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Abstract. We present sufficient conditions for fixed-time stability for a wide class of neural networks described by
a system of differential equations with right-hand side satisfying the Carathéodory conditions. In contrast to the results
given in the literature, where the settling-time function is estimated by an unknown Lyapunov function, we estimate the
settling-time by a known function. In addition, the settling-time function does not depend on the initial values. We also
give numerical examples, which confirm the theoretical results.

MSC: 34D20, 37C75, 93D05

Keywords: fixed-time stability, finite-time stability, neural networks, differential equations, Lyapunov function

1 Introduction

In many practical applications of neural networks, it is especially important to know not only whether a neural
network is stable, but also whether is finite-time stable. Finite-time stability means that we can construct
a settling-time function that estimates the time when the investigated system is stable. Many authors have
considered this issue; see, for example, [2, 4, 6, 11, 16], where the settling-time function depends on the initial
conditions (in [16], it additionally depends on the impulsive sequence). However, the initial conditions in many
practical applications such as physical models, vehicle monitoring, or robotics may be very difficult or even
impossible to get. This leads to a poor estimation of the settling-time. Therefore there was a new concept
introduced, called the fixed-time stability. Polyakov [13] was the first who gave sufficient conditions for fixed-
time stability of the origin for a nonautonomous system and gave a formula for the upper bounded estimate
for the settling-time function. He starts from defining the settling-time function, which is known a priori,
regardless of initial conditions and then takes a special controller, which guarantees the fixed-time stability of
the origin. It was possible thanks to the new condition on the Lyapunov function. This condition became very
popular and is used in many papers (see, e.g., [1, 3, 5, 7, 8, 9, 10]). It allows proving the fixed-time stability for
various kinds of dynamical systems described by differential equations. In [3,5,8,9,10], autonomous systems
are investigated. In [1] and [7] the authors investigate the fixed-time stability for nonautonomous systems.
In all papers mentioned a continuous settling-time function is constructed by the Lyapunov function, which
is unknown a priori. In [5] the settling-time estimation is more accurate than in other papers (see references
above) but still requires information about the Lyapunov function.
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In [14, 15] and [17] the authors uses a different approach: they estimate the settling-time function without
knowledge of the Lyapunov function. To show the fixed-time stability for dynamical systems described by
differential inclusions, they need a C-regular Lyapunov function, which can be differentiable only for almost
all t. The upper bound of the derivative of the Lyapunov function cannot be negative. In our paper, we prove
the fixed-time stability for a wide class of neural networks described by a system of differential equations with
right-hand side satisfying Carathéodory conditions. To do this, we use the condition first introduced in [13],
but similar to those in [14,15] and [17], and we estimate the settling-time function by a known function. In our
case, this function belongs to a new class of functions P̄ (this class is a slight modification of the class P that
was first defined in [11]). This class of functions allows only the measurability of functions, which can take
zero value even on sets of positive measure. Theoretical results show that this estimation is more accurate than
estimation that uses a Lyapunov function (see examples later in this paper). We also give a new assumption,
which allow us estimate the settling-time regardless of initial conditions.

2 Preliminaries

Consider the differential equation

x′ = f(t, x), (2.1)

where f : [0,∞)× Rn → Rn is a Carathéodory function, which means that it is measurable with respect to t
and continuous with respect to x.

In our previous work [11], we proved the global finite-time stability of the origin for system given by (2.1).
For convenience of the readers, we give the most important assumptions and definitions from [11]. Let f be

the right-hand side of (2.1), and let G ⊆ Rn be an open set containing zero. We assume that the function t 7→
f(t, x) is measurable in [0,∞) for all x ∈ G, the function x 7→ f(t, x) is continuous in G for a.a. t ∈ [0,∞),
and f(t, 0) = 0 for all t ∈ [0,∞). In addition, there exists a locally bounded function m ∈ L∞loc([0,∞)) such
that ‖f(t, x)‖ 6 m(t) for a.a. t > 0 and all x ∈ G.

