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Abstract
The case-cohort design obtains complete covariate data only on cases and on a ran-
dom sample (the subcohort) of the entire cohort. Subsequent publications described 
the use of stratification and weight calibration to increase efficiency of estimates of 
Cox model log-relative hazards, and there has been some work estimating pure risk. 
Yet there are few examples of these options in the medical literature, and we could 
not find programs currently online to analyze these various options. We therefore 
present a unified approach and R software to facilitate such analyses. We used influ-
ence functions adapted to the various design and analysis options together with vari-
ance calculations that take the two-phase sampling into account. This work clarifies 
when the widely used “robust” variance estimate of Barlow (Biometrics 50:1064–
1072, 1994) is appropriate. The corresponding R software, CaseCohortCoxSur-
vival, facilitates analysis with and without stratification and/or weight calibration, 
for subcohort sampling with or without replacement. We also allow for phase-two 
data to be missing at random for stratified designs. We provide inference not only 
for log-relative hazards in the Cox model, but also for cumulative baseline hazards 
and covariate-specific pure risks. We hope these calculations and software will pro-
mote wider use of more efficient and principled design and analysis options for case-
cohort studies.
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1 Introduction

Prentice (1986) described the case-cohort design for time-to-response outcomes, 
in which one obtains covariate information on all cases (those with the event) and 
on a random subcohort (which may include some cases) from the entire study 
cohort. Two great advantages of this design are that hard-to-measure covariates 
need only be obtained for the cases and subcohort, which is much smaller than 
the entire study cohort, and the data from the subcohort can be used for sev-
eral different types of time-to-response outcomes. There have been subsequent 
refinements and extensions of this design. Barlow (1994) proposed a widely 
used “robust” variance estimator for log-relative hazards (RH) based on the sum 
of squared influences. Borgan et  al. (2000) showed that a stratified case-cohort 
design had increased efficiency, and Samuelsen et  al. (2007) and Gray (2009) 
noted that the “robust” variance estimate overestimated variances of log-relative 
hazard estimates with stratification when sampling without replacement. Breslow 
et al. (2009a, 2009b) proposed survey weight calibration to improve efficiency of 
case-cohort estimates of relative hazard. Although much of this literature focused 
on estimation of log-relative hazards, some authors considered estimation of 
cumulative baseline hazard and covariate-specific “pure” risk of an event (Chap-
ters 16 and 17 in Borgan et al. 2017; Breslow and Lumley 2013; Gray 2009).

Sharp et al. (2014) noted variability in the analysis and reporting of 32 case-
cohort studies from 24 major medical and epidemiological journals. None of 
these analyses used weight calibration, some used an inappropriate “robust” var-
iance estimate with stratified data, and various methods were used for missing 
covariate information. Our informal review of subsequent case-cohort publica-
tions also indicates that stratification, weight calibration, a principled approach 
to missing subcohort data, and analysis of pure risk are underutilized. This may 
be partly due to difficulty understanding the highly technical and varied methodo-
logic literature and to lack of convenient software.

To facilitate wider use of improved design and analysis options for case-cohort 
data, we unify the various analytic options above by presenting empirical influ-
ence functions for log-relative hazards and pure risk under a Cox proportional 
hazards model. These influence functions are adapted to the various design and 
analytic options above, and variance calculations acknowledge the phase-one 
sampling of the cohort from a superpopulation and the phase-two sampling of 
the subcohort. We develop software so that users can conveniently analyze case-
cohort data with or without stratification and with or without weight calibration 
and can handle stratified case-cohort data with missing phase-two data.

We introduce notation in Sect.  2 and inference for the stratified case-cohort 
design in Sect.  3, which includes the unstratified design as a special case with 
one stratum. We describe weight calibration in Sect. 4, and methods for missing 
phase-two data in Sect. 5. We discuss current software in Sect. 6. Sections 7 and 
8 present simulations and a data illustration, where we investigate the compara-
tive efficiencies associated with stratification and weight calibration for hazards 



1 3

Cox model inference for relative hazard and pure risk from…

and covariate-specific pure risk, and how the “robust” variance estimate per-
forms, with or without calibration. Concluding remarks are in Sect. 9. Most tech-
nical derivations and details are in Web Appendices.

2  Notation

We let J be the number of strata in the whole cohort, n(j) be the number of subjects 
in stratum j , j ∈ {1,… , J} . Then n =

∑J

j=1
n(j) is the number of subjects in 

the whole cohort. We allow for right censoring and left truncation. We let Ti,j be 
the event time (or age if the analysis is on the age scale) for subject i in stratum 
j , and Ci,j be the censoring time for subject i in stratum j , i ∈

{
1,… , n(j)

}
 , 

j ∈ {1,… , J} . Using the time-on-study scale, the at-risk indicator for subject i 
in stratum j is Yi,j(t) = I

(
T̃i,j ≥ t

)
 , with T̃i,j = min(Tij,Cij ). Using the age scale, 

Yi,j(t) = I
(
T̃i,j ≥ t > Ei,j

)
 , with Ei,j the entry age for subject i in stratum j . Let � 

the maximum follow-up time or maximum age for analyses on the age scale. With 
Ni,j(t) = I

(
Ti,j ≤ t, Tij ≤ Cij

)
 indicating an observed event before or at time/age t 

after study entry, dNi,j(t) indicates if individual i in stratum j fails (has the event) 
at time/age t . Finally, we let Xi,j be a vector of p baseline covariates for subject i in 
stratum j ; Xi,j includes stratum indicators or stratum determinants.

We assume that failure follows the Cox proportional hazards model with hazard 
function �(t) = �0(t) exp

(
��
X
)
 , for covariates X , and where �0(t) is a baseline 

hazard function, i.e., the hazard for an individual with X = 0 . We further assume 

that �0(t) is homogeneous across strata and we let Λ0(t) =
t∫

0

�0(s)ds denote the 

cumulative baseline hazard.
Estimation from complete cohort data is reviewed in Web Appendix A.1 with 

corresponding influence functions in Web Appendix A.2.

3  Stratified case‑cohort

3.1  Estimation of relative hazard, cumulative baseline hazard and pure risk

We assume that a fixed number of individuals, m(j) , is sampled from stratum j (of size 
n(j) ) in the cohort, without replacement and independently of case status, j ∈ {1,… , J} . 
Sampling is performed independently across strata. The subcohort includes all the sam-
pled subjects from the J strata. In addition, we sample all the cases in the cohort, some 
of whom may have been included in the subcohort. All of these individuals constitute 
the stratified case-cohort, that we also call the phase-two sample, because it is a subset 
of the cohort, which is regarded as a phase-one sample from a super-population. We let 
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�i,j be the sampling indicator of individual i in stratum j and 

wi,j =

{
n(j)

m(j)
if i is a non-case in stratum j

1 if i is a case in stratum j
 be his/her known design weight, 

i ∈
{
1,… , n(j)

}
 , j ∈ {1,… , J} . We assume that some of the covariates in X are only 

measured in the phase-two sample; we call these “phase-two covariates”. The stratum 
indicators are known for all members of the cohort and are not phase-two covariates. 
Because we sample all cases, �i,jwi,j = 1 for cases. Non-stratified case-cohort data cor-
respond to the special case J = 1.

An estimate of the log-relative hazard � is obtained by solving the estimating 
equation

with

and we also define

Let �̂ denote this solution. We could write Eq. (1) as 
∑J

j=1

∑n(j)

i=1
∫
t

�
Xi,j −

S1(t;�)

S0(t;�)

�

�i,jwi,jdNi,j(t) = 0 , because �i,jwi,j = 1 for cases; this form would be useful if cases were 
subsampled (see Sect. 9). We then estimate the baseline hazard point mass at time t 
non-parametrically (Breslow 1974) by

the cumulative baseline hazard up to time t by

(1)U(�) =

J∑
j=1

n(j)∑
i=1

∫
t

{
Xi,j −

S1(t;�)

S0(t;�)

}
dNi,j(t) = 0,

(2)S0(t;�) =

J∑
j=1

n(j)∑
k=1

wk,j�k,jYk,j(t) exp
(
��
Xk,j

)
,

(3)S1(t;�) =

J∑
j=1

n(j)∑
k=1

wk,j�k,jYk,j(t) exp
(
��
Xk,j

)
Xk,j,

(4)S2(t;�) =

J∑
j=1

n(j)∑
k=1

wk,j�k,jYk,j(t) exp
(
��
Xk,j

)
Xk,jX

�
k,j
.

