
Vol.:(0123456789)

Lifetime Data Analysis (2024) 30:181–212
https://doi.org/10.1007/s10985-023-09605-8

1 3

Dynamic Treatment Regimes Using Bayesian Additive 
Regression Trees for Censored Outcomes

Xiao Li1 · Brent R. Logan1 · S. M. Ferdous Hossain2 · Erica E. M. Moodie2 

Received: 15 October 2022 / Accepted: 16 July 2023 / Published online: 2 September 2023 
© The Author(s) 2023

Abstract
To achieve the goal of providing the best possible care to each individual under 
their care, physicians need to customize treatments for individuals with the same 
health state, especially when treating diseases that can progress further and require 
additional treatments, such as cancer. Making decisions at multiple stages as a dis-
ease progresses can be formalized as a dynamic treatment regime (DTR). Most of 
the existing optimization approaches for estimating dynamic treatment regimes 
including the popular method of Q-learning were developed in a frequentist con-
text. Recently, a general Bayesian machine learning framework that facilitates using 
Bayesian regression modeling to optimize DTRs has been proposed. In this article, 
we adapt this approach to censored outcomes using Bayesian additive regression 
trees (BART) for each stage under the accelerated failure time modeling framework, 
along with simulation studies and a real data example that compare the proposed 
approach with Q-learning. We also develop an R wrapper function that utilizes a 
standard BART survival model to optimize DTRs for censored outcomes. The wrap-
per function can easily be extended to accommodate any type of Bayesian machine 
learning model.
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1 Introduction

Optimizing medical therapy often requires that the treatment be tailored to the 
individual initially, and that the treatment be adaptive to an individual’s changing 
characteristics over time. Since individual responses can often be heterogeneous, 
it is challenging for physicians to customize treatments for individuals based on 
traditional clinical trial results, which lack the ability to identify subgroups that 
have different treatment effects and rarely consider successions of treatments. For 
chronic diseases that can evolve, it is even more important and difficult to choose 
the best therapy in sequence. To give a simple example, oncologists typically 
choose an initial immunosuppressant regime for patients with acute myeloid leu-
kemia (AML) who are undergoing allogeneic hematopoietic cell transplantation 
(AHCT), to prevent a serious potential complication called graft-versus-host dis-
ease (GVHD). At the time that such an initial regime fails, a salvage treatment is 
chosen based on the patient’s prior treatments and responses. Such a multi-stage 
treatment decision has been summarized as a dynamic treatment regime (DTR) 
by Murphy (2003). Each decision rule in DTR takes a patient’s individual charac-
teristics, treatment history and possible intermediate outcomes observed up to a 
certain stage as inputs, and outputs a recommended treatment for that stage.

A number of approaches have been proposed for estimating and optimizing 
DTRs, including those by Robins (2004), Moodie et al. 2007; Qian and Murphy 
2011; Zhao et  al. 2015; Krakow et al. 2017; Murray et  al. 2018, and Simoneau 
et  al. 2020. Two textbooks and an edited volume have been published on the 
topic of DTRs (Chakraborty and Moodie (2013); Kosorok and Moodie (2015); 
Tsiatis et  al. (2020)), and a recent paper surveying value-search approaches by 
Jiang et  al. (2019) was the subject of a lively discussion. Bayesian approaches 
have received relatively little attention in the DTR literature, though exceptions 
exist (Arjas and Saarela 2010; Saarela et al. 2015, 2016; Rodriguez Duque et al. 
2022). However much of the Bayesian DTR methodology is relatively parametric. 
An exception to this is the Bayesian machine learning (BML) method developed 
by Murray et  al. (2018), which innovatively bridges the gap between Bayesian 
inferences and dynamic programming methods from machine learning. A key 
advantage to a Bayesian approach to estimation is the quantification of uncer-
tainty in decision making through the resulting posterior distribution. A second 
benefit that arises specifically in the BML approach is the highly flexible estima-
tion that is employed, which minimizes the risk of estimation errors due to model 
mis-specification.

However, the BML method has not yet been adapted to censored outcomes, 
which is one of the more common types of outcomes in controlling chronic dis-
eases. Motivated by the study of optimal therapeutic choices to prevent and treat 
GVHD, in this paper, we extend this approach to censored outcomes under the 
accelerated failure time (AFT) model framework. By modifying the data augmen-
tation step in the BML method, the censored observation times can be imputed 
in an informative way so that the observed censoring time is well utilized. This 
extension is implemented using Bayesian additive regression trees (BART); 



183

1 3

Dynamic Regimes Using BART for Censored Outcomes

we accomplished the implementation of the proposed AFT-BML approach by 
developing an R function that utilizes standard BART survival software directly 
without needing to modify existing (complex) BART software directly. Parallel 
computing was used to speed up the computational calculations. This R wrapper 
function can be easily adjusted to accommodate other types of Bayesian machine 
learning methods.

This paper is organized as follows. In Sect. 2, we briefly review related methods, 
algorithms, and describe the extended AFT-BML approach for optimizing DTRs for 
censored outcomes under the accelerated failure time framework. Section 3 presents 
simulation studies to demonstrate our model performance by comparing it to estima-
tion using Q-learning. An analysis of our motivating dataset of patients diagnosed 
with AML is given in Sect. 4. Finally, in Sect. 5, we discuss the advantages and dis-
advantages of our approach and provide some suggestions for future work.

2  Methods

2.1  Dynamic treatment regimes

A dynamic treatment regime is a series of decision rules that assign treatment based 
on an individual’s characteristics and history at each stage. Without loss of general-
ity, we focus on a two-stage intervention problem. Furthermore, we start by describ-
ing DTRs in the non-survival setting, before proceeding to the censored survival 
setting later. Following Murray’s notation (Murray et al. (2018)), as well as conven-
tion for Bayesian notation of using lower case for observable data, let o1 ∈ O1 be 
the covariates observed before Stage 1, and a1 ∈ A1 be the action taken at Stage 1. 
Denote y1 as the pay-off observed after Stage 1 and before Stage 2; {o2, a2, y2} are 
defined similarly for Stage 2. The total pay-off (also called the reward, or outcome) 
is assumed to be y = y1 + �y2 , where � is an indicator that the individual entered 
Stage 2. A general diagram to present the two-stage decision making problem is

Denote the accumulated history before Stage 2 treatment as ō2 = (o1, a1, y1, o2) ∈ Ō2 . 
In this setting, a DTR consists of two decision rules, one for each stage,

Optimizing the two-stage DTR (d1, d2) is equivalent to finding the decision rules that 
maximize the expected total pay-off E(y).

2.2  Bayesian machine learning for DTRs

Murray et al. (2018) described a new approach called Bayesian Machine Learn-
ing to optimize DTRs; the method requires fitting a series of Bayesian regression 
models in reverse sequential order under the approximate dynamic programming 

o1 ⟶ a1 ⟶ y1
if �=1
⟶ o2 ⟶ a2 ⟶ y2.

d1 ∶ O1 → A1 and d2 ∶ Ō2 → A2.
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framework. The authors use the potential outcomes notation to describe their 
approach, where y(a1, a2) denotes the pay-off observed when action a1 is taken at 
Stage 1 and action a2 is taken at Stage 2, and other potential outcomes ( y2(a1, a2) , 
y1(a1) , and o2(a1) ) are similarly defined. Assuming causal consistency, the 
observed outcome corresponds to the potential outcome for the action actually 
followed, i.e., y1(a1) = y1 , o2(a1) = o2 , y2(a1, a2) = y2 , and y(a1, a2) = y . In this 
language of potential outcomes, optimizing the two-stage DTR (d1, d2) can be 
expressed as

where the argument ō2 of dopt
2

 is suppressed in the second expression to be more 
concise.

The approach can be summarized as follows. The Stage 2 regression model for 
y2(a1, a2) is estimated first, using the observed covariates (ō2, a2) and the observed 
response variable y2 . Based on the assumed/postulated Stage 2 model, the optimal 
mapping from Ō2 to A2 , simply denoted as dopt

2
 , can be identified, as well as the rele-

vant potential pay-off at Stage 2, denoted as y2(a1, d
opt

2
) . With dopt

2
 and potential pay-

off y2(a1, d
opt

2
) , the response variable for Stage 1 can be constructed as y(a1, d

opt

2
) ; 

this so-called pseudo-outcome is composed of the observed Stage 1 pay-off y1 and 
the potential Stage 2 pay-off y2(a1, d

opt

2
) . Note that if the observed outcome a2 

matches the optimal outcome according to dopt
2

 , then the potential pay-off is simply 
the observed pay-off y = y1 + �y2 . Otherwise, the potential pay-off is unobserved 
and must be imputed (in this BML method, it is actually sampled from the posterior 
predictive distribution as described further below). Given imputed values, the Stage 
1 regression model for the pseudo-outcome y(a1, d

opt

2
) then can be estimated with 

observed covariates (o1, a1) to identify dopt
1

 . This type of backward induction strat-
egy is used in several DTR estimation methods, including g-estimation, Q-learning, 
and dynamic weighted ordinary least squares (Robins 2004; Moodie et  al. 2007; 
Nahum-Shani et al. 2012; Goldberg and Kosorok 2012; Simoneau et al. 2020). Such 
methods can be contrasted with more fully parametric models such as g-computa-
tion (Robins 1986), which require modelling – and correct specification of – the full 
joint distribution of (o1, o2, y) , which is potentially a complex, mixed-covariate type, 
high-dimensional multivariate distribution; mis-specification of this distribution can 
lead to bias and incorrect inference (Robins 2004).

