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Abstract
Jack-knife pseudo-observations have in recent decades gained popularity in regres-
sion analysis for various aspects of time-to-event data. A limitation of the jack-knife
pseudo-observations is that their computation is time consuming, as the base esti-
mate needs to be recalculated when leaving out each observation. We show that
jack-knife pseudo-observations can be closely approximated using the idea of the
infinitesimal jack-knife residuals. The infinitesimal jack-knife pseudo-observations
are much faster to compute than jack-knife pseudo-observations. A key assumption
of the unbiasedness of the jack-knife pseudo-observation approach is on the influence
function of the base estimate. We reiterate why the condition on the influence function
is needed for unbiased inference and show that the condition is not satisfied for the
Kaplan–Meier base estimate in a left-truncated cohort.Wepresent amodification of the
infinitesimal jack-knife pseudo-observations that provide unbiased estimates in a left-
truncated cohort. The computational speed and medium and large sample properties
of the jack-knife pseudo-observations and infinitesimal jack-knife pseudo-observation
are compared and we present an application of the modified infinitesimal jack-knife
pseudo-observations in a left-truncated cohort of Danish patients with diabetes.
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1 Introduction

The Cox regression model for hazards is a common analysis of time-to-event data.
In recent years, regression model methods have been developed for analysis of other
parameters than hazard ratios. Such parameters include contrasts between cumulative
incidences, restricted means, and number of life years lost due to specific causes of
death (Klein et al. 2007; Andersen et al. 2004; Scheike et al. 2008; Andersen 2013).
A flexible framework has been established by creating a transformation of the time-
to-event data, often called pseudo-observations, which are analyzed using a simple
estimating equation for a generalized linear model. A common variant of the pseudo-
observations is based on jack-knife residuals (Andersen et al. 2003).

The framework for the pseudo-observation method is regression analysis for
E(V |Z), where V is a function of the time-to-event data of interest and Z is a vector of
covariate. The jack-knife pseudo-observations are based on a well-behaved estimate
of θ = E(V ). For survival data with event time T , say, V = 1(T > t) is chosen if the
purpose of the regression is to analyze the survival probability at a pre-defined time t ,
E(V |Z) = P(T > t |Z). Here the Kaplan–Meier estimate is used as the base estimate.
For competing risk data (T ,�), where � = 1 denotes the event of interest and � =
2, . . . , d denote the competing events, V = 1(T ≤ t,� = 1) is chosen for regression
models of the cumulative risk for the type-1 event, E(V |Z) = P(T ≤ t,� = 1|Z).
Here the Aalen–Johansen estimate is used as the base estimate. Let X denote the
observed censored time-to-event data, i.e., for a right-censoring time C the observed
time-to-event for the competing risk set-up X = (T̃ , �̃), where the censored event time
is T̃ = T ∧C and event type is �̃ = �1{T ≤ C}. Let (X1, Z1), . . . , (Xn, Zn) denote
an i.i.d. sample of observations with time-to-event data Xi and a vector of covariate Zi .
Further, let θ̂n denote the base estimate of θ based on the full sample X1, . . . , Xn and
let θ̂ (i)

n denote the similar estimate based on the sample X1, . . . , Xi−1, Xi+1, . . . , Xn ,
i.e., leaving out Xi , then the jack-knife pseudo-observation for Vi is defined as

θ̂n,i = nθ̂n − (n − 1)θ̂ (i)
n . (1)

Suppose a regression model E(V |Z) = μ(β0; Z) is specified, where μ(β; Z) =
μ(βT Z) typically is the inverse of the link function in a generalized linear regression.
Estimates of β0 are then obtained based on θ̂n,1, . . . , θ̂n,n by solving the estimating
equation

n∑

i=1

A(β; Zi ){θ̂n,i − μ(β; Zi )} = 0, (2)

where A(β; Zi ) is a vector function depending only on the regression parameters
and covariates. The asymptotic distribution of β̂n has been studied for base estimates
which are functionals of sample averages of the observations, Fn = 1

n

∑n
i=1 δXi , i.e.

estimates of the form θ̂n = φ(Fn) (Jacobsen and Martinussen 2016; Overgaard et al.
2018). Here δXi is a functional of the time-to-event data, usually a counting process
representation of the time-to-event data, see Section 2.1 for further details. The robust
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Huber–White variance estimate is often a good approximation of the variance of the
regression parameter estimate β̂n solving (2).However, theHuber–White variance esti-
mate ignores the correlation between the pseudo-observations. The correct asymptotic
variance is more complicated and involves both first and second derivative of the base
estimate function φ. In addition to the smoothness of the base estimate function, the
jack-knife pseudo-observation method is based on a central assumption of the base
estimate: the first order influence function at a time-to-event observation x ,

φ̇F (x) = φ′
F (δx − F)

should satisfy E(φ̇F (Xi )|Zi ) = E(Vi |Zi )−E(Vi ) (Overgaard et al. 2018), see Section
2.1 for further details. Here, F denotes the limit of Fn when it exists, and often
φ(F) = θ = E(Vi ). Further details on differentiability of functionals and properties
of influence functions are given in SectionAof the supplement. Overgaard et al. (2019)
showed that the influence function condition is satisfied concerning base estimating
functions that can be written in an inverse probability of censoring weighting form;
otherwise, the assumption needs to be checked case by case. It is worth reiterating
why the condition on the influence function is needed for unbiased inference.