(5)dΛ̂0

�
t;�̂

� ≡ dΛ̂0(t) =

∑J

j=1

∑n(j)

i=1
dNi,j(t)

S0

�
t, �̂

� ,

(6)Λ̂0

(
t;�̂, �̂0

) ≡ Λ̂0(t) =

t

�
0

dΛ̂0(s),
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and the pure covariate-specific risk for profile x in the interval (�1, �2] by

In Sects. 3.3 and 4.3 we show how to use influence functions to estimate the variance 
of �̂ and Λ̂0(t) for a fixed t.

3.2  Influence functions

As described in Deville (1999), survey samplers often compute the variance of a 
statistic �̂ with expectation � by using the linear approximation �̂ − � =

∑
�i + R , 

where the remainder R is of smaller order than �̂ and the summation is over the sample 
units indexed by i. The variance of �̂ can therefore be calculated as var

�∑
�i

�
 . The 

�i are called Taylor deviates or influences (in other literature, e.g. Tsiatis (2006), the 
�i divided by the sample size are called influences). Using the calculus for Taylor 
deviates described in Deville (1999) and Graubard and Fears (2005), we calculated the 
influences in this Section. The �i are theoretical quantities that depend on unknown 
parameters, but substituting consistent estimates of these parameters to produce 
“empirical” influences still yields asymptotically consistent variance estimates (Deville 
1999).

We let �i,j

(
�̂
)
 denote the empirical influence of subject i in stratum j on �̂ from the 

set 
{
�̂, dΛ̂0(t), Λ̂0

(t), �̂
(
�1, �2;x

)}
 , i ∈

{
1,… , n(j)

}
, j ∈ {1,… , J} . From these 

influences, we can estimate the covariance matrix of �̂ as (Graubard and Fears 2005)

Following Graubard and Fears (2005) and Section 4.6 in Pfeiffer and Gail (2017), 
we show in Web Appendix B.1 that �i,j

(
�̂
)
= �i,jwi,jIF

(2)

i,j

(
�̂
)
 , where

(7)�̂
�
�1, �2;x, �̂, dΛ̂0

� ≡ �̂
�
�1, �2;x

�
= 1 − exp

⎧
⎪⎨⎪⎩
−

�2

�
�1

exp
�
�̂
�
x

�
dΛ̂0(s)

⎫
⎪⎬⎪⎭
.

(8)var
�
�̂
�
≈ var

⎧⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̂
�⎫⎪⎬⎪⎭

.

(9)

IF
(2)

i,j

�
�̂
�
=

⎡⎢⎢⎢⎣

J�
l=1

n(l)�
k=1

∫
t

⎧⎪⎨⎪⎩

S2

�
t;�̂

�

S0

�
t;�̂

� −
S1

�
t;�̂

�
S1

�
t;�̂

��

S0

�
t;�̂

�2

⎫⎪⎬⎪⎭
dNk,l(t)

⎤
⎥⎥⎥⎦

−1⎡⎢⎢⎢⎣
∫
t

⎧⎪⎨⎪⎩
Xi,j −

S1

�
t;�̂

�

S0

�
t;�̂

�
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩
dNi,j(t) −

Yi,j(t) exp
�
�̂
�
Xi,j

�∑J

l=1

∑n(l)

k=1
dNk,l(t)

S0

�
t;�̂

�
⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
,
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and

Equations  (9)–(12) depend on “phase-two covariates”. Hence, we use the 
superscript 2 in IF(2)

i,j

(
�̂
)
.

3.3  Variance decomposition and estimation from influence functions

The variance var
�
�̂
�
≈ var

�∑J

j=1

∑n(j)

i=1
�i,j

�
�̂
��

 can be decomposed as

where C1 denotes the information from the whole cohort. The first component 
accounts for sampling the cohort from the “superpopulation” (phase-one component 
of variance), whereas the second component accounts for sampling the subcohort 
from the cohort (phase-two component of variance).

We let wi,k,j and �i,k,j denote E
(
�i,j�k,j|C1

)−1 and cov
(
�i,j, �k,j|C1

)
 , respectively, 

i, k ∈
{
1,… , n(j)

}
 , j ∈ {1,… , J} ; they are specified below. We know wi,jIF

(2)

i,j

(
�̂
)
 is 

fixed conditional on C1 and E
(
�i,jwi,j|C1

)
= 1.  Thus var

�∑J

j=1

∑n(j)

i=1
�i,j

�
�̂
��

=

var

�∑J

j=1

∑n(j)

i=1
IF

(2)

i,j

�
�̂
��

+ E

�∑J

j=1

∑n(j)

i=1

∑n(j)

k=1
�
i,k,j

wi,jwk,jIF
(2)

i,j

�
�̂
�
IF

(2)

k,j

�
�̂
��
�

.    

Because IF(2)

i,j

(
�̂
)
IF

(2)

i,j

(
�̂
)�

 and IF(2)

i,j

(
�̂
)
IF

(2)

k,j

(
�̂
)�

 can only be computed if indi-
viduals i and k in stratum j are in the phase-two sample, we weight the contributi 

(10)
IF

(2)

i,j

{
dΛ̂0(t)

}
=
{
S0

(
t;�̂

)}−1{
dNi,j(t) − dΛ̂0(t)Yi,j(t) exp

(
�̂
�
Xi,j

)}

−
{
S0

(
t;�̂

)}−1

dΛ̂0(t)S1

(
t;�̂

)�

IF
(2)

i,j

(
�̂
)
,

(11)IF
(2)

i,j

⎧
⎪⎨⎪⎩

�2

∫
�1

dΛ̂0(t)

⎫
⎪⎬⎪⎭
=

�2

∫
�1

IF
(2)

i,j

�
dΛ̂0(t)

�
,

(12)

IF
(2)

i,j

�
�̂
�
�1, �2;x

��
=

�
��̂

�
�1, �2;x

�
�� ��=�̂

�
IF

(2)

i,j

�
�̂
�

+

⎡
⎢⎢⎢⎣

��̂
�
�1, �2;x

�

�
�∫ �2

�1
dΛ0(t)

�
�dΛ0(t)=dΛ̂0

(t)

⎤
⎥⎥⎥⎦
IF

(2)

i,j

⎧
⎪⎨⎪⎩

�2

�
�1

dΛ̂0(t)

⎫
⎪⎬⎪⎭
.

