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Abstract
The classical approach to analyze time-to-event data, e.g. in clinical trials, is to fit
Kaplan–Meier curves yielding the treatment effect as the hazard ratio between treat-
ment groups.Afterwards, a log-rank test is commonlyperformed to investigatewhether
there is a difference in survival or, depending on additional covariates, a Cox propor-
tional hazard model is used. However, in numerous trials these approaches fail due to
the presence of non-proportional hazards, resulting in difficulties of interpreting the
hazard ratio and a loss of power. When considering equivalence or non-inferiority tri-
als, the commonly performed log-rank based tests are similarly affected by a violation
of this assumption. Here we propose a parametric framework to assess equivalence
or non-inferiority for survival data. We derive pointwise confidence bands for both,
the hazard ratio and the difference of the survival curves. Further we propose a test
procedure addressing non-inferiority and equivalence by directly comparing the sur-
vival functions at certain time points or over an entire range of time. Once the model’s
suitability is proven the method provides a noticeable power benefit, irrespectively of
the shape of the hazard ratio. On the other hand, model selection should be carried
out carefully as misspecification may cause type I error inflation in some situations.
We investigate the robustness and demonstrate the advantages and disadvantages of
the proposed methods by means of a simulation study. Finally, we demonstrate the
validity of the methods by a clinical trial example.

Keywords Equivalence · Non-inferiority · Non-proportional hazards · Survival
analysis · Time-to-event data

B Kathrin Möllenhoff
kathrin.moellenhoff@hhu.de

1 Mathematical Institute, Heinrich Heine University, 40225 Düsseldorf, Germany

2 Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of
Cologne, Cologne, Germany

3 CEDAD, University of Cologne, Cologne, Germany

4 Center for Data and Simulation Science, University of Cologne, Cologne, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10985-023-09589-5&domain=pdf
http://orcid.org/0000-0001-7861-3892


484 K. Möllenhoff, A. Tresch

1 Introduction

Time-to-event outcomes are frequently observed in medical research, for instance in
the area of oncology or cardiovascular diseases. A commonly addressed issue is the
comparison of a test to a reference treatment with regard to survival (see Kudo et al.
(2018) and Janda et al. (2017) among many others). For this purpose an analysis
based on Kaplan-Meier curves (Kaplan and Meier 1958), followed by a log-rank test
(Kalbfleisch and Prentice 2011) or a modified log-rank test (see, for example, Peto and
Peto 1972 and Yang and Prentice 2010) is still the most popular approach. Further,
in order to investigate treatment difference over time, simultaneous confidence bands
for the difference of two survival curves have been considered (Parzen et al. 1997).
Additionally, adjusting formultiple covariates, Cox’s proportional hazardsmodel (Cox
1972) has been extensively used in the last decades (for some examples see Cox and
Oakes (1984) and Klein and Moeschberger (2006) among many others). In case of
addressing non-inferiority or equivalence, extensions of the log-rank test investigating
the vertical distance between the survival curves have been proposed byWellek (1993)
and Com-Nougue et al. (1993). These approaches owe much of their popularity to the
fact that they do not rely on assumptions on the distribution of event times. Moreover,
a direct interpretation is obtained by summarizing the treatment effect in one single
parameter, given by the hazard ratio of the two treatments, assumed to be constant
over time.

However, this assumption has been heavily criticized (Hernán 2010; Uno et al.
2014) and is in practice rarely assessed or even obviously violated (Li et al. 2015;
Jachno et al. 2019). In particular, if the two treatments’ short- and long-term benefits
differ, for instance,when surgical treatment is compared to a non-surgical one (Howard
et al. 1997), the assumption of proportional hazards is questionable. The most obvious
sign of a violation of this assumption is crossing survival curves. However, graphical
methods (Grambsch and Therneau 1994) or statistical tests (Gill and Schumacher
1987) are often needed to detect non-proportional hazards.

One of the advantages of the standard methodology based on Kaplan–Meier curves
and the log-rank test is that equivalence hypotheses can be formulated using one
parameter, the hazard ratio. If this relationship changes over time, both an alternative
measure of treatment effect and an appropriate definition of equivalencemust be found.
For instance, Royston and Parmar (2011) introduce the restricted mean survival time
to overcome this issue. Another non-parametric measure comparing survival times
from two groups for right-censored survival data is the Mann–Whitney effect (Dobler
and Pauly 2018). Regarding different test procedures, one alternative to commonly
used log-rank based tests of equivalence has been proposed by Martinez et al. (2017).
These authors show that type I errors for the classical log-rank test are higher than the
nominal level if hazards are non-proportional. They present an alternative based on a
proportional odds assumption yielding a robust α-level test in this setting. In situations
where neither hazards nor odds are proportional, Shen (2020) recently proposed an
alternative test for equivalence based on a semiparametric log transformation model.
Finally, having reviewed the most recent two-armed clinical oncology trials, Dormuth
et al. (2022) give a user-friendly overview of which test to use when survival curves
cross.
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Methods using parametric survival models are less common than the semipara-
metric or non-parametric methods mentioned above. However, a correctly specified
parametric survival model offers numerous advantages, such as more accurate esti-
mates (Klein and Moeschberger 2006) and the ability to make predictions. Inference
based on parametric models can be very precise even in case of misspecification, as
demonstrated by Subramanian and Zhang (2013), who develop simultaneous con-
fidence bands for parametric survival curves and compare them to non-parametric
approaches based on Kaplan–Meier estimates.

