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Abstract. We derive the asymptotic behavior of the following ruin probability:

P
{∃t ∈ G(δ): BH(t)− c1t > q1u, BH(t)− c2t > q2u

}
, H ∈ (0, 1), u → ∞,

where BH is a standard fractional Brownian motion, c1, q1, c2, q2 > 0, and G(δ) denotes the regular grid {0, δ, 2δ, . . .}
for some δ > 0. The approximation depends onH , δ (only whenH � 1/2) and the relations between parameters c1, q1,
c2, q2.
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1 Introduction

Let BH(t), t ∈ R, be a standard fractional Brownian motion (fBM) with zero mean and covariance function

cov
(
BH(t), BH(s)

)
=

1

2

(|t|2H + |s|2H − |t− s|2H)
, H ∈ (0, 1), s, t ∈ R.

Define two risk processes

R
(H)
i,u (t) = qiu+ cit−BH(t), i = 1, 2,

where ci, qi > 0. The discrete simultaneous ruin probability over the infinite time horizon is defined by

ψ̄δ,H(u) = P
{∃t ∈ G(δ): R

(H)
1,u (t) < 0, R

(H)
2,u (t) < 0

}
,

where G(δ) denotes the grid {0, δ, 2δ, . . . } (for δ = 0, G(δ) = [0,∞)). For positive δ, the simultaneous ruin
probability is of interest both for theory-oriented studies and for applications in reinsurance (see, e.g., [9] and
references therein). In this paper, we investigate only the discrete setup; the continuous problem is already
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solved in [9]. For any possible choices of positive δ and H ∈ (0, 1), it is not possible to calculate ψ̄δ,H(u)
explicitly. When there are no explicit formulas, a natural question is how can we approximate ψ̄δ,H(u) for large
u. Also of interest is to know what is the role of δ and whether it affects the ruin probability in the considered
risk model. Theorem 1 gives detailed answers to these questions. Our results show that the discrete-time ruin
probabilities behave differently from continuous ifH � 1/2. We refer to [8] for some alternative proofs of the
results.

Also of certain interest is the finite time horizon setup of the problem. For fixed T > 0, the discrete
simultaneous ruin probability over a finite time horizon is

ζ̄H,T (u) = P
{∃t ∈ [0, T ]: R

(H)
1,u (t) < 0, R

(H)
2,u (t) < 0

}
.

The corresponding discrete ruin problem over a finite time horizon is trivial, since the set [0, T ] ∩ G(δ) con-
sists of finite number of elements, and hence the asymptotics of the large deviation is determined by the unique
maximizer of the variance of the process (this, e.g., immediately follows from Lemma 2.3 in [11] or Propo-
sition 2.4.2 in [12]). Thus we are concerned only with the continuous ruin problem over a finite horizon. The
asymptotics of ζ̄H,T (u) is discussed in Remark 2. We organize the paper in the following way. The next sec-
tion gives notation, necessary assumptions, and the main results. All proofs are relegated to Section 3, whereas
some technical calculations are presented in the Appendix.

2 Main results

First, we eliminate the trends via self-similarity of fBM. For any u > 0, we have

ψ̄δ,H(u) = P
{∃t ∈ G(δ): BH(t) > q1u+ c1t, BH(t) > q2u+ c2t

}

= P

{
∃t ∈ G

(
δ

u

)
:

BH(t)

max(c1t+ q1, c2t+ q2)
> u1−H

}
.

If two lines q1 + c1t and q2 + c2t do not intersect over (0,∞), then the problem degenerates to the one-
dimensional case, which is discussed in Theorem 2. In consideration of that dealing with ψ̄δ,H(u), we always
suppose that

c1 > c2, q2 > q1. (2.1)

It turns out that the variance of BH(t)/max(c1t+ q1, c2t+ q2) can achieve its unique maximum only at one
of the following points:

t1 =
Hq1

c1(1−H)
, t2 =

Hq2
c2(1−H)

, t∗ =
q2 − q1
c1 − c2

.

It follows from (2.1) that t1 < t2. As we show later, the order between t1, t2, and t∗ determines the asymptotics
of ψ̄δ,H(u) as u → ∞.

Denote by Φ and Φ the distribution and survival functions of a standard normal random variable, respec-
tively. For notational simplicity, we write B(t) instead of B1/2(t) and ψ̄δ(u) instead of ψ̄δ,1/2(u). Define the
Pickands constants for H ∈ (0, 1] and η > 0 by

H2H = lim
S→∞

1

S
E
{

sup
t∈[0,S]

exp
(√

2BH(t)− |t|2H)}
, Hη = E

{
supt∈ηZ exp(

√
2B(t)− |t|)

η
∑

t∈ηZ exp(
√
2B(t)− |t|)

}
.

