϕ(w + iλ)

)
� λ2

(
σ2 +

∫

(0,1/w)

s2e−ws ν(ds)

)
� e−1λ2

(
σ2 +

∫

(0,1/w)

s2 ν(ds)

)
,

which, together with Lemma 1, ends the proof. 
�

3 Asymptotics

Theorem 1. Let X be a spectrally positive Lévy processes of unbounded variation with Laplace exponent ϕ.
Suppose that ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then the probability
distribution ofXt is absolutely continuous for all t > 0. If we denote its density by p(t, ·), then for each ε > 0,
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there isM0 > 0 such that
∣∣p(t,−tϕ′(w)

)√
2πtϕ′′(w) exp

{
t
(
wϕ′(w) − ϕ(w)

)}− 1
∣∣ � ε,

provided that w > x0 and tw2ϕ′′(w) > M0.

Remark 1. Suppose σ = 0. It is known (see, e.g., [8, Lemma 2.9]) that the scaling property with the scaling
index α � 1 implies unbounded variation. However, Theorem 1 holds in greater generality. Namely, there
are processes of unbounded variation that satisfy the scaling condition with α strictly smaller than 1, and we
may construct a Lévy measure that satisfies (2.4) and whose corresponding second derivative of the Laplace
exponent has lower and upper Matuszewska indices of orders −3/2 and −1/2, respectively. Thus the lower
scaling condition for ϕ′′ holds only for α < 1. An example of such a process is constructed in Example 2. We
also note that the Gaussian component is not excluded.

Proof of Theorem 1. Let x = −tϕ′(w) andM > 0. We first show that

p(t, x) =
1

2π
· e

−Θ(x/t,0)√
tϕ′′(w)

∫

R

exp

{
−t

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))}
du, (3.1)

provided that w > x0 and tw2ϕ′′(w) > M , where for λ > 0, we have set

Θ

(
x

t
, λ

)
= −

(
ϕ(w + iλ) +

x

t
(w + iλ)

)
. (3.2)

To this end, we recall that, by the Mellin inversion formula, if the limit

lim
L→∞

1

2πi

w+iL∫

w−iL

etϕ(λ)+λx dλ exists, (3.3)

then the probability distribution of Xt has a density p(t, ·), and

p(t, x) = lim
L→∞

1

2πi

w+iL∫

w−iL

etϕ(λ)+λx dλ.

Using change of variables twice, we obtain

1

2πi

w+iL∫

w−iL

etϕ(λ)+λx dλ =
1

2π

L∫

−L

e−tΘ(x/t,λ) dλ

=
e−tΘ(x/t,0)

2π

L∫

−L

exp

{
−t

(
Θ

(
x

t
, λ

)
−Θ

(
x

t
, 0)

)}
dλ

=
e−tΘ(x/t,0)

2π
√

tϕ′′(w)

L
√

tϕ′′(w)∫

−L
√

tϕ′′(w)

exp

{
−t

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))}
du.
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Next, we note that there is C > 0, not depending onM , such that for all u ∈ R,

tRe

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))
� C

(
u2 ∧ (|u|αM1−α/2

))
, (3.4)

provided that w > x0 and tw2ϕ′′(w) > M . Indeed, by (3.2) and Lemma 2, for w > x0, we get

tRe

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))
� |u|2

ϕ′′(w)
ϕ′′

( |u|√
tϕ′′(w)

∨ w

)
,

and (3.4) follows by the scaling property of ϕ′′. Hence (3.3) follows from the dominated convergence theorem.
Consequently, Mellin’s inversion formula yields (3.1).

Next, we prove that for each ε > 0, there is M0 > 0 such that

∣∣∣∣
∫

R

exp

{
−t

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))}
du−

∫

R

e−u2/2 du

∣∣∣∣ � ε, (3.5)

provided that w > x0 and tw2ϕ′′(w) > M0. In view of (3.4), taking M0 > 1 sufficiently large, we get

∣∣∣∣
∫

|u|�M1/4
0

exp

{
−t

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))}
du

∣∣∣∣ �
∫

|u|�M1/4
0

e−C|u|α du � ε (3.6)

and ∫

|u|�M
1/4
0

e−u2/2 du � ε. (3.7)

Next, note that there is C > 0 such that
∣∣∣∣t
(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))
− 1

2
|u|2

∣∣∣∣ � C|u|3M−1/2
0 . (3.8)

Indeed, since ∂λΘ(x/t, 0) = 0, by Taylor’s formula we get

∣∣∣∣t
(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))
− 1

2
|u|2

∣∣∣∣
=

∣∣∣∣12∂2
λΘ

(
x

t
, ξ

) |u|2
ϕ′′(w)

− 1

2
|u|2

∣∣∣∣ = |u|2
2ϕ′′(w)

∣∣ϕ′′(w)− ϕ′′(w + iξ)
∣∣, (3.9)

where ξ is a number satisfying |ξ| � |u|/√tϕ′′(w). We also have

∣∣ϕ′′(w)− ϕ′′(w + iξ)
∣∣ �

∫

(0,∞)

s2e−ws
∣∣e−iξs − 1

∣∣ ν(ds) � 2|ξ|
∫

(0,∞)

s3e−ws ν(ds)

= 2|ξ|(−ϕ′′′(w)
)
.
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Since ϕ′′ is doubling, by [7, Prop. 2.1], for w > x0, ϕ′′(w) � w(−ϕ′′′(w)), which, together with the estimate
on |ξ|, yields

∣∣ϕ′′(w) − ϕ′′(w + iξ)
∣∣ � C

|u|√
tϕ′′(w)