A major advantage of the jack-knife pseudo-observation method is its general for-
mulation for performing regression analyses, and themethod can often be implemented
using standard statistical software. One limitation is that it is time-consuming, as the
base estimate needs to be recalculated for each observation. Considerable efforts have
been made to provide efficient implementation for computing the jack-knife pseudo-
observations such as the implementations for cumulative incidences, restricted means,
and numbers of life years lost due to specific causes of death in the software programs
R, SAS and Stata in Klein et al. (2008); Parner and Andersen (2010); Overgaard et al.
(2015); Gerds (2019); Therneau (2021).

Jaeckel (1972) suggested using infinitesimal jack-knife residuals for variance esti-
mation, which for each subject is an estimate of the influence function φ̇F (Xi ). Efron
(1982) considered a bootstrap variance using the infinitesimal jack-knife residuals.We
consider using pseudo-observations based on the infinitesimal jack-knife residuals for
regression analysis. One advantage of the infinitesimal jack-knife pseudo-observations
is that they are much faster to compute, making the non-parametric bootstrap method
attractive for variance estimation.We showed that the jack-knife and infinitesimal jack-
knife pseudo-observations are asymptotically equivalent when the base estimator is
a sufficiently smooth function of the time-to-event data. We compared the computa-
tional speed of the jack-knife and infinitesimal jack-knife pseudo-observations and
present medium and large sample comparison of the two methods in simulations. The
infinitesimal jack-knife pseudo-observations are easy to modify to model assump-
tions. We showed that for a cohort with left-truncation, the influence function of the
base Kaplan–Meier estimator does not have the desired expected value, although the
use of jack-knife pseudo-observations for a left-truncated cohort has been reported in
the literature (Grand et al. 2019; Shen 2021) and currently implemented in statisti-
cal packages (Overgaard et al. 2015; Therneau 2021). We suggest a modification of
the infinitesimal jack-knife pseudo-observations that together with inverse probability
of sampling weights applied to the estimation equation provides unbiased estimates
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for a cohort with left-truncation. Finally, we compared the jack-knife and modified
infinitesimal jack-knife pseudo-observations using data on Danish patients with dia-
betes.

2 Method

Themotivation for the infinitesimal jack-knife pseudo-observations, aswell as the intu-
ition of the condition on the influence function for unbiasedness, comes fromaproperty
of the jack-knife pseudo-observations proved inOvergaard et al. (2017).Overgaard and
colleagues showed that under regularity conditions the jack-knife pseudo-observations
satisfy

θ̂n,i = φ(F) + φ̇F (Xi ) + 1

n − 1

∑

j �=i

φ̈F (Xi , X j ) + oP(n
−1/2), (3)

uniformly in i = 1, . . . , n, where φ̈F (·) is the second order influence function at two
time-to-event observations x1 and x2,

φ̈F (x1, x2) = φ′′
F (δx1 − F, δx2 − F).

Here oP refers to convergence in probability, i.e., for a sequence of variables {Yn}n≥1
wewriteYn = oP(an)whena−1

n Yn converge in probability towards zero. It is important
that the approximation occurs uniformly in i = 1, . . . , n, as the approximation is used
for each observation i . One can view (3) as the approximate transformation of the
original time-to-event dataset created by the pseudo-observations. The condition on
the influence function of the base estimate appears when the approximation (3) is
inserted in the estimation equation (2) to ensure that the estimation function has a
mean zero at β = β0. First, note that the second order influence function satisfies
E(φ̈F (X , x)) = 0 for all observations x , implying that E(A(β; Zi )φ̈(Xi , X j )) = 0.
The remaining part of the mean estimation function is then

E(A(β0; Zi ){φ(F) + φ̇F (Xi ) − μ(β0; Zi )})
= E(A(β0; Zi ){φ(F) + E(φ̇F (Xi )|Zi ) − μ(β0; Zi )}),

which is zero if E(φ̇F (Xi )|Zi ) = μ(β0; Zi ) − φ(F) = E(Vi |Zi ) − E(Vi ). Thus, the
condition on the influence function ensures that the estimation equation (2) has a mean
zero when β = β0.

The idea of the infinitesimal jack-knife pseudo-observations is to use an estimate
of φ(F) + φ̇F (Xi ) as pseudo-observations used for regression analysis. Based on the
infinitesimal jack-knife residuals of Jaeckel (1972), we define pseudo-observations

θ̂ IJn,i = φ(Fn) + φ̇Fn (Xi ). (4)
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In the supplement Section B, we show that when the base estimator is a sufficiently
smooth functional of the time-to-event data, θ̂n,i − θ̂ IJn,i = oP(n−1/2), uniformly in
i = 1, ..., n. The smoothness condition was verified for the Kaplan–Meier and the
Aalen–Johansen estimator in Overgaard et al. (2017). Thus, θ̂ IJn,i may replace θ̂n,i

in the estimating equation with the same asymptotic properties. Using either form
of pseudo-observations, and assuming standard asymptotic regularity conditions as
stated inOvergaard et al. (2017), the solution β̂n to the estimation equation (2) satisfies:√
n(β̂n−β0) converges in distribution to amean zero normal distributionwith variance

M−1�(M−1)T with

M = E

{
A(β0; Z)

∂

∂β
μ(β; Z)

∣∣∣
β=β0

}

and

� = Var{h0(X , Z) + h1(X)}, (5)

where

h0(X , Z) = A(β0; Z){φ(F) + φ̇F (X) − μ(β0; Z)}
h1(x) = E{A(β0; Z)φ̈F (X , x)}.