In this paper, we develop a new methodology in two directions. We address the
issue of non-inferiority and equivalence testing by presenting a parametric alternative
to the classical methodology, without assuming proportional hazards. First, we derive
pointwise confidence bands for the difference of two survival curves and the hazard
ratio over time, by using asymptotic inference and a bootstrap approach. Second, we
use these confidence bands to assess equivalence or non-inferiority of two treatments
for both pointwise comparisons and for entire time intervals. A similar approach has
been proposed by Liu et al. (2009) and Bretz et al. (2018), who derive such confidence
bands for assessing the similarity of dose-response curves. Finally, all our methods
are illustrated by a clinical trial example and by means of a simulation study, where
we also investigate the robustness of our approach.

2 Methods

Consider two samples of size n1 and n2 respectively, resulting in a total sample size of
n = n1+n2. Let Y1,1, . . . ,Y1,n1 and Y2,1, . . . ,Y1,n2 denote independent random vari-
ables representing survival times for individuals allocated to two (treatment) groups,
observing a time range given byT = [0, tmax ], where 0 denotes the start of the obser-
vations and tmax a fixed time point of last follow-up. Assume that the distribution
functions F1 and F2 of Y1, j , j = 1, . . . , n1 and Y2, j j = 1, . . . , n2, respectively,
are absolutely continuous with densities f1 resp. f2. Consequently the probability of
experiencing an event for an individual j of the �-th sample before time t can bewritten
as F�(t) = P(Y�, j < t) = ∫ t

0 f�(u)du, � = 1, 2. Further denote the corresponding

survival functions by S� := 1 − F� and the hazard rates by h� := f�
S�
. The cumulative

hazard function is given by H�(t) = − log(S(t)), � = 1, 2.
For the sake of simplicity we do not assume additional covariates. Further, in

addition to a fixed end of the study, we assume all observations to be randomly right-
censored and denote the censoring times of the two samples by C1,1, . . . ,C1,n1 and
C2,1, . . . ,C2,n2 and the corresponding distribution functions by G1 and G2 respec-
tively. Note that these distributions can differ from each other and are assumed to be
independent from theY�, j , � = 1, 2, j = 1, . . . n�.Wedefine��, j = I {Y�, j ≥ C�, j },
indicating whether an individual is censored (��, j = 0) or experiences an event
(��, j = 1), where I denotes the indicator function. Consequently the observed
data (t�, j , δ�, j ) is a realization of the bivariate random variable (T�, j ,��, j ), where
T�, j = min(Y�, j ,C�, j ), � = 1, 2, j = 1, . . . n�. In order to make inference on the
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486 K. Möllenhoff, A. Tresch

underlying distributions we consider the likelihood function for group � given by

L�(F�,G�) =
n�∏

j=1

{
f�(t�, j )

δ�, j (1 − F�(t�, j ))
1−δ�, j

}

n�∏

j=1

{
(1 − G�(t�, j ))

δ�, j (g�(t�, j ))
1−δ�, j

}
(1)

as censoring times and survival times are assumed to be independent. Hence we can
obtain estimates for the densities f�(t) = f�(t, θ�) of the distributions of the survival
times and densities g�(t) = g�(t, ψ�) corresponding to the censoring distributions by
deriving the parameters θ̂� and ψ̂� maximizing log L�, � = 1, 2. Note that if one is
not interested in estimating the underlying distribution of the censoring times, this
optimization procedure can be further simplified by just considering the first part in
(1), resulting in an objective function given by

L̃�(θ�) =
n�∏

j=1

{
f�(t�, j , θ�)

δ�, j (1 − F�(t�, j , θ�))
1−δ�, j

}
, � = 1, 2, (2)

as θ� and ψ� have no common parameters.