We use a Lyapunov function to prove the global finite-time stability for system (2.1) in [11]. We assume
that V : [0,∞) × G → [0,∞) is a continuous function such that for a continuous increasing function K :
[0,∞) → [0,∞) such that K(0) = 0 and K(r) → ∞ as r → ∞ and for a continuous nonpositive function
κ : [0,∞)→ (−∞, 0], the following conditions are satisfied:

inf
t>0

V (t, x) > K
(
‖x‖
)
> 0 for x ∈ G \ {0}, (2.2)

V (t, 0) = K(0) = 0 for t ∈ [0,∞), (2.3)

and there is a set Γ ⊆ [0,∞) of measure zero such that

V̇ (t, x) 6 κ
(
‖x‖
)

for t ∈ [0,∞) \ Γ and x ∈ G \ {0}. (2.4)

In addition, there exists an at most countable set C ⊆ [0,∞) such that for all t ∈ (0,∞) \C and x ∈ G \ {0},
there exist εtx ∈ (0, t) and Ptx > 0 such that for s ∈ (t− εtx, t+ εtx) and z ∈ B(x, εtx), where B is an open
ball centered at x and with radius εtx > 0, we have ∂̂V (s, z) 6= ∅ and

sup
s∈(t−εtx, t+εtx)
z∈B(x,εtx)

sup
v∗∈∂̂V (s,z)

‖v∗‖ 6 Ptx, (2.5)

where ∂̂V denotes a presubdifferential of a function V (see, e.g., [12, p. 90]).
We denote by P the class of nonnegative functions c : [0,∞) → [0,∞) that are measurable and upper-

bounded on each compact subinterval [0,∞) and such that
∫∞
t0
c(τ) dτ =∞ for some t0 > 0.
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Let St0,x0
be the set of all right-maximal defined solutions ϕ to the differential equation (2.1) with initial

condition ϕ(t0) = x0. Then for t0 > 0, x0 ∈ G \ {0}, and ϕ ∈ St0,x0
, denote by cϕ(t0, x0) a finite number (if

it exists) belonging to the domain of ϕ and satisfying the following conditions:

1. ϕ(t) ∈ G \ {0} for t ∈ (t0, cϕ(t0, x0)).
2. limt→cϕ(t0,x0)− ϕ(t) = 0.

Denote

τϕ(t0, x0) =

{
cϕ(t0, x0) if it exists,
∞ otherwise.

DEFINITION 1. By a settling-time function we mean any function T : [0,∞)×G→ R+∪{∞} satisfying the
following conditions:

1. T (t0, 0) = t0 for t0 > 0.
2. T (t0, x0) = sup{τϕ(t0, x0), ϕ ∈ St0,x0

} for t0 > 0 and x0 ∈ G \ {0}.
Let us take any function c ∈ P , t ∈ [0,∞), w ∈ R, and α ∈ (0, 1). Then we easily see that the function

s 7→
∫ s
t c(τ) dτ , s ∈ [0,∞) is nondecreasing and absolutely continuous on any compact subset of [0,∞)

and that
∫∞
t c(τ) dτ = ∞. Hence for any w ∈ R and α ∈ (0, 1), there exists t̄ > t such that

∫ t̄
t c(τ) dτ =

|w|1−α/(1−α).
Let

tc,w = inf

{
t̄ > t:

t̄∫
t

c(τ) dτ =
|w|1−α

1− α

}
. (2.6)

For convenience of the readers, we give the definition of the global finite-time stability.

DEFINITION 2. We say that the origin is globally stable for the differential equation (2.1) in finite-time if it is
stable and the settling-time function has only finite values.

Theorem 1. Let V : [0,∞) × Rn → [0,∞) with G = Rn for the differential equation (2.1) be a continuous
function satisfying conditions (2.2), (2.3), and (2.5), let a function c : [0,∞) → [0,∞) be of class P, and let
α ∈ (0, 1) be such that

V̇ (t, x) + c(t)
(
V (t, x)

)α
6 0 for t ∈ [0,∞) \ Γ and x ∈ Rn \ {0},

where Γ ⊆ [0,∞) is a set of measure zero. Then the origin is globally finite-time stable for the differential
equation (2.1).

