Skip to main content
Log in

Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

We consider a novel class of semiparametric joint models for multivariate longitudinal and survival data with dependent censoring. In these models, unknown-fashion cumulative baseline hazard functions are fitted by a novel class of penalized-splines (P-splines) with linear constraints. The dependence between the failure time of interest and censoring time is accommodated by a normal transformation model, where both nonparametric marginal survival function and censoring function are transformed to standard normal random variables with bivariate normal joint distribution. Based on a hybrid algorithm together with the Metropolis–Hastings algorithm within the Gibbs sampler, we propose a feasible Bayesian method to simultaneously estimate unknown parameters of interest, and to fit baseline survival and censoring functions. Intensive simulation studies are conducted to assess the performance of the proposed method. The use of the proposed method is also illustrated in the analysis of a data set from the International Breast Cancer Study Group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam K, Maity A, Sinha SK, Rizopoulos D, Sattar A (2021) Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes. Lifetime Data Anal 27:64–90

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Hu T, Sun J (2017) Sieve maximum likelihood estimation for the proportional hazards model under informative censoring. Comput Stat Data Anal 112:224–234

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YH (2010) Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J R Stat Soc B 72:235–251

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YH (2012) Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Anal 18:36–57

    Article  MathSciNet  MATH  Google Scholar 

  • Chi Y, Ibrahim JG (2006) Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62:432–445

    Article  MathSciNet  MATH  Google Scholar 

  • Cho W, Liu Y (2021) A parallel evolutionary multiple-try metropolis Markov chain Monte Carlo algorithm for sampling spatial partitions. Stat Comput 31:10

    Article  MathSciNet  MATH  Google Scholar 

  • De Gruttola V, Tu XM (1994) Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50:1003–1014

    Article  MATH  Google Scholar 

  • Dierckx P (1993) Curve and surface fitting with splines. Clarendon, London

    MATH  Google Scholar 

  • Elashoff R, Li G, Li N (2008) A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64:762–771

    Article  MathSciNet  MATH  Google Scholar 

  • Faucett CL, Thomas DC (1996) Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med 15:1663–1685

    Article  Google Scholar 

  • Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807

    MathSciNet  MATH  Google Scholar 

  • Geman D, Geman S (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  • Hafych V, Eller P, Schulz O, Caldwel A (2022) Parallelizing MCMC sampling via space partitioning. Stat Comput 32:56

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov Chains and their application. Biometrika 57:97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Henderson R, Diggle P, Dobson A (2000) Joint modeling of longitudinal measurements and event time data. Biostatistics 4:465–480

    Article  MATH  Google Scholar 

  • Huang X, Zhang N (2008) Regression survival analysis with an assumed copula for dependent censoring: a sensitivity analysis approach. Biometrics 64:1090–1099

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim J, Molenberghs G (2009) Missing data methods in longitudinal studies: a review. TEST 18:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2001) Criterion based methods for Bayesian model assessment. Stat Sin 11:419–443

    MathSciNet  MATH  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2002) Bayesian survival analysis. Springer, New York

    MATH  Google Scholar 

  • International Breast Cancer Study Group (1996) Duration and reintroduction of adjuvant chemotherapy for nodepositive premenopausal breast cancer patients. J Clin Oncol 14:1885–1894

    Article  Google Scholar 

  • Kang K, Song X (2022) Consistent estimation of a joint model for multivariate longitudinal and survival data with latent variables. J Multivar Anal 187:104827

    Article  MathSciNet  MATH  Google Scholar 

  • Köhler M, Umlauf N, Greven S (2017) Nonlinear association structures in flexible Bayesian additive joint models. Stat Med 30:4771–4788

    MathSciNet  Google Scholar 

  • Lagakos S (1979) General right censoring and its impact on the analysis of survival data. Biometrics 35:139–156

    Article  MATH  Google Scholar 

  • Lang S, Brezger A (2004) Bayesian p-splines. J Comput Graph Stat 13:183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y (2009) Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data. Biometrika 95:947–960

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Lin X (2006) Semiparametric normal transformation models for spatially correlated survival data. J Am Stat Assoc 101:591–603

    Article  MathSciNet  MATH  Google Scholar 

  • Ma L, Hu T, Sun J (2015) Sieve maximum likelihood regression analysis of dependent current status data. Biometrika 102:731–738

    Article  MathSciNet  MATH  Google Scholar 

  • Mary C, Meyer (2008) Inference using shape-restricted regression splines. Ann Appl Stat 2:1013–1033

    MathSciNet  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller EJ (1952) Equation of state calculations by fast computing machines. J Biochem Biophys Methods 21:1087–1092

    MATH  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas (Springer series in statistics). Springer, New York

    Google Scholar 

  • Proust-Lima C, Sene M, Taylor JM, Jacqmin-Gadda H (2014) Joint latent class models for longitudinal and time-to-event data: a review. Stat Methods Med Res 23:74–90

    Article  MathSciNet  Google Scholar 

  • Rizopoulos D, Hatfield LA, Carlin BP, Takkenberg JJM (2014) Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. J Am Stat Assoc 109:1385–1397