Estimation of the terminal stage regression model is simply a typical model of 
outcome by predictors fit using standard Bayesian methods. The estimation of the 
nonterminal stage models, on the other hand, is not easily done with standard Bayes-
ian software because of the potential pay-off under the unobserved optimal action at 
each subsequent stage, which is used in constructing the pseudo-outcome at the current 
stage. To address this problem, Murray et al. (2018) developed a backward induction 
Gibbs (BIG) sampler to implement the proposed BML approach in practice. It con-
sists of three steps, repeated until convergence, using ∗ for random variables to indicate 

d
opt

2
(ō2) = arg max

a2∈A2

E(y2(a1, a2)|ō2, a2) ∀ō2 ∈ Ō2,

d
opt

1
(o1) = arg max

a1∈A1

E(y(a1, d
opt

2
)|o1, a1) ∀o1 ∈ O1,
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sampled values in an MCMC algorithm. Notationally, i indexes sampled individuals, of 
whom there are n in the analytic dataset. The algorithm is below: 

step 1 Draw a posterior sample of parameters �∗
2
 in the Stage 2 model and set the 

optimal action aopt,∗
i2

= d
opt,∗

2
(ōi2;𝜃

∗
2
) , i = 1,… , n.

step 2 Compare the observed ai2 and the optimal aopt,∗
i2

 . For i = 1,… , n , if 
ai2 = a

opt,∗

i2
 , then set yopt,∗

i2
= yi2 ; else, sample yopt,∗

i2
 from the posterior predictive 

distribution of y2(ai1, a
opt,∗

i2
).

step 3 Draw a posterior sample of parameters �∗
1
 in the Stage 1 model using pseudo-

outcome yi1 + �iy
opt,∗

i2
.

The BML approach to backwards induction relies on several standard causal assump-
tions. Working with the potential outcomes framework requires the axiom of consist-
ency (thus linking potential outcomes to observed data), treatment variation irrelevance 
and the stable unit treatment value assumption (Rubin 1980) to rule out the possibility 
of interference, and sequential ignorability (also known as no unmeasured confound-
ing) (Robins 2000). Being, essentially, a Q-learning-like approach focusing on sequen-
tial regressions, BML requires that the outcome models in each stage must be correctly 
specified; the flexible nature of the typical BML implementation lends credibility to 
this assumption.

2.3  AFT‑BART 

Bayesian additive regression trees form a Bayesian nonparametric regression model 
developed by Chipman et al. (2010), which is an ensemble of trees. The accelerated 
failure time BART (Bonato et al. 2011) is an extension of the approach to accommo-
date censored outcomes assuming the event time follows a log normal distribution. 
Let ti be the event time and ci the censoring time for individual i. Then the observed 
survival time is si = min(ti, ci) , and the event indicator is 𝛿i = I(ti < ci) . Denote by 
xi = (xi1,… , xip) the p-dimensional vector of predictors. The relationship between ti 
and xi is expressed as

where the constant � centers the data (a typical default is � = log t ), f (xi) is a sum of 
r regression trees f (xi) ≡

∑r

j=1
g(xi;Tj,Mj) with Tj denoting a binary tree with a set 

of internal nodes and terminal nodes and Mj = {�j1,… ,�jbj
} denoting the set of 

parameter values on the terminal nodes of tree Tj . Each g(xi;Tj,Mj) assigns a 
�j� ∈ Mj to xi . Full details of the BART model, including prior distributions and 
MCMC sampling algorithm, can be found in Chipman et al. (2010), but briefly the 
prior specification f prior

∼ BART assumes independent priors for each (Tj,Mj) , with 
p(Tj,Mj) = p(Tj)p(Mj|Tj) . The prior on the tree structure, p(Tj) , includes three 
aspects: 1) the probability that a node at depth d̃ is nonterminal is 𝛼(1 + d̃)−𝛾 where 

log ti = � + f (xi) + �i, �i
iid
∼N(0, �2)

f
prior
∼ BART, �2 prior

∼ ���−2(�),
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� ∈ (0, 1) and � ≥ 0 ; 2) the choice of a covariate given an interior node is uniform; 
and 3) the choice of the decision rule branching value given the covariate for an 
interior node is also uniform. Finally, the prior on the terminal node parameters 
p(Mj�Tj) = ∏bj

�=1
p(�j�) where bj is the number of terminal nodes for tree j and 

�j� ∼ N(0, �2∕r) on the values of the terminal nodes. This gives f (x) ∼ N(0, �2) for 
any x since the value f (x) will be the sum of r independent N(0, �2∕r) . The prior on 
� is calibrated by choosing a � that results in an appropriate shape, and a � so that the 
qth quantile of the prior on � equals to �̂� , where �̂� is the standard deviation of the 
residuals from a least squares linear regression of log ti on the xi.

Since the ti of censored observation times are not observable, an extra data augmen-
tation step to impute ti is needed in each iteration when drawing Markov chain Monte 
Carlo (MCMC) posterior samples with Gibbs sampling. In particular, the unobserved 
event times are randomly sampled from a truncated normal distribution as

After data augmentation, the complete log event times are treated as continuous out-
comes and the standard BART MCMC draws can be applied.

The AFT-BART model with a log normal survival distribution is implemented 
within the BART R package (Sparapani et al. 2021); additional details are found in 
the Appendix D.

2.4  Proposed AFT‑BML algorithm

Since the BML approach by Murray et al. (2018) is not directly applicable to cen-
sored observations, we extended it by modifying the BIG sampler so that censor-
ing can be accommodated. Here we are interested in the time to an event (such as 
death) from the start of Stage 1. The Stage 2 treatment decision initiates at an inter-
mediate event such as disease progression. This effectively separates the pay-off or 
event time into two components: the time to the earliest of the event of interest and 
the intermediate event triggering Stage 2 ( t1 ), and if the individual enters Stage 2 
( � = 1 ), the time from the start of Stage 2 to the event of interest ( t2 ). Observed 
data accounting for censoring and entry to Stage 2 are denoted (s1, �1) for Stage 1 
and (s2, �2) for Stage 2. Continuing with the potential outcomes notation, let t(a1, a2) 
denote the time to the event of interest when action a1 is taken at Stage 1 and action 
a2 is taken at Stage 2. Similarly, let t2(a1, a2) denote the event time in Stage 2 (start-
ing at the entry to Stage 2) under actions (a1, a2) . Finally, potential time t1(a1) is 
the time in Stage 1 until the first of the event of interest or entry to Stage 2. Cor-
responding pay-offs on the log time scale are denoted y(a1, a2) = log t(a1, a2) , 
y2(a1, a2) = log t2(a1, a2) , and y1(a1) = log t1(a1) . Under consistency, the observed 
outcome corresponds to the potential outcome for the action actually followed, e.g., 
t1(a1) = t1 , t2(a1, a2) = t2 , and t(a1, a2) = t , and similarly for the y = log t versions.

Murray et  al. (2018) recommended using Bayesian nonparametric regression 
models in Stages 1 and 2 for robustness. Here we illustrated our approach with 
AFT-BART models in each stage. As before, we use ∗ for random variables to 

log ti|si, 𝛿i = 0, f (xi), 𝜎
2 ∼ N(𝜇 + f (xi), 𝜎

2) × I(ti > si).
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indicate sampled values in an MCMC algorithm. The Stage 2 regression model 
for t2(a1, a2) is estimated first, using the observed covariates (ō2, a2) and the 
observed time to event data (s2, �2) , according to the AFT-BART model

We can run the Stage 2 BART model until convergence, draw M posterior samples 
from the model (specifically f ∗

2
 ), and then sample the optimal Stage 2 treatment rule 

for each MCMC sample according to

We also can implement a sampling procedure to generate pseudo-out-
comes for the total time from Stage 1 assuming optimal Stage 2 treatment as 
t∗(a1, d

opt,∗

2
) = t1 + �t∗

2
(a1, d

opt,∗

2
) , where t∗

2
(a1, a

opt,∗

2
) = t2(a1, a2) if a2 = a

opt,∗

2
 and 

�2 = 1 , and is sampled from the posterior predictive distribution otherwise. Some of 
the potential outcomes resulting from this procedure may still be censored, and we 
denote the possibly censored version of these potential outcomes as (s∗, �∗) ; details 
of calculation of (s∗, �∗) are provided in the algorithm below. These event time data 
are then modeled as a function of covariates (o1, a1) using another AFT-BART 
model given by

For each sampled pseudo-outcomes dataset, we run the Stage 1 AFT-BART model 
for the pseudo-outcome composed of the sum of the observed Stage 1 outcome and 
the potential pay-off at Stage 2 until convergence, and then draw one posterior sam-
ple from each fitted BART model to determine a sample from the posterior of dopt

1
 

according to

Details of the AFT-BML algorithm are as follows: 

step 1 Run the BART model in equation (1) on the Stage 2 data until convergence 
and draw M samples (denoted (f ∗(m)

2
, �2,∗(m)

2
) , m = 1,… ,M ) from the posterior 

distribution of f2 and �2
2
 . Use these to draw M samples from the posterior distribu-

tion of aopt
i2

 for each individual at Stage 2, using aopt,∗(m)
i2

= argmaxa2 f
∗(m)

2
(ōi2, a2).

step 2 Determine the pseudo-observation for the Stage 2 event time under optimal 
treatment in Stage 2 according to: 

(1)
log ti2 = 𝜇2 + f2(ōi2, ai2) + 𝜀i, 𝜀i

iid
∼N(0, 𝜎2

2
)

f2
prior
∼ BART, 𝜎2

2

prior
∼ 𝜈𝜆𝜒−2(𝜈).

d
opt,∗

2
(ō2) = arg max

a2∈A2

E(log t2|ō2, a2) = arg max
a2∈A2

f ∗
2
(ō2, a2).