Proof. See [11]. ut

3 Finite-time and fixed-time stability

In Theorem 1, system (2.1) is globally stable in finite-time, and we estimate this time by a Lyapunov function.
Suppose a Lyapunov function is not known a priori. In this paper, we estimate the settling-time function using
a known function c(t) that belongs to a new class P̄ , a subclass of P .

DEFINITION 3. We denote by P̄ the class of nonnegative functions c : [0,∞) → [0,∞) that are measurable
and upperbounded on each compact subinterval [0,∞) and such that

∫∞
t0
c(τ) dτ = ∞ for some t0 > 0 and,

in addition,
∫∞
t0

1/c(τ)dτ <∞.

Remark 1. The last inequality in the definition given will be very important in the proof of the fixed-time
stability theorem. This assumption allows us estimate the settling-time regardless of initial conditions.

Lith. Math. J., 61(4):491–501, 2021.
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Theorem 2. Assume that the origin is globally stable in finite-time for the differential equation (2.1). Then for
any solution to (2.1) with initial conditions (t0, x0), t0 > 0 and x0 ∈ Rn, the settling-time

t̄ = cp
−1

(
‖x0‖1+α

1− α
+ cp(t0)

)
,

where cp is the antiderivative of c.

Proof. Consider any solution to (2.1) with initial conditions (t0, x0), t0 > 0, and x0 ∈ Rn. Because the
origin of (2.1) is globally stable in finite-time, there exists t̄ > 0 such that t̄ = tc,w. Because c ∈ P̄ , there
exists an antiderivative cp such that c′p(t0) = c(t0). Hence from (2.6) we get

cp(t̄) =
|w|1−α

1− α
+ cp(t0).

Because the function cp is strictly increasing, there exists an inverse function cp−1 such that for w = ‖x0‖,

t̄ = cp
−1

(
‖x0‖1−α

1− α
+ cp(t0)

)
. (3.1)

Hence we have supx0∈G T (t0, x0) < ∞, where G ⊆ Rn, which means that the settling-time estimation is
independent of the initial conditions. ut

Example 1. Let us consider the following system of differential equations:

x′ = g(t, x), (3.2)
where

g(t, x) =
(
g1(t, x1), . . . , gn(t, xn)

)
, gi(t, xi) =

− sign(xi)|xi|1/2(t+ 1)− xi
t+ 1

for t ∈ [0,∞), x ∈ Rn, n ∈ N. It is obvious that g(t, x) is continuous in Rn, g(t, 0) = 0, and ‖g(t, x)‖ 6√
kn+ kn in some ball B̄(0, k), k ∈ N.
Take the Lyapunov candidate function V (x) = ‖x‖2, which satisfies conditions (2.2), (2.3), and (2.5). Now

we show that (2.4) is satisfied:

V̇ (x) =
〈
2x, g(t, x)

〉
= −2

n∑
i=1

xi sign(xi)|xi|1/2 −
2

t+ 1

n∑
i=1

x2
i 6 −2

(
‖x‖2

)3/4
,

where c(t) = 2, c ∈ P , and α = 3/4. This means by Theorem 1 that the origin for (3.2) is globally finite-time
stable.