Note that the variance depends on the first order influence function in the h0 term
and the second order influence function in the h1 term. The variance was derived for
the Aalen–Johansen functional in Overgaard et al. (2018). The Huber–White robust
variance estimate is an estimate of Var{h0(X , Z)}, ignoring the h1 part of �, and is
therefore biased. The bias has been shown to be upwards under the model for pseudo-
observations based on the Kaplan–Meier andAalen–Johansen estimators. As such, the
Huber–White robust variance estimate will be conservative in these cases. However,
the Huber–White robust variance estimate has both theoretically and in simulation
studies been demonstrated to be a good approximation of the asymptotic variance,
unless the covariates have a strong effect on the outcome and there is a large proportion
of censored observations (Jacobsen and Martinussen 2016; Overgaard et al. 2018).

For the infinitesimal jack-knife pseudo-observations, the influence function esti-
mate φ̇Fn (x) is computed only once for all x and evaluate at x = Xi to compute
the infinitesimal jack-knife pseudo-observation for subject i , making the infinitesimal
jack-knife pseudo-observations much faster to compute than the jack-knife pseudo-
observations. It is therefore attractive to use non-parametric bootstrap to estimate
the asymptotic variance. Another advantage of the infinitesimal jack-knife pseudo-
observations is that the method can be modified to assumptions on the censoring and
selection, as we will demonstrate in the next section.

2.1 Competing risk data

Let T denote the time of event, � ∈ {1, . . . , d} the type of event and Z a vector
of covariates. Consider regression models of the cumulative 1-event risk at time t ,
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V = 1{T ≤ t,� = 1}, E(V ) = P(T ≤ t,� = 1) =: F1(t), and E(V |Z) =:
F1(t |Z) = μ(β0; Z). Let C be a right-censoring time and denote the censored event
time T̃ = T ∧ C and event type �̃ = �1{T ≤ C}. The observed time-to-event
data is then X = (T̃ , �̃). If the data is subject to left-truncation, we only observe
subjects where the entry time L is smaller than T̃ , L ≤ T̃ . We assume that L , C , and
(T ,�, Z) aremutually independent. As amodel of n observations, let (T̃i , �̃i , Zi , Li )

be independent replicates of (T̃ , �̃, Z , L) and consider a sample of n subjects with
Li ≤ T̃i .

A cohort without left-truncation

The infinitesimal jack-knife pseudo-observations are based on specifying the counting
process representation, δXi , of the time-to-event data, identifying the base estimate φ

as a functional of Fn = 1
n

∑n
i=1 δXi and finally computing the influence function of φ.

Define event at-risk indicator process Yi (s) = 1(s ≤ T̃i ), censoring at-risk indicator
process Yc,i (s) = 1(s < T̃i )+1(s = T̃i , �̃i = 0) that handles tied event and censoring
times, as well as counting processes Ni, j (s) = 1(T̃i ≤ s, �̃i = j) for censoring j = 0
and event type j = 1, . . . , d. TheAalen–Johansen estimate is a function of averages of
δXi = (Yi (·),Yc,i (·), Ni, j (·), j = 0, . . . , d)T with expectation F = (H , Hc, Hj , j =
0, . . . , d)T , where H(s) = E(Y (s)) = P(s ≤ T̃i ), Hc(s) = E(Yc(s)) = P(s < T̃i ) +
P(s = T̃i , �̃i = 0) and Hj (s) = E(Ni, j (s)) = P(T̃i ≤ s, �̃i = j), j = 0, . . . , d.
Similar to Overgaard et al. (2017), we assume that Hc(t) > 0, where t is the analysis
time point of interest. Let Ĥn(s) = 1

n

∑n
i=1 Yi (s), Ĥn,c(s) = 1

n

∑n
i=1 Yc,i (s) and

Ĥn, j (s) = 1
n

∑n
i=1 Ni, j (s) for j = 0, . . . , d denote their empirical versions. The

cumulative censoring hazard 	0(s) = ∫ s
0

1
Hc(u)

dH0(u) is estimated by the Nelson–

Aalen estimate 	̂n,0(s) = ∫ s
0

1
Ĥn,c(u)

dĤn,0(u) and an estimate of the survival function

for the censoring distribution G(s) = P(C > s) = �
s
0{1 − d	0(u)} is the Kaplan–

Meier estimate Ĝn(s) = �
s
0{1−d	̂n,0(u)}, where�

s
0 is the product integral. Similarly,

the cumulative j-event hazard 	 j (s) = ∫ s
0

1
H(u)

dHj (u) is estimated by 	̂n, j (s) =
∫ s
0

1
Ĥn(u)

dĤn, j (u) and an estimate of the survival function S(s) = P(T > s) = �
s
0{1−

∑d
j=1 d	 j (u)} is Ŝn(s) = �

s
0{1 − ∑d

j=1 d	̂n, j (u)}. The Aalen–Johansen estimate

of the cumulative event risk, Fj (s) = ∫ s
0

1
G(u−)

dHj (u), in its inverse probability

of censoring weighted (IPCW) form is F̂n, j (s) = ∫ s
0

1
Ĝn(u−)

dĤn, j (u). The Aalen–

Johansen estimate F̂n,1 is thus a function, φ, of the sample average of the data, Fn =
1
n

∑n
i=1 δXi . Evaluating φ at F we obtain F1(t).

