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Abstract. Let {Xn, n � 1} be a sequence of independent or identically distributed dependent random variables, and
let {An, n � 1} be a sequence of random subsets of natural numbers independent of {Xn, n � 1}. In this paper, we
describe the strong law of large numbers (SLLN) of the form

∑
i∈An

(Xi − E
∑

i∈An
Xi)/bn → 0 a.s. as n → ∞ for

some sequence of nondecreasing positive numbers {bn, n � 1}. There often arises an assumption that {An, n � 1} are
almost surely increasing: An ⊂ An+1, a.s. n � 1.
MSC: 60F15
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1 Introduction

Let {Xn, n � 1} be a sequence of independent random variables defined on a probability space (Ω,F,P)
such that E|Xn| < ∞, n � 1. A random set with values in 2N is a map A : Ω → 2N such that A−1(B) =
{ω ∈ Ω: A(ω) = B} ∈ F for any B ⊂ N (cf. [7, p. 35, Def. 3.1 and the remark on p. 72]). Obviously, if A
and B are random sets, thenA∪B, A∩B, andA \B are also random sets. Furthermore, |A| is a nonnegative
random variable, where |A| is the cardinality of the set A. The basis of the theory of random sets can be found
in a classic book by Matheron [5] or, more currently, in Molchanov’s book [6] or Nguyen’s book [7]. For an
arbitrary (random or nonrandom) subset A of natural numbers, we put

S(A) =
∑

i∈A
Xi −E

∑

i∈A
Xi.

Let {An, n � 1} (we always put A0 = ∅) be a sequence of arbitrarily dependent subsets of positive integer
numbers N that are almost surely bounded, that is, there exists a sequence of positive reals {αn, n � 1},
possibly, divergent to infinity, such that

P
[
sup{k: k ∈ An} � αn

]
= 1. (1.1)

Throughout the paper, we assume that {An, n � 1} and {Xn, n � 1} are independent, that is, for every
sequence {Bn, n � 1} of subsets of 2N and every sequence {Cn, n � 1} of measurable Borel sets on R, for
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every n ∈ N, we have

P[Ak ∈ Bk, Xk ∈ Ck, 1 � k � n] = P[Ak ∈ Bk, 1 � k � n]P[Xk ∈ Ck, 1 � k � n].

The general aim of this paper is to establish the strong law of large numbers for the sums {S(An), n � 1}.
Randomly indexed sums have not been considered yet. Generally, this problem seems very difficult.

In our results, there often (although not always) arises the assumption

An ⊂ An+1 a.s., n � 1. (1.2)

Therefore the investigation of the behavior {S(An)/bn, n � 1} for some sequence of divergent to infinity
positive reals {bn, n � 1} under (1.2) is equivalent to investigating {∑n

i=1 S(i)/bn, n � 1}, where

S(n) =
∑

i∈An\An−1

Xi −E
∑

i∈An\An−1

Xi, n � 1,

is the sequence of dependent random variables.
The most recent result for a sequence of dependent mixing random variables is due to Hu and Weber [4]

(see also [2] and [3]). Their result, formulated in our terms, may be stated as follows.

Theorem 1. (See [4, Thm. 1.1 and Cor. 1.2].) Let {Xn, n � 1} be a sequence of random variables, and let
{An, n � 1} be a sequence of random subsets of N such that An ⊂ An+1 a.s. n � 1. Let {bn, n � 1} be
an increasing sequence of positive constants. Assume that there exists a constantK such that, for all n � 1,

n

bn
� K. (1.3)

Suppose that
∞∑

n=1

Var(
∑

i∈An\An−1
Xi) log

2 n

b2n
< ∞ (1.4)

and
∞∑

k=1

sup
n�1

∣
∣
∣
∣Cov

( ∑

i∈An+1\An

Xi,
∑

i∈An+k+1\An+k

Xi

)∣
∣
∣
∣
log2 k

k
< ∞. (1.5)

Then

lim
n→∞

S(An)

bn
= 0 a.s.

The general aim of our paper is to obtain a new SLLN for {S(An)/bn, n � 1} with the following improve-
ments:

• We assume nothing about the mixing structure type (1.5). In Example 1 and Remark 2 in Section 4, we
construct the sequence {Xn, n � 1} such that {S(n), n � 1} are dependent and not satisfying (1.5) but
such that for this sequence, our result holds.