Now we estimate the settling-time function using Theorem 2. Let us choose the antiderivative for c as
cp(t) = 2t with inverse function cp−1(τ) = τ/2. Hence, by (3.1), for any initial conditions (t0, x0), t0 > 0,
and x0 ∈ Rn, we estimate the settling-time function as follows:

t̄ = t0 + 2‖x0‖1/4. (3.3)

Let us see that the settling-time described by (3.3) gives more accurate estimation than estimation com-
monly used in the literature (see Theorem 1, which uses the condition

∫ t̄
t c(τ) dτ = |w|1−α/(1− α), where

w = V (x)). As we see, this conditions requires a Lyapunov function. In this case the estimation is t̄ =

t0 + 2‖x0‖1/2 for any initial conditions (t0, x0), t0 > 0, x0 ∈ Rn.
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Example 2. Let us consider the system of differential equations

x′ = g(t, x), (3.4)
where

g(t, x) =
(
g1(t, x1), . . . , gn(t, xn)

)
, gi(t, xi) =

−6 sign(xi)|xi|
7(t+ 1)

− sign(xi)|xi|1/6

for t ∈ [0,∞), x ∈ Rn, n ∈ N. It is obvious that g(t, x) is continuous in Rn, g(t, 0) = 0, and ‖g(t, x)‖ 6
kn+ (kn)1/6 in some ball B̄(0, k), k ∈ N.

Take the time-varying Lyapunov candidate function V (t, x) = (t + 1)2‖x‖7/3, which satisfies condi-
tions (2.2), (2.3), and (2.5). Now we show that (2.4) is satisfied:

V̇ (t, x) = 2(t+ 1)‖x‖7/3 +

〈
7

3
(t+ 1)2x4/3, g(t, x)

〉
= 2(t+ 1)‖x‖7/3 − 2(t+ 1)

n∑
i=1

xi
4/3 sign(xi)|xi|

− 7

3
(t+ 1)2

n∑
i=1

xi
4/3 sign(xi)|xi|1/6

6 −7

3
(t+ 1)2‖x‖3/2 = −7

3
(t+ 1)5/7

(
(t+ 1)2‖x‖7/3

)9/14
,

where c(t) = (7/3)(t + 1)5/7, c ∈ P , and α = 9/14. This means by Theorem 1 that the origin for (3.4) is
globally finite-time stable.

Now we estimate the settling-time function using Theorem 2. Let us choose the antiderivative for c as
cp(t) = (49/36)(t + 1)12/7 with inverse function cp−1(τ) = ((36/49)τ)7/12 − 1. Hence, by (3.1), for any
initial conditions (t0, x0), t0 > 0, x0 ∈ Rn, we estimate the settling-time function as follows:

t̄ =

(
(t0 + 1)12/7 +

72

35
‖x0‖5/14

)7/12

− 1. (3.5)

This example shows also that the settling-time described by (3.5) gives more accurate estimation than
methods using Lyapunov functions. This estimation via a Lyapunov function is

t̄ =

(
(t0 + 1)12/7 +

72

35
(t0 + 1)5/7‖x0‖5/6

)7/12

− 1 (3.6)

for any initial conditions (t0, x0), t0 > 0, x0 ∈ Rn.
As we see in Fig. 1, the settling-time function given by (3.5) lies below the settling-time given by (3.6),

which uses information about a Lyapunov function. This means that estimation using an inverse function gives
more precise information.

Now we give an assumption sufficient to prove the fixed-time stability of the origin for (2.1). The conditions
come from [13, Lemma 1, p. 4].

ASSUMPTION 1. Let V : Rn → [0,∞) be a continuous radially unbounded function such that for x ∈
B(0, ε) \ {0} and α, β, p, q, k > 0 such that pk < 1 and qk > 1, the following conditions hold:

V (0) = 0, V̇ (x) 6 −
(
α
(
V (x))p + β

(
V (x)

)q)k
.

Lith. Math. J., 61(4):491–501, 2021.
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Figure 1. Comparison of the settling-time functions.

Lemma 1. Let V : Rn → [0,∞) be a continuous radially unbounded function satisfying Assumption 1 with
respect to the differential equation (2.1). Then for any x0 ∈ Rn, system (2.1) is globally fixed-time stable, and
for any x0 ∈ Rn, the settling-time function

T (x0) 6
1

αk(1− pk)
+

1

β(qk − 1)
.