(2)
log t∗

i
(a1, d

opt,∗

2
) = �1 + f1(oi1, ai1) + �i, �i

iid
∼N(0, �2

1
)

f1
prior
∼ BART, �2

1

prior
∼ ���−2(�),

d
opt,∗

1
(o1) = arg max

a1∈A1

E(log t∗(a1, d
opt,∗

2
|o1, a1) = arg max

a1∈A1

f ∗
1
(o1, a1).
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step 3 Determine the pseudo-observation data (event times and censoring indica-
tors) for the model for Stage 1 event time under optimal treatment in stage 2. For 
those who reached Stage 2 ( �i = 1 ), set the observed data for the Stage 1 model 
in sample m as the Stage 1 pseudo event time under optimal Stage 2 treatment 
t
∗(m)

i1
(a1, d

opt,∗(m)

2
) , e.g., s∗(m)

i1
= ti1 + t

opt,∗(m)

i2
 , and set �∗(m)

i1
= 1 . For those who did 

not reach Stage 2, set the observed data for the Stage 1 model as s∗(m)
i1

= si1 and 
�∗(m)
i1

= �i1.
step 4 Run the BART model in (2) separately on each of the M augmented Stage 1 

datasets (s∗(m)
1

, �∗(m)
1

) until convergence and draw 1 sample (denoted f ∗(m)
1

, �2,∗(m)

1
 ) 

from the posterior distribution of f1 and �2
1
 for each augmented Stage 1 dataset. 

Use these to draw one sample from the posterior distribution of aopt
i1

 for each 
individual in Stage 1, using aopt,∗(m)

i1
= argmaxa1 f

∗(m)

1
(oi1, a1).

The original BIG sampler indicated that the sampling of the Stage 1 parameters should 
be updated using the values from the prior iteration. However, while that could poten-
tially speed up implementation as it may not require a full burn-in for each new Stage 1 
dataset, it is challenging to implement because most BART software does not allow for 
starting an update step from a specified value of the tree structure and the terminal node 
means. Instead, we leverage the fact that the BART chain for Stage 2 does not depend 
on any updates of the Stage 1 model parameters. Because of this, the BART model for 
Stage 2 can be run independently and used to generate the potential datasets for Stage 1. 
Once the M datasets for Stage 1 have been sampled, the BART analyses of each of these 
Stage 1 datasets in Step 3 can be done in parallel using off the shelf BART software.

Our approach for drawing event times for individuals whose outcomes were cen-
sored and who received optimal treatment in Stage 2 was to first sample exact event 
times for Stage 2 data from the Stage 2 model and then pass this value as an event to 
the Stage 1 dataset (after adding the observed time in the first stage). Alternatively, 
one could pass the value as censored to the Stage 1 dataset, in which case the AFT-
BART model would implicitly sample event times using the Stage 1 model, instead 
of using the Stage 2 model as in the algorithm above. We also implemented and 
examined this alternative approach in our simulation studies, but found no measur-
able difference in the results, so we did not consider it further. Note also that one 
could have imputed Stage 2 observations from the predictive distribution under 
optimal treatment, even when the optimal treatment matches the actual treatment. 
Instead, we chose to use the observed rather than imputed data whenever appropri-
ate, which we believe will be less sensitive to model assumptions.

In addition to the causal assumptions required for BML, for the context of cen-
sored outcomes, we assume that censoring times are independent of the event 

log t
opt,∗(m)

i2

⎧
⎪⎪⎨⎪⎪⎩

= log ti2 if ai2 = a
opt,∗(m)

i2
,

and 𝛿i2 = 1

∼ N(𝜇2 + f
∗(m)

2
(ōi2, a

opt,∗(m)

i2
), 𝜎2,∗(m)

2
) if ai2 = a

opt,∗(m)

i2
,

×I(t
opt,∗(m)

i,2
≥ si,2) and 𝛿i2 = 0

∼ N(𝜇2 + f
∗(m)

2
(ōi2, a

opt,∗(m)

i2
), 𝜎2,∗(m)

2
) if ai2 ≠ a

opt,∗(m)

i2
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times conditional on the covariates, and assume that the log survival time is nor-
mally distributed such that an AFT-BML is appropriate. We implemented the 
proposed method by creating a wrapper function called dtr1 that utilizes the 
BART R package (Sparapani et al. 2021). Specifically, the AFT-BART function 
(abart) was called in our wrapper function. The default tuning parameters for 
the BART prior were adopted, including � = 0.95 , � = 2 , � = 3 , q = 0.9 (Chipman 
et al. 2010). Details on the software implementation can be found in Appendix D.

Finally, note that our algorithm provides samples from the Stage k model 
parameters ( f ∗(m)

k
, �2,∗(m)

k
 ), as well as samples from the optimal treatments for each 

individual i in Stage k, aopt,∗(m)
ik

 , and the optimal decision rule dopt,∗(m)
k

 . Since these 
optimal treatment decisions can fluctuate from one sample to another, a practi-
cal matter is estimating a single treatment rule from the posterior samples. This 
could be done for example by picking the treatment with the highest posterior 
mean of being optimal, i.e.,

Similarly, we could use the posterior samples to estimate other parameters related 
to the event time distribution under optimal treatment. For example the means of 
the log event time for Stage 1 and 2 under optimal treatment are estimated by the 
posterior mean

Other scales of the survival distribution could also be considered. For example, the 
median survival time under optimal treatment can be estimated using

and

Similarly, the survival probability at time t under optimal treatment can be estimated 
using

and

(3)â
opt

ik
= argmax

a
M−1

∑
m

I(a
opt,∗(m)

ik
= a).

(4)

log t̂i(a
opt

1
, d

opt

2
) = M−1

∑
m

(𝜇1 + f
∗(m)

1
(oi1, a

opt,∗(m)

i1
)),

log t̂i2(a
opt

2
) = M−1

∑
m

(𝜇2 + f
∗(m)

2
(ōi2, a

opt,∗(m)

i2
)).

M̂edian i(a
opt

1
, d

opt

2
) = M−1

∑
m

exp(�1 + f
∗(m)

1
(oi1, a

opt,∗(m)

i1
))

�Median i2(a
opt

2
) = M−1

∑
m

exp(𝜇2 + f
∗(m)

2
(ōi2, a

opt,∗(m)

i2
)).

Ŝi(t, a
opt

1
, d

opt

2
) = M−1

∑
m

𝛷

(
𝜇1 + f

∗(m)

1
(oi1, a

opt,∗(m)

i1
) − log t

𝜎∗(m)

1

)
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where �(⋅) is the standard normal CDF. Credible intervals for each target param-
eter of interest can be obtained using the corresponding quantiles of the posterior 
samples.

3  Simulations

3.1  Simulation design

We conducted simulation studies with 200 replicated training sets of sample size 
N = 800 and an independent testing set of sample size n = 400 for each scenario of 
interest to demonstrate the predictive performance of our method. An observational 
study with two stages of treatment setting was used with two candidate treatments at 
each stage. The treatment assignments were generated from a Bernoulli distribution 
with a probability P(a1 = 1|o1) and P(a2 = 1|ō2) , respectively. Both the event time 
at Stage 2, as well as the overall event time assuming optimal treatment at Stage 2, 
were generated from AFT-BML models, assuming a log-normal distribution, similar 
to the approach of Simoneau et al. (2020).

We fit each training dataset with our method, and made predictions of the opti-
mal action and the mean of the log-normal event time distribution under optimal 
treatment at each stage on the test dataset. Our performance was compared against 
Q-learning, including an oracle model along with other models that misspeci-
fied the relationship for either stage. We looked at the proportion of optimal treat-
ment (POT), mean squared error (MSE), and 95% credible intervals coverage rate 
(CR) (for the BART only approach). Simulation settings, method implementation, 
and simulation metrics are described further in the below sections, with the results 
following.