    Article  MathSciNet  Google Scholar 

  • Ruppert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11:735–757

    Article  MathSciNet  Google Scholar 

  • Song H, Peng Y, Tu D (2017) Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial. Lifetime Data Anal 23:183–206

    Article  MathSciNet  MATH  Google Scholar 

  • Song X, Wang CY (2008) Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 64:557–566

    Article  MathSciNet  MATH  Google Scholar 

  • Tang A, Zhao X, Tang N-S (2017) Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data. Biom J 59:57–78

    Article  MathSciNet  MATH  Google Scholar 

  • Tang AM, Tang NS (2015) Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data. Stat Med 34:824–843

    Article  MathSciNet  Google Scholar 

  • Tang NS, Tang AM, Pan DD (2014) Semiparametric Bayesian joint models of multivariate longitudinal and survival data. Comput Stat Data Anal 77:113–129

    Article  MathSciNet  MATH  Google Scholar 

  • Wolkewitz M, Allignol A, Schumacher M, Beyersmann J (2010) Two pitfalls in survival analyses of time-dependent exposure: a case study in a cohort of Oscar nominees. Am Stat 64:205–211

    Article  MathSciNet  Google Scholar 

  • Wulfsohn MS, Tsiatis AA (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53:330–339

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Huang Y (2020) Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an aids cohort study. Lifetime Data Anal 26:339–368

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82:127–138

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu HT, Ibrahim JG, Chi YY, Tang NS (2012) Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 68:954–964

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor Prof. Mei-Ling Ting Lee and three referees for their insightful comments and constructive suggestions, which have substantially improved on the earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalei Yu.

Ethics declarations

Conflict of interest

The authors have declared no conict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by grants from the National Natural Science Foundation of China (Nos. 11961079, 12071416, 12271472, 12071414).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Materials:

The MATLAB programs for implementing parameter estimation of the proposed JMLS are available in the on-line supplementary material. (pdf 186KB)

Appendices

Appendix A: The conditional likelihood of survival submodel with dependent censoring

If neither true survival time nor censoring time can be observed for i-th individual before the follow-up termination time \(\tau\), i.e \(\varrho _i=0\), based on the monotonic semiparametric normal transformation (2.11), it is easy to obtain the following conditional likelihood for the i-th individual with \(\varrho _i=0\)

$$\begin{aligned} \begin{aligned} \textrm{Pr}(T_i, \varrho _i=0| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )&=\textrm{Pr}(T_{i1}>\tau , T_{i2}>\tau | {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\\&={\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\\&=1-\varPhi (Z_{i1})-\varPhi (Z_{i2})+{\varPhi }_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }}), \end{aligned} \end{aligned}$$
(A.1)

where \({\varvec{Z}}_{i}=(Z_{i1},Z_{i2})^{\!\top \!}\sim N_2({\varvec{0}},{\varvec{\varUpsilon }})\) with \({\varvec{\varUpsilon }}=\left( \begin{array}{cc} 1 &{} \rho \\ \rho &{} 1 \\ \end{array} \right) ,\) and \(z_{im}=\varPhi ^{-1}\{1-S_{im}(\tau )\}\) for \(m=1\) and 2.

If the survival time is observable, i.e \(\varrho _i=1\) and \(\delta _i=1\), it is easy to obtain the following joint probability density function for the i-th individual with \((\varrho _i,\delta _i)=(1,1)\)

$$\begin{aligned} \begin{aligned} \textrm{Pr}(T_i,\varrho _i=1, \delta _i=1| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )&=\textrm{Pr}(T_{i}^*=T_i, C_{i}>T_i)\\&=\textrm{f}_{i1}(T_i)\textrm{Pr}(C_{i}>T_i|T_{i}^*=T_i)\\&={\widetilde{\varPhi }}(Z_{i2}|Z_{i1})\textrm{f}_{i1}(T_{i}), \end{aligned} \end{aligned}$$
(A.2)

where \({\widetilde{\varPhi }}(Z_{i2}|Z_{i1})=1-\varPhi (Z_{i2}|Z_{i1})\) with \(\varPhi (Z_{i2}|Z_{i1})\) being the conditional cumulative distribution function of \(Z_{i2}\) given \(Z_{i11}\), and \(\textrm{f}_{i1}(T_{i})=\lambda _{i1}(T_{i})S_{i1}(T_{i})\). Similarly, If the censoring time is observable, i.e \(\varrho _i=1\) and \(\delta _i=0\), it follows that

$$\begin{aligned} \begin{aligned} \textrm{Pr}(T_i, \varrho _i=1, \delta _i=0| {\varvec{b}}_i,\rho , {\varvec{\theta }}_s)={\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\textrm{f}_{i2}(T_i), \end{aligned} \end{aligned}$$
(A.3)

where \(\textrm{f}_{i2}(T_{i})=\lambda _{i2}(T_{i})S_{i2}(T_{i})\). By combining Eqs. (A.1)–(A.3), one has Eq. (2.12).