• We remove assumption (1.3).
• Our results essentially weaken assumption (1.4).
• We consider both the Marcinkiewicz–Zygmund and Kolmogorov SLLNs.
• The technique of proof of our results is essentially different from that presented in papers [3, 4] and [2].
We develop the technique described in [1] and [8].

We postpone a discussion and comparison of our results with Theorem 1 to Section 4 devoted to remarks,
examples, and conclusions. Section 2 contains the main results, which are proved in Section 3.

Throughout the paper, C denotes the generic constants, and we always assume that
∑

i∈∅ ai = 0.
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2 Main results

Let {Xn, n � 1} be a sequence of random variables such that E|Xn| < ∞, n � 1. For an arbitrary random
subset A of natural numbers, we denote

V (A) =
∑

i∈A
Xi −

∑

i∈A
EXi =

∑

i∈A
(Xi −EXi),

Z(A) =
∑

i∈A
EXi −E

∑

i∈A
EXi =

∞∑

i=1

(
I[i ∈ A]−P[i ∈ A]

)
EXi,

S(A) =
∑

i∈A
Xi −E

∑

i∈A
Xi. (2.1)

Note that if A is independent of {Xn, n � 1}, then
S(A) = V (A) + Z(A). (2.2)

Theorem 2. Let {Xn, n � 1} be a sequence of independent random variables such that E|Xn| < ∞, n � 1,
and let {An, n � 0} be a sequence of random subsets of N (Ao = ∅) independent of {Xn, n � 1} and
satisfying (1.1). Let {bn, n � 1} be a nondecreasing unbounded sequence of positive reals. Introduce the
following conditions:

(a) for q > 1,
∞∑

n=1

E
∑

j∈An\An−1

E|Xj −EXj|2q
∞∑

k=n+1

|Ak|q−1 − |Ak−1|q−1

b2qk
< ∞; (2.3)

(b) for q � 1,
∞∑

n=1

E
∑

j∈An\An−1

E|Xj −EXj |2q |An|q−1

b2qn
< ∞; (2.4)

(c) An ⊂ An+1 a.s., n � 1;

(d) for every ε > 0,

∞∑

n=1

(

e−bnε+E
∑

i∈An
XiE

∏

i∈An

e−EXi

)

< ∞, (2.5)

∞∑

n=1

(

e−bnε−E
∑

i∈An
XiE

∏

i∈An

eEXi

)

< ∞. (2.6)

If for some q � 1, E|Xn|2q < ∞, n � 1, and (a)–(c) are satisfied, then

lim
n→∞

V (An)

bn
= 0 a.s. (2.7)

If (d) is satisfied, then

lim
n→∞

Z(An)

bn
= 0 a.s. (2.8)
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If for some q � 1, E|Xn|2q < ∞, n � 1, and (a)–(d) are satisfied, then

lim
n→∞

S(An)

bn
= 0 a.s. (2.9)

Corollary 1. Let {X,Xn, n � 1} be a sequence of independent identically distributed random variables such
that E|X| < ∞, and let {An, n � 0} be a sequence of random subsets of N (Ao = ∅) independent of
{Xn, n � 1} and satisfying (1.1). Let {bn, n � 1} be a nondecreasing unbounded sequence of positive reals.
Introduce the following conditions:

(i) An ⊂ An+1 a.s., n � 1;

(ii) for q > 1,
∞∑

n=1

E

(
(|An| − |An−1|

) ∞∑

k=n+1

|Ak|q−1 − |Ak−1|q−1

b2qk

)

< ∞;

(iii) for q � 1,
∞∑

n=1

E
(|An| − |An−1|)|An|q−1

b2qn
< ∞;

(iv) for every ε > 0,
∞∑

n=1

e−bnεE
(
e||An|−E|An||)EX

< ∞.

If E|X|2q < ∞, q � 1, and (i)–(iii) are satisfied, then

lim
n→∞

V (An)

bn
= 0 a.s.

If (iv) is satisfied, then

lim
n→∞

Z(An)

bn
= 0 a.s.

If E|X|2q < ∞, q � 1, and (i)–(iv) are satisfied, then

lim
n→∞

S(An)

bn
= 0 a.s.

It is worth noting that condition (iv) of the corollary is satisfied when

lim
n→∞

logE(e||An|−E|An||)EX

bn
= 0

and, for every ε > 0,
∞∑

n=1

e−εbn < ∞.

Let us now consider the case where {Xn, n � 1} are arbitrary dependent but identically distributed.
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Theorem 3. Let {X,Xn, n � 1} be a sequence of arbitrary dependent identically distributed random vari-
ables such thatE|X| < ∞, and let {An, n � 0} be a sequence of a random subsets ofN (Ao = ∅) independent
of {X,Xn, n � 1} such that

An−1 ⊂ An a.s., n � 1.