3.2  Simulation settings

For individual i, a continuous baseline covariate xi1 was drawn from a Uniform dis-
tribution with limits 0.1 and 1.29, denoted U(0.1, 1.29) , and a binary baseline covari-
ate bi1 was from a Bernoulli distribution with probability 0.5. Similarly, a continuous 
covariate xi2 that was measured at the beginning of Stage 2 was also generated from 
a U(0.9, 2) distribution, and a binary covariate bi2 measured at the beginning of Stage 
2 was randomly drawn from a Bern(0.5) distribution. Additionally there were two 
noise covariates, zi1 ∼ N(10, 32), zi2 ∼ N(20, 42) , collected at the beginning of Stage 
1 and Stage 2, respectively. When fitting the data, all the stage-wise covariates were 
included in the models to mimic real-world settings in which there is uncertainty as 
to which covariates are relevant predictors of the outcomes. The Stage 1 treatment 
was assigned from a Bernoulli distribution with the probability of receiving treatment 
P(ai1 = 1|o1) = expit(2xi1 − 1) , where expit(x) = exp(x)∕(1 + exp(x)) is the inverse of 
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the logit function. For those who entered the second stage ( �i = 1 ), the Stage 2 treatment 
was sampled from a Bernoulli distribution with P(ai2 = 1|ō2) = expit(−2xi2 + 2.8) . 
The probability of entering Stage 2 was fixed at 0.6, i.e., P(�i = 1) = 0.6 . Treatment 
covariates in each stage were coded as ak = 1 or 0 for treatment or control, respectively.

We considered two different scenarios for the relationship between the log event 
time and the covariates. In Scenario 1, we used an AFT-BML model to generate the 
event time at Stage 2 as

The true optimal treatment aopt
i2

 , given by I(−0.7 + 0.5xi2 − 0.9bi2 > 0) , was plugged 
into equation (5) as a new ai2 to calculate the optimal Stage 2 event time topt

i2
 had eve-

ryone received their optimal treatment at Stage 2. The overall event time assuming 
optimal Stage 2 treatment was generated again from an AFT-BML model as

For those who did not enter Stage 2, ti(a1, d
opt

2
) was their event time. For those who 

entered Stage 2, the observed Stage 1 survival time was ti1 = ti(a1, d
opt

2
) − t

opt

i2
 , 

and the Stage 2 event time was ti2 . The censoring time ci was generated from 
U(100, 2000) to yield an overall censoring rate of around 20%.

As a comparator, we fitted the data with parametric Q-learning models as well. 
Since there were two stages in our simulation data, we chose either correctly specified 
(T) or misspecified (F) Q-function models for each stage as 

stage 1 Q1T : xi1 + bi1 + xi1bi1 + ai1 + ai1xi1 + ai1bi1 Q 1F : xi1 + bi1 + zi1 + ai1 + ai1xi1
+ ai1zi1

stage 2 Q 2T  :  xi2 + bi2 + xi2bi2 + xi1 + bi1 + xi1bi1 + ai2 + ai2xi2 + ai2bi2  Q  2F  : 
xi2 + bi2 + zi2 + xi1 + bi1 + ai2 + ai2xi2 + ai2zi2

Combining the two stages together yields four possible modelling specifications: Q 1T2T , 
Q 1T2F , Q 1F2T , and Q 1F2F . Among these four Q-learning models, Q 1T2T correctly speci-
fies the parametric form in both stages; we refer to this as the oracle model.

In Scenario 2, we followed a similar structure to simulate the data but with a dif-
ferent set of true models that include non-linear transformations of the covariates. The 
event time at Stage 2 was generated based on the following equation as

The true optimal treatment, aopt
i2

= I(0.7x2
i2
− 1 > 0) , was used to replace ai2 in 

equation (7) to calculate the optimal Stage 2 event time topt
i2

 . The overall event time 
assuming optimal Stage 2 treatment was generated as

(5)
log ti2 = 4 + 0.3xi2 + bi2 − 0.6xi2bi2 + 0.3xi1 + 0.4bi1 − 0.5xi1bi1

+ ai2(−0.7 + 0.5xi2 − 0.9bi2) + �i2, �i2 ∼ N(0, 0.32).

(6)
log ti(a1, d

opt

2
) = 6.3 + 0.7xi1 + 0.6bi1 − 0.8xi1bi1

+ ai1(0.1 − 0.2xi1 + 0.6bi1) + �i1, �i1 ∼ N(0, 0.32).

(7)
log ti2 = 4 + cos(x3

i2
) − 0.4(xi2bi2 + 0.5)2 − 0.1xi1 − sin(�xi1bi1)

+ ai2(0.7x
2
i2
− 1) + �i2, �i2 ∼ N(0, 0.12).
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The Stage 1 and Stage 2 survival times were calculated in the same way as in Sce-
nario 1, depending on whether the individual entered the second stage. Censoring 
time ci was now generated from U(400, 5000) to achieve an overall censoring rate of 
around 30%.

Based on the underlying true nonlinear functions of covariates, we constructed 
two misspecified Q-learning models besides the oracle model. The first misspecified 
model Q lin considered only linear terms in the covariates for both stages as 

Stage 1 Qlin : xi1 + bi1 + zi1 + ai1,
Stage 2 Qlin : xi2 + bi2 + zi2 + xi1 + bi1 + zi1 + ai2.

The second misspecified model Q int considered all two-way interactions among 
covariates and all interactions between treatment and covariates in each stage in 
addition to the linear terms in Q lin as 

Stage 1 Qint : xi1 + bi1 + zi1 + xi1bi1 + xi1zi1 + bi1zi1 + ai1 + ai1xi1 + ai1bi1 + ai1zi1,
Stage 2 Qint : xi2 + bi2 + zi2 + xi2bi2 + xi2zi2 + bi2zi2 + xi1 + bi1 + zi1 + xi1bi1 + xi1zi1

+bi1zi1 + ai2 + ai2xi2 + ai2bi2 + ai2zi2,

such that these models were not correctly specified but were nonetheless richer and 
more flexible than their ‘only linear’ counterparts.

Two additional simulation settings were conducted using Scenario 2 as a back-
bone to investigate sensitivity to model assumptions. In Scenario 3, we investigate 
robustness of the performance of the proposed method to deviations from the log-
normal time to event distribution. Here we use an extreme value (Gumbel) distribu-
tion for the error distribution of the log event times, leading to a Weibull distribution 
for the survival times. The parameters of the Gumbel distribution are calibrated to 
have the same mean and variance of Scenario 2, specifically a location parameter of 
−0.21 and scale parameter of 0.08. In Scenario 4, we used a censoring mechanism 
that is covariate-dependent instead of an independent uniform censoring distribution. 
Here, the censoring times were generated according to ci = 400 + 3800xi1 + 2500bi1
.

3.3  Method implementation and simulation metrics

For the proposed method, denoted as BART in the figures, we created a wrap-
per function dtr1 that implemented the algorithm described in Sect. 2.4; further 
documentation of this implementation is available in Appendix D. For Q-learn-
ing, we first used survreg function from the R package survival (Therneau 
and Grambsch 2000; Therneau 2022) to fit the Stage 2 model, then made predic-
tions of the optimal second stage treatment and corresponding optimal survival 
time to create Stage 1 data. The survreg function was called again to fit the 

(8)
log ti(a1, d

opt

2
) = 7.4 + sin(x2

i1
) + x4

i1
+ xi1bi1

+ ai1(0.1 − 0.2x3
i1
) + �i1, �i1 ∼ N(0, 0.12).
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new augmented Stage 1 data and estimate the optimal first stage treatment with 
corresponding optimal overall survival time. For Scenario 3 with a Gumbel error 
distribution, we used the Weibull option to fit the Q-learning approaches with the 
correct error distribution.

The general evaluation framework is the same for the Q-learning approach as 
for the proposed method. Given that all the covariates at both stages were simu-
lated for every individual, the related Stage 2 treatment and time were predicted 
for everyone in the test set, even those who did not actually enter Stage 2. This 
works for a simulation study, and was done to remove the variability in the set of 
patients entering Stage 2 from across the simulated test datasets. However, note 
that this is unrealistic in practice since some Stage 2 covariates are not available 
if an individual never entered Stage 2, and one can only predict Stage 2 outcomes 
for those who actually entered Stage 2.

The proportion of optimal treatment is defined as the ratio of the number of 
individuals who have the true optimal treatment correctly identified by the model 
and the total number of individuals in the test set, which is 400. More specifi-
cally, for the stage-wise POT, the individual is counted in the numerator if the 
optimal treatment matches with the truth in a specific stage, as shown in equation 
below for Stage k

where the expectation is over the simulated datasets and the observations in the test 
set. For the overall or combined POT, only those who have the true optimal treat-
ment correctly identified at both stages are included in the numerator, as in the fol-
lowing expression:

It is straightforward to calculate POTs with Q-learning since that approach makes 
only one prediction of the optimal treatment at each stage for each observation. 
For the AFT-BML approach, we use the expression for âik in equation (3). We also 
examined the prediction performance for the means of the log event time distribu-
tion under optimal treatment; that is, we calculated the mean squared error by com-
paring the estimated optimal Stage 2 and overall log event time means to the true 
means according to

and

For the AFT-BML approach we use the expressions for t̂i(a
opt

2
) and t̂i(a

opt

1
, d

opt

2
) in 

equation (4). Implementation of the proposed method on a simulation dataset took 
approximately 15 min using 16 threads.