· ϕ
′′(w)
w

� CM
−1/2
0 |u|ϕ′′(w)

if only tw2ϕ′′(w) > M0, proving (3.8) through (3.9). Finally, since for any z ∈ C, |ez − 1| � |z|e|z|, (3.8)
implies

∣∣∣∣
∫

|u|<M
1/4
0

exp

{
−t

(
Θ

(
x

t
,

u√
tϕ′′(w)

)
−Θ

(
x

t
, 0

))}
du−

∫

|u|<M
1/4
0

e−u2/2 du

∣∣∣∣

� CM
−1/2
0

∫

|u|<M1/4
0

exp

{
−1

2
|u|2 + CM

−1/2
0 |u|3

}
|u|3 du � ε,

provided that M0 is sufficiently large, which, together with (3.6) and (3.7), completes the proof of (3.5), and
the theorem follows. 
�

Remark 2. If x0 = 0, then the constant M0 in Theorem 1 depends only on α and c. If x0 > 0, then it also
depends on

sup
x∈[x0,2x0]

x(−ϕ′′′(x))
ϕ′′(x)

.

Corollary 4. Suppose that ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then there is
M0 > 0 such that

p(t, x) ≈ 1√
tϕ′′(w)

exp
{−t

(
wϕ′(w)− ϕ(w)

)}

uniformly on the set
{
(t, x) ∈ R+ × R: x < −tϕ′(x0) and tw2ϕ′′(w) > M0

}
,

where w = (ϕ′)−1(−x/t).

Corollary 5. Suppose that ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 1. Assume also
that ϕ′(θ1) = 0. Then there is M > 0 such that

p(t, x) ≈ 1√
tϕ′′(w)

exp
{−t

(
wϕ′(w)− ϕ(w)

)}

uniformly on the set
{
(t, x) ∈ R+ × R: − xϕ−1

(
1

t

)
> M and 0 � tϕ(x0 ∨ 2θ0) � 1

}
, (3.10)

where w = (ϕ′)−1(−x/t).

Remark 3. The condition ϕ′(θ1) = 0 covers the caseEX1 ∈ [0,∞]. For the case EX1 > 0, it is not, however,
optimal, because we do not treat positive x that may be in the area from Corollary 4. We also note that α = 2
is included.
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Proof. We verify that for (t, x) belonging to the set (3.10), we have w > x0 and wtϕ′′(w) > M0, where
w = (ϕ′)−1(−x/t). Let M � C1C2, where C1 and C2 are taken from Propositions 2 and 1, respectively. By
Propositions 2 and 1 we have

−x

t
> M

1

tϕ−1(1/t)
= M

ϕ(ϕ−1(1/t))

ϕ−1(1/t)
� C1

(
C−1
1 C−1

2 M
)
ϕ′
(
ϕ−1

(
1

t

))

� ϕ′
(
C−1
1 C−1

2 Mϕ−1

(
1

t

))
.

Thus

w = (ϕ′)−1

(
−x

t

)
> C−1

1 C−1
2 Mϕ−1

(
1

t

)
. (3.11)

In particular, w > x0 ∨ 2θ0. Next, by Corollary 2 there is c1 ∈ (0, 1] such that tw2ϕ′′(w) � c1tϕ(w). Since,
by Proposition 3, there is c2 ∈ (0, 1] such that ϕ ∈ WLSC (α, c2, x0 ∨ θ0), we obtain

tϕ(w) � c2

(
w

ϕ−1(1/t)

)α

.

In view of (3.11), we get that

tw2ϕ′′(w) > c1c2
(
C−1
1 C−1

2 M
)α

> M0,

provided thatM is sufficiently large. Applying Theorem 1 yields the desired result. 
�

4 Upper and lower estimates on the density

In this section, we assume that ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. By
Theorem 1 the probability distributionXt has a density p(t, ·). Let us define Φ(x) = x2ϕ′′(x), x > 0. Clearly,
Φ ∈ WLSC (α, c, x0). By Φ−1 we denote its right-sided inverse, that is,

Φ−1(s) = sup
{
r > 0: Φ∗(r) = s

}
,

where Φ∗(r) = sup0<s�r Φ(s). Clearly, Φ−1 is nondecreasing. Similarly to ψ−1, we have

Φ∗(Φ−1(s)
)
= s, Φ−1

(
Φ∗(s)

)
� s. (4.1)

Note that since for all x > 0 and λ � 1,

Φ(λx) � λ2Φ(x),

we obtain

Φ∗(λx) � λ2Φ∗(x). (4.2)

Furthermore, for any r > 0, let u be such that Φ−1(r) = u. Then by (4.2) and (4.1), for any λ � 1,

Φ−1(λr) = Φ−1
(
λΦ∗(u)

)
� Φ−1

(
Φ∗(

√
λu)

)
�

√
λu.

Thus, for any r > 0 and λ � 1,

Φ−1(λr) �
√
λΦ−1(r). (4.3)

Let us start with a following observation on the comparability of concentration functionsK and h.
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Proposition 5. Suppose ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then there is
C � 1 such that for all 0 < r < 1/x0,

K(r) � h(r) � CK(r).

Proof. SinceK(r) � h(r), it suffices to show that there is C � 1 such that for all 0 < r < 1/x0,

h(r) � CK(r).