(13)var

⎡⎢⎢⎢⎣
E

⎧⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̂
�
�C1

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
+ E

⎡⎢⎢⎢⎣
var

⎧⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̂
�
�C1

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
,
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ons from the individuals in the phase-two sample by the “marginal” and “joint” 
design weights, wi,j and wi,k,j , to estimate var

(
�̂
)
 by

Following Barlow (1994), the “robust” variance estimate would be

With stratified data, Eq. (15) is often too large (see also Sect. 7 and Web Appen-
dix D.2). Equation (15) minus Eq. (14) is

Because we sample without replacement in each stratum, we have 
wi,k,j =

n(j)(n(j)−1)
m(j)(m(j)−1)

 if individuals i and k in stratum j are both non-cases, and 
wi,k,j = wi,j × wk,j otherwise, i, k ∈

{
1,… , n(j)

}
 , k ≠ i , j ∈ {1,… , J} . Recall that 

wi,i,j = wi,j =
n(j)

m(j)
 if individual i in stratum j is a non-case, and wi,j = 1 if individual i 

in stratum j is a case. Then �i,k,j =
m(j)

n(j)

m(j)−1

n(j)−1
−
(

m(j)

n(j)

)2

 if individuals i and k in stratum 
j are both non-cases, and �i,k,j = 0 otherwise, i, k ∈

{
1,… , n(j)

}
 , k ≠ i , 

j ∈ {1,… , J} . Similarly, if individual i in stratum j is a non-case, then 
�i,i,j ≡ �i,j =

m(j)

n(j)

(
1 −

m(j)

n(j)

)
 , and �i,j = 0 otherwise. As a result, only the sampled non-

cases contribute to the phase-two component of the variance in Eq.  (14). For 
sampling with replacement (i.e., Bernoulli sampling), individuals are sampled 
independently of each other. Then wi,k,j = wi,j × wk,j , and �i,k,j = 0 for any pair (i, k) 
of distinct individuals in stratum j , i, k ∈

{
1,… , n(j)

}
 , k ≠ i , j ∈ {1,… , J} . In that 

case, the difference between the “robust” variance estimate in Eqs.  (15) and (14) 
reduces to 1

n−1

∑J

j=1

∑n(j)

i=1
�i,jwi,jIF

(2)

i,j

�
�̂
�
IF

(2)

i,j

�
�̂
��

 , which is negligible compared to 
Eq. (14) in large cohorts.

The variance estimate in Eq.  (14) is asymptotically equivalent to that of Lin 
(2000) for �̂ and Λ̂0(t) (Lin did not consider covariate-specific pure risks). The 
second component in Eq.  (14) is precisely equal to the terms Lin (2000) used to 
estimate the phase-two component of the variance for �̂ and Λ̂0(t) . To estimate the 
phase-one component of variance of �̂ , Lin (2000) used the inverse of the observed 

information matrix for U(�) , whereas the weighted sum of IF(2)

i,j

(
�̂
)
IF

(2)

i,j

(
�̂
)�

 in the 
first component in Eq. (14) is a “sandwich estimate” of this quantity that is consistent 

(14)

n

n − 1

J∑
j=1

n(j)∑
i=1

�i,jwi,jIF
(2)

i,j

(
�̂
)
IF

(2)

i,j

(
�̂
)�

+

J∑
j=1

n(j)∑
i=1

n(j)∑
k=1

wi,k,j�i,k,jwi,jwk,j�i,j�k,jIF
(2)

i,j

(
�̂
)
IF

(2)

k,j

(
�̂
)�

.

(15)
J∑
j=1

n(j)∑
i=1

�i,j

(
�̂
)
�i,j

(
�̂
)�

=

J∑
j=1

n(j)∑
i=1

�i,jwi,jwi,jIF
(2)

i,j

(
�̂
)
IF

(2)

i,j

(
�̂
)�

.

(16)

1

n − 1

J∑
j=1

n(j)∑
i=1

�i,jwi,jIF
(2)

i,j

(
�̂
)
IF

(2)

i,j

(
�̂
)�

+

J∑
j=1

n(j)∑
i=1

n(j)∑
k=1
k≠i

wi,k,j�i,k,jwi,jwk,j�i,j�k,jIF
(2)

i,j

(
�̂
)
IF

(2)

k,j

(
�̂
)�

.
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for it. In addition, relying on the influences to estimate the phase-one component of 
the variance allows for an easy extension to other designs and analytic options (e.g., 
using calibrated weights). The estimated phase-one component of variance of Λ̂0(t) 
on page 43 of Lin (2000) consists of two parts, as in Andersen and Gill (1982), that 
correspond to the two terms in IF(2)

i,j

{∫ �2
�1

dΛ̂0(t)
}

 obtained from Eqs. (10) and (11). 
The conditional expectation of the second term is zero given the phase-one data, 
proving that the two components are uncorrelated. The weighted sum of the first 
term squared equals that in Lin (2000). The weighted sum of the cross-products of 
the second term is a sandwich estimate of the second quantity estimated in Lin 
(2000), who instead used the observed information matrix for U(�) in the calulation. 
See also Web Appendix B.2 for comparison with the estimate of var

(
�̂
)
 by 

Samuelsen et  al. (2007). We note that our influence function-based variance 
estimates performed well in simulations (see Sect. 7).

3.4  Asymptotic normality

We assume that normed estimates of �̂ , Λ̂
0
(t) and �̂

(
�1, �2;x

)
 are normally distrib-

uted for fixed t  , �1 and �2 . This assumption is supported by nominal coverage of 
confidence intervals in our simulations. From finite sampling theory, Borgan et al. 
(2000) and Lin (2000) argued that certain phase-two normed sums were 
asymptotically normally distributed conditional on the phase-one data with 
covariances that did not depend on the phase-one data, implying that n

1

2

(
�̂ − �

)
 

was asymptotically Normal unconditionally. Assuming an additional tightness 
condition, Lin (2000) proved that n

1

2

{
Λ̂0(t) − Λ0(t)

}
 converged to a Gaussian 

process. Hence n1∕2
{
�̂
(
�1, �2;x

)
− �

(
�1, �2;x

)}
 converges to normality for fixed �1 

and �2 . The tightness condition was not proved but thought to hold for stratified 
designs.

4  Calibration of the design weights

4.1  Calibration and choice of auxiliary variables

Breslow et  al. (2009a, 2009b) advocated “weight calibration” to improve the 
efficiency of case-cohort studies. First, one identifies auxiliary variables that are 
highly correlated with the influences on �̂ and are known for the entire cohort. 
Then one perturbs the design weights to obtain calibrated weights that are close 
to the design weights but for which the observed sums of auxiliary variables in 
the phase-one sample equals the weighted sums in the phase-two sample with 
the calibrated weights. To obtain auxiliary variables, we follow Shin et  al. 
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(2020). First, we use weighted regression in the phase-two sample to estimate the 
expected value of phase-two covariates given phase-one data. These expectations 
are used to impute the phase-two covariates for all members of the cohort, 
including those with measured phase-two covariates. The phase-one data used for 
imputation may consist of covariates in X and of phase-one proxies of the phase-
two covariates that are measured on all cohort members. The auxiliary variables 
are (i) the influences for the log-relative hazard parameters estimated from the 
Cox model with imputed cohort data; and (ii) the products of follow-up time on 
the interval for which pure risk is to be estimated times the estimated relative 
hazard for the imputed cohort data, where the log-relative hazard parameters 
are estimated from the Cox model with case-cohort data and weights calibrated 
with (i). To standardize the weights, we also calibrate against (iii) a variable 
that is identically equal to 1. Calibration of the design weights against (i) alone 
was proposed by Breslow et  al. (2009a, 2009b) to improve efficiency of case-
cohort estimates of log-relative hazard. Shin et al. (2020) extended the work of 
Breslow et  al. (2009a, 2009b) and proposed calibrating against (i) + (ii) + (iii) 
to improve efficiency of log-relative hazard and pure risk estimates under the 
nested case–control design. Additional details are in Web Appendix C.1; see also 
Breslow et al. (2009a) and Shin et al. (2020). Other auxiliary variables have been 
proposed for Λ̂0(t) (Breslow and Lumley 2013), but in unreported simulations, the 
proposal by Shin et al. performed better; see also Web Appendix C.3.

We let Ai,j be the vector of q auxiliary variables for individual i in stratum j , 
with calibrated weights w∗

i,j
= wi,j exp

(
�̂
�
Ai,j

)
 , i ∈

{
1,… , n(j)

}
 , j ∈ {1,… , J} , that 

are obtained by solving 
∑J

j=1

∑n(j)

i=1

�
�i,jwi,j exp

�
��Ai,j

�
Ai,j − Ai,j

�
= 0 for �̂ . See 

Web Appendix C.1.