It is known that H2H and Hη are positive and finite (see [1, 11, 12]). Define for some real function k(t) the
constant

Hk
α = lim

T→∞
E
{

sup
t∈[−T,T ]∩αZ

exp
(√

2B(t)− |t|+ k(t)
)}

Lith. Math. J., 61(2):246–260, 2021.
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when the expectation above is finite, and for δ � 0, set

dδ(t) = I(t < 0)
(q2c1 + c2q1 − 2q2c2)t

c1q2 − q1c2
+ I(t � 0)

(2c1q1 − c1q2 − q1c2)t

c1q2 − q1c2

− δI(t � 0)
(c1q2 − q1c2)(c1 − c2)

q2 − q1
,

where I(·) is the indicator function. Define the constants

C
(i)
H =

cHi q1−H
i

HH(1−H)1−H
, i = 1, 2.

The following theorem establishes the asymptotics of ψ̄δ,H(u).

Theorem 1. For δ > 0, as u → ∞,

(i) if t∗ /∈ (t1, t2), then

ψ̄δ,H(u) ∼
(
1

2

)I(t∗=ti)

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H2H
21/2−1/(2H)

√
π

H1/2(1−H)1/2 (C
(i)
H u1−H)1/H−1 Φ(C

(i)
H u1−H), H > 1

2 ,

H2c2i δ
exp(−2ciqiu), H = 1

2 ,
√
2πHH+1/2qHi uH

δcH+1
i (1−H)H+1/2

Φ(C
(i)
H u1−H), H < 1

2 ,

where i = 1 if t∗ � t1 and i = 2 if t∗ � t2,
(ii) if t∗ ∈ (t1, t2), then with DH = (c1t

∗ + q1)/(t
∗)H whenH > 1/2,

ψ̄δ,H(u) ∼ Φ
(DHu1−H

)
;

whenH = 1/2,

Hdδ

γ Φ(D1/2

√
u)
(
1 + o(1)

)
� ψ̄δ(u) � AHd0

γ Φ(D1/2

√
u)
(
1 + o(1)

)
,

whereHd
γ ,Hdδ

γ ∈ (0,∞), and

A = exp

(
δ
(c1q2 − c2q1)(c1q2 + q1c2 − 2c2q2)

2(q2 − q1)2

)
> 1, γ =

δ(c1q2 − q1c2)
2

2(q2 − q1)2
;

whenH < 1/2,

2 exp
(−Bu1−H

)
Φ
(DHu1−H

)(
1 + o(1)

)
� ψ̄δ,H(u) � Φ

(DHu1−H
)(
1 + o(1)

)
,

where

B = − δw′
1(t

∗)w′
2(t

∗)
2(w′

1(t
∗)− w′

2(t
∗))

> 0, wi(t) =
(qi + cit)

2

t2H
, i = 1, 2. (2.2)

To study the asymptotics of the two-dimensional ruin probability over the infinite time horizon, the asymp-
totic approximation of the one-dimensional one is crucial. The asymptotics of this ruin probability was already
studied in [10]. Since there are some inaccuracies, we give the following corrected result.
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Theorem 2. For any δ > 0 with CH = cH/(HH(1−H)1−H), as u → ∞,

P
{∃t ∈ G(δ): BH(t)− ct > u

} ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H2H
21/2−1/(2H)

√
π

H1/2(1−H)1/2 (CHu1−H)1/H−1Φ(CHu1−H), H > 1
2 ,

H2c2δ exp(−2cu), H = 1
2 ,

√
2πHH+1/2uH

δcH+1(1−H)H+1/2Φ(CHu1−H), H < 1
2 .

(2.3)

Remark 1. If H > 1/2, then the asymptotics of the discrete probabilities in Theorems 1 and 2 are the same as
in the continuous case and do not depend on δ. If H = 1/2, then the asymptotics differ only by constants. If
H < 1/2, then the discrete asymptotics are infinitely smaller than the corresponding continuous asymptotics.
All these statements directly follow from Theorems 1 and 2 and Corollary 2 in [6] and Theorem 3.1 in [9].

Next, we discuss the finite time horizon case. Here for large u, the two-dimensional ruin probability always
reduces to the one-dimensional one, which was already studied in [4, 5]. More precisely, we have

Remark 2. For any T > 0 with λ(u) = max(q1u+ c1T, q2u+ c2T )/T
H , as u → ∞,

ζ̄H,T (u) ∼
⎧
⎨

⎩
H2H(λ(u))(1−2H)/H (1/2)(1/2H)

H Φ(λ(u)), H < 1
2 ,

Φ(λ(u)), H > 1
2 ,

and

ζ̄1/2,T (u) = Φ

(
uqi√
T

+ ci
√
T

)
+ exp(−2ciqiu)Φ

(
uqi√
T

− ci
√
T

)
, i = 1, 2,

where i = 1 if (q1, c1) � (q2, c2) in the alphabetical order and i = 2 otherwise.

3 Proofs

For any real numbers a < b and α > 0, denote [a, b]α = [a, b] ∩ αZ. We reserve the letters C , C1 for some
positive constants that do not depend on u and may be different in different places.