2.1 Confidence bands

In the following we will construct pointwise confidence bands for the difference of
the survival functions and for the hazard ratio. First we derive an asymptotic approach
using the Delta-method (Oehlert 1992) and second, we propose an alternative based
on a bootstrap procedure. The latter can also be used when samples are very small
or if asymptotic inference is impossible due to the lack of an explicit expression for
the asymptotic variance of the maximum likelihood estimator (MLE) obtained by
maximizing (1) or (2), respectively. In order to simplify calculations, we will consider
the log-ratio and therefore the two measures of interest are given by

�(t, θ1, θ2) := S1(t, θ1) − S2(t, θ2) and r(t, θ1, θ2) := log h1(t,θ1)
h2(t,θ2)

. (3)

Under certain regularity conditions (Bradley and Gart 1962) the MLE θ̂�, � = 1, 2, is
asymptotically normally distributed. Precisely,

√
n�

(
θ̂� − θ�

) D−→ N (0,I −1
θ�

), � = 1, 2,

whereI −1
θ�

denotes the inverse of the Fisher information matrix, � = 1, 2. This result
can be used to make inference about the asymptotic distribution of the estimated
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survival curves. Using the Delta-method we obtain for every t > 0

√
n�

(
S�(t, θ̂�) − S�(t, θ�)

) D−→ N (0, ∂
∂θ�

S�(t, θ�)
TI −1

θ�

∂
∂θ�

S�(t, θ�)), � = 1, 2.

Consequently, the asymptotic variance of �(t, θ̂1, θ̂2) is given by

σ 2
� = 1

n1
∂

∂θ1
S1(t, θ1)

TI −1
θ1

∂
∂θ1

S1(t, θ1) + 1
n2

∂
∂θ2

S2(t, θ2)
TI −1

θ2
∂

∂θ2
S2(t, θ2). (4)

By replacing θ� by its estimate θ̂� and I −1
θ�

by the observed information matrix I
θ̂�
,

� = 1, 2, a consistent estimator σ̂ 2
� of the asymptotic variance in (4) is obtained

(Bradley and Gart 1962). For sufficiently large samples this asymptotic result can be
used to construct pointwise lower and upper (1 − α)-confidence bands, respectively,
by

L�(t, θ̂1, θ̂2) = �(t, θ̂1, θ̂2) − z1−ασ̂� and U�(t, θ̂1, θ̂2) = �(t, θ̂1, θ̂2) + z1−ασ̂�,

(5)

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. More
precisely, if L(t) andU (t) denote the (1−α) pointwise lower and the (1−α) pointwise
upper confidence band, respectively, it holds

lim
n1,n2→∞P

(
L�(t, θ̂1, θ̂2) ≤ �(t, θ1, θ2)

) ≥ 1 − α,

lim
n1,n2→∞P

(
�(t, θ1, θ2) ≤ U�(t, θ̂1, θ̂2)

) ≥ 1 − α (6)

for all t > 0, where α denotes the prespecified significance level. The construction of
pointwise confidence bands for the log hazard ratio is done similarly, and an estimate
of the asymptotic variance of r(t, θ̂1, θ̂2) is given by

σ̂ 2
r = 1

n1
· ∂

∂θ1
log h1(t, θ̂1)

T
I−1
θ1

∂
∂θ1

log h1(t, θ̂1)

+ 1
n2

· ∂
∂θ2

log h2(t, θ̂2)
T
I−1
θ2

∂
∂θ2

log h2(t, θ̂2). (7)

Consequently Lr and Ur are given by

Lr (t, θ̂1, θ̂2) = r(t, θ̂1, θ̂2) − z1−ασ̂r , Ur (t, θ̂1, θ̂2) = r(t, θ̂1, θ̂2) + z1−ασ̂r . (8)

A concrete numerical example for calculating the estimates σ̂ 2
� and σ̂ 2

r and the cor-
responding confidence bands assuming a Weibull distribution are deferred to Section
A2 of the Appendix. If sample sizes are rather small or the variability in the data is
high, we propose to obtain estimates for the variances σ̂ 2

� and σ̂ 2
r by using a bootstrap

approach, taking the right-censoring into account. This method can also be used if a
formula for the asymptotic variance is not obtainable, for instance due to numerical
difficulties. The following algorithm explains the procedure for �(t0, θ1, θ2) and it
can directly be adapted to r(t0, θ1, θ2).
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Algorithm 1 (Parametric) Bootstrap Confidence Bands for �(t0, θ1, θ2).

1. Calculate the MLE θ̂� and ψ̂�, � = 1, 2, from the data by maximizing (1).
2a. Generate survival times y∗

�,1, . . . , y
∗
�,n�

from F�(θ̂�), � = 1, 2. Further generate the
corresponding censoring times c∗

�,1, . . . , c
∗
�,n�

by sampling from the distributions

G�(ψ̂�), � = 1, 2. If y∗
�, j > c∗

�, j , the observation is censored (i.e. δ∗
�, j = 0),

j = 1, . . . , n�. The observed data is given by (t∗�, j , δ∗
�, j ), t

∗
�, j = min(y∗

�, j , c
∗
�, j ),

j = 1, . . . , n�, � = 1, 2.
2b. CalculateMLE θ̂∗

� for the bootstrap sample from the t∗�, j , j = 1, . . . , n�, � = 1, 2,
and calculate the difference of the corresponding survival functions at t0, that is

�∗ := �(t0, θ̂
∗
1 , θ̂∗

2 ) = S1(t0, θ̂
∗
1 ) − S2(t0, θ̂

∗
2 ). (9)

3. Repeating steps 2a and 2b nboot times yields�∗
1, . . . ,�

∗
nboot . Calculate an estimate

for the variance σ̂ 2
� by

σ̂ 2
� = 1

nboot − 1

nboot∑

k=1

(�∗
k − �̄∗)2, (10)

where �̄∗ denotes the mean of the �∗
i , i = 1, . . . , nboot .