Suppose that b0 = 0 and {bn, n � 1} is a nondecreasing divergent to infinity sequence of positive constants
and

∞∑

k=1

bkP [bk−1 < |X −EX| � bk]

∞∑

n=1

E|(An \An−1) ∩ [k,∞)|
bn

< ∞, (2.10)

lim inf
k→∞

bk
k

∞∑

n=1

E|(An \ An−1) ∩ [k,∞)|
bn

> 0. (2.11)

Assume additionally that, for every ε > 0, we have

∞∑

n=1

e−bnε
(
eEXE|An|E

(
e−EX

)|An| + e−EXE|An|E
(
eEX

)|An|) < ∞. (2.12)

Then

lim
n→∞

S(An)

bn
= 0 a.s.

It is easy to check that in the case of An = {1, 2, . . . , n}, n� 1, from Theorem 3 we obtain Theorem 2.1
of [8].

3 Proofs

In this section, for an arbitrary set A ⊂ N and for an arbitrary sequence of random variables {Xn, n � 1}, we
will use notation (2.1). Because V (An) may be written as the sum of random variables, the classical Hájek–
Rényi inequality holds.

Lemma 1. (See Hájek–Rényi-type maximal inequality, [1, Thm. 1.1].) Let {An, n � 0}, A0 = ∅, be an
a.s. increasing sequence of random subsets of N satisfying (1.1) and independent of the sequence of random
variables {Xn, n � 1}. Let β1, β2, . . . be a nondecreasing sequence of positive numbers. Let α1, α2, . . . be
nonnegative numbers. Let r be a fixed positive number. Assume that for eachm with 1 � m � n,

E
[
max
1�l�m

∣
∣V (Al)

∣
∣
]r

�
m∑

l=1

αl.

Then

E

[

max
1�l�n

∣
∣
∣
∣
V (Al)

βl

∣
∣
∣
∣

]r
< 4

n∑

l=1

αl

βr
l

.

Lemma 2. (See [1, Thm. 2.1].) Let {An, n � 0} be a sequence of a.s. increasing random subsets of N
satisfying (1.1):

An : Ω → 2N, An ⊂ An+1 a.s., n � 1.

Lith. Math. J., 61(4):471–482, 2021.
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Let {bn, n � 1} be a nondecreasing unbounded sequence of positive numbers, and let {αn, n � 1} be
a sequence of nonnegative numbers. Let r be a fixed positive number. Assume that for each n � 1,

E
[
max
1�l�n

∣
∣V (Al)

∣
∣
]r

�
n∑

l=1

αl.

If
∑∞

l=1 αl/b
r
l < ∞, then

lim
n→∞

V (An)

bn
= 0 a.s.

Proof of Theorem 2. We first consider convergence (2.7). The proof essentially runs similarly as that of
Corollary 3.1 in [1]. We only remark that in our case the Doob inequality is

E
[
max
1�k�n

∣
∣V (Ak)

∣
∣
]2q

=
∑′

E
[
max
1�k�n

∣
∣V (Bk)

∣
∣
]2q

P[Ak = Bk, 1 � k � n]

�
(

2q

2q − 1

)2q ∑′
E
[∣
∣V (Bn)

∣
∣
]2q

P[Ak = Bk, 1 � k � n]

�
(

2q

2q − 1

)2q

E
∣
∣V (An)

∣
∣2q,

where
∑′ is the sum taken over all possible sets {Bk, 1 � k � n} such that Bi ⊂ Bi+1, 1 � i � n− 1, and

Bn ⊂ {1, 2, . . . , αn} (cf. (1.1)), and the Burkholder inequality is

E
[∣
∣V (An)

∣
∣
]2q � cqE

( ∑

j∈An

(Xj −EXj)
2

)q

.

Applying the Hölder inequality for q > 1 , we get

E
[∣
∣V (An)

∣
∣
]2q � cqE

( ∑

j∈An

|Xj −EXj |2q|An|q−1

)

.

Now putting, for n � 1,

αn =

⎧
⎪⎨

⎪⎩

c(q)(E
∑

j∈An\An−1
E|Xj −EXj |2q|An|q−1

+E
∑

j∈An−1
E|Xj −EXj |2q(|An|q−1 − |An−1|q−1)) if q > 1,

c(q)E
∑

j∈An\An−1
Var(Xj) if q = 1,

where c(q) = cq(2q/(2q − 1))2q , we get

E
[
max
1�k�n

∣
∣V (Ak)

∣
∣
]2q

�
n∑

j=1

αj , n � 1.