(9)POTk = E(I{â
opt

ik
= a

opt

ik
}), k = 1, 2,
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opt
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opt
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3.4  Simulation results

Figure 1 shows the decomposition of MSE at both stages, as well as the stage-wise 
POT and overall POT, for the proposed method, oracle Q-learning model, and the 
three other misspecified models in Scenario 1. Notice that in both equations (5) and 
(6), the relationship between log event time, and covariates is linear. As a parametric 
method that has the right structure as the underlying true model, the performance 
of the oracle model outperforms the others, with a very small MSE with zero bias, 
close to 100% stage-wise POT at both stages and a 92% overall POT. For Stage 2, 
Q 1F2T has the same MSE and stage-wise POT as the oracle model since they speci-
fied the functional form in the exact same way. Among the other three models, our 
method performs the best, in terms of a smaller MSE with an even smaller bias, 
and a higher stage-wise POT with the difference greater than 20%. For Stage 1, the 
MSE from Q 1T2F is slightly bigger but very similar to the oracle, and the stage-wise 
POT is almost the same as the oracle model, even though the predicted Stage 2 opti-
mal survival time from Q 1T2F was based on a misspecified Stage 2 model. This is 
mainly due to the fact that the simulated Stage 2 event time was relatively small 
compared to the overall event time so that an incorrect prediction for Stage 2 has a 
minimal impact on the augmented overall survival time. This resulted a very similar 
dataset between Q 1T2F and the oracle when fitting the Stage 1 model. The proposed 
Bayesian method, as in Stage 2, has the smallest MSE and the highest stage-wise 
POT compared to the other two models (Q1F2F and Q 1F2T ). Our proposed method 
is better than all approaches except the oracle approach when taking optimal treat-
ment for both stages into consideration using the overall POT. As expected, the vari-
ance of the AFT-BML approach has higher variance than the parametric Q-learning 
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Fig. 1  Mean squared error decomposed into variance and bias2 for Scenario 1, in which there is linear 
dependence of the outcome on covariates at Stage 1 and 2. The left y-axis corresponds to MSE (vertical 
bars); the secondary y-axis corresponds to stage-wise and overall POT (solid and dashed lines, respec-
tively). Q-learning methods are denoted generically by Q_1X2Y, where the X indicates whether the 
Stage 1 model is correctly (T) or incorrectly (F) specified, and the Y indicates whether the Stage 2 model 
is correctly (T) or incorrectly (F) specified
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approaches; this is likely because of the flexible nonparametric functional form of 
the relationship between the covariates and outcomes. The good performance of our 
method in terms of MSE is explained by the dominance of the bias term due to mis-
specified parametric models in the Q-learning approach.

The results from Scenario 2 are shown in Fig.  2. The relationship is nonlinear 
between the covariates and log event time in both Eqs. (7) and (8). As expected, 
the oracle model has close to zero MSE and close to 100% POTs. Our method out-
performs the other two models (Qlin and Q int ) with a much smaller MSE and higher 
POTs. The magnitude of the differences in Fig.  2 are larger than those in Fig.  1. 
The advantage of our nonparametric method becomes more obvious in exploring the 
nonlinear dependencies, while the other two parametric Q-learning models suffered 
from incorrect model structures.

Another quantity that is not easily estimable for Q-learning but comes without 
extra cost for BART is the measure of uncertainty in the estimated optimal values. 
By drawing MCMC posterior samples, the standard error of log optimal survival 
times can be calculated as the sample standard deviation. The credible intervals of 
log event time are also derivable with a collection of posterior samples. On the con-
trary, to obtain the standard error and confidence interval with Q-learning, bootstrap 
sampling must be carried out. Here, we only show the coverage rate (CR) of 95% 
credible intervals for our method in Fig. 3, with coverage rate calculated for the log 
survival time mean under optimal treatment for each individual in the test set, and 
boxplots representing the variability in CR across individuals in the test set. Q-learn-
ing models are not presented because of the poor fit and high biases in Figs. 1 and 
2. The boxplot of 95% CR for both scenarios are almost always above the nominal 
95% at Stage 1, and always cover with the lower quartiles above the nominal 95% at 
Stage 2. This indicates that the proposed method has good accuracy in estimating 
the uncertainty in the log event time mean under optimal treatment for both stages 
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Fig. 2  Mean squared error decomposed into variance and bias2 for Scenario 2, in which there is non-
linear dependence of the outcome on covariates at Stage 1 and 2. The left y-axis corresponds to MSE 
(vertical bars); the secondary y-axis corresponds to stage-wise and overall POT (solid and dashed lines, 
respectively)
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although the CRs are slightly over 95%. Note that the Bayesian intervals are 95% 
credible intervals, not 95% confidence intervals, and so the coverage rates won’t 
necessarily equal to the nominal level of 95%, though we expect them to be close. If 
one is interested in aligning the coverage rate with the Bayesian credible intervals, it 
is possible to calibrate the credible intervals to target a specific coverage rate.

Finally, results from Scenario 3 and Scenario 4 are shown in Appendix B Figs. 8 
and 9. Our proposed AFT-BML model performed well in Scenario 3 in terms of 
MSE even when the error distribution of the approach was incorrectly specified. It 
outperformed the Q-learning approaches which had the correct error distribution but 
incorrect form of the mean term, indicating that correct modeling of the mean term 
may be more important than the error distribution for performance. The AFT-BML 
approach also performed well when the censoring was dependent on covariates; this 
result was expected because the proposed approach relies on the assumption that 
censoring is independent of the event time given covariates but does not require that 
censoring be independent of covariates as well.

4  Motivating analysis: optimal treatment for AML patients 
undergoing transplant

In this section, we applied the proposed method to a retrospective cohort study 
using registry data collected by the Center for International Blood and Marrow 
Transplant Research (CIBMTR) (Krakow et  al. 2017). There are 4171 patients 
with complete information in this data who received graft-versus-host disease 
prophylaxis for their allogeneic hematopoietic cell transplant, which was used to 
treat their myeloid leukemia, between 1995 and 2007. Some patients were subse-
quently given a salvage treatment after they developed GVHD and experienced 
unsuccessful initial treatment. The two stages considered in this study were up-
front GVHD prophylaxis treatment and salvage treatment after developing GVHD 

Fig. 3  The coverage rate (CR) of 95% credible intervals for the log event time mean under optimal treat-
ment from the proposed method for Scenario 1 (Left) and Scenario 2 (Right) with the red reference line 
indicating the nominal 95% level
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and failing initial treatment (which is consistently given as steroids). In each 
stage, patients were assigned one of two treatments, nonspecific highly T-cell 
lymphodepleting (NHTL) immunosuppressant therapy or standard prophylaxis 
immunosuppressant. Estimating an optimal DTR to maximize the overall disease-
free survival time (DFS) for patients is our primary goal. The primary outcome 
is time to death, disease persistence, or relapse. The Stage 1 time is defined as 
the time from graft infusion to diagnosis of steroid-refractory acute GVHD (if 
they enter Stage 2) or to the primary outcome or last follow-up (if they do not 
enter Stage 2). The Stage 2 time is defined as the time from starting salvage treat-
ment for steroid refractory GVHD to the primary outcome or last follow up. 
Among the 13 covariates of interest, time from graft infusion to acute GVHD 
onset ( ≥ 1 month, < 1 month) and use of ≥ 4 immunosuppressors to treat acute 
GVHD on index form (Yes, No) are only available for those patients who failed 
at the first treatment. The other covariates include recipient’s age group ( < 10 
years, 10 − 39 years, ≥ 40 years), Karnofsky/Lansky performance status at time 
of transplant ( ≥ 80% , < 80% ), disease status at time of transplant (Early, Inter-
mediate, Advanced), donor relationship (Related, Unrelated), donor-recipient sex 
(female-male, other), graft source (Bone marrow, Peripheral blood, Umbilical 
cord), human leukocyte antigen (HLA) match (Well-matched, Partially matched, 
Mismatched), total-body irradiation (Yes, No), cytomegalovirus status (Negative-
negative, Donor or recipient positive), conditioning intensity (Myeloblative, RIC/
nonmyeloablative), and use of corticosteroids as part of GVHD prophylaxis (No, 
Yes). The prophylaxis assigned in Stage 1 is also used in fitting the salvage Stage 
2 model. A frequency cross table of prophylaxis and salvage treatment assigned is 
shown in Table 1. The censoring rate in this cohort was 32%.

Both Q-learning and AFT-BML approaches were used to fit this two stage 
survival data DTR estimation. All the main effects and the two-way interactions 
between stage-wise treatment and the other covariates are included in Q-learning 
models, and 1000 nonparametric bootstrap resamples were generated to estimate 
the uncertainty of the quantities of interest. For nonparametric AFT-BML, with 
1000 MCMC posterior samples, the full distribution was available for any predic-
tions. The point estimates of parameters along with bootstrap mean and 95% con-
fidence interval (CI) at each stage were examined for Q-learning. The waterfall 
plots for the mean differences in DFS on the log time scale under each treatment 
at each stage for each individual were created for both Q-learning and AFT-BML, 
as well as the 95% and 50% credible intervals (bootstrap CIs for Q-learning) pre-
sented on the same plot. The differences in the median DFS were also explored 
for both methods, as were the differences in the two-year DFS probabilities.