4.2  Estimation of relative hazard, cumulative baseline hazard and pure risk using 
calibrated weights

An estimate of � solves U∗(�) =
∑J

j=1

∑n(j)

i=1
∫
t
�i,jw

∗
i,j

�
Xi,j −

S
∗
1(t;�̂,�)

S∗
0(t;�̂,�)

�
dNi,j(t) = 0 , 

where S∗
0

(
t;�̂, �

)
 , S∗

1

(
t;�̂, �

)
 and S∗

2

(
t;�̂, �

)
 are obtained from Eqs.  (2)–(4) with w∗

k,j
 

replacing wk,j . Letting �̂
∗(
�̂
) ≡ �̂

∗
 , we estimate the baseline hazard point mass at time 

t , dΛ̂∗
0

(
t;�̂, �̂

∗
) ≡ dΛ̂∗

0
(t) , the cumulative baseline hazard up to time t , 

Λ̂∗
0

(
t;�̂, �̂

∗
) ≡ Λ̂∗

0
(t) , and the pure risk for profile x in the interval (�1, �2] , 

�̂∗
(
�1, �2;x, �̂, �̂

∗
, dΛ̂∗

0

) ≡ �̂∗
(
�1, �2;x

)
 , from Eqs.  (5)–(7) with S∗

0

(
t;�̂, �̂

∗
)
 and �̂

∗
 

replacing S0
(
t, �̂

)
 and �̂. We do not calibrate the case weights in the numerator of the 

Breslow estimator because the event times are known for all cohort members (Breslow 
and Wellner 2007; Pugh et al. 1993; Shin et al. 2020).
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4.3  Variance estimation from influence functions

We let �i,j

(
�̂
∗
)
 denote the influence of individual i in stratum j on one of the parame-

ters �̂
∗
 from the set 

{
�̂, �̂

∗
, dΛ̂∗

0
(t), Λ̂∗

0
(t), �̂∗

(
�1, �2;x

)} , i ∈
{
1,… , n(j)

}
, j ∈ {1,… , J} , 

and use var
�
�̂
∗
�
≈ var

�∑J

j=1

∑n(j)

i=1
�i,j

�
�̂
∗
��

. Following Shin et  al. (2020) we can 

show that �i,j

(
�̂
∗
)
= IF

(1)

i,j

(
�̂
∗
)
+ �i,jwi,jIF

(2)

i,j

(
�̂
∗
)
 . The superscript 1 indicates that 

IF
(1)

i,j

(
�̂
∗
)
 depends only on variables measured on all cohort members. If individual i 

in stratum j is not in the phase-two sample, �i,jwi,jIF
(2)

i,j

(
�̂
∗
)
 is zero, but such an indi-

vidual has an influence on �̂ and hence  on �̂
∗
 through IF(1)

i,j

(
�̂
∗
)
 . Explicit forms of 

IF
(s)

i,j

(
�̂
∗
)
 , s ∈ {1, 2} , are in Appendix 1 and derived in Web Appendix C.2.

Because IF(1)

i,j

(
�̂
)
 is fixed conditional on C1 , a decomposition similar to Eq.  (13) 

yields

which can be estimated by

Finally, the robust variance estimate (Barlow 1994) is

(17)

var

⎧
⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̂
∗
�⎫⎪⎬⎪⎭

= var

⎧
⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

IF
(1)

i,j

�
�̂
∗
�
+ IF

(2)

i,j

�
�̂
∗
�⎫⎪⎬⎪⎭

+ E

⎧⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

n(j)�
k=1

�
i,k,j

wi,jwk,jIF
(2)

i,j

�
�̂
∗
�
IF

(2)

k,j

�
�̂
∗
��
⎫⎪⎬⎪⎭
,

(18)

n

n − 1

J∑
j=1

n(j)∑
i=1

{
IF

(1)

i,j

(
�̂
∗
)
IF

(1)

i,j

(
�̂
∗
)
� + 2�i,jwi,jIF

(1)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�

+�i,jwi,jIF
(2)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�
}

+

J∑
j=1

n(j)∑
i=1

n(j)∑
k=1

wi,k,j�i,k,j�i,j�k,jwi,jwk,jIF
(2)

i,j

(
�̂
∗
)
IF

(2)

k,j

(
�̂
∗
)�

.

(19)

J∑
j=1

n(j)∑
i=1

�i,j

(
�̂
∗
)
�i,j

(
�̂
∗
)�

=

J∑
j=1

n(j)∑
i=1

{
IF

(1)

i,j

(
�̂
∗
)
IF

(1)

i,j

(
�̂
∗
)�

+2�i,jwi,jIF
(1)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�

+ �i,jwi,jwi,jIF
(2)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�
}
,
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and the difference between Eqs. (18) and (19) is

For individuals i and k in stratum j such that �
i,k,j

 and �
i,j

 are non-zero (i.e., non-

cases), �i,jwi,jIF
(2)

i,j

(
�̂
∗
)
 and �k,jwk,jIF

(2)

k,j

(
�̂
∗
)
 are weighted residuals from a weighted 

linear regression on the auxiliary variables; see Web Appendix C.3. With good 
auxiliary variables for calibration, one can expect the phase-two component of the 
variance and hence the total variance to be smaller, and the difference in Eq. (20) to 
be smaller than the difference in Eq.  (16); see also Chapter  17 in Borgan et  al. 
(2017).

See Web Appendix I for a summary of the steps for parameter and variance esti-
mation with calibrated weights.

5  Missing data

5.1  Notation

Covariate information may be missing for individuals in phase-two. For example, 
stored blood samples from individuals in phase-two could have been previously used 
or lost. We assume such covariates are missing at random and we regard the set of 
individuals with complete covariate data as a phase-three sample. More precisely, 
let Vi,j be the phase-three sampling indicator for subject i in stratum j , 
i ∈

{
1,… , n(j)

}
 , j ∈ {1,… , J} ; we assume the Bernoulli indicators Vi,j are mutually 

independent and independent of the phase-two indicators, �i,j . Let w(3)

i,j
≡ 1

�
(3)

i,j

 be the 

phase-three design weight, where �(3)

i,j
 is the phase-three design sampling probability. 

The overall sampling design weight of subject i in stratum j is wi,j = w
(2)

i,j
× w

(3)

i,j
.

The phase-three sampling probabilities may differ in J(3) exclusive and exhaustive 
subsets (phase-three strata) of the population that need not coincide with the J 
phase-two strata. For example, cases may have a different probability of missingness 
from non-cases. Nonetheless, we index the members of the cohort as in Sect. 3. Web 
Appendix F describes analysis when the phase-three sampling probabilities are 
known. However, the �(3)

i,j
 are usually unknown and need to be estimated (Sect. 5.2).

(20)

1

n − 1

J∑
j=1

n(j)∑
i=1

{
IF

(1)

i,j

(
�̂
∗
)
IF

(1)

i,j

(
�̂
∗
)�

+ 2�i,jwi,jIF
(1)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�

+�i,jwi,jIF
(2)

i,j

(
�̂
∗
)
IF

(2)

i,j

(
�̂
∗
)�
}

+

J∑
j=1

n(j)∑
i=1

n(j)∑
k=1
k≠i

wi,k,j�i,k,jwi,jwk,j�i,j�k,jIF
(2)

i,j

(
�̂
∗
)
IF

(2)

k,j

(
�̂
∗
)�

.



 L. Etievant, M. H. Gail 

1 3

5.2  Weight estimation

When the �(3)

i,j
 are unknown, w(3)

i,j
 can be estimated as follows, i ∈

{
1,… , n(j)

}
 , 

j ∈ {1,… , J} . The Vi,j are known for all members of the phase-two sample, and let 
Bi,j be a J(3) × 1 vector of indicator variables that take value 1 if subject i in (phase-
two) stratum j is in the corresponding phase-three stratum, and 0 otherwise. Let 
exp

(
�̃
)
 be the vector of J(3) estimated phase-three sampling weights that are 

obtained by solving the estimating equation ∑J

j=1

∑n(j)

i=1
�i,jBi,j − exp

�
��Bi,j

�
�i,jVi,jBi,j = 0 . 