Proof. See [13, Lemma 1, p. 4]. ut

Let us consider the following system of differential equations for α, β, p, q, k > 0:

y′ = −αc(t) sign(y)|y|pk, pk < 1, (3.7)

y′ = −βc(t) sign(y)|y|qk, qk > 1, (3.8)

y(t) = w. (3.9)

A solution of the above system takes a form

u(t) =

{
sign(w)(|w|1−pk − α(1− pk)

∫ t
s c(τ) dτ)1/(1−pk) for (3.7) and (3.9),

sign(w)(|w|qk−1 − β(qk − 1)
∫ t
s c(τ) dτ)1/(qk−1) for (3.8) and (3.9).

Now we modify Assumption 1, which allows us to prove fixed-time stability for system of differential equa-
tions (3.7)–(3.8).

ASSUMPTION 2. Let V : [0,∞)× Rn → [0,∞) be a continuously differentiable function. There exist ε > 0
and a function c ∈ P̄ such that for t ∈ [0,∞), x ∈ B(0, ε) \ {0}, and α, β, p, q, k > 0 such that pk < 1 and
qk > 1, the following conditions hold:

V (t, 0) = 0,

V̇ (t, x) 6 −c(t)
(
α
(
V (t, x)

)p
+ β

(
V (t, x)

)q
)k, (3.10)

where V̇ (t, x) = (∂/∂t)V (t, x) + 〈∇xV (t, x), f(t, x)〉, and f(t, x) is the right-hand side of the investigated
differential equation.
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Lemma 2. Let V : [0,∞)×Rn → [0,∞) be a function of class C1 satisfying Assumption 2 with respect to the
differential equation (3.7)–(3.8). Then for any initial conditions (t0, x0), t0 > 0, x0 ∈ Rn, system (3.7)–(3.8)
is globally fixed-time stable, and the settling-time function

T (t0, x0) 6 cp
−1

(
‖x0‖1−pk

α(1− pk)
+ cp(t0)

)
+ cp

−1

(
‖x0‖qk−1

β(qk − 1)
+ cp(t0)

)
,

where cp is an antiderivative for c.

Proof. From (3.10) we have that

V̇ (t, x) 6 −αkc(t)
(
V (t, x)

)pk for V (t, x) 6 1 (3.11)

and

V̇ (t, x) 6 −βkc(t)
(
V (t, x)

)qk for V (t, x) > 1. (3.12)

Then for any solution y(t) of the differential equation (3.7) and w = ‖x0‖, condition (3.11) guarantees that
(using a comparison lemma) V (t, y(t)) 6 1 for

t > cp
−1

(
‖ x0‖qk−1

β(qk − 1)
+ cp(t0)

)
.

For any solution y(t) of (3.8) such that V (t0, y(t0)) 6 1, condition (3.12) guarantees that V (t, y(t)) ≡ 0 for

t > t0 + cp
−1

(
‖x0‖1−pk

α(1− pk)
+ cp(t0)

)
.

Hence V (s, x(s)) ≡ 0 for all

s > cp
−1

(
‖x0‖1−pk

α(1− pk)
+ cp(t0)

)
+ cp

−1

(
‖x0‖qk−1

β(qk − 1)
+ cp(t0)

)
and for any solution of (2.1). ut

4 Main results

In this section, we use our theorems to show the fixed-time stability of the following system:

x(t) = z,

x′(t) = g
(
t, x(t)

)
+A(t)u

(
t, x(t)

)
, (4.1)

where t > 0, z ∈ Rn, x(t) ∈ Rn is a state vector, g : [0,∞)×Rn → Rn is a Carathéodory function describing
the system uncertainties, A(t) = (aij(t))n×n is a measurable matrix, and u : [0,∞)×Rn → Rn is a coupling
function.