The first order influence function is defined as φ̇F (x) = φ′
F (δx −F), where the first

derivative at f in direction g is φ′
f (g) = ∂

∂sφ( f + sg)
∣∣
s=0. As stated in Overgaard

et al. (2017), the influence function for the Aalen–Johansen function is

φ̇F (X) =
∫ t

0

1

G(s−)
d{N1(s) − H1(s)} +

∫ t

0

F1(t) − F1(s)

H(s+)
dM0(s), (6)
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where M0i (s) = N0i (s) − ∫ s
0 Yc,i (u)d	0(u). The at-risk probability function H(s+)

can also be written as S(s)G(s), where S is the event survival function and G is the
survival function for the censoring distribution. From the martingale property of M0,
in the filtration where the covariate information is also included, it is easily verified
that E(φ̇F (X)|Z) = F1(t |Z) − F1(t). It follows that

φ(F) + φ̇F (X) =
∫ t

0

1

G(s−)
dN1(s) +

∫ t

0

F1(t) − F1(s)

H(s+)
dM0(s). (7)

The first termon the right hand side of (7) is a term in an IPCWestimator (Robins 1993)
used in the direct binomial regression technique of Scheike et al. (2008) to model all
time points. The second termon the right hand side of the equation has expectation zero
given the covariates, but may be of importance in reducing the variance when the risk
of the 1-event is not small and there is a significant amount of censoring. Evaluating (7)
at F = Fn and X = Xi , we obtain the infinitesimal jack-knife pseudo-observations,

θ̂ IJn,i := φ(Fn) + φ̇Fn (Xi )

=
∫ t

0

1

Ĝn(s−)
dN1i (s) +

∫ t

0

F̂n,1(t) − F̂n,1(s)

Ŝn(s)Ĝn(s)
dM̂0i (s),

where M̂0i (s) = N0i (s) − ∫ s
0 Yc,i (u)d	̂n,0(u). The estimates F̂n,1, Ŝn , Ĝn and 	̂n,0

are computed once based on the complete sample.
The R package survival uses a different implementation of infinitesimal jack-

knife residuals based on the estimator F̂1(t) = ∫ t
0 exp{−

∑d
j=1 	̂n, j (u)}d	̂n,1(u)

(Terry Therneau, personal communication). Here the infinitesimal jack-knife residuals
is based on extending the estimator in a weighted form,

F̂w
1 (t) =

∫ t

0
exp{−

d∑

j=1

	̂w
n, j (u)}d	̂w

n,1(u),

where 	̂w
n, j (s) = ∫ s

0 {∑i wi Yi (u)}−1d{∑i wi Ni, j (u)}. The estimator F̂1(t) is
obtained when all wi are equal to 1/n. The infinitesimal jack-knife influence function
is obtained by taking the derivative with respects to the weights,

∂ F̂w
1 (t)

∂wi
|wi= 1

n

(Jaeckel 1972; Efron 1982).

A cohort with left-truncation

In the cohort with left-truncation, the Aalen–Johansen estimate is a functional of the
counting process representation, 1

n

∑n
i=1 δLXi

say, which adjusts for left-truncation by

adjusting the at-risk set. Specifically, define the at-risk indicator Y L
i (s) = 1(Li ≤
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s ≤ T̃i ), Y L
c,i (s) = 1(Li ≤ s < T̃i ) + 1(Li ≤ s = T̃i , �̃i = 0) and counting

processes NL
i, j (s) = 1(Li ≤ T̃i ≤ s, �̃i = j). Then we represent the time-to-event

data as δLXi
= (Y L

i (·),Y L
c,i (·), NL

i, j (·), j = 0, ..., d)T . Here 1
n

∑n
i=1 δLXi

will have

limit F|T̃≥L , say. We let Ĝn and F̂n, j , j = 1, . . . , d denote the Kaplan-Meier estimate
of the censoring survival function and the Aalen-Johansen estimate the j-event risk,
respectively, based on adjusting the at-risk set. The assumption that Ci and Li are
independent is needed to ensure that Ĝn is unbiased. The details are given in Section
C of the supplement. More importantly, it is shown in Section C for the special case
of the Kaplan–Meier functional, χ say, that the expectation of its influence function is

EF|T̃≥L
(χ̇F|T̃≥L

(X)|Z) = P(T̃ ≥ L)

P(T̃ ≥ L|Z)
{S(t |Z) − S(t)}.

This will be equal S(t |Z) − S(t) if P(T̃ ≥ L) = P(T̃ ≥ L|Z), i.e., in the case
where covariates Z do not have any prognostic value (on the distribution of L). Thus
use of the jack-knife pseudo-observation method for cumulative risk regression in a
left-truncated cohort will in general be biased.

The idea ofmodifying the infinitesimal jack-knife pseudo-observation is to estimate
(6), by estimating F , using the left-truncated time-to-event data, Fn := 1

n

∑n
i=1 δLXi

.
The estimate of F will be written as ρ(Fn) = ρ2(ρ1(Fn)), where the two mappings

ρ1 : Fn 	→ (Ĝn, F̂n, j , j = 1, . . . , d)T

ρ2 : (Ĝn, F̂n, j , j = 1, . . . , d)T 	→ (Ĥn, Ĥn,c, Ĥn, j , j = 0, . . . , d)T ,

and Ŝn(s) = 1 − ∑d
j=1 F̂n, j (s), Ĥn(s) = Ŝn(s−)Ĝn(s−), Ĥn,c(s) = Ŝn(s)Ĝn(s−),

Ĥn,0(s) = ∫ s
0 Ŝn(u)d(1 − Ĝn(u)) and Ĥn, j (s) = ∫ s

0 Ĝn(u−)dF̂n, j (u) for j =
1, . . . , d. Insertingρ(Fn) in (7) results in the estimated infinitesimal jack-knife pseudo-
observations