For example, if phase-three sampling is stratified on case status, we use weights 

w̃
(3)

i,j
=

∑J

l=1

∑n(j)

k=1,
non case

𝜉k,l

∑J

l=1

∑n(j)

k=1,
non case

𝜉k,lVk,l

  if subject i in stratum j is a non-case, and w̃(3)

i,j
=

∑J
l=1

∑n(j)

k=1,
case

𝜉k,l

∑J
l=1

∑n(j)

k=1,
case

𝜉k,lVk,l

  

if subject i in stratum j is a case. Finally, we estimate var
(
Vi,j

) ≡ �
(3)

i,j
 by 

�̃
(3)

i,j
=

1

w̃
(3)

i,j

(
1 −

1

w̃
(3)

i,j

)
.

5.3  Estimation of relative hazard, cumulative baseline hazard and pure risk

We obtain the log-relative hazard estimate �̃
(
�̃
) ≡ �̃ from solving for � in the esti-

mating equation 
∑J

j=1

∑n(j)

i=1
∫
t
Vi,jw̃

(3)

i,j

�
Xi,j −

S̃1(t;�̃,�)
S̃0(t;�̃,�)

�
dNi,j(t) = 0 . We let 

w̃k,j = w
(2)

i,j
× w̃

(3)

i,j
 and compute S̃0

(
t;�̃, �

)
 , S̃1

(
t;�̃, �

)
 and S̃2

(
t;�̃, �

)
 from Eqs. (2)–(4) 

by substituting �k,jVk,j for �k,j and w̃k,j for wk,j. We estimate the baseline hazard point 

mass at time t , dΛ̃0

(
t;�̃, �̃

) ≡ dΛ̃0(t) , the cumulative baseline hazard up to time t , 

Λ̃0

(
t;�̃, �̃

) ≡ Λ̃0(t) , and the pure risk for profile x in the interval (�1, �2] , 

�̃
(
�1, �2;x, �̃, �̃, dΛ̃0

) ≡ �̃
(
�1, �2;x

)
 , from Eqs. (5)–(7) with S̃0

(
t;�̃, �̃

)
 and �̃ replac-

ing S0
(
t, �̂

)
 and �̂.

If a case with missing phase-two data occurs at a time t when no other member of 
the phase-three sample is at risk, the Breslow estimate of cumulative baseline haz-
ard is undefined. One option is to restrict the risk projection interval by increasing �1 
or decreasing �2 to avoid such times. If there are only a small number of such times, 
we recommend ignoring them in all calculations.

5.4  Influence functions

Let �i,j

(
�̃
)
 denote the influence of subject i in stratum j on one of the parameters �̃ 

from the set 
{
�̃, �̃, dΛ̃0(t), Λ̃0(t), �̃

(
�1, �2;x

)}
 , i ∈

{
1,… , n(j)

}
 , j ∈ {1,… , J} . We 

can show that �i,j

(
�̃
)
= �i,jIF

(2)

i,j

(
�̃
)
+ �i,jVi,j exp

(
�̃
�
Bi,j

)
IF

(3)

i,j

(
�̃
)
 . Explicit forms of 
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IF
(s)

i,j

(
�̃
)
 , s ∈ {2, 3} , are given in Appendix 2 and are derived in Web Appendix E.1. 

The superscript 3 emphasizes that IF(3)

i,j

(
�̃
)
 involves variables that are measured only 

on individuals in the phase-three sample. Thus �i,jVi,jIF
(3)

i,j

(
�̃
)
 is zero if individual i in 

stratum j is not in the phase-three sample. However, such an individual affects �̃ 
through her/his influence on �̃ via �i,jIF

(2)

i,j

(
�̃
)
 , as he/she is used to estimate the phase-

three sampling weights.

5.5  Variance decomposition and estimation from influence functions

From var
�
�̃
�
≈ var

�∑J

j=1

∑n(j)

i=1
�i,j

�
�̃
��

 , �̃ ∈
{
�̃, �̃, dΛ̃0(t), Λ̃0(t), �̃

(
�1, �2;x

)}
 , 

the variance var
(
�̃
)
 can be decomposed as

where C1 denotes the information from the whole cohort, and C2 denotes the infor-
mation from the phase-two sample. The three terms correspond respectively to sam-
pling from the “superpopulation”, sampling the subcohort from the cohort, and sam-
pling the phase-three sample from the phase-two sample.

We estimate var
(
�̃
)
 by

(21)

var

⎛
⎜⎜⎜⎝
E

⎡
⎢⎢⎢⎣
E

⎧
⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̃
�
�C1,C2

⎫
⎪⎬⎪⎭
�C1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

+ E

⎛
⎜⎜⎜⎝
var

⎡
⎢⎢⎢⎣
E

⎧
⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̃
�
�C1,C2

⎫
⎪⎬⎪⎭
�C1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠
+ E

⎛
⎜⎜⎜⎝
E

⎡
⎢⎢⎢⎣
var

⎧
⎪⎨⎪⎩

J�
j=1

n(j)�
i=1

�i,j

�
�̃
�
�C1,C2

⎫
⎪⎬⎪⎭
�C1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠
,

(22)

n

n − 1

J∑
j=1

n(j)∑
i=1

1

w
(2)

i,j

{
�i,jIF

(2)

i,j

(
�̃
)
IF

(2)

i,j

(
�̃
)�

+ 2�i,jVi,jw̃
(3)

i,j
IF

(2)

i,j

(
�̃
)
IF

(3)

i,j

(
�̃
)�

+�i,jVi,jw̃
(3)

i,j
IF

(3)

i,j

(
�̃
)
IF

(3)

i,j

(
�̃
)�
}

+

J∑
j=1

n(j)∑
i=1

�
(2)

i,j
w
(2)

i,j

{
�i,jIF

(2)

i,j

(
�̃
)
IF

(2)

i,j

(
�̃
)�

+2�i,jVi,jw̃
(3)

i,j
IF

(2)

i,j

(
�̃
)
IF

(3)

i,j

(
�̃
)�

+ �i,jVi,jw̃
(3)

i,j
IF

(3)

i,j

(
�̃
)
IF

(3)

i,j

(
�̃
)�
}

+

J∑
j=1

n(j)∑
i=1

n(j)∑
k=1
k≠i

�
(2)

i,k,j
w
(2)

i,k,j

{
�i,jIF

(2)

i,j

(
�̃
)
+ �i,jVi,jw̃

(3)

i,j
IF

(3)

i,j

(
�̃
)}{

�k,jIF
(2)

k,j

(
�̃
)

+ �k,jVk,jw̃
(3)

k,j
IF

(3)

i,j

(
�̃
)}�

+

J∑
j=1

n(j)∑
i=1

�̃
(3)

i,j
w̃
(3)

i,j
�i,jVi,jw̃

(3)

i,j
w̃
(3)

i,j
IF

(3)

i,j

(
�̃
)
IF

(3)

i,j

(
�̃
)�

.
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See Web Appendix E.2 for details. Variability of the estimated phase-three 
weights is accounted for in a part of 𝜉i,jIF

(2)

i,j

(
�̃
)
.

6  Software: CaseCohortCoxSurvival on CRAN

“Dfbetas”, which approximate influences and are available from survival software, 
can be used to estimate the variance of �̂ from unstratified case-cohort data 
(Therneau and Li 1999), and similar code was given to estimate the variance of �̂ 
(which corresponds to Estimate II in Borgan et al. (2000)) for stratified case-cohort 
designs (Samuelsen et al. 2007). The cch function from the CRAN package survival 
(Therneau et al. 2023) deals with Estimate I and Estimate II of Borgan et al. (2000). 
The CRAN package cchs (Jones 2018, 2020) was created for Estimate III of Borgan 
et al. (2000), but we do not consider Estimate III. The twophase function from the 
CRAN package survey (Lumley 2021) estimates � and its variance from a phase-
two sample, and thus from unstratified or stratified case-cohort data. The previous 
papers did not discuss pure risk, however. SAS code was proposed for Estimate III 
for stratified case-cohort studies and pure risk (Langholz and Jiao 2007), but we have 
been unable to find online procedures at the site mentioned in the original article. 
The CRAN package NestedCohort (Mark and Katki 2006) was removed from the 
CRAN repository, but its formerly available version can be found at https:// dceg. 
cancer. gov/ tools/ analy sis/ nested- cohort and on the CRAN archive. More general 
survey software can accommodate weight calibration in addition to stratification 
(Lumley 2021), but R code showing how to use these more general programs to 
estimate � , as referenced in Breslow et  al. (2009a, 2009b), are no longer online. 
Thus, there is a need for convenient software to allow for stratification, weight 
calibration and missing phase-two data.