In view of (2.7), we have

h(r) = 2

1/x0∫

r

K(s)
ds

s
+ 2

∞∫

1/x0

K(s)
ds

s
. (4.4)

By Corollary 3 we haveK(r) ≈ Φ(1/r) for 0 < r < 1/x0, which, together with the scaling property, implies

1/x0∫

r

K(s)
ds

s
� K(r), 0 < r <

1

x0
.

That finishes the proof for the case x0 = 0. If x0 > 0, then we observe that we also have K(r) � 1 for all
0 < r < 1/x0. Since the second term on the right-hand side of (4.4) is constant, the proof is finished. 
�

In view of (2.8), Proposition 5, and Corollary 3, we have

ψ∗(x) ≈ h

(
1

x

)
≈ K

(
1

x

)
≈ Φ(x) (4.5)

for all x > x0. In particular, ψ∗ ∈ WLSC (α, c, x0) for some c ∈ (0, 1]. Furthermore, for all x > x0,

ψ∗(x) � K

(
1

x

)
= x2

∫

(0,1/x)

s2 ν(ds) �
∫

(0,1/x)

(1− cos sx) ν(ds).

Thus, for all x > x0,

ψ∗(x) � Reψ(x). (4.6)

As a corollary, we now present the aforementioned equivalence between the scaling property of the second
derivative of the Laplace exponent and the real part of the characteristic exponent.

Corollary 6. We have ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0 if and only if
Reψ ∈ WLSC(α, c̃, x0) for some c̃ ∈ (0, 1].

Proof. In view of (4.5) and (4.6), it remains to prove the second implication in the corollary. We first prove
that ψ∗ ∈ WLSC (α, c1, x0) for some c1 ∈ (0, 1]. Let x � x0 and λ � 1. By the scaling property of Reψ we
have

ψ∗(λx) = max
{
ψ∗(λx0), sup

λx0<x�λx
Reψ(r)

}
� max

{
ψ∗(x0), λα sup

x0<r�x
Reψ(r)

}
.
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Now note that since limr→∞Reψ(r) = ∞, there is x1 � x0 such that Reψ(x) � ψ∗(x0) for all x � x1, and,
consequently, for all λ � 1 and x � x1,

ψ∗(λx) � max
{
ψ∗(x0), λα sup

r�x
Reψ(r)

}
= λαψ∗(x),

and by standard extension argument we get the scaling property of ψ∗, as desired.
It remains to notice that, by the integral representation of ϕ′′,

x−2K

(
1

x

)
� ϕ′′(x) � x−2h

(
1

x

)
.

Thus [8, Lemma 2.3] yields the claim. 
�
Proposition 6. Suppose ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then for all
r > 2h(1/x0),

1

h−1(r)
≈ ψ−1(r).

Furthermore, there is C � 1 such that for all λ � 1 and r > 2h(1/x0),

ψ−1(λr) � Cλ1/αψ−1(r).

Proof. Follows immediately by (2.8) and the scaling property of h−1 provided by Proposition 5 and [8,
Lemma 2.3]. 
�
Proposition 7. Suppose ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. Then for all
x > x0,

ψ∗(x) ≈ Φ∗(x), (4.7)

and for all r > Φ(x0),

ψ−1(r) ≈ Φ−1(r). (4.8)

Furthermore, there is C � 1 such that for all λ � 1 and r > Φ(x0),

Φ−1(λr) � Cλ1/αΦ−1(r). (4.9)

Proof. The first inequality of (4.7) follows immediately from (4.5). If x0 = 0, then the second inequality is
also a consequence of (4.5). If this is not the case, then note that for x > x0,

Φ∗(x) = max
{

sup
0<y�x0

Φ(y), sup
x0<y�x

Φ(y)
}
� max

{
Φ∗(x0), ψ∗(x)

}

�
(
1 +

Φ∗(x0)
ψ∗(x0)

)
ψ∗(x),

and the first part is proved. Furthermore, it follows that ψ−1(C−1r) � Φ−1(r) � ψ−1(Cr) for all r >
Cψ∗(x0). Hence, by Proposition 6, Φ−1(r) ≈ ψ−1(r) for all r > Cmax{ψ∗(x0), 2h(1/x0)}, and (4.8)
follows by standard extension argument. The scaling property of Φ−1 is an easy consequence of (4.8) and
Proposition 6. 
�

Since Φ � Φ∗, by Proposition 7 and (4.5) we immediately obtain the following:
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Remark 4. Suppose ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 0. There is c1 ∈ (0, 1]
such that for all x > x0,

c1Φ
∗(x) � Φ(x) � Φ∗(x).

Proposition 8. Suppose that ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 1. Assume also
that ϕ′(θ1) = 0. Then for all x > x0 ∨ 2θ0,

Φ∗(x) ≈ ϕ(x),

and for all r > Φ(x0 ∨ 2θ0),

Φ−1(r) ≈ ϕ−1(r).