Table 1  Treatment assigned at 
Stage 1 and 2

Stage 2 Not entered

Standard NHTL Stage 2

Stage 1 Standard 673 219 2180
NHTL 240 91 768
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The analysis results from Q-learning, including point estimates and bootstrap 
mean, as well as the bootstrap 95% CI, are shown in the Appendix C in Tables 3 
and 4. Inspection of the 95% CI for the interaction terms in Table 3 reveals covariate 
combinations that can be used to identify subgroups where the NHTL or the stand-
ard treatment is preferable. For example, assuming all the other covariates are at the 
reference level, an unrelated donor would benefit more from NHTL than the stand-
ard treatment at Stage 1. Similarly in Table 4, when holding the other covariates at 
the reference level, a patient who received NHTL at Stage 1 would be expected to 
have a longer DFS time if the standard treatment was given at Stage 2, since the 95% 
CI of A2.NHTL*A1.NHTL is negative. Intuitively, this might be the case because 
salvage treatment that is different than the initial treatment which already failed 
might be expected to be more effective.

In Fig.  4, we present the estimated treatment differences on the log time scale 
for each stage, along with 95% CI and 50% CI. For AFT-BML, a direct posterior 
prediction difference for each individual can be calculated from 1000 MCMC pos-
terior samples based on patient-level characteristics. The credible intervals are con-
structed using the quantiles of posterior samples of each patient. For Q-learning, a 
standard error can be estimated from the predictions of 1000 bootstrap resamples at 
an individual level. Using the estimated standard error, the CIs for each patient are 
calculated in a standard way. A positive difference means NHTL is the preferred 
treatment for a given stage. The patients are presented in descending order based on 
the estimated difference, separately for each method.

The results from AFT-BML (Fig. 4a, c) suggest that there is little to be gained by 
individualizing the treatment in Stage 2 since everyone benefits from the standard 
treatment, but at Stage 1 there may be significant clinical value in choosing treat-
ment in a personalized fashion to maximize the overall DFS time. In fact, there may 
be four subgroups that have a distinct difference in expected log event time, in which 
two groups would benefit from NHTL, one group is indifferent to treatment choice, 
and one final group that would have longer survival time with the standard treatment. 
The right panels, showing Fig. 4b, d, provides a similar message using Q-learning: 
while the standard treatment is the preferred treatment for most (though not all) 
patients at Stage 2, individualizing the treatment at Stage 1 may lead to important 
benefits in log DFS time. However, there is a more continuous spectrum of treat-
ment differences in Stage 1 using Q-learning, compared to AFT-BML, and the mag-
nitude of the differences appears larger with Q-learning. Although it is impossible to 
know why this is the case, we suspect that Q-learning may be overfitting the Stage 1 
and Stage 2 models since we have forced all the variables of interest and treatment 
interaction terms into the model. This can lead to a wider variability in the estimated 
treatment differences. It may be possible to reduce the potential for overfitting in the 
Q-learning approach by using a penalized variable selection strategy in the Stage 1 
and Stage 2 regression models, but we did not consider this further.

In figure  5, we present the predicted treatment differences on a different time 
scale, specifically the estimated differences of median DFS time with 95% CI and 
50% CI at each stage. Since the event time is assumed to follow a log normal dis-
tribution, the exponential of the log normal mean, which transforms the predictions 
back to the original time scale, is the median rather than the mean. The results on 
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this scale are generally consistent with the log time scale results, though the scale 
change produces some unusual results. There are some individuals in the middle and 
edges of Fig. 5a who have wider CIs than their neighbors. These larger CI widths are 
an artifact of the scale of the treatment difference and the corresponding ordering of 
the treatment differences. In particular, the wide intervals correspond to individuals 
whose median survival predictions are higher (under one or both treatments). When 
doing inference on the median survival using the exponential transformation of the 
model parameters, the variance increases with the median. As a result, for these 
cases where the median survival time under one or more treatments is large, the 
intervals are wider. Furthermore, because we are plotting in order of the median dif-
ference, these cases can occur in several places on the plot, as long as one or more of 
the medians is large. For example, the wide intervals in the middle of the plot occur 
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Fig. 4  Predicted mean difference of log DFS time among patients who received AHCT with NHTL ver-
sus standard treatment



200 X. Li et al.

1 3

when the medians under each treatment are both large and of similar magnitude, 
while the wide intervals on the edges correspond to individuals where the median 
under one of the treatments is large, but the other is of a different magnitude. If we 
had instead plotted in order of the median under one of the treatments, you would 
see the width of the intervals generally get larger with increasing median.

DTRs could also be defined as the optimal treatment rules to maximize each 
patient’s two-year DFS probability. Figure  6 shows the two-year DFS probability 
difference between NHTL and standard treatment for all patients sorted in descend-
ing order. For Stage 2, all patients are expected to have a higher two-year survival 
probability if assigned the standard treatment based on AFT-BML method. The 
Q-learning method agrees with the inferences from AFT-BML except for a very 
small proportion of patients, although the magnitude of the differences are much 
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bigger for Q-learning. For Stage 1, it is easy to notice that AFT-BML splits the 
patients into four subgroups, similar to what we saw in Fig. 4a. With Q-learning, 
however, it is difficult to recognize any clear cut points on the curve. As in Stage 
2, the magnitude of the differences are smaller for AFT-BML. The proportions of 
patients who should have NHTL as the optimal treatment for Stage 1 are consistent 
between AFT-BML and Q-learning.

To further compare the survival probability predictive performance of AFT-BML 
vs. Q-learning, we calculate the time dependent area under the ROC curve (Heagerty 
et al. 2000) with the R package timeROC (Blanche et al. 2013) using the predicted 
survival time estimated by both AFT-BML and Q-learning as predictors. For the 
Stage 2 model, the observed time and event indicator can be used directly in calcu-
lating the time dependent AUC. For the Stage 1 prediction model (which assumes 
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Fig. 6  Two-year DFS probability difference among patients who received AHCT with NHTL versus 
standard treatment
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patients receive optimal treatment in Stage 2), we need to account for not all patients 
receiving their optimal treatment in Stage 2. To handle this, depending on whether 
the estimated optimal treatment at Stage 2 was observed or not, the original obser-
vation was kept as is, or was censored at the time of entering Stage 2. Since the 
estimated optimal Stage 2 treatment could be different from AFT-BML to Q-learn-
ing, we examined three sets of censored Stage 1 data, including optimal Stage 2 
treatment identified by AFT-BML, or Q-learning, or consistently optimal under both 
Stage 2 models. The time points of interest for Stage 1 are one year, two years, and 
three years. For Stage 2, only the median and third quartile of the observed time are 
evaluated. The results from both stages are shown in Table  2. For Stage 2, AFT-
BML improves the AUC by 0.55% at the median, and 1.87% at the third quartile, 
indicating that AFT-BML has a better predictive performance at Stage 2. For Stage 
1, the time dependent AUC at 1 year from AFT-BML is approximately 1.7% higher 
than Q-learning in all three settings. This improvement increases to around 2.2% as 
time goes to 2 years and 3 years. It indicates that AFT-BML once again outshines 
Q-learning at Stage 1 in predictive performance.

To visualize the AFT-BML based DTRs, we applied the ‘fit-the-fit’ method and 
plotted a single tree as in Logan et al. (2019). Since there is little value in differen-
tiating the treatment for Stage 2, we only focus on the Stage 1 model here. Here the 
outcome used for the single tree fit is the posterior mean treatment difference of the 
log survival time, although other outcomes such as median DFS or DFS probabili-
ties at fixed timepoints could also be used as outcomes. The R2 goodness of fit meas-
ure for using a single tree in Fig. 7 to model the Stage 1 posterior mean differences 
in log mean DFS time predictions is above 90%, indicating that this (highly inter-
pretable) single tree is a reasonable representation of the original AFT-BML model 
at Stage 1. Values in the nodes are the posterior mean differences in mean log DFS 

Table 2  Time dependent AUC for Stage 1 and Stage 2 with either AFT-BML model or Q-learning model

For Stage 1, observations were censored at entry to Stage 2 for calculation of the time dependent AUC if 
they did not receive optimal treatment in Stage 2 (with optimal treatment determined using AFT-BML, 
using Q-learning, or when both agreed)

Time in Suboptimal treatment Time dependent AUC 

Stage months censoring rule AFT-BML (%) Q-learning (%)

1 12 AFT-BML based 71.34 69.61
Q-learning based 70.89 69.14
Both agreed 70.81 69.23

24 AFT-BML based 72.68 70.52
Q-learning based 72.07 69.86
Both agreed 71.99 69.99

36 AFT-BML based 72.50 70.35
Q-learning based 71.82 69.60
Both agreed 71.79 69.86

2 3.2 (Median) NA 70.33 69.78
15 (Third quartile) NA 76.09 74.22
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time in months between NHTL and standard treatment. The corresponding 95% CIs 
are also shown in the same node. The first split (on donor type) indicates that almost 
all patients receiving unrelated donor transplants would benefit from receiving 
NHTL as GVHD prophylaxis for their AHCT, while relatively few patients receiv-
ing related donor transplants should receive NHTL. As the tree grows, the patients 
can be divided into four subgroups. After the first split, the two bottom nodes on 
the left are well apart from each other, as are the two nodes on the right side. These 
observations agree with Fig. 4a, that identified four subgroups with a distinct poste-
rior mean difference in log DFS times.