θ̂ IJn,i := φ(ρ(Fn)) + φ̇ρ(Fn)(Xi ) (8)

=
∫ t

0

1

Ĝn(s−)
dN1i (s) +

∫ t

0

F̂n,1(t) − F̂n,1(s)

Ŝn(s)Ĝn(s)
dM̂0i (s),

where M̂0i (s) = N0i (s) − ∫ s
0 Yc,i (u)d	̂n,0(u) is based on the at-risk set Yc,i from the

setting without left-truncation. Here all subjects are set to be at risk from time zero.
The infinitesimal jack-knife pseudo-observations will not have the correct mean under
P(·|Li ≤ T̃i ), but we can compensate by applying estimated weights, ŵi say, of the
inverse sampling probability, wi = FL(T̃i )−1, to the estimating equation,

n∑

i=1

A(β; Zi )ŵi {θ̂ IJn,i − μ(β; Zi )} = 0.
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The truncation distribution FL(s) = P(L ≤ s) is estimated by the product-limit
estimator of the reversed time, F̂L,n(s) = �(s,∞){1 − d	̂L,n(u)}, where 	̂L,n(s) =∫ s
0

1
Ĥn(u)

dNL(u) and NL(s) = 1
n

∑n
i=1 1(Li ≤ s). In practice, we will often only

be able to estimate P(L ≤ s|L ≤ τ), for some τ > 0, but this is sufficient for the
use of sampling weights. The pseudo-observations will satisfy the limiting estimation
equation

E
(
A(β0; Zi )wi (φ(F) + φ̇F (Xi ) − μ(β0; Zi ))

∣∣Li ≤ T̃i , Zi

)

= E
(
A(β0; Zi )wi1(Li ≤ T̃i )(φ(F) + φ̇F (Xi ) − μ(β0; Zi ))

∣∣Zi

)
/ P(Li ≤ T̃i |Zi )

= E
(
E
(
A(β0; Zi )wi1(Li ≤ T̃i )(φ(F) + φ̇F (Xi ) − μ(β0; Zi ))

∣∣Ti ,Ci , Zi
)∣∣Zi

)
/ P(Li ≤ T̃i |Zi )

= E
(
A(β0; Zi )(φ(F) + φ̇F (Xi ) − μ(β0; Zi ))

∣∣Zi
)
/ P(Li ≤ T̃i |Zi )

= 0.

Section D of the supplement shows that the resulting estimate β̂n converges in distri-
bution to a normal distribution with mean zero. A formula for the asymptotic variance
is also presented. The variance can be estimated by plug-in of the involved quanti-
ties. Since the bootstrap procedure is computationally attractive, we will not proceed
further to estimate the asymptotic variance.

3 Simulations

Consider a binary exposure covariate, Z ∈ {0, 1}, with pZ = P(Z = 1) and a linear
model for the event of interest

F1(s|Z) = (β0 + β1Z)s, s ∈ [0, 1],

and F2(s|Z) = η · s for the competing event. The parameter β0 is the cumulative risk
of 1-events among unexposed subjects (Z = 0) and β1 is the 1-event risk difference
between exposed (Z = 1) and unexposed subjects at time t = 1. Let C be a censoring
time independent of events and covariate data. For given pc ∈ (0, 1], we let C follow
a uniform distribution on the interval [0, 1/pc], so that pc = P(C j < 1). We choose
pc so the observed fraction of censored data before time 1, poc = P(C < min(T , 1))
is equal to specified values set below using the relation

poc = P(C < 1){P(T ≤ 1)/2 + P(T > 1)}.

A similar simulation model was used in Overgaard et al. (2017, 2018); Parner et al.
(2020) to evaluate the use of jack-knife pseudo-observations in cohort and case-cohort
analyses.

We consider five different scenarios for specific values of pZ , β0, β1, η, poc to illus-
trate (1) computational speed in different implementation of the pseudo-observation
method; (2) medium and large sample properties of the jack-knife and infinitesimal
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jack-knife pseudo-observations; (3) comparing the infinitesimal jack-knife pseudo-
observation and inverse probability of censoring weighting; (4) medium and large
sample properties of infinitesimal jack-knife pseudo-observations in a left-truncated
cohort; and (5) comparing the jack-knife andmodified infinitesimal jack-knife pseudo-
observations in a left-truncated cohort. The computation speed in Scenario 1 was
computed as the average of 10 simulations, whereas the simulations in Scenario 2–5
were performed with 10, 000 replications.