Thus (a), (b), and Lemma 2 end the proof of (2.7).
To prove (2.8), it suffices to show that for all ε > 0,

∞∑

n=1

P

[∣
∣
∣
∣
Z(An)

bn

∣
∣
∣
∣ > ε

]

< ∞.
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Notice that by the Chebyshev exponential inequality we have

∞∑

n=1

P
[
Z(An) > εbn

]
�

∞∑

n=1

EeZ(An)

eεbn
=

∞∑

n=1

e−εbnE e
∑∞

i=1(I[i∈An]−pn,i)EXi ,

where pn,i = P[i ∈ An], i, n � 1. Next, taking into account that

∞∑

i=1

pn,iEXi = E
∑

i∈An

Xi, n � 1,

and by the property of the indicator function we have

E e
∑∞

i=1(I[i∈An]−pn,i)EXi = e−
∑∞

i=1 pn,iEXi E e
∑∞

i=1 I[i∈An]Xi

= e−E
∑

i∈An
Xi E

∏

i∈An

eEXi .

Thus from (2.6) we obtain
∞∑

n=1

P
[
Z(An) > εbn

]
< ∞.

Similarly, we have

E e−
∑∞

i=1(I[i∈An]−pn,i)EXi = eE
∑

i∈An
Xi E

∏

i∈An

e−EXi ,

and from (2.5) we have
∞∑

n=1

P
[
Z(An) < −εbn

]
< ∞. 	


Proof of Theorem 3. Let us first prove that

lim
n→∞

V (An)

bn
= 0 a.s. (3.1)

Because

V (An) =
∑

i∈An

(Xi −EXi)I
[|Xi −EXi| > bi

]

+

n∑

k=1

∑

i∈Ak\Ak−1

(Xi −EXi)I
[|Xi −EXi| � bi

]
,

to obtain (3.1), it suffices to prove that

∞∑

i=1

|Xi −EXi|I
[|Xi −EXi| > bi

]
< ∞ a.s. (3.2)

and (by the Kronecker lemma)

∞∑

n=1

1

bn

∑

i∈An\An−1

|Xi −EXi|I[|Xi −EXi| � bi] < ∞ a.s. (3.3)

Lith. Math. J., 61(4):471–482, 2021.
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Proof of (3.2). From (2.10) and (2.11) we may conclude that

∞∑

k=1

P
[|X −EX| > bk

]
=

∞∑

k=1

kP
[
bk−1 < |X −EX| � bk

]−P
[|X −EX| �= 0

]
< ∞.

Thus by the Borel–Cantelli lemma there exists the positive integer-valued random variable Y such that

P

[ ⋃

n�Y

[|Xn −EXn| > bn
]
]

= 0,

and therefore
∞∑

i=1

|Xi −EXi|I
[|Xi −EXi| > bi

]
=

∑

i�Y

|Xi −EXi|I
[|Xi −EXi| > bi

]
< ∞ a.s.,

which ends the proof of (3.2).
Proof of (3.3). From (2.10) we have

∞∑

n=1

1

bn
E

∑

i∈An\An−1

|Xi −EXi|I
[|Xi −EXi| � bi

]

=

∞∑

n=1

1

bn
E

∑

i∈An\An−1

i∑

k=1

|Xi −EXi|I
[
bk−1 < |Xi −EXi| � bk

]

�
∞∑

n=1

1

bn
E

∑

i∈An\An−1

i∑

k=1

bkP
[
bk−1 < |X −EX| � bk

]

=

∞∑

n=1

1

bn

∞∑

k=1

bkP
[
bk−1 < |X −EX| � bk

]
E

∑

i∈An\An−1, i�k

1

=

∞∑

n=1

1

bn

∞∑

k=1

bkP
[
bk−1 < |X −EX| � bk

]
E
∣
∣(An \An−1) ∩ [k,∞)

∣
∣

=

∞∑

k=1

bkP
[
bk−1 < |X −EX| � bk

] ∞∑

n=1

E|(An \An−1) ∩ [k,∞)|
bn

< ∞,

and since L1 bounded series are almost surely bounded, we also get (3.3).
To prove Theorem 3, we need to show that

lim
n→∞

Z(An)

bn
= 0 a.s.,

but because complete convergence implies almost sure convergence, it suffices to prove that for every ε > 0,

