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Abstract. In this paper, we consider some examples of set algebras A on N. If E(A) is the set of simple functions on A,
then L∗α(A) denotes the ‖·‖α-closure of E(A). Our aim is to determine a complete orthonormal system for the Hilbert
space L∗2(A) in each regarded case. Here L∗2(A) denotes the quotient space L∗2(A) modulo null-functions.
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1 Introduction

For a function f : N→ C, we define ‖·‖α by

‖f‖α :=

{
lim sup
x→∞

1

x

∑
n6x

∣∣f(n)
∣∣α}1/α

, 1 6 α <∞.

Let Lα := {f : N→ C: ‖f‖α <∞} be the linear space of functions on N with bounded seminorm ‖f‖α. By
Lα we denote the quotient space Lα modulo null-functions (i.e., functions f with ‖f‖α = 0). For α > 1, the
norm space Lα is complete [7].

Let A be an algebra of subsets of N. Then

E(A) :=

{
s ∈ E : s =

m∑
j=1

αj1Aj , αj ∈ C, Aj ∈ A, j = 1, . . . ,m, m ∈ N

}

denotes the space of simple functions on A.
1 Supported by a grant of Deutsche Forschungsgemeinschaft Project No. 289386657.
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DEFINITION 1. For a given algebra A and 1 6 α < ∞, the space L∗α(A) is defined as the ‖·‖α-closure of
E(A). A function f ∈ L∗α(A) is called uniformly (A) − α summable. By Lα(A) we denote the quotient
space L∗α(A) modulo null functions.

Remark 1. IfA = P(N) is the algebra of all subsets of N, then L∗1(A) is the ‖·‖1-closure of l∞ is the space L∗
of uniformly summable functions introduced by Indlekofer [2].

Here we consider algebras A where every A ∈ A possesses an asymptotic density δ(A) defined by

δ(A) := lim
n→∞

1

n

∑
m6n
m∈A

1

if the limit exists. Then δ is finitely additive on A, that is, δ is a content on A.
We say that an arithmetical function f possesses an (arithmetical) mean value M(f) if

M(f) := lim
n→∞

1

n

∑
m6n

f(m)

exists. If every A ∈ A possesses an asymptotic density, then every f ∈ L∗1(A) possesses a mean value.
Further, we define an inner product on L∗2(A) by

〈f, g〉 := M(fḡ), f, g ∈ L∗2(A).

This product is well-defined. For this, let f, g ∈ L∗2(A). If ε > 0, then there exist s1, s2 ∈ E(A) such that
‖f − s1‖2 < ε and ‖g − s2‖2 < ε. Put ε := ε∗/(‖f‖2 + 2‖g‖2). Then

‖fḡ − s1s̄2‖1 6
∥∥f(ḡ − s̄2)

∥∥
1

+
∥∥(f − s1)s̄2

∥∥
1

6 ‖f‖2‖ḡ − s̄2‖2 + ‖f − s̄1‖2‖s̄2‖2
6 ε
(
‖f‖2 + 2‖g‖2

)
6 ε∗,

and fḡ ∈ L∗1(A). Since L∗2(A) is complete, the space L∗2(A) is a Banach space. Therefore the space
L∗2(A) is a Hilbert space with the inner product defined above.

In this paper, we investigate examples of Hilbert spaces L∗2(A) together with associated (complete) or-
thonormal systems.

Remark 2. The described construction of L∗α(A) was the starting point of an integration theory by Indlekofer
(see [4, 5]).

Embedding N, endowed with the discrete topology, in the compact space βN, the Stone–Čech compactifi-
cation of N, we get:

Ā := {Ā: A ∈ A}, where Ā := closβNA,

is an algebra in βN (for details, see [4, 5]).
Let δ be a content on A, that is, δ : A → R>0 is finitely additive, and define δ̄ on Ā by

δ̄(Ā) = δ(A), Ā ∈ Ā.

Then δ̄ is a pseudo-measure on Ā and can be extended to a measure on σ(Ā), which we also denote by δ̄. This
leads to the measure space (βN, σ(Ā), δ̄).
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2 Some Hilbert spaces and corresponding orthonormal systems

2.1 A simple case

Let A0 be the algebra generated by the sets Ap := {n ∈ N: p |n}, p prime, and put

δ(Ap) := M(1Ap) = lim
n→∞

1

n

∑
m6n
p|m

1 =
1

p
.