Theorem 3. Let V (t, x) be a Lyapunov function and consider two cases:

(i)
∑n

i=1

∑n
j=1 aij(t)|xj |pk > L̃‖x‖pk for ‖x‖pk 6 1,

(ii)
∑n

i=1

∑n
j=1 aij(t)|xj |qk > L̃‖x‖qk for ‖x‖qk > 1,

Lith. Math. J., 61(4):491–501, 2021.
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g(t, x) =

(
g1(t, x1), . . . , gn(t, xn)

)
=

(
− sign(x1)

∣∣∣∣ ∂
∂tV1(t, x1)
∂
∂x1

V1(t, x1)

∣∣∣∣, . . . ,− sign(xn)

∣∣∣∣ ∂
∂tVn(t, xn)
∂
∂xn

Vn(t, xn)

∣∣∣∣),
L > 0, pk < 1, qk > 1, k > 0, and u(t, x) = (u1(t, x1), . . . , un(t, xn)), where

ui(t, xi) = −3

4
c̃(t)αk sign(xi)|xi|pk−1/3 for V (t, x) 6 1, (4.2)

and

ui(t, xi) = −3

4
c̃(t)βk sign(xi)|xi|qk−1/3 for V (t, x) > 1, (4.3)

α > 0, β > 0, i = 1, . . . , n, n ∈ N, and c̃ ∈ P̄ . Then the origin for system (4.1) is globally fixed-time stable,
and for any initial conditions (t0, x0), t0 > 0, x0 ∈ Rn, and any solution to (4.1), the settling-time function is
bounded by

Tmax = cp
−1

(
‖x0‖1−pk

α(1− pk)
+ cp(t0)

)
+ cp

−1

(
‖x0‖qk−1

β(qk − 1)
+ cp(t0)

)
,

where cp is an antiderivative for c.

Proof. Let us consider the Lyapunov candidate function V (t, x) = (t+ 1)2‖x‖4/3. Then

g(t, x) =

(
− sign(x1)

3|x1|
2(t+ 1)

, . . . ,− sign(xn)
3|xn|

2(t+ 1)

)
.

Calculate the derivative along the trajectories of system (4.1). Then for ‖x‖pk 6 1, using (4.2), we get

V̇ (t, x) = 2(t+ 1)‖x‖4/3 +

〈
4

3
(t+ 1)2x1/3, g(t, x) +A(t)u(t, x)

〉
= 2(t+ 1)‖x‖4/3 − 2(t+ 1)

n∑
i=1

x
1/3
i sign(xi)|xi|

− (t+ 1)2c̃(t)αk
n∑
i=1

n∑
j=1

aij(t)x
1/3
j sign(xj)|xj |pk−1/3

6 −(t+ 1)2c̃(t)αk
n∑
i=1

n∑
j=1

aij(t)|xj |pk 6 −(t+ 1)2c̃(t)αkL̃‖x‖pk

= −c̃(t)Lαk‖x‖pk, L = L̃(t+ 1)2. (4.4)

Analogously, for ‖x‖qk > 1, using (4.3), we obtain

V̇ (t, x) 6 −c̃(t)Lβk‖x‖qk, L = L̃(t+ 1)2. (4.5)

From (4.4)–(4.5) and from Lemma 2 it follows that V̇ (t, x) 6 −c(t)(α(V (t, x))p + β(V (t, x))q)k, where
c(t) = Lc̃(t) = L̃(t + 1)2c̃(t). Hence, according to Lemma 2, we conclude that the origin for system (4.1)
is globally fixed-time stable and for any initial conditions (t0, x0), t0 > 0, x0 ∈ Rn, and for any solu-
tion to (4.1), the settling-time function is bounded by Tmax = cp

−1(‖x0‖1−pk/(α(1 − pk)) + cp(t0)) +

cp
−1(‖x0‖qk−1/(β(qk − 1)) + cp(t0)). ut
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Example 3. Let us consider the neural network

x′(t) = g
(
t, x(t)

)
+A(t)u

(
t, x(t)

)
, (4.6)

where t > 0, A(t) = I , x ∈ Rn,

g(t, x) =
(
g1(t, x1), . . . , gn(t, xn)

)
=

(
−3 sign(x1)|x1|

2(t+ 1)
, . . . ,−3 sign(xn)|xn|

2(t+ 1)