Appendix B: Second order partial derivatives about the conditional likelihood function of survival submodel with dependent censoring

In order to implement MH algorithm from posterior distributions, it is necessary to compute

$$\begin{aligned} \begin{aligned} \frac{\ln \{\textrm{Pr}(T_i,\varrho _i,\delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}=&\mathop {\sum }\limits _{\varrho _i=0}\frac{\partial ^2 \ln \{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\\&+\mathop {\sum }\limits _{\varrho _i=1,\delta _i=1}\left[ \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i2}|Z_{i1})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+ \frac{\partial ^2 \ln \{\textrm{f}_{i1}(T_{i})\}}{\partial \widetilde{{\varvec{\theta }}} \partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\right] \\&+\mathop {\sum }\limits _{\varrho _i=1,\delta _i=0}\left[ \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+ \frac{\partial ^2 \ln \{\textrm{f}_{i2}(T_{i})\}}{\partial \widetilde{{\varvec{\theta }}} \partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\right] , \end{aligned} \end{aligned}$$
(A.4)

where \(\widetilde{{\varvec{\theta }}}\) stands for \({\varvec{\varphi }}_m\), \({\varvec{\alpha }}_m\) or \({\varvec{\gamma }}_m\) in survival process (\(m=1\)) or censoring process (\(m=2\)), or \({\varvec{\beta }}_k\) or \({\varvec{b}}_i\) shared in longitudinal and survival (or censoring) process. Equation (A.4) involves the following second order partial derivatives (A.5A.7):

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}=&\mathop {\sum }\limits _{m=1}^2\frac{\partial \ln \{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\}}{\partial Z_{im}}\left( \frac{\textrm{d} Z_{im}}{\textrm{d} S_{im}}\frac{\partial ^2 S_{im}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+\frac{\textrm{d}^2 Z_{im}}{\textrm{d} S_{im}^2}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\right) \\&+\quad \mathop {\sum }\limits _{m=1}^2\mathop {\sum }\limits _{j=1}^2\frac{\partial ^2 \ln \{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\}}{\partial Z_{im}\partial Z_{ij}^{\!\top \!}}\frac{\textrm{d} Z_{im}}{\textrm{d} S_{im}}\frac{\textrm{d} Z_{ij}}{\textrm{d} S_{ij}}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}}\frac{\partial S_{ij}}{\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}, \end{aligned} \end{aligned}$$
(A.5)

where

$$\begin{aligned} \frac{\partial \ln \left\{ {\widetilde{\varPhi }}_2\left( {\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }}\right) \right\} }{\partial Z_{im}}=-\frac{\phi (Z_{im}){\tilde{\varPhi }}\left( Z_{i[-m]}|Z_{im}\right) }{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})}, \end{aligned}$$

\(Z_{i[-m]}\) denotes the vector obtained by deleting the m-th element from \({\varvec{Z}}_{i}\),

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 \ln \left\{ {\widetilde{\varPhi }}_2\left( {\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }}\right) \right\} }{\partial Z_{im}\partial Z_{ij}}=&\frac{\phi (Z_{im})\left\{ Z_{im}{\tilde{\varPhi }}\left( Z_{i[-m]}|Z_{im}\right) - \rho \phi \left( Z_{i[-m]}|Z_{im}\right) \right\} }{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})}\\&-\left\{ \frac{\phi (Z_{im}){\tilde{\varPhi }}\left( Z_{i[-m]}|Z_{im}\right) }{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})}\right\} ^2 \end{aligned} \end{aligned}$$

for \(m=j=1~\text {or}~2\), and

$$\begin{aligned} \frac{\partial ^2 \ln \left\{ {\widetilde{\varPhi }}_2\left( {\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }}\right) \right\} }{\partial Z_{im}\partial Z_{ij}}=\frac{\phi _2({\varvec{Z}}_{i}|{\varvec{0}},{\varvec{\varUpsilon }})}{{\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})}-\frac{\phi (Z_{im})\phi (Z_{ij}){\tilde{\varPhi }}\left( Z_{ij}|Z_{im}\right) {\tilde{\varPhi }}\left( Z_{im}|Z_{ij}\right) }{\left\{ {\widetilde{\varPhi }}_2({\varvec{Z}}_i|{\varvec{0}},{\varvec{\varUpsilon }})\right\} ^2} \end{aligned}$$

for \(m\ne j\), \(m,j\in \{1,2\}\), \({\textrm{d} Z_{im}}/{\textrm{d} S_{im}}=-{1}/{\phi (Z_{im})}\) and \({d^2 Z_{im}}/{d S_{im}^2}={Z_{im}}/{[\phi (Z_{im})]^2}\). In addition,