Note that the following relations of the characteristic functions

1A∩B = 1A · 1B, 1A\B = 1A − 1A · 1B, 1A∪B = 1A + 1B − 1A · 1B

imply that the characteristic function of a set A ∈ A is a finite linear combination of products 1Ap1 · · ·1Apr .
Thus the asymptotic density δ(A) exists for all A ∈ A0.

For every prime p, put
hp := p1Ap − 1

and define hn : N→ Z by hn = 1 for n = 1 and

hn :=
∏
p|n

hp for every square-free n ∈ N.

Obviously, for every prime p,

M(hp) = 0, M
(
h2
p

)
= p− 1.

Now, if f : N→ C is such that M(f) exists and f(pm) = f(m) for all m ∈ N, then we conclude that∑
m6x

hp(m)f(m) = p
∑
pm6x

f(pm)−
∑
m6x

f(m) = p
∑

m6x/p

f(m)−
∑
m6x

f(m)

and M(hpf) = 0, that is,

M(hn) = 0 if µ2(n) = 1, n > 1,

and

M(hnhn′) = 0 if µ2(n) = µ2(n′) = 1 and n 6= n′.

In the same way, we obtain

M
(
h2
pf
)

= (p− 1)M(f).

By induction this leads to

M
(
h2
n

)
= ϕ(n) if µ2(n) = 1.

Putting h∗n := (ϕ(n))−1/2hn (µ2(n) = 1), we have shown the following:

Theorem 1. The set {h∗n: n square-free} is a complete orthonormal system for L∗2(A0).

Remark 3. We easily to see that the function hn : N → Z satisfies hn1n2
= hn1

· hn2
if (n1, n2) = 1 and

µ(n1) = µ(n2) = 1, that is, n = 1, or n is a product of an even number of different primes.

Remark 4. Every f ∈ E(A0) can be written as a linear combination of multiplicative gj such that gj(pl) = 1
for all p > kj and l ∈ N, since g = 1− 1Ap is multiplicative.

Lith. Math. J., 61(3):373–381, 2021.
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2.2 Almost even functions

For primes p and k = 0, 1, 2, . . . , let Apk := {n ∈ N: pk |n} be the set of natural numbers divisible by pk.
LetA1 be the algebra generated by the sets {Apk}. Then, for all Apk , the asymptotic density δ(Apk) exists and
equals 1/pk, and, as before, the asymptotic density δ(A) exists for all A ∈ A1.

Schwarz and Spilker [8, Chap. VI] considered the space B of even functions and characterized the sets of
α-almost even functions (see also [3]).

It is well known that E(A1) equals B and Lα(A1) is exactly the space of α-almost even functions (see [5]).

Remark 5. Every f ∈ E(A1) can be written as a linear combination of multiplicative functions gj such that
gj(p

l) = 1 for all p > kj and l ∈ N.

Remark 6. Let f : N→ C be a multiplicative function such that |f | 6 1. Then the following statements hold.

(i) If M(f) 6= 0, then f ∈ L∗α(A1) for every α > 1.
(ii) M(|f |) = 0 if and only if

∑
p prime(1 − |f(p)|)/p = ∞; especially, if

∑
p prime, f(p)=0 1/p = ∞, then

M(|f |) = 0.
(iii) M(|f |) = 0 if and only if M(|f |2) = 0.

Put

hp := p1Ap − 1 for prime p

and

hpk := pk1Apk − p
k−11Apk−1 for k > 2.

Define hn = 1 for n = 1 and

hn :=
∏
pk‖n

hpk for n > 1.

Putting

h∗n =
1

(ϕ(n))1/2
hn, (2.1)

where ϕ is Euler’s function, it is easy to show (see above) that {h∗n} is an orthonormal system. We conclude
by the following:

Theorem 2. The set {h∗n: n ∈ N} is a complete orthonormal system for L∗2(A1).

Remark 7. The functions hn appear in a very natural way. It is not difficult to show (see [8, pp. 16–17]) that
hn is just the Ramanujan sum cn for every n.

2.3 Limit periodic functions

Let A2 be the algebra generated by all residue classes Aa,r := {n ∈ N: n ≡ a mod r}, 1 6 a 6 r, r ∈ N.
Here again the asymptotic density δ is a finite additive function onA2. Then we have the following lemma.