5  Conclusion

In medical practice, it is of important clinical value to select the optimal treat-
ment based on an individual’s characteristics. In many settings, a sequence of 
optimal treatments is desired, such as for diseases like cancer that can progress. 
The AFT-BML approach for identifying the DTRs can assist physicians to make 
sound, data-supported decisions at each stage. Classical parametric approaches, 
such as Q-learning, are constrained by the necessity of correctly specifying func-
tional forms, including all the interaction terms among covariates and treatment. 
The Bayesian machine learning approach, in contrast, avoids this restriction and 
allows the model to adaptively determine the relationships between the outcome 
and the covariates, facilitating optimal treatment identification. We have extended 
the Bayesian machine learning approach to censored survival data in an AFT-
BML model framework, and also provide parallelizable code for implementation 

Difference in log(DFS time) at Stage 1 
(NHTL vs. Standard)

Related

Bone marrow Bone marrow,Cord blood

Unrelated

Peripheral blood Peripheral blood

Related

Bone marrow Bone marrow,Cord blood
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Peripheral blood Peripheral blood
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n=4171

 [ −0.267 , 0.519 ]
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 [ 0.018 , 0.527 ]

0.24
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 [ 0.008 , 0.315 ]
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n=1089
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Fig. 7  Single tree fit to the posterior mean log(DFS time) of treatment differences as estimated by AFT-
BML in Stage 1. The first split is on the donor relationship (related vs. unrelated), while the second split 
is on graft source (Bone marrow vs. Peripheral blood vs. Cord blood)
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of the computationally intensive algorithm. This wrapper function utilizes stand-
ard available BART software without needing to modify the complex underly-
ing BART code. With the simulation studies, we have shown that the AFT-BML 
approach can achieve almost the same performance as the oracle model for cen-
sored outcomes. The results from AFT-BML not only include the optimal treat-
ment and optimal outcomes that classical parametric approaches can provide, but 
also directly offers the uncertainty measurement for these targets of inference. 
This extra uncertainty information could be useful in practice since physicians 
could better assess the confidence they should have in the recommended optimal 
treatments.

Our comparison to Q-learning in the simulations and the example used a fixed 
model specification without variable selection. With a larger number of covari-
ates, a penalized AFT model could be used for variable selection in the Q-learning 
approach. Furthermore, we utilized bootstrapping to estimate the uncertainty of the 
Q-learning predictions. Alternative approaches, such as penalized Q-learning (Song 
et al. 2014), could be used to directly provide the uncertainty measurements. How-
ever, we are not aware that this approach has been extended to censored data mod-
els, such as the AFT model used here.

We compared model performance between AFT-BML and Q-learning in the exam-
ple by censoring the outcomes of individuals who did not receive optimal subsequent 
treatment. This was feasible in this dataset because most of the patients received opti-
mal treatment in Stage 2. However, a general strategy of assessing the model perfor-
mance in the dynamic treatment regimes setting warrants further investigation.

There are some limitations in our approach. We have demonstrated the BML 
approach for censored data using a parametric log normal AFT-BML model, which 
has substantial parametric model assumptions even though the functional form of 
the covariate effects is flexible; other types of Bayesian survival models (Sparapani 
et al. 2016; Henderson et al. 2020; Linero et al. 2021) could alternatively be used 
which may require fewer assumptions. In such cases, the methodology described 
here and our wrapper function can serve as a template for implementing alternative 
models in a BML DTR framework.

Another limitation is that our AFT-BML approach and wrapper function are cur-
rently implemented for the two-stage AFT-BART survival model. We present one 
possible algorithm for the general setting with more than two stages in the Appen-
dix A, but have not yet implemented it. Modifying our current software implemen-
tation to handle more than two stages would introduce some computational chal-
lenges. The computational time would increase since we will have more layers of 
chain burn-in if more than two stages are present, as can be seen from the general 
algorithm in the appendix. This limitation could be reduced if the multi stage model 
fittings were embedded together, though this would lose the flexibility of applying 
BART functions off-the-shelf. Essentially one would need to output the tree struc-
ture and terminal node means at the end of one update, and then pass these to the 
next imputed dataset being analyzed as an initial tree structure and terminal node 
mean that is being updated.
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Appendix A: Extension of AFT‑BML algorithm to K > 2 stages

Notationally, we assume that observed data accounting for censoring and entry to 
subsequent stages are denoted (sk, �k) for Stage k, k = 1,… ,K , with �k , k = 2,… ,K 
a binary variable indicating that the individual entered Stage k. We omit some of 
the details previously shown for brevity, and just describe the final algorithm. The 
algorithm starts at the final stage (Stage K), and then proceeds forward to previous 
stages, as follows: 

step 1 Run the BART model on the Stage K data until convergence and draw M 
samples (denoted (f ∗(m)

K
, �2,∗(m)

K
) , m = 1,… ,M ) from the posterior distribution of 

fK and �2
K

 . Use these to draw M samples from the posterior distribution of aopt
iK

 for 
each individual at Stage K, using aopt,∗(m)

iK
= argmaxaK f

∗(m)

K
(ōiK , aK).

step 2 For Stage k = K − 1,… , 1 perform the following steps to draw relevant pos-
terior samples for fk , �2

k
 , and aopt

ik
 . 

step 2a Determine the pseudo-observation for the Stage k + 1 event time 
under optimal treatment in stages k + 1 or greater according to: 

step 2b Determine the pseudo-observation data (event times and censoring 
indicators) for the model for Stage k event time under optimal treatment in 
stages k + 1 or greater. For those who reached Stage k + 1 ( �i,k+1 = 1 ), set the 
observed data for the Stage k model in sample m as the Stage k pseudo event 
time under optimal subsequent treatment t∗(m)

ik
(ak, d

opt,∗(m)

k+1
,… , d

opt,∗(m)

K
) , e.g., 

s
∗(m)

ik
= tik + t

opt,∗(m)

i,k+1
 , and set �∗(m)

ik
= 1 . For those who did not reach Stage k + 1 , 

set the observed data for the Stage k model as s∗(m)
ik

= sik and �∗(m)
ik

= �ik.
step 2c Run the BART model separately on each of the M augmented 

Stage k datasets (s∗(m)
k

, �∗(m)
k

) until convergence and draw 1 sample (denoted 
f
∗(m)

k
, �2,∗(m)

k
 ) from the posterior distribution of fk and �2

k
 for each augmented 

Stage k dataset. Use these to draw one sample from the posterior distribution 
of aopt

ik
 for each individual in Stage k, using aopt,∗(m)

ik
= argmaxak f

∗(m)

k
(ōik, ak).

Appendix B: Simulation results for scenarios 3 and 4

(See Figs. 8 and 9).

log t
opt,∗(m)

i,k+1

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

= log ti,k+1 if ai,j = a
opt,∗(m)

i,j
,∀j > k

and 𝛿i,k+1 = 1

∼ N(𝜇k+1 + f
∗(m)

k+1
(ōi,k+1, a

opt,∗(m)

i,k+1
), 𝜎2,∗(m)

k+1
) if ai,j = a

opt,∗(m)

i,j
,∀j > k

×I(t
opt,∗(m)

i,k+1
≥ si,k+1) and 𝛿i,k+1 = 0

∼ N(𝜇k+1 + f
∗(m)

k+1
(ōi,k+1, a

opt,∗(m)

i,k+1
), 𝜎2,∗(m)

k+1
) if ai,j ≠ a

opt,∗(m)

i,j
,∃j > k
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Appendix C: Analysis results from Q‑learning

(See Tables 3 and 4)

Table 3  Predictors of DFS among patients who received AHCT, according to prophylactic GVHD treat-
ment (A1.NHTL) received

Average estimates from 1000 bootstrap samples and bootstrap confidence intervals (95% CI) are given

Parameter Point estimate Bootstrap mean 95% CI

(Intercept) 2.744 2.872 [2.590, 3.256]
A1.NHTL −0.257 −0.404 [−0.865, 0.063]

Age −0.068 −0.092 [−0.164,−0.023]

Karnofsky score −0.521 −0.531 [−0.700,−0.348]

Disease risk - Early 0.741 0.876 [0.738, 1.035]
Disease risk - Intermediate 0.684 0.685 [0.512, 0.872]
Unrelated donor −0.541 −0.490 [−0.750,−0.263]

Female-to-Male −0.049 0.014 [−0.168, 0.168]

Graftype - Cord blood 0.592 0.415 [−0.156, 1.014]

Graftype - Peripheral blood −0.131 −0.136 [−0.357, 0.078]

rec_match −0.087 −0.139 [−0.275,−0.025]

TBI −0.018 −0.105 [−0.233, 0.025]

CMV pair - Negative-Negative 0.052 0.051 [−0.115, 0.218]

Conditioning - RIC_NMA −0.187 −0.108 [−0.371, 0.151]

pgvhcor Yes −0.196 −0.150 [−0.311, 0.013]

A1.NHTL:Age 0.019 −0.008 [−0.160, 0.143]