)
, (4.7)

u(t, x) =
(
u1(t, x1), . . . , un(t, xn)

)
=

(
−3 sign(x1)|x1|1/3

(t+ 1)1/2
, . . . ,−3 sign(xn)|xn|1/3

(t+ 1)1/2

)
for ‖x‖ 6 1, (4.8)

and

u(t, x) =
(
u1(t, x1), . . . , un(t, xn)

)
=

(
−27 sign(x1)|x1|

4(t+ 1)1/2
, . . . ,−27 sign(xn)|xn|

4(t+ 1)1/2

)
for ‖x‖ > 1. (4.9)

Let us consider the Lyapunov candidate function V (t, x) = (t+ 1)2‖x‖4/3. Then, using (4.8), we get

V̇ (t, x) = 2(t+ 1)‖x‖4/3 − 2(t+ 1)

n∑
i=1

x
1/3
i sign(xi)|xi|

− 4(t+ 1)3/2
n∑
i=1

aiix
1/3
i sign(xi)|xi|1/3

6 2(t+ 1)‖x‖4/3 − 2(t+ 1)‖x‖4/3 − 4(t+ 1)3/2‖x‖2/3

= −4(t+ 1)3/2‖x‖2/3 = −c̃(t)Lαk‖x‖pk, (4.10)

where c̃(t) = (t+ 1)3/2, L = 1, α = 2, k = 2, and p = 1/3.
Analogously, for (4.9), we obtain

V̇ (t, x) = 2(t+ 1)‖x‖4/3 − 2(t+ 1)

n∑
i=1

x
1/3
i sign(xi)|xi|

− 9(t+ 1)3/2
n∑
i=1

aiix
1/3
i sign(xi)|xi|

6 −9(t+ 1)3/2‖x‖4/3 = −c̃(t)Lβk‖x‖qk, (4.11)

where c̃(t) = (t+ 1)3/2, L = 1, β = 3, k = 2, and q = 2/3.
All conditions of Theorem 3 are satisfied, because pk < 1, qk > 1,

n∑
i=1

n∑
j=1

aij(t)|xj |pk > L‖x‖pk for ‖x‖pk 6 1,

n∑
i=1

n∑
j=1

aij(t)|xj |qk > L‖x‖qk for ‖x‖qk > 1,
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and

g(t, x) =
(
g1(t, x1), . . . , gn(t, xn)

)
=

(
− sign(x1)

∣∣∣∣ ∂
∂tV1(t, x1)
∂
∂x1

V1(t, x1)

∣∣∣∣, . . . ,− sign(xn)

∣∣∣∣ ∂
∂tVn(t, xn)
∂
∂xn

Vn(t, xn)

∣∣∣∣).
From (4.10) and (4.11) we have

V̇ (t, x) 6 −(t+ 1)3/2
(
2(t+ 1)2/3‖x‖1/3 + 3(t+ 1)4/3‖x‖2/3

)2
,

c(t) = (t+ 1)3/2, c ∈ P̄,

which shows that the solution of system (4.6) is fixed-time stable and for any initial conditions (t0, x0), t0 > 0,
x0 ∈ Rn, the settling-time function is estimated by

Tmax =
5

2

(
3‖x0‖1/3

2
+

2

5
(t0 + 1)5/2

)2/5

+
5

2

(
‖x0‖1/3 +

2

5
(t0 + 1)5/2

)2/5

− 2.

Figure 2. Trajectories for system (4.6) given by (4.7) and (4.8)
with initial conditions 0.1, 0.3, 0.4, 0.8, and 1.

Figure 3. Trajectories for system (4.6) given by (4.7) and (4.9)
with initial conditions 2, 3, 6, 9, and 10.