Proof of Theorem 1. Denote

Vi(t) =
BH(t)

cit+ qi
, i = 1, 2. (3.1)

Case (i). Assume that t∗ < t1. We have by the self-similarity of fBM

ψ̄δ,H(u) � P

{
∃t ∈ G

(
δ

u

)
: V1(t) > u1−H

}
=: ψ

(1)
δ,H(u). (3.2)

Since t∗ < t1 for any 0 < ε < t1 − t∗, we have

ψ̄δ,H(u) � P
{∃t ∈ [t1 − ε, t1 + ε]δ/u: V1(t) > u1−H , V2(t) > u1−H

}

= P
{∃t ∈ [t1 − ε, t1 + ε]δ/u: V1(t) > u1−H

} ∼ ψ
(1)
δ,H(u), u → ∞. (3.3)

For a detailed proof of the last line, see the Appendix. Thus by (3.2)

ψ̄δ,H(u) ∼ ψ
(1)
δ,H(u), u → ∞,

and by Theorem 2 the claim is established.
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Let t∗ = t1. We have

P
{

sup
t∈[t∗,∞)δ/u

V1(t) > u1−H
}

� ψ̄δ,H(u) � P
{

sup
t∈[t∗,∞)δ/u

V1(t) > u1−H
}
+P

{
sup

t∈[0,t∗)δ/u
V2(t) > u1−H

}
. (3.4)

Since t∗ is the unique maximizer of Var{V1(t)} (the details are given in the Appendix),

P
{

sup
t∈[t∗,∞)δ/u

V1(t) > u1−H
}
∼ 1

2
ψ
(1)
δ,H(u), H ∈ (0, 1), u → ∞. (3.5)

Next, we prove that

P
{

sup
t∈[0,t∗)δ/u

V2(t) > u1−H
}
= o

(
ψ
(1)
δ,H(u)

)
, u → ∞. (3.6)

CaseH � 1/2. As follows from Corollary 2 in [6] and Theorem 2 for H � 1/2, for all large u and some
C > 0 independent of u,

Cψ
(1)
0,H(u) � ψ

(1)
δ,H(u) � ψ

(1)
0,H(u).

Hence with the same constant C , we have that

P
{

sup
t∈[0,t∗)δ/u

V2(t) > u1−H
}(

ψ
(1)
δ,H(u)

)−1

� C−1P
{

sup
t∈[0,t∗)

V2(t) > u1−H
}(

ψ
(1)
0,H(u)

)−1 → 0, u → ∞,

where the last convergence follows from the proof of Theorem 3.1, case (4), H � 1/2, in [9].
CaseH < 1/2. Let θu ∈ [0, δ) be such that t∗ + θu/u ∈ G(δ/u). Denote

tu = t∗ +
θu
u
. (3.7)

Notice that with t−u = tu − δ/u, by the Mill ratio Φ(x) ∼ (1/
√
2πx) exp(−x2/2), x → ∞ (see, e.g.,

[11, Lemma 2.1]) and Taylor’s theorem

P
{

sup
t∈[0,t∗)δ/u

V2(t) > u1−H
}
� P

{
V2(t

−
u ) > u1−H

}
+ Cu sup

t∈[0, t−u −δ/u]δ/u

P
{
V2(t) > u1−H

}

= P
{
V2(t

−
u ) > u1−H

}
+ CuP

{
V2

(
t−u − δ

u

)
> u1−H

}

�
(
1 + Cu exp

(
u1−2H δw′

2(t
∗)

2

))
P
{
V2(t

−
u ) > u1−H

}
,

where w2(t) is defined in (2.2). Since H < 1/2 and w′
2(t

∗) < 0, it follows from (2.3) that the last expression
equals o(ψ(1)

δ,H(u)) as u → ∞ and (3.6) holds. Thus from (3.4), (3.5), and (3.6) it follows that

ψ̄δ,H(u) ∼ 1

2
ψ
(1)
δ,H(u), u → ∞,

establishing the claim by (2.3). Case t∗ � t2 follows by the same arguments.
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Case (ii). Denote

ZH(t) =
BH(t)

max(c1t+ q1, c2t+ q2)
and σ2

H(t) = Var
{
ZH(t)

}
.

Notice that if t∗ ∈ [t1, t2], then t∗ is the unique maximizer of σH(t). Moreover, σH(t) increases over [0, t∗]
and decreases over [t∗,∞).

CaseH > 1/2. From Theorem 3.1, case (3), H > 1/2, in [9] it follows that

ψ̄δ,H(u) � Φ
(DHu1−H

)(
1 + o(1)

)
, u → ∞.

We have (recall that tu is defined in (3.7))

ψ̄δ,H(u) = P
{

sup
t∈G(δ/u)

ZH(t) > u1−H
}
� P

{
ZH(tu) > u1−H

}

∼ Φ
(DHu1−H

)
, u → ∞.

Combining two statements above, we establish the claim.

CaseH = 1/2. For notational simplicity, we write Z(t) instead of Z1/2(t). It follows from [9] and (3.10)
that with Δ = [tu − S/u, tu + S/u]δ/u, as u → ∞ and then as S → ∞,

ψ̄δ(u) ∼ P
{∃t ∈ Δ: Z(t) >

√
u
}
.

Let B∗(t) be an independent copy of BM, let B∗
(t) = B∗(t) − c1t, let φu(x) be the probability density

function of B(utu), and define

η = q1 + c1t
∗ = q2 + c2t

∗ =
c1q2 − q1c2
c1 − c2

.