We have created the CaseCohortCoxSurvival CRAN package available at https:// 
CRAN.R- proje ct. org/ packa ge= CaseC ohort CoxSu rvival, to facilitate such analy-
ses. We present a script in Table 4 to illustrate convenient analysis of mortality data 
from Golestan, Iran in Sect. 8. Extensive details on the features and arguments of the 
caseCohortCoxSurvival function will be provided elsewhere.

7  Simulations

7.1  Simulation designs

We compared how well the methods in Sects. 3.3 and 4.3 estimate the variance of 
the log-relative hazard and of pure risk estimates in simulated cohorts. We also 
evaluated the gain in precision from using calibrated weights rather than the design 
weights. We considered a range of scenarios, defined by the models described below 
and by parameter values in Web Tables 1 and 2 of Web Appendix D.1.

https://dceg.cancer.gov/tools/analysis/nested-cohort
https://dceg.cancer.gov/tools/analysis/nested-cohort
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
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We simulated cohorts with n ∈
{
5 × 103, 104

}
 and used time on study as the time 

scale. We simulated three covariates X =
(
X1,X2,X3

)� : X1 ∼ N(0, 1) , X2 takes 
values in ΩX2

= {0, 1, 2} with respective probabilities 
{
p0|X1

, p1|X1
, p2|X1

}
 , given in 

Web Table  1 in Web Appendix D.1, and X3 ∼ N
(
�1X1 + �2X2, 1

)
 , where N(a, b) 

denotes the Normal distribution with mean a and variance b . We defined a 
categorical variable W from X2 and from a binary variable based on X1 : 
W = 0 × I

(

X1 ≥ 0,X2 = 0
)

+ 1 × I
(

X1 < 0,X2 < 2
)

+ 2 × I
(

X1 ≥ 0,X2 > 0
)

+3 × I
(

X1 < 0,X2 = 2
)

 , where I() is the indicator function. We simulated proxies 
of X1 and X3 , X̃1 and X̃3 , as X̃1 = X1 + �1 , X̃3 = X3 + �3 , with �1 and �3 independently 
distributed as Normal N

(
0, 0.752

)
 , so that corr

(
X̃1,X1

)
= corr

(
X̃3,X3

)
= 0.8 . We 

simulated failure time T  from a Cox proportional hazards  model with hazard 
�(t;X) = �0 × exp

(
�1X1 + �2X2 + �3X3

)
 , where the baseline hazard 

�0 =
pY

E{exp (�1X1+�2X2+�3X3)}×10
 , pY ∈ {0.02, 0.05, 0.1} , is a constant calculated to 

have approximately 98%, 95% or 90% 10-year pure survival probability. Parameters 
�1 , �2 , �1 , �2 and �3 are in Web Table 2 in Web Appendix D.1. Cohort entry time, E , 
was uniform on the first 5 years, and we assumed the time to censoring by loss to 
follow-up, C , had an exponential distribution with hazard 10

− log (0.98)
 , corresponding to 

a pure risk of loss to follow-up of 2% in 10 years. We assumed T  , E and C were 
mutually independent. We let T̃ = min(T , 10 − E,C) be the observed time. The total 
follow-up time on time interval (�1, �2] was thus max

{
0,min

(
T̃ , 𝜏2

)
− 𝜏1

}
.

We assumed that X2 , W , X̃1 , X̃3 , T̃  and the case status were known for everybody 
in the cohort, but X1 and X3 were available only for individuals in phase-two. We 
sampled from the four strata defined by W ; thus stratum “0” is low risk, strata “1” 
and “2” are both medium risk, and stratum “3” is high risk. We sampled without 
replacement fixed numbers of individuals, m(j) , independently across strata, 
j ∈ {0, 1, 2, 3} , and independently of the case status. The m(j) depended on the 
expected numbers of failures and of individuals in the strata via 
m(j) =

⌊
�0×10×E{exp (�1X1+�2X2+�3X3)|W=j}

1−�0×10×E{exp (�1X1+�2X2+�3X3)|W=j}
× E

(
n(j)

)
× K +

1

2

⌋
 , where K ∈ {2, 4} is 

the number of non-cases we wish to sample for each case, and ⌊     ⌋ is the floor 
function. The subcohort consisted of all the sampled subjects from the J strata. 
Then, we sample all the cases in the cohort (some may have been included in the 
subcohort); the phase-two (or case-cohort) sample consisted of the subcohort and all 
the cases. Design weights were computed as in Sect. 3.3. Calibration of the weights 
was performed against the auxiliary variables proposed in Sect. 4.1, with the values 
of covariates X1 and X3 in the full cohort imputed from weighted linear regressions 
of X1 on X̃1 and W , and of X3 on X̃1 and X̃3.

For each scenario, we simulated 5000 cohorts. We estimated the log-relative haz-
ard � =

(
�1, �2, �3

)� and pure risks �
(
�1, �2;x

)
 in time interval (�1, �2] = (0, 8] and 

for covariate profiles x ∈
{
(−1, 1,−0.6)�, (1,−1, 0.6)�, (1, 1, 0.6)�

}
 , using the follow-

ing sampling designs and methods of analysis: the stratified case-cohort with design 
weights (SCC); the stratified case-cohort with calibrated weights (SCC.Calib); the 
unstratified case-cohort with design weights (USCC); and the unstratified case-cohort 
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with calibrated weights (USCC.Calib). We then estimated their variance. For each 
simulated realization, we obtained the variance estimate V̂ for SCC from Eq.  (14) 
and the robust variance estimate ( ̂VRobust ) from Eq. (15). For SCC.Calib, we used V̂  
in Eq. (18) and V̂Robust in Eq. (19). For USCC and USCC.Calib, we used the variance 
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Fig. 1  Ratio of empirical variance of log-relative hazard and pure risk estimates with the whole cohort to 
that when using different sampling designs and methods of analysis. The results are obtained from 5000 
simulated cohorts with n = 10,000, pY = 0.02, K = 2. The variance ratio is a measure of relative efficiency

Table 1  Mean of estimated variances of log-relative hazard and pure risk estimates, from using different 
sampling designs, methods of analysis and variance estimation, over 5000 simulated cohorts with n = 
10,000, pY = 0.02, K = 2

The corresponding empirical variances are displayed between parentheses

Parameter Cohort SCC SCC.Calib USCC USCC.Calib

V̂Robust V̂ V̂Robust V̂ V̂Robust V̂ V̂Robust V̂

�

  �1 0.0069 0.0102 0.0087 0.0084 0.0082 0.0106 0.0106 0.0086 0.0086
(0.007) (0.0085) (0.0081)  (0.0108)  (0.0087)

  �2 0.0097 0.0139 0.0114 0.0103 0.0102 0.014 0.014 0.0103 0.0103
(0.01) (0.0115) (0.0105)  (0.014)  (0.0105)

  �3 0.0068 0.0102 0.0102 0.0084 0.0084 0.0107 0.0107 0.0087 0.0087
(0.0069) (0.0103) (0.0083)  (0.0109)  (0.0087)

log
{
�
(
�1, �2;x

)}
   x = (−1, 1,−0.6)� 0.0122 0.0172 0.014 0.0142 0.0137 0.0181 0.0159 0.0145 0.0145

(0.0119) (0.0136) (0.0133)  (0.0158)  (0.014)

x = (1,−1, 0.6)� 0.062 0.0861 0.0697 0.0664 0.066 0.086 0.0837 0.0676 0.0676
(0.0618) (0.0688) (0.0649)  (0.0823) (0.0676) 

x = (1, 1, 0.6)� 0.0277 0.0379 0.0333 0.0318 0.0315 0.0386 0.0363 0.0327 0.0327
(0.0274) (0.0326) (0.0308)  (0.0361)  (0.0323)
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estimates in Eqs. (14), (15), (18) and (19) with J = 1 . Corresponding 95% confidence 
intervals (CIs) were computed assuming normality. As a point of reference, we also 
estimated these parameters using the data from the whole cohort (Cohort).