Scenario 1. Consider pZ = 0.5, unexposed type 1 risk β0 = 0.20, risk difference
between exposed and unexposed β1 = 0.20, risk of competing events η = 0.20
and 20% observed censored outcomes poc = 0.20. We compare implementations
of the pseudo-observation method in the software program R on a PC with 16 GB
ram and Intel Xeon 2.6 GHz processor for sample sizes between n = 1000 and
20, 000, with 10 replications. The first simple implementation used a package (here
the package prodlim) for computing the cumulative incidence for the whole sample
and for each leave-one-out samples. This implementation illustrates how pseudo-
observations can be calculated using standard statistical software with a loop over
all observations, and serves as the reference implementation. The first package in R
that presented a more efficient implementation was the package pseudo based on
matrix computations. The largest data set that was possible to run using the pseudo
package on a PCwaswith n = 11, 000 observation due to the use of a high dimensional
matrix. Another implementation was done in the package prodlim, where much of
the coding is in C++ using the R package Cpp. The package survival has an
implementation of infinitesimal jack-knife residuals. Finally, an implementation of
the proposed infinitesimal jack-knife pseudo-observations. In the set-up used in the
current scenario and a sample size of n = 1000, we found the largest difference
between the two implementation of infinitesimal jack-knife observations to be less
than 10−14. The implementation using the package pseudo was only performed for
n smaller than or equal to 10,000. Compared to the simple implementation, all other
implementation were considerably faster (Fig. 1). The proposed implementation of
infinitesimal jack-knife pseudo-observations was the fasted implementation.

Scenario 2. Consider pZ = 0.5, unexposed type 1 risk β0 = 0.20, risk difference
between exposed and unexposed β1 = 0.10, 0.55, risk of competing events η = 0.20
and 20% observed censored outcomes poc = 0.20, 0.50. We varied the number of
observations n = 100, 200, 500, 1000 respectively n = 200, 400, 1000, 2000 for
risk difference 0.10 and 0.55, by which we obtained a compatible number of at risk
at time 1. In all simulation scenarios, the average number of events was larger than
the minimum 10 event per predictor variable suggested in Hansen et al. (2014) for
risk differences. The smallest average number of 1-events was in the scenario with
n = 100, β1 = 0.10, poc = 0.50, where the average number of events was 17. Table 1
presents

√
n times the standard deviation of β̂1 based on 10, 000 replications (SDRD)

using both the infinitesimal jack-knife and standard jack-knife pseudo-observations
and the average standard error using theHuber–White robust variance estimate (SeHW),
the asymptotic variance estimate (Se�) derived from (5) and the bootstrap variance
(SeBoot), where the latter was computed with 1000 bootstrap replications. Overall,
the variance estimates worked well. However, when the risk difference is large and
the censoring rate is moderate, the Huber–White variance estimate is a few percent
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Fig. 1 Computational speed in calculating the pseudo-observations on a standard PC. The y-axis uses a
log10-scale. Infinitesimal is the proposed implementation of infinitesimal jack-knife pseudo-observations

Table 1 Medium and large sample properties of jack-knife and infinitesimal jack-knife pseudo-observations
in a cohort without left-truncation

Jack-knife Infinitesimal jack-knife
poc β1 n Bias

√
nSDRD

√
nSeHW

√
nSe� Bias

√
nSDRD

√
nSeHW

√
nSeBoot

0.20 0.10 100 0.001 0.942 0.925 0.920 0.001 0.940 0.923 0.925

0.20 0.10 200 0.000 0.927 0.929 0.926 0.000 0.926 0.928 0.928

0.20 0.10 500 0.001 0.920 0.931 0.929 0.001 0.920 0.930 0.930

0.20 0.10 1000 −0.000 0.928 0.931 0.930 −0.000 0.928 0.931 0.930

0.20 0.55 200 0.001 0.930 0.958 0.917 −0.000 0.929 0.956 0.920

0.20 0.55 400 0.000 0.925 0.959 0.919 −0.000 0.928 0.959 0.923

0.20 0.55 1000 0.001 0.929 0.959 0.920 0.000 0.932 0.959 0.923

0.20 0.55 2000 0.000 0.913 0.959 0.920 0.000 0.916 0.960 0.924

0.50 0.10 100 0.001 1.139 1.118 1.090 −0.000 1.126 1.105 1.095

0.50 0.10 200 0.001 1.128 1.117 1.102 0.001 1.121 1.110 1.104

0.50 0.10 500 −0.000 1.130 1.116 1.108 −0.000 1.127 1.113 1.109

0.50 0.10 1000 0.000 1.125 1.117 1.113 −0.000 1.124 1.116 1.113

0.50 0.55 200 −0.001 1.238 1.355 1.192 −0.007 1.220 1.335 1.201

0.50 0.55 400 0.001 1.213 1.346 1.199 −0.002 1.205 1.337 1.203

0.50 0.55 1000 0.000 1.210 1.339 1.202 −0.001 1.207 1.336 1.203

0.50 0.55 2000 −0.000 1.219 1.338 1.203 −0.001 1.218 1.336 1.203

to high. When both the risk difference is large and the censoring rate is large, the
Huber–White variance estimate is too high compared to both the asymptotic and the
bootstrap variance. This is in accordance with the simulations and theory of Overgaard
et al. (2018).
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Table 2 Infinitesimal jack-knife pseudo-observation and inverse probability censoringweighting in a cohort
without left-truncation. Eff denotes the relative efficiency between the pseudo-observation and IPCW
method