By the self-similarity and independence of the increments of BM we have, as u → ∞,

P
{
sup
t∈Δ

Z(t) >
√
u
}

= P
{∃t̂ ∈ [utu − S, utu)δ: B(t̂) > q2u+ c2t̂ or

∃t ∈ [utu, utu + S]δ:
(
B(t)−B(utu)

)
+B(utu) > q1u+ c1t

}

= P
{∃t̂ ∈ [utu − S, utu)δ: B(t̂) > q2u+ c2utu + c2(t̂− utu) or

∃t ∈ [utu, utu + S]δ: B
∗(t− utu) +B(utu) > q1u+ c1utu + c1(t− utu)

}

=

∫

R

φu(ηu− x)P
{∃t̂ ∈ [utu − S, utu)δ: B(t̂) > q2u+ c2utu + c2(t̂− utu) or

∃t ∈ [utu, utu + S]δ: B
∗(t− utu) + ηu− x > q1u+ c1utu + c1(t− utu)

∣
∣

B(utu) = ηu− x
}
dx

=

∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x+ c2θu or ∃t ∈ [0, S]δ : B

∗(t)− c1t > x+ c1θu
}
φu(ηu− x) dx

Lith. Math. J., 61(2):246–260, 2021.
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=
exp(−η2u

2tu
)√

2πutu

∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x+ c2θu or ∃t ∈ [0, S]δ : B

∗
(t) > x+ c1θu

}

× exp

(
ηx

tu
− x2

2utu

)
dx

∼ exp(−η2u
2t∗ )√

2πut∗
exp

(
η2θu
2(t∗)2

− ηc2θu
t∗

)

×
∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)θu

}

× exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx,

where Zu(t̂) is a Gaussian process independent of B
∗
(t) with expectation and covariance

E
{
Zu(t̂)

}
=

uq2 − x− c2θu
utu

t̂ and cov
(
Zu(ŝ), Zu(t̂)

)
=

−ŝt̂

utu
− t̂, −S � ŝ � t̂ � 0.

Since η − 2t∗c2 > 0, we have

∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)δ

}
exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx

� exp

(
θuη(η − 2t∗c2)

2(t∗)2

)∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)θu

}

× exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx

� exp

(
δη(η − 2t∗c2)

2(t∗)2

)∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x

}

× exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx. (3.8)

We estimate the integral in the lower bound. Assume that BM is defined on R (centered Gaussian process with
cov(B(t), B(s)) = (|t| + |s| − |s − t|)/2). As u → ∞, the covariance and expectation of Zu(t) − q2t/t

∗
converge to those of BM, and hence Zu(t) − q2t/t

∗ converges to B(t) for t < 0 in the sense of convergence
of finite-dimensional distributions. Thus with ζ = q2/t

∗ as u → ∞ (proof is given in the Appendix),

∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)δ

}
exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx

∼
∫

R

P
{∃t̂ ∈ [−S, 0)δ : B(t̂) + ζt̂ > x or ∃t ∈ [0, S]δ : B(t)− c1t > x+ (c1 − c2)δ

}
exp

(
ηx

t∗

)
dx

=: I(S). (3.9)
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By the explicit formula P{supt�0(B(t)− ct) > x} = exp(−2cx), c, x > 0 (see [3]), we have

I(S) �
0∫

−∞
exp

(
ηx

t∗

)
dx

+

∞∫

0

(
P
{∃t � 0: B(t)− ζt > x

}
+P

{∃t � 0: B(t)− c1t > x
})

exp

(
ηx

t∗

)
dx

=
t∗

η
+

∞∫

0

(
exp

((
−2ζ +

η

t∗

)
x

)
+ exp

((
−2c1 +

η

t∗

)
x

))
dx < ∞,

provided that min(2ζt∗, 2c1t∗) > η. Since I(S) is a nondecreasing function, this implies limS→∞ I(S) ∈
(0,∞). With ξ = η2/(t∗)2 and d̂δ(t) = I(t < 0)ζt∗t/η − I(t � 0)(c1t

∗t/η + η(c1 − c2)δ/t
∗), we have

I(S) =
t∗

η

∫

R

P

{
∃t ∈ [−S, S]δ :

η

t∗
B(t) + t

(
I(t � 0)

ηζ

t∗
− I(t � 0)

ηc1
t∗

)

− I(t � 0)
η(c1 − c2)δ

t∗
>

ηx

t∗

}
exp

(
ηx

t∗

)
d

(
xη

t∗

)

=
t∗

η

∫

R

P

{
∃ξt ∈ [−ξS, ξS]ξδ: B(ξt) + ξt

(
I(t � 0)

t∗ζ
η

− I(t � 0)
t∗c1
η

)

− I(t � 0)
η(c1 − c2)δ

t∗
> x

}
ex dx

=

∫

R

P
{∃t ∈ [−Sξ, Sξ]ξδ: B(t) + d̂δ(t) > x

}
ex dx

= E
{

sup
t∈[−Sξ/2, Sξ/2]δξ/2

exp
(√

2B(t)− |t|+ d̂δ(2t) + |t|)
}
.