A1.NHTL:Karnofsky score 0.107 0.173 [−0.181, 0.549]

A1.NHTL:Disease risk - Early 0.084 −0.063 [−0.356, 0.280]

A1.NHTL:Disease risk - Intermediate −0.112 −0.126 [−0.422, 0.167]

A1.NHTL:Unrelated donor 0.398 0.548 [0.204, 0.903]
A1.NHTL:Female-to-Male −0.016 0.002 [−0.328, 0.301]

A1.NHTL:Graftype - Cord blood −0.299 −0.251 [−0.952, 0.407]

A1.NHTL:Graftype - Peripheral blood 0.115 0.198 [−0.111, 0.531]

A1.NHTL:rec_match −0.137 0.003 [−0.177, 0.203]

A1.NHTL:TBI −0.094 0.074 [−0.211, 0.356]

A1.NHTL:CMV pair - Negative-Negative 0.313 0.221 [−0.063, 0.552]

A1.NHTL:Conditioning - RIC_NMA 0.170 −0.005 [−0.350, 0.341]

A1.NHTL:pgvhcor Yes 0.312 0.162 [−0.200, 0.507]

Log(scale) 0.466 0.510 [0.442, 0.660]
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Appendix D: Software

The R wrapper function that we created for this paper can be found at https:// github. 
com/ xiaoli- mcw/ dtrBA RT. Simply download and save the wrapper.R file. Note 

Table 4  Predictors of DFS among patients who received AHCT and then proceeded to acute GVHD sal-
vage (A2.NHTL) treatment

Average estimates from 1000 bootstrap samples and bootstrap confidence intervals (95% CI) are given

Parameter Point estimate Bootstrap mean 95% CI

(Intercept) 1.898 1.727 [1.171, 2.300]
A2.NHTL −1.036 −0.745 [−1.761, 0.290]

Age −0.244 −0.034 [−0.205, 0.140]

Karnofsky score −1.015 −0.858 [−1.329,−0.399]

Disease risk - Early 1.175 1.051 [0.711, 1.401]
Disease risk - Intermediate 0.661 0.842 [0.453, 1.241]
Unrelated donor −0.577 −0.799 [−1.159,−0.419]

Female-to-Male 0.060 −0.074 [−0.407, 0.292]

Graftype - Cord blood 0.553 0.738 [0.016, 1.505]
Graftype - Peripheral blood −0.137 −0.225 [−0.563, 0.116]

rec_match −0.290 −0.246 [−0.488, 0.000]

TBI 0.213 0.354 [0.044, 0.674]
CMV pair - Negative-Negative 0.142 0.377 [0.046, 0.713]
Conditioning - RIC_NMA −0.112 −0.025 [−0.393, 0.336]

pgvhcorYes −0.466 −0.325 [−0.699, 0.055]

Four or more ISP −0.912 −0.606 [−0.945,−0.265]

Time to acute GVHD 0.406 0.487 [0.157, 0.837]
A1.NHTL 0.670 0.557 [0.177, 0.934]
A2.NHTL:Age 0.108 −0.217 [−0.495, 0.063]

A2.NHTL:Karnofsky score 1.107 0.563 [−0.085, 1.232]

A2.NHTL:Disease risk - Early −0.683 −0.665 [−1.216,−0.081]

A2.NHTL:Disease risk - Intermediate −0.275 −0.353 [−1.025, 0.283]

A2.NHTL:Unrelated donor 0.694 1.085 [0.486, 1.673]
A2.NHTL:Female-to-Male 0.047 0.235 [−0.339, 0.841]

A2.NHTL:Graftype - Cord blood −0.405 −0.988 [−2.486, 0.423]

A2.NHTL:Graftype - Peripheral blood 0.023 0.123 [−0.471, 0.693]

A2.NHTL:rec_match −0.181 −0.089 [−0.484, 0.292]

A2.NHTL:TBI 0.205 −0.022 [−0.533, 0.506]

A2.NHTL:CMV pair - Negative-Negative 0.171 −0.269 [−0.824, 0.291]

A2.NHTL:Conditioning - RIC_NMA 0.523 0.213 [−0.485, 0.907]

A2.NHTL:pgvhcorYes −0.167 −0.131 [−0.733, 0.422]

A2.NHTL:Four or more ISP 0.559 0.358 [−0.199, 0.911]

A2.NHTL:Time to acute GVHD −0.169 −0.324 [−0.900, 0.276]

A2.NHTL:A1.NHTL −0.649 −0.596 [−1.163,−0.047]

Log(scale) 0.661 0.693 [0.635, 0.749]

https://github.com/xiaoli-mcw/dtrBART
https://github.com/xiaoli-mcw/dtrBART
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that this function utilizes some functions from the BART3 R package, which is not 
available on CRAN yet. The BART3 package can be found at https:// github. com/ 
rspar apa/ bnpto ols. The function dtr1 can be called conveniently after sourcing 
wrapper.R using
source("myfolder/wrapper.R")

Remember to replace myfolder with the actual directory where wrapper.R is 
saved.

The data should have all the covariates including treatments observed in both 
stages, an indicator for entering Stage 2 defined as �i in Sect. 2.4, an overall event 
indicator �i regardless of entering Stage 2 or not, a survival time for Stage 1, and a 
survival time for Stage 2. For those who did not enter Stage 2, since their informa-
tion are not used in fitting Stage 2 model, their survival time for Stage 2 can be 
coded in any reasonable way.
dtr1(x1=c("x1"), a1="a1", time1="y1", x2=c("x1","x2"), 

a2="a2", stg2ind="eta", time2="y2", delta="delta", data, 
newdata=NULL, opt=TRUE, mc.cores=8)

In this function, x1 is a vector of covariate names that are used in fitting the 
Stage 1 model. a1 is the variable name of the action in Stage 1. time1 is the vari-
able name of survival time at Stage 1. x2, a2, and time2 are similar for Stage 2. 
stg2ind is the variable name indicating whether an individual entered Stage 2 
indicator. delta is the variable name of the overall event indicator. data is the 
dataset. If a newdata is provided, predictions of optimal action and optimal out-
come for the new data will be returned. opt is TRUE or FALSE, indicating whether 
only the optimal action and survival time at each stage will be returned (TRUE) or 
whether additional survival times under each action option at each stage will be 
returned (FALSE). mc.cores specifies the number of threads to be used in the 
calculation. With more threads, the program will execute more quickly.

There is a demo dataset dtrdata.csv in the same repository on GitHub which 
is used to explain the results returned by our wrapper function. Here, the dtrdata 
with 1000 observations is split into training ( 80% ) and testing ( 20% ) data.
> ind<- sample(1:n, 800)
> train<- dtrdata[ind,]
> test<- dtrdata[-ind,]
> res.dtr<- dtr1(x1="x1", a1="a1", time1="t1",
x2="x2", a2="a2", time2="t2", stg2ind="eta",
delta="delta", data=train, newdata=test, opt=FALSE)
> str(res.dtr)
List of 14
$ a2.opt: int [1:476, 1:1000] 1 1 1 0
                        1 0 0 1 0 0...
$ yhat2optmean: num [1:476, 1:1000] 4.82 4.88
                                          5.06 4.5 4.7...
$ newa2.opt : int [1:121, 1:1000] 0 0 0 1 
                              0 0 1 1 0 1...
$ newyhat2optmean: num [1:121, 1:1000] 4.43 4.47
                                                   4.33 4.71 4.65...

https://github.com/rsparapa/bnptools
https://github.com/rsparapa/bnptools
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$ sigma2: num [1:1000] 0.323 0.331
                        0.321 0.326 0.333...
$ a1.opt: num [1:800, 1:1000] 0 0 1 0
                              1 0 1 1 1 1...
$ yhat1optmean: num [1:800, 1:1000] 6.54 6.4
                                          7.26 6.38 7.32...
$ newa1.opt: num [1:200, 1:1000] 1 1 1 1
                                    1 1 0 0 1 1...
$ newyhat1optmean: num [1:200, 1:1000] 6.99 6.83
                                                7.42 6.82 7.19...
$ sigma1: num [1:1000] 0.335 0.348
                              0.345 0.346 0.342...
$ a2_0: num [1:597, 1:1000] 4.64 4.72
                        4.79 4.5 4.62...
$ a2_1: num [1:597, 1:1000] 4.82 4.88
                        5.06 4.37 4.7...
$ a1_0: num [1:800, 1:1000] 6.54 6.4 7
                        6.38 7.1...
$ a1_1: num [1:800, 1:1000] 6.51 6.37
                        7.26 6.36 7.32...
The result res.dtr is a list of optimal actions (a2.opt, a1.opt) and cor-

responding outcomes (yhat2optmean, yhat1optmean) estimated for both 
stages, as well as the variances of estimated outcome (sigma2, sigma1). Since 
we supplied testing data to the wrapper function, we have the predicted optimal 
actions (newa2.opt, newa1.opt) and corresponding outcomes (newyha-
t2optmean, newyhat1optmean) reported. The estimated outcomes under each 
possible action at both stages (a2_0, a2_1, a1_0, a1_1) for the training data are 
also presented because we set opt=FALSE. The rows represent individuals, and the 
columns represent the MCMC samples.
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