Infinitesimal jack-knife IPCW
p0 β1 poc SDRD SDRD Eff

0.10 0.05 0.10 0.0068 0.0068 0.997

0.10 0.05 0.30 0.0074 0.0075 0.990

0.10 0.05 0.60 0.0089 0.0090 0.982

0.10 0.20 0.10 0.0080 0.0081 0.993

0.10 0.20 0.30 0.0087 0.0089 0.981

0.10 0.20 0.60 0.0108 0.0112 0.966

0.10 0.50 0.10 0.0084 0.0087 0.976

0.10 0.50 0.30 0.0095 0.0101 0.938

0.10 0.50 0.60 0.0128 0.0145 0.885

0.20 0.05 0.10 0.0087 0.0087 0.993

0.20 0.05 0.30 0.0095 0.0097 0.979

0.20 0.05 0.60 0.0117 0.0122 0.964

0.20 0.20 0.10 0.0092 0.0093 0.989

0.20 0.20 0.30 0.0102 0.0106 0.967

0.20 0.20 0.60 0.0132 0.0141 0.938

0.20 0.50 0.10 0.0090 0.0093 0.966

0.20 0.50 0.30 0.0102 0.0113 0.905

0.20 0.50 0.60 0.0148 0.0177 0.837

Scenario 3. We now compared the infinitesimal jack-knife pseudo-observations
to inverse probability of censoring weighting using only the first part of (7). Con-
sidering the unexposed type 1 risk β0 = 0.10, 0.20, the risk difference was β1 =
0.05, 0.20, 0.50, risk of competing events was η = 0.20, the percent of observed
censored outcomes was poc = 0.10, 0.30, 0.60 and n = 10, 000. There appears to
be an efficiency gain using pseudo-observations as compared to inverse probability of
censoring weighting when the risk difference is high and there is a large fraction of
censored observations (Table 2). Similarly, in a simulation study, Binder et al. (2014)
found a smaller variance of the jack-knife pseudo-observationmethodwhen compared
to direct binomial regression of Scheike et al. (2008) for risk regression over time.

Scenario 4.We turn to the medium and large sample properties for the infinitesimal
jack-knife pseudo-observation method under left-truncation in the same setting of the
complete cohort as in Scenario 1. We considered a left-truncation time with mass
20% at zero and otherwise uniform on the interval (0, 1). The left-truncation time
was simulated independently of (C, T ,�, Z). Again, overall both variance estimates
worked well (Table 3). Similar to Scenario 2, when the risk difference is high and
the censoring rate is moderate the Huber–White variance estimate is a few percent to
high, whereas when both the risk difference is high and the censoring rate is high, the
Huber–White variance estimate is too high as compared to both the asymptotic and
the bootstrap variance.
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Table 3 Medium and large sample properties of the infinitesimal jack-knife pseudo-observation method in
a cohort with left-truncation

Infinitesimal jack-knife
poc n β1 Bias

√
nSDRD

√
nSeHW

√
nSeBoot

0.20 100 0.10 0.001 1.08 1.04 1.05

0.20 200 0.10 0.000 1.07 1.06 1.06

0.20 500 0.10 −0.000 1.07 1.07 1.06

0.20 1000 0.10 −0.000 1.07 1.07 1.07

0.20 200 0.55 0.000 1.02 1.04 1.00

0.20 400 0.55 −0.000 1.00 1.04 1.00

0.20 1000 0.55 −0.000 1.01 1.04 1.00

0.20 2000 0.55 0.000 0.99 1.04 1.00

0.50 100 0.10 0.000 1.13 1.13 1.12

0.50 200 0.10 −0.000 1.14 1.13 1.13

0.50 500 0.10 −0.000 1.15 1.13 1.13

0.50 1000 0.10 −0.000 1.13 1.14 1.13

0.50 200 0.55 −0.002 1.14 1.25 1.14

0.50 400 0.55 −0.002 1.15 1.25 1.14

0.50 1000 0.55 0.000 1.15 1.25 1.13

0.50 2000 0.55 −0.001 1.11 1.25 1.13

Scenario 5. In this scenario we compared the jack-knife and infinitesimal jack-
knife pseudo-observations under left-truncation.We considered covariate distributions
pZ = 0.20, 0.50, 0.80, unexposed type-1 risk β0 = 0.10, 0.20, risk difference β1 =
0.20, 0.40, 0.60, risk of competing events η = 0.20, poc = 0.20 in the complete
cohort, n = 10, 000 and the same truncation distribution as in Scenario 3. The results
in Table 4 showed small bias for the jack-knife pseudo-observationswhen the covariate
distribution is symmetric (pZ = 0.5). However, when the covariate distribution is not
symmetric a significant bias arose. A symmetric covariate distribution was used in
simulations in Grand et al. (2019), Shen (2021) and may explain why the bias was
not picked up in their simulations. Due to the large sample size (n = 10, 000) and
the high number of replications (10, 000), the infinitesimal jack-knife had the correct
average estimate up to 3 decimals in all scenarios.

4 Example using data on Danish patients with diabetes

We used data on Danish patients with diabetes (Green et al. 1981) that was used in
Grand et al. (2019) to illustrate the use of standard jack-knife pseudo-observations
under left-truncation. Due to the General Data Protection Regulation (GDPR), all
time variables registered in years in the current data set were set to integers. From the
entire population of the county of Funen in Denmark on July 1, 1973, a total of 1499
were identified with diabetes. The purpose of the study was to estimate mortality risk
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Table 4 Bias of the jack-knife
and infinitesimal jack-knife
pseudo-observations in a cohort
with left-truncation