Proof. Corollary 2 and Remark 4 yield the first part. The proof of the second is omitted due to similarity to
the proof of Proposition 7. 
�

4.1 Upper estimates

From this moment on, we additionally assume that σ = 0. As explained in Preliminaries, that is equivalent to
saying that X satisfies the integral condition (1.1). Suppose ϕ′′ ∈ WLSC (α− 2, c, x0). Recall that since ϕ′′
is positive and continuous on (0,∞), if x0 > 0, then at the cost of worsening the constant c, we can extend the
area of comparability to any x1 ∈ (0, x0) so that ϕ′′ ∈ WLSC(α− 2, c′, x1), where c′ depends on x1. Thus
if θ1 > 0 and x0 > 0, then we may and do assume that x0 is shifted so that x0 � θ1. With this in mind, let us
define η : [0,∞) �→ [0,∞] as

η(s) =

⎧⎪⎨
⎪⎩
∞ if s = 0,

s−1Φ∗(1s ) if 0 < s < x−1
0 ,

As−1|ϕ(1s )| if x−1
0 � s,

where A = Φ∗(x0)/|ϕ(x0)|.
Let us comment on the function η. As we will see in Theorem 2, it will play a role of majorant on the

transition density. In such a setting, it is clear that η must be nonnegative. Moreover, in the proof, we will need
it to be monotone. Now, if θ1 > 0, then we know that ϕ is indeed monotone for x ∈ (0, θ1) but also negative.
Thus a change of sign is required. On the other hand, if θ1 = 0, then ϕ � 0, and there is no need for absolute
value and shifting of x0. In general, however, ϕ may be negative in a neighborhood of the origin and change
sign at θ0, so we have to be careful in expanding the scaling area to the proper place. Note that by Corollary 1
and Remark 4, A � c′, where c′ depends only on θ1.

Denote

br = b+

∫

(0,∞)

s(1s<r − 1s<1) ν(ds).

Theorem 2. LetX be a spectrally positive Lévy process of infinite variation with Lévy–Khintchine exponent ψ
and Laplace exponent ϕ. Suppose that σ = 0 and ϕ′′ ∈ WLSC (α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and
α > 0. We also assume that ν(dx) has an almost monotone density ν(x). Then the probability distribution of
Xt has a density p(t, ·). Moreover, there is C > 0 such that for all t ∈ (0, 1/Φ(x0)) and x ∈ R,

p
(
t, x+ tb1/ψ−1(1/t)

)
� Cmin

{
Φ−1

(
1

t

)
, tη

(|x|)
}
.
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Proof. In the first step, we verify the assumptions of [9, Thm. 2.1]. First, note that for any λ > 0,

ϕ′′(λ) �
1/λ∫

0

s2e−λsν(s) ds � ν

(
1

λ

)
λ−3, (4.10)

and thus, by Corollary 1, ν(x) � η(x) for all x > 0. Since η is nonincreasing, we conclude that the first
assumption is satisfied. Next, we claim that η has a doubling property on (0,∞). Indeed, since ϕ′′ is nonin-
creasing, by Remark 4, for 0 < s < x−1

0 , we have

η

(
1

2
s

)
≈ 4s−3ϕ′′

(
2

s

)
� s−3ϕ′′

(
1

s

)
≈ η(s).

This completes the argument for the case x0 = 0. If x0 > 0, then Proposition 1 (or (2.10) if θ0 > 0) yields the
claim for s > 2x−1

0 . Lastly, the function [x0/2, x0] 	 x �→ Φ∗(2x)/|ϕ(x)| is continuous and hence bounded.
Therefore, since s∧ |x| − |x|/2 � s/2 for s > 0 and x ∈ R, the doubling property of η and (4.5) imply the

second assumption. Finally, since ψ∗ has the weak lower scaling property and satisfies (4.6), by [8, Thm. 3.1]
and Proposition 6 there are C > 0 and t1 ∈ (0,∞] such that for all t ∈ (0, t1),

∫

R

e−tReψ(ξ) dξ � Cψ−1

(
1

t

)

with t1 = ∞ whenever x0 = 0. Note that if t1 < 48/Φ(x0), then using the positivity and monotonicity, we
can expand the estimate for t1 � t < 48/Φ(x0), and the first step is finished.

Therefore by [9, Thm. 2.1] there is C > 0 such that for all t ∈ (0, 1/Φ(x0)) and x ∈ R,

p
(
t, x+ tb1/ψ−1(1/t)

)
� Cψ−1

(
1

t

)
min

{
1, t

(
ψ−1

(
1

t

))−1

η
(|x|)+

(
1 + |x|ψ−1

(
1

t

))−3}
.

Now it suffices to prove that

ψ−1(1/t)

(1 + |x|ψ−1(1/t))3
� tη

(|x|) (4.11)

whenever tη(|x|) � (A/c′)Φ−1(1/t).
First, note that for any ε ∈ (0, 1], the condition tη(|x|) � (Aε/c′)Φ−1(1/t) implies

tΦ∗
(

1

|x|
)

� ε|x|Φ−1

(
1

t

)
. (4.12)

Indeed, by Corollary 1 and Remark 4 we have |x|η(|x|) � A
c′Φ

∗(1/|x|), which entails (4.12). Furthermore, we
have ε1/3|x|Φ−1(1/t) � 1, since otherwise by (4.2) we would have

1 < tΦ∗
(

1

ε1/3|x|
)

� 1

ε2/3
tΦ∗

(
1

|x|
)
,

which in turn would yield

ε1/3|x|Φ−1

(
1

t

)
< ε−2/3tΦ∗

(
1

|x|
)
,

contrary to (4.12).
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Now suppose tη(|x|) � (A/c′)Φ−1(1/t). Since |x|Φ−1(1/t) � 1, by (4.2) we infer that

tΦ∗(1/|x|) = Φ∗(1/|x|)
Φ∗(|x|Φ−1(1/t) · 1/|x|) � 1

(|x|Φ−1(1/t))2
� |x|Φ−1(1/t)

(1 + |x|Φ−1(1/t))3
.

It remains to notice that Proposition 7 entails (4.11), and the proof is completed. 
�
Remark 5. In Theorem 2, we may replace b1/ψ−1(1/t) by b1/Φ−1(1/t). Indeed, if 0 < r1 � r2 < 1/Φ(x0), then
by (4.5) and Proposition 7 we have

∣∣br1 − br2
∣∣ �

∫

(r1,r2]

s ν(ds) � r−1
1 r22h(r2) � r−1

1 r22ψ
∗(r−1

2

)
� r−1

1 r22Φ
∗(r−1

2

)
.