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}=&\mathop {\sum }\limits _{m=1}^2\frac{\partial \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{im}}\left( \frac{\textrm{d} Z_{im}}{\textrm{d} S_{im}}\frac{\partial ^2 S_{im}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+\frac{\textrm{d}^2 Z_{im}}{\textrm{d} S_{im}^2}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\right) \\&+\mathop {\sum }\limits _{m=1}^2\mathop {\sum }\limits _{j=1}^2\frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{im}\partial Z_{ij}}\frac{\textrm{d} Z_{im}}{\textrm{d} S_{im}}\frac{\textrm{d} Z_{ij}}{\textrm{d} S_{ij}}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}}\frac{\partial S_{ij}}{\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}, \end{aligned} \end{aligned}$$
(A.6)

where

$$\begin{aligned} \frac{\partial \ln ({\widetilde{\varPhi }}(Z_{i1}|Z_{i2}))}{\partial Z_{i1}}= & {} - \frac{{\phi }(Z_{i1}|Z_{i2})}{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})},\\ \frac{\partial \ln ({\widetilde{\varPhi }}(Z_{i1}|Z_{i2}))}{\partial Z_{i2}}= & {} \frac{\rho {\phi }(Z_{i1}|Z_{i2})}{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})},\\ \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i1}^2}= & {} -\left\{ \frac{\phi (Z_{i1}|Z_{i2})}{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})}\right\} ^2+\frac{(Z_{i1}-\rho Z_{i2}){\phi }(Z_{i1}|Z_{i2})}{(1-\rho ^2){\widetilde{\varPhi }}(Z_{i1}|Z_{i2})},\\ \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i2}^2}= & {} \rho ^2\frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i1}^2}, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i1}\partial Z_{i2}}= \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i2}\partial Z_{i1}}= -\rho \frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i1}|Z_{i2})\}}{\partial Z_{i1}^2}. \end{aligned}$$

One can evaluate \(\frac{\partial ^2 \ln \{{\widetilde{\varPhi }}(Z_{i2}|Z_{i1})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\) in the similar framework given above. Moreover,

$$\begin{aligned} \frac{\partial ^2 \ln \{\textrm{f}_{im}(T_{i})\}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}= & {} \frac{\partial ^2 \ln (\lambda _{im})}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+\frac{\partial ^2 \ln (S_{im})}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\nonumber \\= & {} \frac{\partial ^2 \ln (\lambda _{im})}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}+\frac{1}{S_{im}}\frac{\partial ^2 S_{im}}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}-\frac{1}{S_{im}^2}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}}\frac{\partial S_{im}}{\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}, \end{aligned}$$
(A.7)

where \(S_{im}=S_{im}(T_i)\) and \(\lambda _{im}=\lambda _{im}(T_i)\), which are specified respectively in (2.8) and (2.9),

$$\begin{aligned} \frac{\partial ^2 \ln (\lambda _{im})}{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}=\left\{ \begin{aligned}&-\frac{{\widetilde{\mathbb {B}}}(T_i) {\widetilde{\mathbb {B}}}^{\!\top \!}(T_i)}{\{{\varvec{\varphi }}_m^{\!\top \!}{\widetilde{\mathbb {B}}}(T_i)\}^2},&\widetilde{{\varvec{\theta }}}={\varvec{\varphi }}_m\\&0,&\widetilde{{\varvec{\theta }}}\ne {\varvec{\varphi }}_m \end{aligned} \right. , \end{aligned}$$

and when \(\widetilde{{\varvec{\theta }}}\) respectively takes various parameter vector, \({\partial S_{im}}/{\partial \widetilde{{\varvec{\theta }}}}\) and \({\partial ^2 S_{im}}/{\partial \widetilde{{\varvec{\theta }}}\partial \widetilde{{\varvec{\theta }}}^{\!\top \!}}\) can be computed as follows:

$$\begin{aligned} \begin{aligned} \frac{\partial S_{im}}{\partial {\varvec{\varphi }}_m}=&-S_{im}\int _0^{T_i}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}\textrm{d}\mathbb {{B}}(t), \\ \frac{\partial ^2 S_{im}}{\partial {\varvec{\varphi }}_m \partial {\varvec{\varphi }}_m^{\!\top \!}}=&S_{im}\left[ \int _0^{T_i}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}\textrm{d}\mathbb {{B}}(t)\right] ^{\otimes 2}, \\ \frac{\partial S_{im}}{\partial {\varvec{\alpha }}_m}=&-S_{im}\int _0^{T_i}\eta _i(t,{\varvec{b}}_i)\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t),\\ \frac{\partial ^2 S_{im}}{\partial {\varvec{\alpha }}_m \partial {\varvec{\alpha }}_m^{\!\top \!}}=&S_{im}\left[ \int _0^{T_i}{\varvec{\eta }}_i(t,{\varvec{b}}_i)\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t)\right] ^{\otimes 2}\\&-S_{im}\int _0^{T_i}{\varvec{\eta }}_i(t,{\varvec{b}}_i)^{\otimes 2}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t),\\ \frac{\partial S_{im}}{\partial {\varvec{\gamma }}_m}=&-S_{im} \varLambda _{im}(T_i)\xi _i,~~~~ \frac{\partial ^2 S_{im}}{\partial {\varvec{\gamma }}_m \partial {\varvec{\gamma }}_m^{\!\top \!}}=S_{im}\varLambda _{im}^2(T_i)\xi _i^{\otimes 2}-S_{im}\varLambda _{im}(T_i)\xi _i^{\otimes 2}, \\ \frac{\partial S_{im}}{\partial {\varvec{\beta }}_k}=&-\alpha _{mk} S_{im}\int _0^{T_i}{\varvec{R}}_i(t)\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t),\\ \frac{\partial ^2 S_{im}}{\partial {\varvec{\beta }}_k \partial {\varvec{\beta }}_k^{\!\top \!}}=&\alpha _{mk}^2 S_{im}\left[ \int _0^{T_i}{\varvec{R}}_i(t)\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t)\right] ^{\otimes 2}\\&-\alpha _{mk}^2 S_{im}\int _0^{T_i}{\varvec{R}}_i(t)^{\otimes 2}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t),\\ \frac{\partial S_{im}}{\partial {\varvec{b}}_i}=&-S_{im}\int _0^{T_i}{\varvec{W}}_i^{\!\top \!}(t){\varvec{\alpha }}_{m} \textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t),\\ \frac{\partial ^2 S_{im}}{\partial {\varvec{b}}_i \partial {\varvec{b}}_i^{\!\top \!}}=&S_{im}\left[ \int _0^{T_i}{\varvec{W}}_i^{\!\top \!}(t){\varvec{\alpha }}_{m}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t)\right] ^{\otimes 2}\\&-\alpha _{mk}^2 S_{im}\int _0^{T_i}\{{\varvec{W}}_i^{\!\top \!}(t){\varvec{\alpha }}_{m}\}^{\otimes 2}\textrm{exp}\big \{{\varvec{\alpha }}_m^{\!\top \!}{\varvec{\eta }}_i(t,{\varvec{b}}_i)+{\varvec{\gamma }}_m^{\!\top \!}{\varvec{\xi }}_{i}\big \}{\varvec{\varphi }}_m^{\!\top \!}\textrm{d}\mathbb {{B}}(t), \end{aligned} \end{aligned}$$

where \(a^{\otimes 2}=aa^T\) for any vector a. Based on Eqs. (A.5)–(A.7), it is easy to calculate

$$\begin{aligned}{} & {} \frac{\partial ^2 \ln \{\textrm{Pr}( T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{\varphi }}_m}\partial {\varvec{\varphi }}_m^{\!\top \!}},\quad \frac{\partial ^2 \ln \{\textrm{Pr}( T_i, \varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{\alpha }}_m}\partial {\varvec{\alpha }}_m^{\!\top \!}},\\{} & {} \frac{\partial ^2 \ln \{\textrm{Pr}( T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{\gamma }}_m}\partial {\varvec{\gamma }}_m^{\!\top \!}},\quad \frac{\partial ^2 \ln \{\textrm{Pr}( T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{\beta }}_k}\partial {\varvec{\beta }}_k^{\!\top \!}} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \ln \{\textrm{Pr}(T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{b}}_i}\partial {\varvec{b}}_i^{\!\top \!}}. \end{aligned}$$

Appendix C: Bayesian inference on JMLS with dependent censoring

To obtain Bayesian estimates of unknown parameters, baseline hazard functions and random effects in our considered JMLS with dependent censoring, the Gibbs sampler is employed to draw a sequence of random observations from the joint posterior distribution \(\pi ({\varvec{\theta }}, {\varvec{B}}|{\varvec{D}}, \rho )\) presented in Eq. (2.16). The block Gibbs sampler is conducted by iteratively sampling observations from the following conditional distributions: \(\pi ({\varvec{\theta }}_l|{\varvec{\theta }}_s, {\varvec{\theta }}_{\varepsilon }, {\varvec{B}}, {\varvec{D}}, \rho )\), \(\pi ({\varvec{\theta }}_s|{\varvec{\theta }}_l, {\varvec{B}}, {\varvec{D}}, \rho )\), \(\pi ({\varvec{\varOmega }}|{\varvec{B}})\) and \(\pi ({\varvec{B}}|{\varvec{\theta }}_l,{\varvec{\theta }}_s,{\varvec{D}}, \rho )\). The conditional distributions required in implementing the Gibbs sampler are presented as follows.