7.2  Simulation results

The simulation results for the scenario with n = 10,000, pY = 0.02 and K = 2 are dis-
played in Fig. 1, Tables 1 and 2; see Web Table 3 to 20 in Web Appendix D.2 for 
other scenarios. The robust variance formula overestimated the variance (Table 1) 
and yielded supra-nominal confidence interval coverage (Table 2) for most log-rela-
tive hazards and pure risks with stratified designs, and for pure risk with unstratified 
designs. Weight calibration led to smaller variances (Table 1), as expected, because 
it led to a smaller phase-two component of the variance (see also Web Appendix 
D.4). In addition, robust variance estimates were approximately valid with calibrated 
weights, except for one pure risk (Tables 1 and 2). Because they properly accounted 
for the sampling features, the variance estimates in Eq. (14) for design weights and 
Eq.  (18) for calibrated weights yielded proper coverage in all designs (Table  2), 
except for log

{
�
(
�1, �2;x

)}
 when x = (−1, 1,−0.6)� , for which the full cohort analy-

sis also had supra-nominal coverage. As shown in Fig. 1, stratification and/or weight 
calibration improved efficiency. Moreover, the unstratified case-cohort with weight 
calibration was nearly as efficient as the stratified case-cohort with weight calibra-
tion, and both were considerably more efficient than analyses with design weights. 
With design weights, stratification improved efficiency compared to the unstratified 
case-cohort design.  

A few remarks follow. First, variables X1 and X3 were only measured in the phase-
two sample. The strongest increase in efficiency from calibration was usually for �̂2 , 
because X2 was measured in the entire cohort (see also Sect. 8). With weaker prox-
ies, the efficiency gain from calibration would be more modest, and robust variance 

Table 2  Coverage of 95% CIs of log-relative hazard and pure risk estimates, from using different sam-
pling designs, methods of analysis and variance estimation, over 5,000 simulated cohorts with n = 
10,000, pY = 0.02, K = 2

*Indicates coverage outside the expected interval [0.9440; 0.9560]

Parameter Cohort SCC SCC.Calib USCC USCC.Calib

V̂Robust V̂ V̂Robust V̂ V̂Robust V̂ V̂Robust V̂

�

  �1 0.9476 0.9668* 0.9524 0.953 0.9506 0.947 0.947 0.9464 0.9464
  �2 0.9486 0.9716* 0.9522 0.9498 0.9496 0.9554 0.9554 0.9466 0.9466
  �3 0.9422* 0.9492 0.9494 0.9498 0.9498 0.9454 0.9454 0.9482 0.9482

log
{
�
(
�1, �2;x

)}
x = (−1, 1,−0.6)� 0.956* 0.973* 0.9568* 0.9604* 0.9554 0.9656* 0.9526 0.956* 0.956*

x = (1,−1, 0.6)� 0.952 0.9722* 0.9518 0.9542 0.9532 0.954 0.9522 0.95 0.95

x = (1, 1, 0.6)� 0.952 0.9666* 0.9542 0.9538 0.952 0.9574* 0.95 0.9502 0.9502
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estimates may be too large (see Web Appendix D.6). Second, for log-relative haz-
ards, the nominal coverage of the 95% CIs suggested that inference can be based 
on asymptotic normality, even with calibrated weights. We log-transformed the 
pure risks to improve coverage based on asymptotic Normal theory. Third, some 
authors used post-stratified weights instead of design weights, by having a separate 
stratum for cases and excluding cases from the strata with non-cases (Borgan et al. 
2000; Samuelsen et  al. 2007). This approach improved the precision of estimates 
with SCC and USCC negligibly (variance ratios of 1.01 or less), compared to using 
design weights (Web Appendix D.5). Finally, each stratum in the cohort and in the 
case-cohort had substantial numbers of subjects. Unreported simulation with very 
few subjects and cases in stratum W = 0 led to similar results.

Simulations concerning missing phase-two data showed that Eq. (22) in Sect. 5.5 
and a simpler formula that ignores variability in the estimated weights (Web Appen-
dix F.3) yielded nominal confidence interval coverage of log-relative hazards and 
pure risk (Web Appendix G), but in non-reported simulations with larger propor-
tions missing, the simpler formula overestimated the variance. We therefore recom-
mend using Eq. (22), as is computed in CaseCohortCoxSurvival available at https:// 
CRAN.R- proje ct. org/ packa ge= CaseC ohort CoxSu rvival.

8  Data analysis

The Golestan Cohort included 49,819 individuals aged 36–81 and recruited in 
2003–2009 (Pourshams et  al. 2010). To reduce computation, we randomly sampled 
n = 30,000 individuals and analyzed this subset. We used the age-scale and assumed a 
Cox proportional hazards model predicting mortality from baseline variables: X1 = indi-
cator of male gender, X2 = wealth score, X3 = indicator of former smoker (cigarettes, nass, 
or opium), X4 = indicator of current smoker, X5 = indicator of morbidity, X6 = X1X3 and 
X7 = X1X4. We used “never smoker” as the reference category, and morbidity was a 
binary indicator with value 1 if the individuals had at least one of the following morbidi-
ties at baseline: cardiovascular disease, cerebrovascular accident, hypertension, diabetes, 
chronic obstructive pulmonary disease, tuberculosis, cancer. The wealth score had been 
computed from information such as house ownership and number and type of household 
appliances; see Islami et  al. (2009). We also estimated the pure risk in interval 
(�1, �2] = (52, 66] and for covariate profiles 
x ∈

{(
0,−0.4, 0, 1, 03

)�
,
(
0, 0.4, 0, 1, 03

)�
,
(
04, 1, 02

)�
, 0�

7

}
 , where 0a is the a × 1 vec-

tor of zeros, and where for example 
(
0,−0.4, 0, 1, 03

)� corresponds to the profile of a 
currently smoking woman with a low wealth score, while 

(
04, 1, 02

)′ corresponds to a 
never-smoking woman with morbidity at baseline. We assumed that age, gender, smok-
ing status, morbidity, residence (urban, rural), ethnicity (Turkmen, others), marital status 
(unmarried, married, widowed, divorced/separated, other), education (nil, less than 5th, 
6th-8th, 9th-12th, College), socioeconomic status (low, low to medium, medium to high, 
high), death status and follow-up time were known for everybody in the cohort, but the 
wealth score was available only for individuals in phase-two. We sampled 33, 42, 192, 

https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
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246, 57, 62, 313, 382, 82, 86, 391, 477, 565, 770, 1934 and 2949 individuals respec-
tively in the 16 strata defined by gender (male, female), residence and four baseline age 
categories ([36,45), [45,50), [50,55) and [55,81]), so that we expected approximately one 
non-case per case in each stratum. We estimated the log-relative hazards and pure risks 
using SCC, SCC.Calib, USCC and USCC.Calib (see notation and methods of analysis in 
Sect. 5). We used gender, socioeconomic status, age at baseline, marital status, ethnicity, 
education and residence as proxies to impute the wealth score for the entire cohort and 
then calibrated the design weights. We also analyzed the whole cohort (n = 30,000).