Lemma 1. E(A2) is the space of all periodic functions on N.

The space L∗α(A2) is the space of α-limit-periodic functions.
Defining ea/r : N→ C by

ea/r(n) := exp

(
2πi

a

r
n

)
,

we have the following result (see [8, p. 207]).

Theorem 3. The set {ea/r: 1 6 a 6 r, gcd(a, r) = 1, r = 1, 2, . . . } is a complete orthonormal system
in L∗2(A2).
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2.4 Almost periodic functions

For β ∈ R, the function eβ : N→ C defined by

eβ(n) = exp(2πiβn), n ∈ N,

possesses a mean value M(eβ).
Let C be the family of all half-open subsets of [0, 1] and denote by A3 the algebra generated by the sets

A(β,E) := {n ∈ N: {βn} ∈ E}, where β ∈ [0, 1), E ∈ C, and βn = [βn] + {βn} (0 6 βn < 1). Then
(see [8, p. 207]) we have the following:

Theorem 4. The set {eβ : β ∈ [0, 1]} is a complete orthonormal system in L∗2(A3).

2.5 Almost multiplicative functions

Let f be a multiplicative function taking only the values {−1, 0, 1} and define the sets

A+
f := {n: f(n) = 1}, A0

f := {n: f(n) = 0}, and A−f := {n: f(n) = −1}

with characteristic functions f+, f0, and f−, respectively. Obviously,

f+ =
1

2

(
|f |+ f

)
, f0 = 1− f+ − f−, f− =

1

2

(
|f | − f

)
.

We define the algebraA4 to be the algebra generated by the sets A+
f , A0

f , A−f for all multiplicative functions f
with f(N) ⊂ {−1, 0, 1}. Every A ∈ A4 possesses an asymptotic density by Wirsing’s theorem. An arbitrary
elementA ofA4 has a characteristic function that is a linear combination of such multiplicative functions. Thus
the asymptotic density δ(A) exists. Let E(A4) be the vector space of simple functions on A4. Let L∗α(A4) be
the ‖·‖α-closure of E(A4).

DEFINITION 2. A function f ∈ L∗α(A4) is called an α-almost multiplicative function.

First, we show A1 ⊂ A4. For the proof, consider

f∗(n) := (1− 1Apk )(n) =

{
0, pk |n,
1 otherwise.

Then f∗ is multiplicative. Since 1N\Apk = 1N − 1Apk = 1 − 1Apk ∈ E(A4), we have N \ Apk ∈ A4. This
implies that Apk ∈ A4.

Since hn ∈ E(A1), we have hn ∈ E(A4). Every hn can be written as a finite linear combination of
1A

p
α1
1

· · · · · 1Apαmm , where m ∈ N.

Theorem 5. Let f : N→ R be multiplicative with |f | 6 1. Then f ∈ L∗α(A4) for all α > 1.

Proof. Put f = |f | signf , where signf is multiplicative with

(signf )
(
pl
)

=


1 if f(pl) > 0,
0 if f(pl) = 0,
−1 if f(pl) < 0.

Lith. Math. J., 61(3):373–381, 2021.
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Since |f | ∈ L∗α(A1) and sign f ∈ E(A4), we find s1, ss ∈ E(A4) such that ‖f | − s1|‖αα 6 εα and
‖ sign f − s2‖αα 6 εα. Note that there exist c1(α), c2(α) > 0 such that

‖s2‖αα 6
∥∥1 +

(
s2 − |f |

)∥∥α
α
6 c1(α)

and (
|a|+ |b|

)α
6 c2(α)

(
|a|α + |b|α

)
.

Put εα := ε∗α/(1 + c1(α)c2(α)). Then

‖f − s1s2‖αα = c2(α)
{∥∥|f |(signf −s2)

∥∥α
α

+
∥∥(|f | − s1

)
s2

∥∥α
α

}
6 c2(α)

{∥∥(signf −s2)
∥∥α
α

+
∥∥(|f | − s1

)∥∥α
α
‖s2‖αα

}
6 c2(α)εα + εαc2(α)c1(α) < ε∗q.