Since limS→∞ I(S) ∈ (0,∞), d̂δ(2t) + |t| = dδ(t), and δξ/2 = γ, we have that this expression tends
to Hdδ

γ ∈ (0,∞) as S → ∞. Thus, summarizing the calculations, we conclude that, as u → ∞ and then
S → ∞,

P
{
sup
t∈Δ

Z(t) >
√
u
}
� Hdδ

γ Φ(D1/2

√
u)
(
1 + o(1)

)
. (3.10)

For the same reasons as estimating the upper bound in (3.8), we have that, as u → ∞ and then S → ∞,

P
{
sup
t∈Δ

Z(t) >
√
u
}
� Hd0

γ exp

(
δη(η − 2t∗c2)

2(t∗)2

)
Φ(D1/2

√
u)
(
1 + o(1)

)
,

and the claim is established.

CaseH < 1/2. As shown in the Appendix (recall that t−u = tu−δ/u and V1(t), V2(t) are defined in (3.1)),

ψ̄δ,H(u) ∼ P
{
V2(t

−
u ) > u1−H

}
+P

{
V1(tu) > u1−H

}
, u → ∞. (3.11)
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We have (recall that wi(t) = (qi + cit)
2/t2H , i = 1, 2)

P
{
V1(tu) > u1−H

} ∼ Φ
(DHu1−H

)
exp

(
−θuw

′
1(t

∗)u1−2H

2

)
,

P
{
V2(t

−
u ) > u1−H

} ∼ Φ
(DHu1−H

)
exp

(
−−(δ − θu)w

′
2(t

∗)u1−2H

2

)
, u → ∞.

Thus

ψ̄δ,H(u) ∼ Φ
(DHu1−H

)
(
exp

(
−θuw

′
1(t

∗)
2

u1−2H

)
+ exp

(
−−(δ − θu)w

′
2(t

∗)
2

u1−2H

))
, u → ∞,

and hence the claim follows from the inequality (recall that B = −δw′
1(t

∗)w′
2(t

∗)/(2(w′
1(t

∗)−w′
2(t

∗))) > 0)

2 exp
(−Bu1−2H

)(
1 + o(1)

)

� exp

(
−θuw

′
1(t

∗)
2

u1−2H

)
+ exp

(
−−(δ − θu)w

′
2(t

∗)
2

u1−2H

)
� 1 + o(1), u → ∞. 	


Proof of Theorem 2. WhenH = 1/2, the statement of the theorem follows from [7] and [10].
CaseH > 1/2. For large u, we have

P
{
∃t � 0: inf

s∈[t, t+u(2H−1)/(2H) ]

(
BH(s)− cs

)
> u

}

� P
{

sup
t∈G(δ)

(
BH(t)− ct

)
> u

}
� P

{
sup
t�0

(
BH(t)− ct

)
> u

}
.

In view of Remark 3.2 in [2], the lower and upper bounds above are asymptotically equivalent, and hence

P
{

sup
t∈G(δ)

(
BH(t)− ct

)
> u

}
∼ P

{
sup
t�0

(
BH(t)− ct

)
> u

}
, u → ∞.

The asymptotics of the last probability is given, for example, in Corollary 3.1 in [2], and thus the claim follows.
CaseH < 1/2. By the self-similarity of fBM we have

ψδ,H(u) := P
{∃t ∈ G(δ): BH(t) > u+ ct

}

= P

{
∃t ∈ G

(
δ

u

)
:
BH(t)

1 + ct
> u1−H

}
=: P

{
∃t ∈ G

(
δ

u

)
: V (t) > u1−H

}
.

Note that the variance of V (t) achieves its unique maxima at t0 = H/(c(1−H)). As shown in the Appendix,

ψδ,H(u) ∼
∑

t∈I(t0)
P
{
V (t) > u1−H

}
, u → ∞, (3.12)

where I(t0) = (−1/
√
u+ t0, 1/

√
u+ t0)δ/u. We have that with û = u1−HcH/(HH(1−H)1−H), as u → ∞,

∑

t∈I(t0)
P
{
V (t) > u1−H

}
=

∑

t∈I(t0)
Φ

(
u1−H 1 + ct

tH

)
∼

∑

t∈I(t0)

1√
2πû

exp

(
−1

2

(
u1−H 1 + ct

tH

)2)
.
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Setting fH(t) = (1 + ct)2/t2H , we have f ′
H(t0) = 0 and f ′′

H(t0) = 2c2+2H (1−H)2H+1/H2H+1 > 0. Since
fH(t) ≈ fH(t0) + (t− t0)

2f ′′
H(t0)/2, t ∈ I(t0), we write (a strict proof is given in the Appendix in [8])

∑

t∈I(t0)

1√
2πû

exp

(
−1

2

(
u1−H 1 + ct

tH

)2)

=
1√
2πû

exp

(
− û2

2

) ∑

t∈I(t0)
exp

(
−1

2
u2−2H

(
(1 + ct)2

t2H
− (1 + ct0)

2

t2H0

))

∼ Φ(û)
∑

t∈I(t0)
exp

(
−1

2
u2−2H f ′′

H(t0)

2
(t− t0)

2

)
, u → ∞. (3.13)

Next, setting F = f ′′
H(t0)/4 = c2+2H(1−H)2H+1/(2H2H+1), we have

∑

t∈I(t0)
exp

(
−1

2
u2−2H f ′′

H(t0)

2
(t− t0)

2

)

∼ 2
∑

t∈(0,u−1/2)δ/u

exp
(−Fu2−2Ht2

)
= 2

∑

tu1−H∈(0,u1/2−H)δu−H

exp
(−F

(
tu1−H

)2)

=
2uH

δ

(
δu−H

∑

t∈(0,u1/2−H)δu−H

exp
(−Ft2

)) ∼ 2uH

δ
√
F

∞∫

0

exp
(−Ft2

)
d(
√
Ft)

=

√
πuH

δ
√
F

, u → ∞.