Table 3 displays the variances of log-relative hazard and pure risk parameters; see 
Web Table  55 in Web Appendix H for parameter estimates. When using design 
weights, robust variance estimates were larger for the log-relative hazards of 
covariates X1 and X2 , for all the pure risks in the stratified design, and for the pure 
risks with profiles x ∈

{(
0,−0.4, 0, 1, 03

)�
,
(
04, 1, 02

)�
, 0�

7

}
 in the unstratified 

design. In the stratified design, V̂Robust agreed well with V̂  for 5 of the 7 log-relative 
hazard parameters, possibly because stratification was only based on X1.

Table 4  R script using the CaseCohortCoxSurvival R package to obtain variance estimates V̂ and V̂Robust 
with SCC and SCC.Calib, for the log-relative hazards and pure risk with profile x =

(
0,−0.4, 0, 1, 03

)� in 
Table 3
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Weight calibration improved efficiency, and robust variance estimates were very 
close to V̂  for all parameters. Notably, calibration led to estimates with almost as 
much precision as with the full cohort, not only for covariates that were available on 
the whole cohort, but also for wealth score, for which there were good proxies.

Web Appendix I presents pseudo-code for all of the steps for estimation in Sects. 3 
and 4. To illustrate how easily such analyses can be performed with the CaseCohort-
CoxSurvival CRAN package (available at https:// CRAN.R- proje ct. org/ packa ge= 
CaseC ohort CoxSu rvival), we present a script for SCC and SCC.Calib in Table 4.

9  Discussion

We presented a unified approach to analysis of case-cohort data that allows the 
practitioner to take advantage of various options and improvements in design 
and analysis since the landmark paper of Prentice (1986). We used influence 
functions adapted to the various design and analysis options together with vari-
ance calculations that take two-phase sampling into account. We developed cor-
responding software CaseCohortCoxSurvival, available at https:// CRAN.R- proje 
ct. org/ packa ge= CaseC ohort CoxSu rvival, that facilitates analysis with and with-
out stratification and/or weight calibration, for subcohort sampling with or with-
out replacement. We allow for phase-two data to be missing at random for strati-
fied designs. We provide inference not only for log-relative hazards in the Cox 
model, but also for covariate-specific cumulative hazards and pure risks. We 
hope these calculations and software will promote wider and more principled 
design and analysis of case-cohort data, for which there is a need (Sharp et al. 
2014). Detailed features and arguments of the CaseCohortCoxSurvival CRAN 
R package available at https:// CRAN.R- proje ct. org/ packa ge= CaseC ohort CoxSu 
rvival will be described elsewhere. Convenient software of the type we propose 
does not appear to be available online (Sect. 6).

We found that weight calibration improves efficiency with stratified or 
unstratified sampling of the subcohort, in line with previous findings for unstrat-
ified designs. We found theoretically and empirically that the robust variance 
estimate (Barlow 1994) is nearly unbiased if the covariances of the phase-two 
sampling indicators, �i,k,j , i ≠ k , are zero, as when the subcohort members are 
sampled with replacement (Table  5). For sampling without replacement, these 
covariances are negative, which tends to bias the robust variance estimate 
upward. This has been noted for log-relative hazards in stratified designs (Gray 
2009; Samuelsen et al. 2007), but we also found this bias for pure risk in unstrat-
ified designs. With weight calibration based on strong predictors of phase-two 
covariates, the robust variance had little bias (Table 5). Nonetheless, we recom-
mend our influence-based approach with complete variance decomposition for 
theoretical and empirical reasons. In addition, and as previously recommended 
(Sharp et al. 2014), we stress the practical importance of describing the design 
fully in publications, including stratification details and whether or not the sub-
cohort was sampled with replacement.

https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
https://CRAN.R-project.org/package=CaseCohortCoxSurvival
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In our simulation, the unstratified case-cohort with calibrated weights was 
nearly as efficient as the stratified case-cohort with calibrated weights. This is 
probably because information used to define the strata was also used for calibra-
tion. However, if strata depended for example only on time of events or cen-
soring, but imputation of phase-two covariates depended on other phase-one 
covariates, a stratified calibrated approach might be more efficient than the cor-
responding unstratified calibrated one.

To obtain the subcohort, we sampled fixed numbers of individuals from the 
strata, independently of the case status. Thus, some of the cases may have been 
included in the subcohort. Alternatively, one might want to sample fixed num-
bers of non-cases. To do so, the strata could be redefined by excluding the cases, 
and an additional stratum containing all the cases, could be created. It is possible 
to analyze data from this slightly modified design CRAN R package (available at 
https:// CRAN.R- proje ct. org/ packa ge= CaseC ohort CoxSu rvival) by sampling all 
the cases from the case stratum, so that all cases are included in the case-cohort 
and have unit design weights.

We focused on the “standard” case-cohort design, where all the cases are 
sampled from the cohort. If the event of interest is not rare, one may want to 
only include a fraction of the cases in the case-cohort. The derivations presented 
in this paper can be extended to such a design, sometimes called the generalized 
case-cohort design (Kim et al. 2018; Xu et al. 2022). For example, a weighted 
version �i,jwi,jdNi,j(t) would be employed in Eqs. (1) and (5), with the cases hav-
ing non-unit design weights. The cases would then contribute to the phase-two 
component of the variance.

The methods we presented used design weights. Borgan et  al. (2000) and 
Samuelsen et  al. (2007) recommended weights that are post-stratified into a 
case stratum and multiple non-case strata. In our simulations, there was less 
than 2% increase in efficiency from post-stratification. Using the influences 
we derived for design weights with post-stratified weights (with cases in one 
stratum and non-cases in the original strata) yielded confidence intervals 
with nominal coverage (results not shown). Thus, the influence functions 
we provide can be used for such post-stratification. Further efficiency gains 
might be obtained by post-stratifying on time intervals in which follow-up 
ends (Chen 2001; Ding et al. 2017; Samuelsen et al. 2007) or on other features 
(Section 16.4.5 in Borgan et al. 2017).

An alternative approach to sampling is to select the subcohort sample size 
in each stratum such that the expected number of non-cases is a multiple of the 
observed number of cases. In unreported simulations, using the influences we 
gave for design weights and substituting post-stratified weights yielded valid 
variance estimates and coverage of confidence intervals, unless the number 
of cases and non-cases in a stratum is small (e.g. fewer than 10 cases and 20 
non-cases).

As discussed by Keogh et  al. (2018), likelihood-based methods for miss-
ing data and imputation can increase efficiency of case-cohort analyses, but, 
unlike stratification and weight calibration, they yield biased risk model esti-
mates if imputation models are misspecified. Indeed, a key advantage of weight 

https://CRAN.R-project.org/package=CaseCohortCoxSurvival
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calibration is that poor imputation models reduce the efficiency gains, but do not 
bias estimates of risk model parameters (Lumley et al. 2011). Weight calibrated 
estimators are in the class of augmented inverse-probability weighted estimators 
that are similarly robust (Lumley et al. 2011; Robins et al. 1994).

In Sect. 5.3, we suggested modifications for times when a case had missing 
covariate data and no other member of the phase-three sample was at risk when 
the case failed. An alternative would be to weight the numerator of the Breslow 
estimator and only use event times t  from cases with complete covariate data, 

namely dΛ̃0(t) =

∑J

j=1

∑n(j)

i=1
Vi,jw̃

(3)

i,j
dNi,j(t)

S̃0

�
t;�̃,�̃

�  . Unreported simulations showed this led to 

biased estimates of pure risks, however.
This paper dealt with covariates measured at baseline. Although the influ-

ences for log-relative hazards apply equally to time-varying covariates, modifi-
cations are needed for pure risks, and computational challenges arise for large 
cohorts. Moreover, pure risk estimates are uninterpretable unless the time-
varying covariates are “external” (Kalbfleisch and Prentice 2011). We have 
assumed a common baseline hazard across strata. A stratified Cox model with 
different baseline hazards in each stratum would require modifications of the 
influences given in this paper.

Appendix 1: Influences for stratified case‑cohort with calibrated 
weights 
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Appendix 2: Influences for stratified case‑cohort with missing 
covariate information and estimated design sampling phase‑three 
weights
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