This proves Theorem 5. ut

Next, we construct an orthonormal system for the space L∗2(A4).
Let R0 be the set of all multiplicative functions with f(N) ⊂ {−1, 0, 1} and M(|f |) 6= 0. Define the

relation ∼ onR0 by

f ∼ g if and only if
∑
p

f(p) 6=g(p)

1

p
<∞.

Observe, that in this case, by (ii) of Remark 6,
∑

p, f(p)=0 1/p < ∞. Obviously, ∼ is an equivalence relation
onR0.

Now choose a representative from each residue class that takes only the values±1 and denote this set byF1.
Then F1 forms an orthonormal system. For this, let f, g ∈ F1 and observe that

∑
p, f(p) 6=g(p) 1/p =∞. Then,

by (ii) of Remark 6,M(fḡ) = 〈f, g〉 = 0. Furthermore, for f ∈ F1, we have f2 = 1 and 〈f, f〉 = M(f2) = 1.
This shows that F1 is an orthonormal system in L∗2(A4). Consider, for f ∈ F1, the system

F2 :=
{
fh∗n: f ∈ F1, n ∈ N

}
,

where h∗n is the normalized function (2.1).

Theorem 6. F2 is a complete orthonormal system for L∗2(A4).

Proof. First, we show that F2 is an orthonormal system. For this, let h∗nf 6= h∗ñg. This holds if and only if
f 6= g and n, ñ are arbitrary or f = g and n 6= ñ. Assume that f 6= g and n, ñ are arbitrary. Then

〈h∗nf, h∗n̄g〉 = M(h∗nfhn̄g) = M(fgh∗),

where h∗ is (see Remark 6) a finite linear combination of multiplicative functions gj with |gj | = 1 and
gj(p) = 1 for p > kj . Therefore

∑
p

1− f(p)g(p)gj(p)

p
=∞ and M(fggj) = 0.

So we obtain 〈h∗nf, h∗n̄g〉 = 0 if f 6= g. In the case f = g and n 6= n̄, obviously, 〈h∗nf, h∗n̄f〉 = M(h∗nh
∗
n̄) = 0.

Since 〈h∗nf, h∗n̄f〉 = M(|h∗nf |2) = 1, F2 is an orthonormal system.
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For the proof of the completeness of F2, let g ∈ L∗(A4). Then g can be approximated in the ‖·‖2 norm by
some g∗ ∈ E(A4),

g∗ =

m∑
j=1

αj1Aj , αj ∈ C, Aj ∈ A4.

Note that 1A for A ∈ A4 is a finite linear combination of products of multiplicative functions f taking only
the values {−1, 0, 1}.

Therefore it suffices to prove that each real-valued multiplicative function f with values f(N) ⊂ {−1, 0, 1}
can be approximated by a linear combination of functions from F2. Choose g ∈ F1 that is equivalent to f .
Then f = hg where h = fg, since g2 = 1. Then∑

p

1− h(p)

p
=
∑
p

2

p
<∞

and h ∈ L∗2(A1). Thus h can be approximated by a linear combination of functions h1, . . . , hm, that is, for
ε > 0, there exist αj ∈ C such that∥∥∥∥∥h−

m∑
j=1

αjhj

∥∥∥∥∥
2

< ε, which implies

∥∥∥∥∥f −
m∑
j=1

αjhjg

∥∥∥∥∥
2

< ε.

This ends the proof of the completeness of F2. ut

2.6 q-ary almost even functions

First, we introduce q-multiplicative functions. Let q > 2 be an integer, and let A = {0, 1, . . . , q − 1}. The
q-ary expansion of some n ∈ N0 is defined as the unique sequence ε0(n), ε1(n), . . . for which

n =

∞∑
j=0

εj(n)qj , εj(n) ∈ A.

The numbers ε0(n), ε1(n), . . . are called the digits in the q-ary expansion of n. In fact, εr(n) = 0 if
r > log n/ log q. A function f : N0 → C is called q-multiplicative if f(0) = 1 and for every n ∈ N0,

f(n) =

∞∏
j=0

f
(
εj(n)qj

)
.

Let the algebra A5 be generated by the sets Aj,a := {n ∈ N: εj(n) = a}, j ∈ N0, a ∈ A. Every A ∈ A5

possesses an asymptotic density δ(A).
Let L∗1(A5) be the ‖·‖1-closure of E(A5). Here E(A5) is called the space of q-ary even functions. Then

L∗1(A5) is called the space of q-ary almost even functions.