Block Gibbs Sampler (A): Conditional distribution related to \({\varvec{\theta }}_l\)

Let \({\varvec{\theta }}_l=\{{\varvec{\beta }}, {\varvec{\varSigma }}\}\), where \({\varvec{\beta }}=({\varvec{\beta }}_1,\ldots ,{\varvec{\beta }}_K)\) in which \({\varvec{\beta }}_k=(\beta _{k0},\beta _{k1},\ldots ,\beta _{kr})^{\!\top \!}\) for \(k=1,\ldots ,K\). From Eq. (2.16), the conditional distribution

$$\begin{aligned} \pi ({\varvec{\beta }}_{k}|{\varvec{\theta }}_s, {\varvec{\beta }}_{[-k]}, {\varvec{\varSigma }},{\varvec{B}},{\varvec{H}}_{\beta _k},{\varvec{D}},\rho ) \end{aligned}$$

is proportional to

$$\begin{aligned} \begin{aligned} \textrm{etr}\left[ -\frac{1}{2}\mathop {\sum }\limits _{i=1}^{n}\mathop {\sum }\limits _{j=1}^{n_{i}}{\varvec{\varSigma }}^{-1}{\left\{ {\varvec{y}}_{ij} -{\varvec{\beta }}^{\!\top \!}{\varvec{R}}_i(t_{ij})-{\varvec{W}}_{i}^{\!\top \!}(t_{ij}){\varvec{b}}_i\right\} ^{\otimes 2}}\right] \prod _{i=1}^{n}\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho ), \end{aligned} \end{aligned}$$

where \({\varvec{\beta }}_{[-k]}\) is parameters’ matrix \({\varvec{\beta }}\) with the k-th column deleted. Because the above equation is not a familiar distribution, it is rather difficult to directly sample from the conditional distribution \(\pi ({\varvec{\beta }}_{k}|{\varvec{\theta }}_s, {\varvec{\beta }}_{[-k]}, {\varvec{\varSigma }},{\varvec{B}},{\varvec{H}}_{\beta _k},{\varvec{D}})\). Therefore, the well-known MH algorithm is adopted to simulate observations from the above given conditional distribution, which is implemented as follows. Given the current value \({\varvec{\beta }}_k^{(\ell )}\) at the \(\ell\)-th step, a new candidate \({\varvec{\beta }}_k\) is generated from the proposal distribution \(N_{p}({\varvec{\beta }}_k^{(\ell )},\sigma _{\beta _k}^2{\varvec{\varXi }}_{\beta _k})\) with \(\sigma _{\beta _k}^2\) set to control the acceptance rate, and then the drawn candidate \({\varvec{\beta }}_k\) is accepted with probability

$$\begin{aligned} \text{ min }\left\{ 1,\frac{\pi ({\varvec{\beta }}_{k}|{\varvec{\theta }}_s, {\varvec{\beta }}_{[-k]}, {\varvec{\varSigma }},{\varvec{B}},{\varvec{H}}_{\beta _k},{\varvec{D}},\rho )}{\pi ({\varvec{\beta }}_{k}^{(\ell )}|{\varvec{\theta }}_s, {\varvec{\beta }}_{[-k]}, {\varvec{\varSigma }},{\varvec{B}},{\varvec{H}}_{\beta _k},{\varvec{D}},\rho )}\right\} , \end{aligned}$$

where

$$\begin{aligned} {\varvec{\varXi }}_{\beta _k}=\left[ \varSigma _{i=1}^{n}\varSigma _{j=1}^{n_i}\sigma ^{kk}{\varvec{R}}_{i}(t_{ij}){\varvec{R}}_{i}(t_{ij})^{\!\top \!}-\frac{\partial ^2 \ln \{\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i,\rho , {\varvec{\theta }}_s)\}}{\partial {{\varvec{\beta }}_k}\partial {\varvec{\beta }}_k^{\!\top \!}}|_{\beta _k=\beta _k^{(\iota )}}\right] ^{-1} \end{aligned}$$

with \(\sigma ^{kk}\) being the (kk)-th entry of \({\varvec{\varSigma }}^{-1}\), and \({\partial ^2 \ln \{\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i,\rho , {\varvec{\theta }}_s)\}}/{\partial {{\varvec{\beta }}_k}\partial {\varvec{\beta }}_k^{\!\top \!}}\) given in Appendix B.

From the prior distribution of \({\varvec{\varSigma }}\) and \({\varvec{\varepsilon }}_{ij}\sim N_K({\varvec{0}},{\varvec{\varSigma }})\), it is easily shown that

$$\begin{aligned} {\varvec{\varSigma }}|{\varvec{\beta }}, {\varvec{B}}, {\varvec{Y}} \sim \textrm{IW}_K\left[ a_1+N, {\varvec{\varSigma }}^0+ \mathop {\sum }\limits _{i=1}^{n}\mathop {\sum }\limits _{j=1}^{n_i}\left\{ {\varvec{y}}_{ij} -{\varvec{\beta }}^{\!\top \!}{\varvec{R}}_i(t_{ij})-{\varvec{W}}_{i}^{\!\top \!}(t_{ij}){\varvec{b}}_i\right\} ^{\otimes 2}\right] . \end{aligned}$$

where \(N=\mathop {\sum }\limits _{i=1}^n n_i\).