Thus, again by Proposition 7, there is C � 1 such that for all t ∈ (0, 1/Φ(x0)),

∣∣b1/ψ−1(1/t) − b1/Φ−1(1/t)

∣∣ � C

tΦ−1(1/t)
.

Now recall that if tη(|x|) � (Aε/c′)Φ−1(1/t), then by the proof of Theorem 2 we have |x|Φ−1(1/t) � ε−1/3.
Therefore by taking ε = (2C)−3 we obtain |x| � 2C/Φ−1(1/t), and by the monotonicity and doubling
property of η we conclude that

η
(∣∣x+ t

(
b1/ψ−1(1/t) − b1/Φ−1(1/t)

)∣∣) � η
(|x|).

4.2 Lower estimates

We begin with an estimate, which, together with Theorem 2, will allow us to localize the supremum of p(t, ·).
Note that here we require the scaling condition with α � 1.

Lemma 3. LetX be a spectrally positive Lévy process of infinite variation with Laplace exponent ϕ. Suppose
that σ = 0 and ϕ′′ ∈ WLSC(α− 2, c, x0) for some c ∈ (0, 1], x0 � 0, and α � 1. Then there is M0 > 1
such that for allM � M0 and ρ1, ρ2 > 0, there exists C > 0 such that for all t ∈ (0, 1/Φ(x0)) and any x ∈ R

satisfying

− ρ1
Φ−1(1/t)

� x+ tϕ′
(
Φ−1

(
M

t

))
� ρ2

Φ−1(1/t)
,

we have

p(t, x) � CΦ−1

(
1

t

)
.

Proof. Without loss of generality, we may assume that b = 0. By [8, Thm. 5.4], for any θ > 0, there is c > 0
such that for all t ∈ (0, 1/Φ(x0)) and |x| � θh−1(1/t),

p
(
t, x+ tbh−1(1/t)

)
� c

(
h−1

(
1

t

))−1

.

Since by Propositions 6 and 7 we have h−1(1/t) ≈ 1/Φ−1(1/t) for all t ∈ (0, 1/Φ(x0)), it suffices to prove
that ∣∣∣∣tϕ′

(
Φ−1

(
M

t

))
+ tbh−1(1/t)

∣∣∣∣ � c1
Φ−1(1/t)
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for some c1 > 0. To this end, note that for λ1, λ2 > 0, we have

∣∣ϕ′(λ1) + bλ2

∣∣ =
∣∣∣∣∣

∞∫

0

s
(
1s<λ2

− e−λ1s
)
ν(ds)

∣∣∣∣∣ � λ1

λ2∫

0

s2 ν(ds) +

∞∫

λ2

se−λ1s ν(ds)

� λ1λ
2
2K(λ2) + λ−1

1 h(λ2).

Now put λ1 = Φ−1(M/t) and λ2 = h−1(1/t). Then using again Propositions 6 and 7, we infer that

∣∣ϕ′(λ1) + bλ2

∣∣ � 1

tΦ−1(1/t)
,

and the proof is completed. 
�
Now we treat the right tail of the transition density. In general, based on results concerning various kinds

of Lévy processes, we expect the decay to be expressed in terms of Lévy measure. For instance, in the case of
unimodal Lévy processes satisfying some scaling conditions, it is known [2, Thm. 21 and Corollary 23] that
p(t, x) ≈ p(t, 0) ∧ tν(x). In the nonsymmetric case, a similar right tail decay is displayed by the transition
densities of subordinators (see, e.g., [7]). This is also the case for spectrally one-sided Lévy processes, as the
following lemma states. See also Theorem 4 and Remark 6 for comments on two-sided estimate.

Lemma 4. LetX be a spectrally positive Lévy process of infinite variation with Laplace exponent ϕ. Suppose
that σ = 0 and ϕ′′ ∈ WLSC (α− 2, c, x0) for some x0 � 0, c ∈ (0, 1], and α > 1. We also assume that the
Lévy measure ν(dx) has an almost monotone density ν(x). Then the probability distribution ofX has a density
p(t, ·). Moreover, there are ρ0 > 0 andC > 0 such that for all t ∈ (0, 1/Φ(x0∨2θ1)) and x � ρ0/(Φ

−1(1/t)),
we have

p(t, x) � Ctν(x).

Proof. Without loss of generality, we may and do assume that b = 0. Let λ > 0. We decompose the Lévy
measure ν(dx) as follows: let ν1(dx) = ν1(x) dx and ν2(dx) = ν2(x) dx, where

ν1(x) =
1

2
ν(x)1[λ,∞)(x) and ν2(x) = ν(x)− ν1(x).