Remark 8. Let f be a real-valued q-multiplicative function of modulus 6 1. Then the mean values M(|f |) and
M(f) always exist (see [6]). Especially, we have:

(i) If ‖f‖1 = M(|f |) > 0, then
∞∑
j=0

∑
a∈A

(
1−

∣∣f(aqj)∣∣) <∞.
Lith. Math. J., 61(3):373–381, 2021.



380 K.-H. Indlekofer, E. Kaya, and R. Wagner

(ii) If ∑
a∈A

f
(
aqj
)
6= 0 for all j ∈ N0 and

∞∑
j=0

∑
a∈A

(
1− f

(
aqj
))
<∞,

then M(f) 6= 0.

As an immediate consequence, we have the following:

Corollary 1. Let f be a real-valued q-multiplicative function of modulus 6 1. If

∞∑
j=0

∑
a∈A

(
1− f

(
aqj
))
<∞,

then f ∈ L∗1(A5).

This ends Remark 8.
Let L∗2(A5) be the ‖·‖2-closure of E(A5). Then we define a complete orthonormal system for the space

L∗2(A5).

Theorem 7. The set {ha0,...,ar} of q- multiplicative functions with

ha0,...,ar(n) :=

r∏
j=0

exp

(
2πiaj
q

εj(n)

)
,

aj ∈ A, j = 0, . . . , r, r ∈ N0, is a complete orthonormal system for L∗2(A5).

The proof is easy and is left to the reader.

2.7 Almost q-multiplicative functions

Let f be a q- multiplicative function taking only the values {−1, 0, 1} and define the sets

A+
f := {n: f(n) = 1}, A0

f := {n: f(n) = 0}, and A−f := {n: f(n) = −1}

with characteristic functions f+, f0, and f−, respectively. We denote by A6 the algebra generated by the sets
A+
f , A0

f , A−f for all q-multiplicative f with f(N) ⊂ {−1, 0, 1}.
An arbitrary element A of A6 has a characteristic function that is a linear combination of q-multiplicative

functions. From this and by the theorem of Delange [1] the asymptotic density δ(A) exists. Let E(A6) be the
space of simple functions on A6. Let L∗(A6) be the ‖·‖1-closure of E(A6).

DEFINITION 3. Functions f ∈ L∗(A6) are called almost q-ary multiplicative functions.

Next, we define a complete orthonormal system for L∗2(A6).
Let G := {f : N→ R: f q −multiplicative, f(n) ∈ {−1, 0, 1} for all n ∈ N with ‖f‖2 6= 0}. Define the

relation ∼ on G by

f ∼ g if and only if
∞∑
l=0

q−1∑
a=0

(
1− f

(
aql
)
g
(
aql
))
<∞.

Obviously, ∼ is an equivalence relation on G.
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Now from each equivalence class we choose a representative that is 6= 0 for all n ∈ N. We denote this set
of representatives by F3. We consider F4 := {ha0,...,arf : f ∈ F3, aj ∈ A, j = 0, . . . , r, r ∈ N} and show
the following:

Theorem 8. F4 is a complete orthonormal system for L∗2(A6).

Proof. First, we show that F4 is an orthonormal system. In the case g1 = g2 = g, since g2 = 1, we have

M(ha0,...,argh̄b0,...,bsg) = M(ha0,...,ar h̄b0,...,br) = 0

if ha0,...,ar 6= hb0,...,br and 1 otherwise. If g1 6= g2, then

(ha0,...,arg1h̄b1,...,bsg2)
(
aqj
)

= (g1g2)
(
aqj
)

if j is large enough. Obviously, M(g1g2) = 0, and F4 is an orthonormal system.
To prove the completeness of F4, it suffices to show that every q-multiplicative f with M(|f |) 6= 0 and

f(n) ∈ {−1, 0, 1} for all n ∈ N0 can be approximated by linear combinations of elements of F4.
Let f be such a function. Then f = |f | signf and signf ∼ g, g ∈ F3, and

f = |f | signf g
2 =

(
|f | signf g

)
g.

Now |f | signf g is a q-ary even function and can therefore be approximated by a linear combination of
some ha0,...,ar . This proves Theorem 8. ut
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