Block Gibbs Sampler (B): Conditional distribution related to \({\varvec{\theta }}_s\)

Let \({\varvec{\theta }}_s=\{({\varvec{\alpha }}_{m},{\varvec{\gamma }}_{m},{\varvec{\varphi }}_{m}): m=1,2\}\). \({\varvec{\alpha }}_{m},{\varvec{\gamma }}_{m}\) and \({\varvec{\varphi }}_{m}\) can be iteratively sampled from their corresponding conditional distributions, which are given as follows. It follows from Eq. (2.16) that the conditional distributions \(\pi ({\varvec{\alpha }}_{m}|{\varvec{\beta }},{\varvec{\gamma }}_{m},{\varvec{\varphi }}_{m},\rho ,{\varvec{B}},{\varvec{D}},\rho )\) and \(\pi ({\varvec{\gamma }}_{m}|{\varvec{\beta }},{\varvec{\alpha }}_{m},{\varvec{\varphi }}_{m},\rho , {\varvec{B}},{\varvec{D}},\rho )\) are proportional to \(\prod _{i=1}^{n}\textrm{Pr}(T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\). Similarly to drawing \({\varvec{\beta }}_k\), it is easy to sample from the above posterior distributions via MH algorithm, so the details are omitted.

Conditional distribution \(\pi ({\varvec{\varphi }}_{m}|{\varvec{\beta }},{\varvec{\alpha }}_{m},{\varvec{\gamma }}_{m},{\varvec{B}},{\varvec{D}},\rho )\) is proportional to

$$\begin{aligned} \textrm{exp}\left( -\frac{1}{2\varsigma _m^2}{\varvec{\varphi }}_m^{\!\top \!}{\varvec{H}}_{\varphi _m}^{-1}{\varvec{\varphi }}_m\right) \textrm{I}({\varvec{A}}_m{\varvec{\varphi }}_m>0)\prod _{i=1}^{n}\textrm{Pr}(T_i,\varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho ), \end{aligned}$$

where \({\varvec{H}}_{\varphi _m}\) is a \((L+s) \times (L+s)\) second difference penalized matrix with rank \(L+s-2\) (Lang and Brezger 2004). Given the current value \({\varvec{\varphi }}_m^{(\ell )}\), it is usual to sample from the above posterior with MH algorithm, in which the truncated multivariate normal distribution \(\textrm{TMN}_{L+s}({\varvec{\varphi }}_m^{(\ell )},\sigma _{\varphi _m}^2{\varvec{\varXi }}_{\varphi _m}) \textrm{I}({\varvec{A}}_m{\varvec{\varphi }}_m>0)\) is adopted as the proposal distribution due to the linear constraints specified by Eq. (2.7), where \(\sigma _{\varphi _m}^2\) is set to control the acceptance rate and Fishery information matrix

$$\begin{aligned} {\varvec{\varXi }}_{\varphi _m}=\left[ {\varvec{H}}_{\varphi _m}^{-1}-\varSigma _{i=1}^{n}\frac{\partial ^2 \ln \{\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho )\}}{\partial {{\varvec{\varphi }}_m}\partial {\varvec{\varphi }}_m^{\!\top \!}}|_{\varphi _m=\varphi _m^{(\iota )}}\right] ^{-1} \end{aligned}$$

with \({\partial ^2 \ln (\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i,\rho , {\varvec{\theta }}_s))}/{\partial {{\varvec{\varphi }}_m}\partial {\varvec{\varphi }}_m^{\!\top \!}}\) given in Appendix B. However, to compute probability of acceptance, it is inevitable to involve high-dimensional integral, which may cause low-efficient sampling and inaccurate result, especially for large \(L+s\). Based on Gibbs sampler (Geman and Geman 1984), instead of sampling the whole \({\varvec{\varphi }}_m\) directly, we propose to sample each component of \({\varvec{\varphi }}_m\) one by one, which may achieve good sampling effect at cost of moderate computational time. Given the current j-th component \({\varphi }_{mj}^{(\ell )}\) in the \(\ell\)-th iterative, a new candidate \({\varphi }_{mj}\) is generated from the truncated normal \(\textrm{TN}({\varphi }_{mj}^{(\ell )}, \sigma _{m}^2{\varvec{\varXi }}_{\varphi _m}^{jj})\textrm{I}\{\varphi _{mj}\in (a_{mj}, +\infty )\}\) with \({\varXi }_{\varphi _m}^{jj}\) being the (jj)-the entry of \({\varvec{\varXi }}_{\varphi _m}\) and \(\sigma _{m}^2\) set to control the acceptance rate, \(a_{mj}\) can be obtained via solving the inequalities \({\varvec{A}}_m{\varvec{\varphi }}_m>0\) in (2.7) with respect to \({\varphi }_{mj}\), and then the drawn candidate \({\varphi }_{mj}\) is accepted with probability

$$\begin{aligned} \text{ min }\left[ 1,\frac{\pi ({\varvec{\varphi }}_{mj}|{\varvec{\varphi }}_{m[-j]},{\varvec{\beta }},{\varvec{\alpha }}_{m},{\varvec{\gamma }}_{m}, {\varvec{B}},{\varvec{D}},\rho )\{1-\varPhi (a_{mj}|{\varphi }_{mj}^{(\ell )}, \sigma _{m}^2{\varvec{\varXi }}_{\varphi _m}^{jj})\}}{\pi ({\varvec{\varphi }}_{mj}^{(\ell )}|{\varvec{\varphi }}_{m[-j]}^{(\ell )},{\varvec{\beta }},{\varvec{\alpha }}_{m},{\varvec{\gamma }}_{m}, {\varvec{B}},{\varvec{D}},\rho )\{1-\varPhi (a_{mj}|{\varphi }_{mj}, \sigma _{m}^2{\varvec{\varXi }}_{\varphi _m}^{jj})\}}\right] , \end{aligned}$$

where \({\varvec{\varphi }}_{m[-j]}\) denotes \({\varvec{\varphi }}_{m}\) with the j-th component deleted.