For u > 0, we set

ϕ1(u) =

∞∫

0

(
e−us − 1

)
ν1(s) ds,

ϕ2(u) =

∞∫

0

(
e−us − 1 + us1s<1

)
ν2(s) ds+ u

1∫

0

sν1(s) ds = ϕ(u)− ϕ1(u). (4.13)

Let X(j) be a spectrally positive Lévy processes having the Laplace exponent ϕj , j ∈ {1, 2}. First, we note
that ν/2 � ν2 � ν. Thus, for every u > 0,

1

2
ϕ′′(u) � ϕ′′

2(u) � ϕ′′(u),

and, consequently,
1

2
Φ(u) � Φ2(u) � Φ(u). (4.14)
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In particular, since ϕ′′ ∈ WLSC (α− 2, c, x0), by Theorem 1 the random variablesXt andX
(2)
t are absolutely

continuous for all t > 0. By p(t, ·) and p(2)(t, ·)we denote their densities. Note thatX(1) is in fact a compound
Poisson process. If we denote its probability distribution by P (1)

t (dx), then by [23, Rem. 27.3]

P
(1)
t (dx) � te−ν1(R)ν1(x) dx. (4.15)

Note that if λ � c1/Φ
−1(1/t) for some c1 > 0, then by (4.5)

tν1(R) =
1

2
t

∞∫

λ

ν(x) dx � 1

2
th

(
c1

Φ−1(1/t)

)
� th

(
1

Φ−1(1/t)

)
� 1, (4.16)

where in the penultimate inequality we use [8, Lemma 2.1].
Now denote

xt = −tϕ′
2

(
Φ−1
2

(
M0

t

))
,

whereM0 is taken from Lemma 3. We claim that there is ρ0 > 0 such that for all t ∈ (0, 1/Φ(x0)),

ρ0
Φ−1(1/t)

� −xt. (4.17)

Indeed, note that by (4.14), for any s > 0,

Φ−1
2 (s) � Φ−1(s). (4.18)

Thus, using Proposition 4 and the monotonicity of Φ−1, we conclude that there is c2 > 0 such that

tϕ′
2

(
Φ−1
2

(
M0

t

))
� c2t

M0

t

1

Φ−1
2 (M0/t)

� c2M0

Φ−1(M0/t)
� c2M0

Φ−1(1/t)
,

and (4.17) follows with ρ0 = c2M0.
Now, we apply Lemma 3 to X(2). For all ρ > 0, there is C > 0 such that for all t ∈ (0, 1/Φ2(x0)) and

x ∈ R satisfying

xt − ρ

Φ−1
2 (1/t)

� x � xt +
ρ

Φ−1
2 (1/t)

,

we have p(2)(t, x) � CΦ−1
2 (1/t). Note that if x0 > 0, then we may easily extend the above for t ∈

(0, 1/Φ(x0)). Let ρ0 be taken from (4.17) and set λ = xt + ρ/Φ−1
2 (1/t), where ρ = 3ρ0/2. Then it fol-

lows that λ � ρ0/(2Φ
−1
2 (1/t)), and, consequently,

λ∫

0

p(2)(t, x) dx � 1. (4.19)

Thus, using (4.15) and (4.16), for x � 2λ, we have

p(t, x) =

∫

R

p(2)(t, x− y)P
(1)
t (dy) � t

∫

R

p(2)(t, x− y)ν1(y) dy � 1

2
t

x∫

λ

p(2)(t, x− y)ν(y) dy.
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Finally, using the almost monotonicity of ν and (4.19), we get

p(t, x) � tν(x)

λ∫

0

p(2)(t, y) dy � tν(x).

Now it remains to note that by (4.13), for any u > 0, ϕ′
2(u) � ϕ′(u). Thus by (4.18)

λ = −tϕ′
2

(
Φ−1
2

(
M0

t

))
+

ρ

Φ−1(1/t)
� −tϕ′

(
Φ−1

(
M0

t

))
+

ρ

Φ−1(1/t)
.

The proof is completed. 
�

5 Sharp two-sided estimates

This section is devoted to derivation of sharp two-sided estimates. As mentioned in the Introduction, here we
will require the upper scaling condition as well to express the Lévy density in terms of Laplace exponent ϕ.
However, thanks to strict separation from the limit case α = 1, first, we are able to provide a simpler expression
for the localization of supx∈R p(t, x).

Theorem 3. LetX be a spectrally positive Lévy process of infinite variation with Laplace exponentϕ. Suppose
that σ = 0 and ϕ ∈ WLSC (α, c, x0) for some c ∈ (0, 1], x0 � 0, and α > 1. We also assume that ϕ′(θ1) = 0.
Then for all−∞ < χ1 < χ2 < ∞, there is C > 0 such that for all t ∈ (0, 1/Φ(x0∨2θ0)) and x ∈ R satisfying

χ1 < xϕ−1

(
1

t

)
< χ2, (5.1)

we have

C−1ϕ−1

(
1

t

)
� p(t, x) � Cϕ−1

(
1

t

)
.

Proof. First, note that by Proposition 8 there is C ′ � 1 such that for all r ∈ (0, 1/Φ(x0 ∨ 2θ0)),

C ′−1Φ−1(r) � ϕ−1(r) � C ′Φ−1(r). (5.2)

Thus, in view of [8, Thm. 3.1] and Propositions 6 and 7, it suffices to prove the first inequality in (5.1). Next,
note that the assumptions of Lemma 3 are satisfied. Let M0 be taken from Lemma 3; for fixed M > M0 and
t ∈ (0, 1/Φ(x0 ∨ 2θ0)), we set xt = −tϕ′(Φ−1(M/t)). By Propositions 2 and 7 and (5.2) there is c1 ∈ (0, 1]
such that

tϕ′
(
Φ−1

(
M

t

))
� c1

ϕ−1(1/t)
.

Furthermore, by Proposition 4, (4.3), and (5.2) there is C1 � 1 such that

tϕ′
(
Φ−1

(
M

t

))
� C1

ϕ−1(1/t)
.