Combining this with (3.13) and (3.12), we have

ψδ,H(u) ∼ Φ

(
u1−HcH

HH(1−H)1−H

) √
2πHH+1/2uH

δcH+1(1−H)H+1/2
, u → ∞. 	
 (3.14)

Proof of Remark 2. Assume that (q1, c1) � (q2, c2) in the alphabetical order; the other case follows by the
same arguments. For large u, we have that q1u+ c1t � q2u+ c2t for all t ∈ [0, T ], implying

ζ̄H(u) = P
{∃t ∈ [0, T ]: BH(t) > c1t+ q1u

}
.

Thus forH = 1/2, the claim follows by [3]. ForH �= 1/2, Theorem 2.1 in [5] completes the proof. 	


Appendix

Proof of (3.3). To establish the claim, it suffices to show that

P
{∃t /∈ [t1 − ε, t1 + ε]: V1(t) > u1−H

}
= o

(
ψ
(1)
δ,H(u)

)
, u → ∞.

Wewill prove that V1(t) is a.s. bounded on [0,∞). By [12, Chap. 4, p. 31] it is equivalent toP{V1(t) is bounded
for t � 0} > 0. By Corollary 2 in [6] we have

P
{
sup
t�0

V1(t) � u
}
= 1−P

{
sup
t�0

V1(t) > u
}
→ 1, u → ∞.
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Thus V1(t) is bounded a.s. Note that the variance v(t) of V1(t) achieves its unique maximum at t1. Denote

m = max
t∈[0, t1−ε]∪[t1+ε,∞)

v(t), M = E
{

sup
t∈[0, t1−ε]∪[t1+ε,∞)

V1(t)
}
.

By the Borell–TIS inequality (see [9, Lemma 5.3]) we have that M < ∞ and for all u large enough,

P
{∃t /∈ [t1 − ε, t1 + ε]: V1(t) > u1−H

}
� exp

(
−(u1−H −M)2

2m

)
.

From Theorem 2 and the inequalitym < v(t1) it follows that

exp

(
−(u1−H −M)2

2m

)
= o

(
ψ
(1)
δ,H(u)

)
, u → ∞,

and thus (3.3) holds. 	


Proof of (3.5). Assume that H < 1/2. Since t∗ = t1 is the unique maximizer of Var{V1(t)}, repeating the
proof of Theorem 2, we obtain

P
{

sup
t∈[t∗,∞)δ/u

V1(t) > u1−H
}
∼

∑

t∈[t1, t1+1/
√
u)δ/u

P
{
V1(t) > u1−H

}
, u → ∞.

The method of computation of the asymptotics of the last sum is the same as in the proof of Theorem 2; see the
calculation of the analogous sum in (3.12). The difference is only in the intervals of summation: in Theorem 2,
I(t0) is symmetric about t0, whereas [t1, t1 + 1/

√
u)δ/u has only the right part. Thus the factor 1/2 appears

before the final asymptotics.
Assume thatH = 1/2. Then the claim follows from the proof of Theorem 1.1 in [7]. The index of summa-

tion in (19) in [7] in our case will be 1 � j � Nu, and thus the factor 1/2 appears before the final asymptotics.
The claim can also be established by Theorem 1(ii) in [10].

Assume thatH > 1/2. As in the proof of Theorem 2, caseH > 1/2, we have

P
{
∃t � t∗: inf

s∈[t,t+u−1/(2H)]
V1(t) > u1−H

}

� P
{

sup
t∈[t∗,∞)δ/u

V1(t) > u1−H
}
� P

{
sup

t∈[t∗,∞)
V1(t) > u1−H

}
.

As follows from [12], the upper bound in the inequality above is equivalent with ψ
(1)
0,H(u)/2, u → ∞, and

by Theorem 2.1 in [2] the lower bound has the same asymptotics. Since for H > 1/2 (see Theorem 2),
ψ
(1)
0,H(u) ∼ ψ

(1)
δ,H(u), u → ∞, we obtain the claim. 	


Proof of (3.9). First, we show that with δ̄ = (c1 − c2)δ,

∫

R

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx

=

M∫

−M

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
exp

(
ηx

t∗

)
dx+BM,v, (A.1)
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where BM,v → 0 as u → ∞ and thenM → ∞. We have

|BM,v| �
∣
∣∣
∣
∣

M∫

−M

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}

×
(
exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
− exp

(
ηx

t∗

))
dx

∣
∣
∣∣
∣

+

∫

|x|>M

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}

× exp

(
ηx

tu
− (x− c2θu)

2

2utu

)
dx

=: |I1|+ I2.