∞∑

n=1

P
[∣
∣Z(An)

∣
∣ > εbn

]
< ∞. (3.4)
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By the Chebyshev exponential inequality we have

∞∑

n=1

P
[
Z(An) > εbn

]
�

∞∑

n=1

e−εbnEeEX[
∑∞

i=1(I[i∈An]−pn,i)],

∞∑

n=1

P
[
Z(An) < −εbn

]
�

∞∑

n=1

e−εbnEeEX[
∑∞

i=1(pn,i−I[i∈An])],

where pn,i = P [i ∈ An], n � 1, 1 � i � αn. Furthermore, because |An| =
∑∞

i=1 I[i ∈ An], E|An| =∑∞
i=1 pn,i, and (3.4) follows from (2.12). 	


4 Remarks and examples

Remark 1. Let us remark that the assumptionE|X| < ∞ in Theorem 3 is superfluous. ReplacingX −EX by
X in the proof, we obtain the SLLN of the following form:

lim
n→∞

∑
i∈An

Xi

bn
= 0.

However, in this paper, we emphasize the influence of decomposition (2.2) on SLLN, and therefore we assume
the existence of the first moment ofX.

Let us consider the increments of terms V (An), Z(An), S(An), that is, the terms V(n) = V (An+1 \ An),
Z(n) = Z(An+1 \ An), S(n) = S(An+1 \An), n � 1, respectively.

Remark 2. Let {Xn, n � 1} be a sequence of independent random variables, and let {An, n � 1} be a se-
quence of almost surely increasing 2N-valued random sets independent of {Xn, n � 1}. We have:

(a) The increments of V (An) are uncorrelated.
(b) The increments of Z(An) and S(An) may be correlated.
(c) The increments of V (An), Z(An), and S(An) may be dependent.

Proof of Remark 2(a). Because {An, n � 1} and {Xn, n � 1} are independent, and {Xn, n � 1} are
independent random variables, we have

Cov(V(n), V(n+k)) = Cov

( ∑

j∈An+1\An

(Xj −EXj),
∑

j∈An+k+1\An+k

(Xj −EXj)

)

=
∑′ ∑

j∈B\A

∑

k∈D\C
E(Xj −EXj)(Xk −EXk)

×P[An = B1, An+1 = B2, An+k = B3, An+k+1 = B4] = 0,

where the summation in
∑′ is taken over all possible sets {Bk, 1 � k � 4} such that Bi ⊂ Bi+1, i = 1, 2, 3,

and B4 ⊂ {1, 2, . . . , αn+k+1} (cf. (1.1)). 	


For points (b) and (c) of Remark 2, we construct the following example.

Example 1. Let {Xn, n � 1} be a sequence of independent Gaussian N(μn, σn) random variables defined
on the probability space ([0, 1],B, λ) (B denotes the family of Borel subsets of [0, 1], and λ is the Lebesgue
measure on [0, 1]). On the same probability space ([0, 1],B, λ), we will define the sequence of random sets

Lith. Math. J., 61(4):471–482, 2021.
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{An, n � 1} and expand the definitions of {Xn, An, n � 1} on the product space ([0, 1]2,B×B, λ×λ) such
that {Xn, n � 1} and {An, n � 1} will be independent (Xn(ω1, ω2) = Xn(ω1), An(ω1, ω2) = An(ω2)). For
some 0 < p < 1, we define

In =

{
[0, p) if n is even,

[p, 1] if n is odd,

and let

An =

{
{1, 2, . . . , n, n+ 1}, ω ∈ [0, 1] × In,

{1, 2, . . . , n, n+ 2}, ω ∈ [0, 1] × ([0, 1] \ In).
(4.1)

Obviously An ⊂ An+1 a.s. n � 1. In the case where n is even, n + 1 is odd, and In = [0, p), In+1 = [p, 1].
Therefore for ω ∈ [0, 1] × [0, p), An(ω) and An+1(ω) are defined by the first and second formulas in (4.1),
respectively. Thus

An+1(ω) \ An(ω) = {1, 2, . . . , n, n+ 1, n+ 3} \ {1, 2, . . . , n, n+ 1}
= {n+ 3},

whereas for ω ∈ [0, 1] × [p, 1] we take An+1(ω) defined by first formula and An(ω) by the second formula
in (4.1). Thus

An+1(ω) \ An(ω) = {1, 2, . . . , n, n+ 1, n+ 2} \ {1, 2, . . . , n, n+ 2}
= {n+ 1}.