Now we apply Lemma 3. Pick ρ1 and ρ2 so that

−c1 − ρ1
C ′ � χ1 and − C1 +

ρ2
C ′ � χ2.
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Then it is clear that
[

χ1

ϕ−1(1/t)
,

χ2

ϕ−1(1/t)

]
⊂

(
xt − ρ1

Φ−1(1/t)
, xt +

ρ2
Φ−1(1/t)

)
.

Hence, by Lemma 3 and (5.2), for all t ∈ (0, 1/Φ(x0 ∨ 2θ0)) and x ∈ R satisfying χ1 � xϕ−1(1/t) � χ2, we
have p(t, x) � ϕ−1(1/t), and the theorem follows. 
�

Proceeding exactly as in the proof of [7, Prop. 4.15] and applying Corollary 2, we get the following:

Proposition 9. Assume that the Lévy measure ν(dx) has an almost monotone density ν(x). Suppose that
ϕ′(θ1) = 0 and ϕ ∈ WLSC (α, c, x0) ∩ WUSC (β,C, x0) for some c ∈ (0, 1], C � 1, x0 � θ0, and
1 < α � β < 2. Then there is c′ ∈ (0, 1] such that for all 0 < x < x−1

0 ∧ (2θ0)
−1,

ν(x) � c′x−1ϕ

(
1

x

)
.

Now we are ready to prove our main result of this section.

Theorem 4. LetX be a spectrally positive Lévy process of infinite variation with the Laplace exponent ϕ such
that θ1 = 0 and ϕ′(0) = 0. Suppose that σ = 0 and ϕ ∈ WLSC(α, c, x0) ∩ WUSC (β,C, x0) for some
c ∈ (0, 1], C � 1, x0 � 0, and 1 < α � β < 2. We also assume that the Lévy measure ν(dx) has an almost
monotone density ν(x). Then there is x1 ∈ (0,∞] such that for all t ∈ (0, 1/Φ(x0)) and x ∈ (−∞, x1),

p(t, x) ≈

⎧⎪⎨
⎪⎩
(tϕ′′(w))−1/2 exp{−t(wϕ′(w) − ϕ(w))} if xϕ−1(1t ) � −1,

ϕ−1(1t ) if − 1 < xϕ−1(1t ) � 1,

tx−1ϕ( 1x ) if xϕ−1(1t ) > 1,

where w = (ϕ′)−1(−x/t). If x0 = 0, then x1 = ∞.

Proof. Set x1 = x−1
0 . First, note that in view of Propositions 2 and 4, ϕ′′ ∈ WLSC (α− 2, c, x0). Hence, by

Corollary 5, for χ1 = −M ∧ −1,

p(t, x) ≈ (
tϕ′′(w)

)1/2
exp

{−t
(
wϕ′(w) − ϕ(w)

)}
(5.3)

if only xϕ−1(1/t) < χ1. In fact, if χ1 < −1, then we also have

(
tϕ′′(w)

)1/2
exp

{−t
(
wϕ′(w) − ϕ(w)

)} ≈ ϕ−1

(
1

t

)
(5.4)

for χ1 � xϕ−1(1/t) � −1. To show this, we first prove the following.

Claim 1. There exist 0 < c1 � 1 � c2 such that for all t ∈ (0, c1/Φ(x0)) and x ∈ (−∞, x1) satisfying

χ1 � xϕ−1

(
1

t

)
� −1,



Transition densities of spectrally positive Lévy processes 65

we have

−tϕ′
(
ϕ−1

(
c2
t

))
� x � −tϕ′

(
ϕ−1

(
c1
t

))
.

Indeed, by Proposition 8 there is C1 � 1 such that for all r > Φ(x0),

C−1
1 Φ−1(r) � ϕ−1(r) � C1Φ

−1(r).

Let c2 = (−χ1C
′C2

1 )
α/(α−1) ∈ [1,∞), where C ′ is taken from (4.9). Then it follows that

c−1
2 ϕ−1

(
c2
t

)
� c

(1−α)/α
2 C2

1C
′ϕ−1

(
1

t

)
= (−χ1)

−1ϕ−1

(
1

t

)
.

Thus by Proposition 2

x � − −χ1

ϕ−1(1/t)
� −t

ϕ
(
ϕ−1(c2/t)

)
ϕ−1(c2/t)

� −tϕ′(ϕ−1(c2/t)
)
.

Moreover, also by Proposition 2 with c1 = C−α/(α−1) we have that for t ∈ (0, c1/ϕ(x0)),

tϕ′(ϕ−1(c1/t)
)
� Cc1

ϕ−1(1/t)
· ϕ−1(1/t)

ϕ−1(c1/t)
� Cc

(α−1)/α
1

ϕ−1(1/t)
,

and thus

x � − 1

ϕ−1(1/t)
� −tϕ′

(
ϕ−1

(
c1
t

))
,

and the claim follows.
Now, using Claim 1, Proposition 7, (4.3), and Proposition 8, we get that for all t ∈ (0, c1/Φ(x0)),

w ≈ ϕ−1

(
1

t

)
. (5.5)

Hence, in view of Proposition 2, twϕ′(w) ≈ 1, and, consequently, exp{−t(wϕ′(w) − ϕ(w))} ≈ 1. Further-
more, by Proposition 4 ϕ′′(w) ≈ wϕ′(w), which, combined with (5.5), yields

1√
tϕ′′(w)

≈ w√
wϕ′(w)

≈ ϕ−1

(
1

t

)
,

and (5.4) follows for t ∈ (0, c1/Φ(x0)).
Next, recall that θ1 = 0 and ϕ′(0) = 0. Therefore, in view of (2.5), we in fact have br = − ∫∞

r sν(s) ds.
Now let x > 1/ϕ−1(1/t). By Theorem 2, Remark 5, and the monotonicity of η we have

p(t, x) � tη
(
x− tb1/Φ−1(1/t)

)
� tη(x).