The conditional distribution of the smoothing parameter \(\varsigma _m^2\) is given by

$$\begin{aligned} \pi (\varsigma _m^{-2}|{\varvec{\varphi }}_m) \sim \textrm{Gamma}\{a_{\varsigma }^m+0.5(L+s-2),b_{\varsigma }^m+0.5{\varvec{\varphi }}_m^{\!\top \!}{\varvec{H}}_{\varphi _m}^{-1}{\varvec{\varphi }}_m\}. \end{aligned}$$

Block Gibbs Sampler (C): Conditional distribution related to random effects set \({\varvec{B}}\) and random effects covariance matrix \({\varvec{\varOmega }}\)

Conditional distribution \(\pi ({\varvec{b}}_{i}|{\varvec{\theta }}, {\varvec{\varOmega }}, {\varvec{D}}_i)\) is in proportion to

$$\begin{aligned} \textrm{etr}\left[ -\frac{1}{2}{\varvec{\varOmega }}^{-1}{\varvec{b}}_i^{\otimes 2}-\frac{1}{2}\mathop {\sum }\limits _{j=1}^{n_{i}} {\varvec{\varSigma }}^{-1}{\left\{ {\varvec{y}}_{ij} -{\varvec{\beta }}^{\!\top \!}{\varvec{R}}_i(t_{ij})-{\varvec{W}}_{i}^{\!\top \!}(t_{ij}){\varvec{b}}_i\right\} ^{\otimes 2}}\right] \prod _{i=1}^{n}\textrm{Pr}(T_i, \varrho _i, \delta _i| {\varvec{b}}_i, {\varvec{\theta }}_s,\rho ). \end{aligned}$$

Similarly, the MH algorithm is used to sample \({\varvec{b}}_i\) from the above conditional distribution for \(i=1,\ldots ,n\). Based on that \({\varvec{b}}_i{\mathop {\sim }\limits ^{\mathrm{i.i.d.}}} N_{q}({\varvec{0}}, {\varvec{\varOmega }})\) and the prior specified in (2.13), it is readily seen that

$$\begin{aligned} {\varvec{\varOmega }}|{\varvec{B}} \sim \textrm{IW}_q\left( a_2+n, {\varvec{\varOmega }}^0+\mathop {\sum }\limits _{i=1}^{n}\ b_i^{\otimes 2}\right) . \end{aligned}$$

Appendix D: Summaries about variables in the IBCSG data (Tang et al. 2017)

  • 1. Four untransformed longitudinal QOL indicators

  • \(y_{1}\): physical well-being on a scale of zero (lousy) to hundred (good);

  • \(y_{2}\): mood on a scale of zero (miserable) to hundred (happy);

  • \(y_{3}\): appetite on a scale of zero (none) to hundred (good);

  • \(y_{4}\): perceived coping (How much effort does it cost you to cope with your illness?) on a scale of zero (a great deal) to hundred (none).

  • 2. Observed event time \(T_{im}\) in survival submodel

  • \(T_{i}\): the monitored overall survival time, abbreviated as ‘OS’.

  • 3. Covariates in JMLS

  • \(R_{i1}\): the number of positive nodes of the tumor, abbreviated as ‘#Positive nodes’;

  • \(R_{i2}\): three versus six initial cycles of oral cyclophosphamide, methotrexate and fluorouracil, abbreviated as ‘#Initital cycle’;

  • \(R_{i3}\): the reintroduction of three single courses of delayed chemotherapy, abbreviated as ‘Reintroduction’;

  • \(R_{i4}\): the interaction of the number of initial cycles and reintroduction, abbreviated as ‘#INIR’;

  • \(R_{i5}\): whether the residency is Switzerland, abbreviated as ‘Residency: Switzerland’;

  • \(R_{i6}\): whether the residency is Sweden, abbreviated as ‘Residency: Sweden’;

  • \(R_{i7}\): the age of premenopausal woman, abbreviated as ‘#Age’;

  • \(R_{i8}\): the estrogen receptor (ER) status (negative/positive), abbreviated as ‘ER’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, AM., Tang, NS. & Yu, D. Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring. Lifetime Data Anal 29, 888–918 (2023). https://doi.org/10.1007/s10985-023-09608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-023-09608-5

Keywords

Mathematics Subject Classification

Navigation