Since Var{Zu(t)} is bounded and E{Zu(t)} < 0 for large u and all t ∈ [−S, 0], by the Borell–TIS inequality,
for x > 0 and some C > 0, we have

P
{

sup
t̂∈[−S,0)δ

Zu(t̂) > x or sup
t∈[0,S]δ

B
∗
(t) > x+ δ̄

}

� P
{

sup
t∈[−S,0]

(
Zu(t)−E

{
Zu(t)

})
> x

}
+P

{
sup

t∈[0,S]
B(t) > x

}
� exp

(
−x2

C

)
.

Thus, as u → ∞,

I2 �
∫

x>M

exp

(
−x2

C
+

ηx

tu

)
dx+ exp

(
ηx

2t∗

)
dx → 0, M → ∞.

For u � M3, we have

|I1| �
M∫

−M

exp

(
−x2

C
+

ηx

t∗

)∣∣
∣
∣ exp

(
− xηθu
ut∗tu

− (x− c2θu)
2

2utu

)
− 1

∣∣
∣
∣ dx

�
∫

R

exp

(
−x2

C
+

ηx

t∗

)
dx sup

x∈[−M,M ]

∣∣
∣
∣ exp

(
− xηθu
ut∗tu

− (x− c2θu)
2

2utu

)
− 1

∣∣
∣
∣ �

C

M
.

Thus limM→∞ limu→∞(|I1|+ I2) = 0, and (A.1) holds. Since for t ∈ [−S, 0], Zu(t) converges to B(t) + ζt
as u → ∞ in the sense of convergence of finite-dimensional distributions, we have

M∫

−M

P
{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
exp

(
ηx

t∗

)
dx

→
M∫

−M

P
{∃t̂ ∈ [−S, 0)δ : B(t) + ζt̂ > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
exp

(
ηx

t∗

)
dx, u → ∞.
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By the monotone convergence theorem the expression above tends to
∫

R

P
{∃t̂ ∈ [−S, 0)δ : B(t̂) + ζt̂ > x or ∃t ∈ [0, S]δ : B(t)− c1t > x+ δ̄

}
exp

(
ηx

t∗

)
dx, M → ∞,

and the claim is established. 	

Proof of (3.11). By Lemma 2.3 in [11], for all large u with w = u1−H (recall that t−u = tu − δ/u), we have

ψ̄δ,H(u) � P
{

sup
t∈{t−u ,tu}

ZH(t) > w
}

= P
{
V1(tu) > w

}
+P

{
V2(t

−
u ) > w

}−P
{
V1(tu) > w,V2(t

−
u ) > w

}

∼ P
{
V1(tu) > w

}
+P

{
V2(t

−
u ) > w

}
, u → ∞. (A.2)

Next, we prove that

P

{
∃t ∈ G

(
δ

u

)
, t � t∗: V1(t) > w

}
∼ P

{
V1(tu) > w

}
, u → ∞. (A.3)

Fix some ε > 0. Since σ2
H(t) is decreasing over [t∗,∞), by the Borell–TIS inequality we have, as u → ∞,

P

{
∃t ∈ G

(
δ

u

)
, t � t∗ + ε: V1(t) > w

}
= o

(
P
{
V1(tu) > w

})
. (A.4)

With t+u = tu + δ/u and w1(t) defined in (2.2), we have, as u → ∞,

P

{
∃t ∈ G

(
δ

u

)
, t+u � t � t∗ + ε: V1(t) > w

}

� Cu sup
t∈G(δ/u), t+u�t�t∗+ε

P
{
V1(t) > w

}
� CuP

{
V1(t

+
u ) > w

}

∼ CuP
{
V1(tu) > w

}
exp

(
−w′

1(t
∗)δ

2
w

)
= o

(
P
{
V1(tu) > w

})
.

Combining this with (A.4), we establish (A.3). By the same arguments we have

P

{
∃t ∈ G

(
δ

u

)
, t < t∗: V2(t) > w

}
∼ P

{
V2(t

−
u ) > w

}
, u → ∞,

implying, together with (A.3),

ψ̄δ,H(u) � P

{
∃t ∈ G

(
δ

u

)
, t < t∗: V2(t) > w

}
+P

{
∃t ∈ G

(
δ

u

)
, t � t∗: V1(t) > w

}

=
(
P
{
V1(tu) > w

}
+P

{
V2(t

−
u ) > w

})(
1 + o(1)

)
, u → ∞.

By this and (A.2) we obtain the claim. 	

Proof of (3.12). First, we prove that with I(t0) = (−1/

√
u+ t0, t0 + 1/

√
u),

P
{

sup
t∈G(δ/u)\I(t0)

V (t) > u1−H
}
= o

(
ψδ,H(u)

)
, u → ∞. (A.5)
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Denote ε(t0) = (−ε+ t0, ε+ t0)δ/u and ε(t0) = (−ε+ t0, ε+ t0) for some ε > 0. We have

P
{

sup
t∈G(δ/u)\I(t0)

V (t) > u1−H
}
� P

{
sup

t∈ε(t0)\I(t0)
V (t) > u1−H

}
+P

{
sup

t∈[0,∞)\ε(t0)
V (t) > u1−H

}
.