Thus, by Corollary 2, for all t ∈ (0, 1/Φ(x0)) and x ∈ (0, x1) such that xϕ−1(1/t) > 1,

p(t, x) � tx−1ϕ

(
1

x

)
. (5.6)
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Next, by Lemma 4 and Proposition 9 there are ρ0 > 0 and c > 0 such that for any t ∈ (0, 1/Φ(x0)) and
x ∈ (0, x1) satisfying xϕ−1(1/t) � ρ0, we have

p(t, x) � ctx−1ϕ

(
1

x

)
. (5.7)

Thus if we set χ2 = 1 ∨ ρ0, then, by (5.6) and (5.7), for all t ∈ (0, 1/Φ(x0)) and x ∈ (0, x1) such that
xϕ−1(1/t) � χ2,

p(t, x) ≈ tx−1ϕ

(
1

x

)
. (5.8)

Finally, by Theorem 3, for all t ∈ (0, 1/Φ(x0)) and x ∈ (−∞, x1) satisfying χ1 < xϕ−1(1/t) < χ2, we
have p(t, x) ≈ ϕ−1(1/t). It remains to notice that if χ2 > 1, then, by the scaling properties of ϕ, for all
t ∈ (0, 1/Φ(x0)) and x ∈ (0, x1) satisfying 1 � xϕ−1(1/t) � χ2, we have tx−1ϕ(1/x) ≈ ϕ−1(1/t), which,
combined with (5.3), (5.4), and (5.8), finishes the proof for the case x0 = 0. If x0 > 0, then we can use the
positivity and continuity to extend the time range from c1/Φ(x0) to 1/Φ(x0). 
�

Remark 6. Taking into account (4.10), Corollary 2, and Proposition 9, we may see that, in fact,

ν(x) ≈ x−1ϕ

(
1

x

)

for all 0 < x < x−1
0 ∧ (2θ0)

−1. Therefore by inspecting the proof of Theorem 4 we can show that the term
tx−1ϕ(1/x) in the theorem may be replaced by tν(x).

Example 1. LetX be a spectrally positive α-stable process with the Laplace exponentϕ(λ) = λα, where α>1.
Then it is clear that we have ϕ′′(λ) = α(α − 1)λα−2 and (ϕ′)−1(y) = (y/α)1/(α−1). Consequently, from
Theorem 1 we get that the asymptotics of p(t, x) is of the form

1√
2πα(α − 1)

(−x

α

)(2−α)/(2(α−1))

t−1/(2(α−1)) exp

{
−(α− 1)t−1/(α−1)

(−x

α

)α/(α−1)}
,

which, after setting t = 1, coincides with [26, Thm. 2.5.2]. Moreover, by Theorem 4

p(t, x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2πα(α−1)

(−x
α )(2−α)/(2(α−1))t−1/(2(α−1))

× exp{−(α− 1)t−1/(α−1)(−x
α )α/(α−1)} if x

t1/α � −1,

t−1/α if − 1 < x
t1/α � 1,

t
x1+α if x

t1/α > 1.

For α = 1, in view of [22, Prop. 1.2.12], we have ϕ(λ) = λ lnλ. Therefore ϕ′′(λ) = λ−1 and (ϕ′)−1(y) =
ey−1. By Theorem 1 we get the following form of the asymptotics:

1√
2πt

exp

{
−−x/t− 1

2
− te−x/t−1

}
,

which again, after substituting t = 1, coincides with [26, Thm. 2.5.2]. Unfortunately, Theorem 4 cannot be
applied due to the scaling condition with α = 1 only. Also, note that for the case of Brownian motion, using
Theorem 1 it is straightforward to obtain a Gaussian density in the asymptotics.
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Lastly, let us justify Remark 1 by constructing an example of spectrally positive Lévy process of unbounded
variation for which the lower scaling property holds only with α < 1.

Example 2. Let us consider the measure ν(dx) with density defined as follows: for x ∈ (0, 1/2], set

ν(x) =

{
ckx

−5/2, x ∈ [((2k + 1)!)−1, ((2k)!)−1],

ck
√

(2k + 1)! x−3/2, x ∈ [((2k + 2)!)−1, ((2k + 1)!)−1],
(5.9)

where ck = ((2k)!!)−1/2. For x > 1/2, we put ν(x) = 0. As in the proof of [7, Prop. 3.8] and [7, Prop. 4.15],
we conclude that

ϕ′′(x) ≈ x−3ν

(
1

x

)
≈

{
ckx

−1/2, x ∈ [(2k)!, (2k + 1)!],

ck
√

(2k + 1)!x−3/2, x ∈ [(2k + 1)!, (2k + 2)!].

By construction, ϕ′′ has the lower and upper Matuszewska indices equal to −3/2 and−1/2, respectively, and,
consequently, the lower scaling property holds only with α < 1.

Now let us define the Lévy processX by setting σ = 0, b = 0, and ν as in (5.9). Then we have

1∫

0

xν(x) dx �
∞∑
k=1

ck

1/(2k)!∫

1/(2k+1)!

x−3/2 dx = 2

∞∑
k=1

ck
(√

(2k + 1)! −
√

(2k)!
)

� 2

3

∞∑
k=1

ck
√

(2k + 1)! = ∞.

ThereforeX is of unbounded variation.
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