5 Conclusions

In this paper, we prove the fixed-time stability for a wide class of neural networks described by the system of
differential equations satisfying Carathéodory conditions. We apply a different approach to fixed-time stability
compared to the known results in the literature, because the settling-time function is estimated by a known
function from a special class and not by a Lyapunov function, which is not known a priori. This class of
functions requires only the measurability of functions, which can take the zero value even on sets of positive
measure. In addition, the settling-time function does not depend on initial values.
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http://creativecommons.org/licenses/by/4.0/


A different approach to fixed-time stability for a wide class of time-varying neural networks 501

References

1. Ch. Aouiti and F. Miaadi, A new fixed-time stabilization approach for neural networks with time-varying delays,
Neural Comput. Appl., 32:3295–3309, 2020.

2. S.P. Bhat and D.S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim.,
38(3):751–766, 2000.

3. Ch. Chen, L. Li, H. Peng, Y. Yang, L. Mi, and L. Wang, A new fixed-time stability theorem and its application to the
synchronization control of memristive neural networks, Neurocomputing, 349:290–300, 2019.

4. W.M. Haddad, S.G. Nersesov, and L. Du, Finite-time stability for time-varying nonlinear dynamical systems, in
S. Sivasundaram, J. Vasundhara Devi, Z. Drici, and F. McRae (Eds.), Advances in Nonlinear Analysis: Theory
Methods and Application, Cambridge Scientific Publishers, Cambridge, 2009, pp. 139–150.

5. Ch. Hu, J. Yu, Z. Chen, H. Jiang, and T. Huang, Fixed-time stability of dynamical systems and fixed-time synchro-
nization of coupled discontinuous neural networks, Neural Netw., 89:74–83, 2017.

6. X. Huang, W. Lin, and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica,
41:881–888, 2005.

7. H. Li, Ch. Li, T. Huang, and D. Ouyang, Fixed-time stability and stabilization of impulsive dynamical systems,
J. Franklin Inst., 354:8626–8644, 2017.

8. X. Liu, D. Ho, Q. Song, and J. Cao, Finite-/fixed-time robust stabilization of switched discontinuous systems with
disturbances, Nonlinear Dyn., 90:2057–2068, 2017.

9. F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, On necessary and sufficient conditions for fixed-
time stability of continuous autonomous systems, in Proceedings of the 17th European Control Conference (ECC),
Limassol, Cyprus, June 12–15, 2018, HAL-Inria, 2018, pp. 1–5.

10. W. Lu, X. Liu X., and T. Chen, A note on finite-time and fixed-time stability, Neural Netw., 81:11–15, 2016.

11. R. Matusik and A. Rogowski, Global finite-time stability of a differential equation with discontinuous right-hand
side, Electron. J. Qual. Theory Differ. Equ., 35:1–17, 2018.

12. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Grundlehren Math. Wiss., Vol. 330,
Springer, Berlin, 2006.

13. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of nonlinear control systems, IEEE Trans.
Autom. Control, 57:2106–2110, 2012.

14. Z. Wang, J. Cao, Z. Cai, and M. Abdel-Aty, A novel Lyapunov theorem on finite/fixed-time stability of discontinuous
impulsive systems, Chaos, 30:013139, 2020.

15. Z. Wang, J. Cao, Z. Cai, and L. Huang, Periodicity and fixed-time periodic synchronization of discontinuous delayed
quaternion neural networks, J. Franklin Inst., 357:4242–4271, 2020.

16. Z. Wang, J. Cao, Z. Cai, and L. Huang, Finite-time stability of impulsive differential inclusion: Applications to
discontinuous impulsive neural networks, Discrete Contin. Dyn. Syst., Ser. B, 26(5):2677–2692, 2021.

17. Z. Wang, J. Cao, Z.Cai, and L. Rutkowski, Anti-synchronization in fixed time for discontinuous reaction–diffusion
neural networks with time-varying coefficients and time delay, IEEE Trans. Cybern., 50(6):2758–2769, 2020.

Lith. Math. J., 61(4):491–501, 2021.


	Introduction
	Preliminaries
	Finite-time and fixed-time stability
	Main results
	Conclusions
	References