Jack-knife Infinitesimal jack-knife
p0 β1 pZ Ave β̂1 Ave β̂1

0.10 0.20 0.20 0.210 0.200

0.10 0.20 0.50 0.200 0.200

0.10 0.20 0.80 0.191 0.200

0.10 0.40 0.20 0.443 0.400

0.10 0.40 0.50 0.403 0.400

0.10 0.40 0.80 0.363 0.400

0.10 0.60 0.20 0.707 0.600

0.10 0.60 0.50 0.610 0.600

0.10 0.60 0.80 0.517 0.600

0.20 0.20 0.20 0.211 0.200

0.20 0.20 0.50 0.200 0.200

0.20 0.20 0.80 0.190 0.200

0.20 0.40 0.20 0.445 0.400

0.20 0.40 0.50 0.403 0.400

0.20 0.40 0.80 0.362 0.400

0.20 0.60 0.20 0.711 0.600

0.20 0.60 0.50 0.611 0.600

0.20 0.60 0.80 0.515 0.600

from the time of diagnosis. Hence, the time scale was time in years from diagnosis
until death or censoring (January 1, 1982). The entry time was the time from date of
diagnosis until study start (July 1, 1973). Grand et al. (2019) quantified the effect of sex
and age at diagnosis on mortality rates using the standard pseudo-observation method
and the Cox partial likelihood method. Here, we illustrated the use of infinitesimal
jack-knife pseudo-observations to analyse the 30-year cumulative mortality risk for
patients diagnosed before 60 years using data on patients with entry before 29 years
after diagnosis, leaving 1,216 patients with a median entry of 12 years for analysis.We
focused on the comparison of cumulative mortality risk between males and females
and compared the results to the standard jack-knife pseudo-observation method. The
distribution of the infinitesimal jack-knife pseudo-observations is shown in Fig. 2.
The presented Wald confidence intervals and statistical tests are computed using the
Huber-White variance.

The infinitesimal jack-knife pseudo-observation method estimated a 30-year mor-
tality risk for females of 59.5% (52.6−67.2%) and a relative risk for males compared
to females of 0.96 (0.82−1.13). The results are similar to estimates from the stan-
dard jack-knife pseudo-observation method of 59.9% (95% CI 53.5−67.1%) and
0.99 (0.85−1.16) and in agreement with the Aalen–Johansen estimates of the 30-
year mortality risk for females of 60.2% (95% CI 53.7−66.6%) and for males of
59.7% (52.7−66.7%). Including sex and age at diagnosis as a continuous variable in
a log-linear model resulted in the estimates in Table 5. The baseline risk of females
and the age at diagnosis relative risks were in agreement between the two methods,
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Fig. 2 Distribution of the
infinitesimal jack-knife
pseudo-observations
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Table 5 Baseline risk for females diagnosed at 40 years and relative risk (RR) for males compared to
females and one-year difference in age at diagnosis using the infinitesimal jack-knife and jack-knife pseudo-
observation method

Infinitesimal jack-knife Jack-knife
Estimate P value Estimate P value

Females (risk) 0.65 (0.57−0.72) <0.001 0.65 (0.58−0.72) <0.001

Males vs. females (RR) 1.03 (0.90−1.19) 0.64 1.16 (0.98−1.36) 0.078

Age at diagnosis (RR) 1.04 (1.03−1.04) <0.001 1.03 (1.03−1.04) <0.001

but some difference was seen in the female/male relative risk, which may be due to
the bias in the standard jack-knife pseudo-observation method.

5 Discussion

We suggested using infinitesimal jack-knife pseudo-observations for regression
analysis and showed that they are asymptotically equivalent to jack-knife pseudo-
observations. The infinitesimal jack-knife pseudo-observations are faster to compute,
making the non-parametric bootstrap attractive for variance estimation. We explained
why the core assumption on the influence function of the base estimate is needed for
unbiased inference. We then showed that the condition on the influence function of
the Kaplan–Meier base estimate is not satisfied for a left-truncated cohort and pre-
sented a modification of the infinitesimal jack-knife pseudo-observations that together
with sampling weights applied to the estimating equation yielding unbiased estimates
of the regression parameters. Similar infinitesimal jack-knife pseudo-observations
were implemented for the Kaplan–Meier estimate, the Aalen–Johansen estimate
and general multi-state models in the R package survival (Therneau 2021).
With left-truncation, the package currently computes the infinitesimal jack-knife
pseudo-observations and not the proposed modified infinitesimal jack-knife pseudo-
observations. The example of a left-truncated cohort illustrates that the condition on
the influence function of the base estimate limits the base estimates that can be used
with the pseudo-observationmethod.We conjecture that the condition on the influence
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function may not be satisfied in other applications of pseudo-observations described
in the literature.

The pseudo-observation method in the presented basic form assumes that the cen-
soring is independent of the time-to-event data and covariates. The method can be
modified to censoring that depending on covariates by stratifying the calculation of
the pseudo-observations (Andersen andPoharPerme2010) or using a regressionmodel
for the censoring event rate (Binder et al. 2014; Xiang and Murray 2012; Overgaard
et al. 2019).

A central property of the proposed modification of the infinitesimal jack-knife
pseudo-observationmethod is that it avoidsmodelling the truncation probability P(v ≤
T |Z), for v smaller than the time point of interest t , which is necessary in the approach
of Li and Peng (2014). The proposed method separates the modelling of the event
distribution and the left-truncation distribution. This is similar to the approach in
Zhang et al. (2011), where weights were applied to elements in the score equation
for the Fine–Gray subdistribution hazard regression model. A similar approach for
the Fine–Gray regression model was used in Geskus (2011) and for direct regression
models for the restricted mean survival time in Cortese et al. (2017) using inverse
probability weighting of both censoring and left-truncation. Both the approach of
Geskus (2011) and Cortese et al. (2017) do not assume independence of the truncation
time and censoring time. It is a limitation of the proposed infinitesimal jack-knife
pseudo-observation method that the truncation time and censoring time are assumed
to be independent.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-023-09597-5.
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