The second summand is negligible by the Borell–TIS inequality. Notice that

P
{

sup
t∈ε(t0)\I(t0)

V (t) > u1−H
}
� Cu sup

t∈ε(t0)\I(t0)
P
{
V (t) > u1−H

}

� Cu

(
P

{
V

(
t0 − 1√

u

)
> u1−H

}
+P

{
V

(
t0 +

1√
u

)
> u1−H

})

� 3CuΦ

(
u1−H 1 + ct0

tH0

)
exp

(
−1

4
f ′′
H(t0)u

1−2H

)
, u → ∞,

and recall that fH(t) = (1 + ct)2/t2H and f ′′
H(t0) > 0. Hence we have

P
{

sup
t∈ε(t0)\I(t0)

V (t) > u1−H
}
= o

(
Φ

(
u1−H 1 + ct0

tH0

))
, u → ∞,

and thus (A.5) follows from (3.14). Next, by the Bonferroni inequality

∑

t∈I(t0)
P
{
V (t) > u1−H

}−Π(u) � P
{

sup
t∈I(t0)

V (t) > u1−H
}
�

∑

t∈I(t0)
P
{
V (t) > u1−H

}
, (A.6)

where

Π(u) =
∑

t1<t2∈I(t0)
P
{
V (t1) > u1−H , V (t2) > u1−H

}
.

Fix some numbers t1, t2 ∈ I(t0). We have (recall that û = u1−HcH/(HH(1−H)1−H))

P
{
V (t1) > u1−H , V (t2) > u1−H

}
� P

{
ε(1)V (t1)

σH(t0)
>

u1−H

σH(t0)
,
ε(2)V (t2)

σH(t0)
>

u1−H

σH(t0)

}

=: P
{
W1 > û, W2 > û

}
,

where the numbers ε(1), ε(2) � 1 are chosen such that

Var

{
ε(1)V (t1)

σH(t0)

}
= Var

{
ε(2)V (t2)

σH(t0)

}
= 1.

We have that the correlation rw of (W1,W2) has the expansion

rw(t1, t2) = 1− C|t1 − t2|2H + o
(|t1 − t2|2H

)
, t1, t2 → t0,

and hence
√

|t1 − t2|2H � δHu−H for all t1, t2 ∈ I(t0). Thus by Lemma 2.3 in [11] we have

P{W1 > û, W2 > û} � Φ(û)Φ
(
Ĉu1−2H

)
, u → ∞,
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implying that for all t1, t2 ∈ I(t0),

P
{
V (t1) > u1−H , V (t2) > u1−H

}
� Φ(û)Φ

(
Ĉu1−2H

)
, u → ∞.

There are less than Cu2 summands in Π(u), and hence from the last inequality, (A.6), and (3.14) it follows
that

P
{

sup
t∈I(t0)

V (t) > u1−H
}
∼

∑

t∈I(t0)
P
{
V (t) > u1−H

}
, u → ∞,

which, combined with (A.5), yields the claim. 	
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5. K. Dębicki and G. Sikora, Finite time asymptotics of fluid and ruin models: Multiplexed fractional Brownian motions
case, Appl. Math., 38(1):107–116, 2011, https://doi.org/10.4064/am38-1-8.

6. J. Hüsler and V. Piterbarg, Extremes of a certain class of Gaussian processes, Stochastic Processes Appl., 83(3):257–
271, 1999.

7. G. Jasnovidov, Approximation of ruin probability and ruin time in discrete Brownian risk models, Scand. Actuar. J.,
2020(8):718–735, 2020, https://doi.org/10.1080/03461238.2020.1725911.

8. G. Jasnovidov, Simultaneous ruin probability for two-dimensional fractional Brownian motion risk process over
discrete grid, with supplements, 2020, arXiv:2002.04928.

9. L. Ji and S. Robert, Ruin problem of a two-dimensional fractional Brownian motion risk process, Stoch. Models,
34(1):73–97, 2018, https://doi.org/10.1080/15326349.2017.1389284.

10. I.A. Kozik and V.I. Piterbarg, High excursions of Gaussian nonstationary processes in discrete time, Fundam. Prikl.
Mat., 22(2):159–169, 2018.

11. J. Pickands, III, Upcrossing probabilities for stationary Gaussian processes, Trans. Am. Math. Soc., 145:51–73,
1969.

12. V.I. Piterbarg, Twenty Lectures About Gaussian Processes, Atlantic Financial Press, London, New York, 2015.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3150/13-BEJ534
https://doi.org/10.1239/jap/1445543840
https://doi.org/10.1007/978-3-319-20693-6
https://doi.org/10.1023/A:1016283330996
https://doi.org/10.4064/am38-1-8
https://doi.org/10.1080/03461238.2020.1725911
http://arxiv.org/abs/2002.04928
https://doi.org/10.1080/15326349.2017.1389284

	Introduction
	Main results
	Proofs
	Appendix
	References