Proceeding similarly for the case of odd n, we establish

An+1(ω) \ An(ω) =

{
{n+ 1}, ω ∈ [0, 1] × ([0, 1] \ In),
{n+ 3}, ω ∈ [0, 1] × In.

Proof of items (b) and (c) of Remark 2. In Example 1, from the independencyof {Xn, n � 1} and {An, n � 1}
we have

Cov(S(n), S(n+k)) = Cov

( ∑

j∈An+1\An

Xj ,
∑

j∈An+k+1\An+k

Xj

)

= (−1)I[k is odd]p(1− p)(μn+3 − μn+1)(μn+k+3 − μn+k+1),

where I[B] is the indicator (or characteristic function) of event B. Now if μn = nδ for some δ > 0, then we
have

Cov(S(n), S(n+k)) = (−1)I[k is odd]4p(1− p)δ2 �= 0.

By similar computations we get

Cov(Z(n), Z(n+k)) = (−1)I[k is odd]4p(1 − p)δ2 �= 0,

which ends the proof of (b).
For (c), let us assume that k is even and μn = 0. Then

φV(n),V(n+k)
(t, s) = P[In]e

−t2σ2
n+3/2−s2σ2

n+k+3/2 +
(
1−P[In]

)
e−t2σ2

n+1/2−s2σ2
n+k+1/2,

φV(n)
(t) = P[In]e

−t2σ2
n+3/2 +

(
1−P[In]

)
e−t2σ2

n+1/2,

φV(n+k)
(s) = P[In]e

−s2σ2
n+k+3/2 +

(
1−P[In]

)
e−s2σ2

n+k+1/2,
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where φX(t) denotes the characteristic function of X. Now we put σ2
n = log(en/(n + 1)), t = s =

√
2,

p = 0.5 (note that σn → 1, as n → ∞). Then we have

φV(n),V(n+k)
(
√
2,
√
2)− φV(n)

(
√
2)φV(n+k)

(
√
2)

=
1

2e2

(
(n + 4)(n+ k + 4)

(n + 3)(n+ k + 3)
+

(n + 2)(n+ k + 2)

(n + 1)(n+ k + 1)

)

− 1

4e2

(
n+ 4

n+ 3
+

n+ 2

n+ 1

)(
n+ k + 4

n+ k + 3
+

n+ k + 2

n+ k + 1

)

=
1

4e2

(
1

n+ k + 1
− 1

n+ k + 3

)(
1

n+ 1
− 1

n+ 3

)

=
1

e2(n+ 1)(n + 3)(n + k + 1)(n + k + 3)
�= 0.

Obviously, correlated random variables are dependent, and thus statement (c) follows from (b). 	


Remark 3. Defining {Xn, An, n � 1} as in Example 1 with μn = nδ, σn = 1, n � 1, δ > 0, Theorem 1 fails
for every choice of the sequence {bn, n � 1}, whereas if for some q � 1,

∞∑

n=1

∞∑

k=n

(k + 1)q−1 − kq−1

b2qk
< ∞, (4.2)

∞∑

n=1

nq−1

b2qn
< ∞, (4.3)

∞∑

n=1

e−εbn < ∞, (4.4)

then (2.7)–(2.9) hold.

Proof. We note that when Xj ∼ N(jδ, 1), Xj − EXj ∼ N(0, 1) and E|Xj − EXj |2q = κq , say. Then we
have

∞∑

k=1

sup
n�1

∣
∣
∣
∣Cov

( ∑

i∈An+1\An

Xi,
∑

i∈An+k+1\An+k

Xi

)∣
∣
∣
∣
log2 k

k
= 4p(1− p)δ2

∞∑

n=1

log2 n

n
= ∞,

so that (1.5) fails. Now we show that there exists a sequence {bn, n � 1} such that the assumptions of
Theorem 2 hold. Because

E
∑

i∈An

Xi =
1

2

(
(n+ 1)(n + 2) + 2

)
δ −P[In]δ,

E
∏

i∈An

e±EXi = e±(n+1)(n+2)δ/2
(
P[In] +

(
1−P[In]

)
e±δ

)
,

(2.5) and (2.6) hold if and only if
∑∞

n=1 e
−εbn < ∞. Conditions (2.3) and (2.4) are reduced to those (4.2) and

(4.3), respectively. For example, we may put bn = n, q = 2, and then (4.2)–(4.4) are fulfilled. 	
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