Finally the estimate σ̂ 2
� in (10) is used to calculate the confidence band in (5). The

procedure described in Algorithm 1 is a parametric bootstrap based on estimating
the parameters θ̂�, ψ̂�, � = 1, 2. A non-parametric alternative, given by resampling
the observations, could also be implemented (Efron 1981; Akritas 1986). However,
it has been shown that the parametric bootstrap tends to be more accurate if the
underlying parametric model is correctly specified (Efron and Tibshirani 1994). Note
that the asymptotic inference approach to obtaining confidence bands does not require
estimating the censoring distributions. Consequently, the MLE θ̂� can be obtained by
maximizing the likelihood function L̃� in Eq. (2), � = 1, 2. On the other hand, the
bootstrap proposed in Algorithm 1 requires additional estimation of the censoring
distributions and therefore requires the more involved maximization of Eq. (1).

2.2 Equivalence and non-inferiority tests

We are aiming to compare the survival functions of two (treatment) groups which is
commonly addressed by testing the null hypothesis that the two survival functions are
identical against the alternative hypothesis that the survival functions differ at least
at a single time point (for a review, see, e.g., Klein and Moeschberger 2006). More
precisely the classical hypotheses are given by

H0 : S1(t, θ1) = S2(t, θ2) for all t ∈ T against H1 : S1(t, θ1) 	= S2(t, θ2) for a t ∈ T .

Sometimes one is more interested in observing the non-inferiority of one treatment to
another or the equivalence of the two treatments, meaning that we allow a deviation
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of the survival curves of a prespecified threshold instead of testing for equality. This
can be done for a particular point in time or over an entire interval, for example the
whole observational period.

2.2.1 Comparing survival for one particular point in time

We start by considering the difference in survival at a particular point in time t0. The
corresponding hypotheses are then given by

H0 : S1(t0, θ1) − S2(t0, θ2) ≥ δ against H1 : S1(t0, θ1) − S2(t0, θ2) < δ (11)

for a non-inferiority trial observingwhether a test treatment is non-inferior to the refer-
ence treatment (which is stated in the alternative hypothesis). Considering equivalence,
we test

H0 : |S1(t0, θ1) − S2(t0, θ2)| ≥ δ against H1 : |S1(t0, θ1) − S2(t0, θ2)| < δ. (12)

The same questions can be addressed considering the (log) hazard ratio, resulting in
the hypotheses analogue to (11) given by

H0 : log h1(t0,θ1)
h2(t0,θ2)

≥ ε against H1 : log h1(t0,θ1)
h2(t0,θ2)

< ε (13)

for a non-inferiority trial and

H0 :
∣
∣
∣log h1(t0,θ1)

h2(t0,θ2)

∣
∣
∣ ≥ ε against H1 :

∣
∣
∣log h1(t0,θ1)

h2(t0,θ2)

∣
∣
∣ < ε (14)

for addressing equivalence. The choice of the margins δ > 0 and ε > 0 has to be
verified in advance with great care combining statistical and clinical expertise. From
a regulatory point of view there is no fixed rule but general advice can be found in a
guideline of the EMA (2014). Following recent literature, margins δ for the survival
difference are frequently chosen between 0.1 and 0.2 (D’Agostino Sr et al. 2003;
Da Silva et al. 2009; Wellek 2010).

In the following,wewill only consider the hypotheses in Eqs. (11) and (12) referring
to the difference of the survival curves; a similar procedure can be applied for testing
the hypotheses in Eqs. (13) and (14), respectively. Therefore, we use the confidence
bands derived in Eq. (5) for defining an asymptotic α-level test for (11). The null
hypothesis in Eq. (11) is rejected and non-inferiority is claimed if the upper bound of
the confidence band is below the margin, that is

U�(t0, θ̂1, θ̂2) ≤ δ. (15)

Further, an equivalence test for the hypotheses in Eq. (12) is defined by rejecting H0
whenever

U�(t0, θ̂1, θ̂2) ≤ δ and L�(t0, θ̂1, θ̂2) ≥ −δ. (16)
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490 K. Möllenhoff, A. Tresch

Note that according to the intersection–union-principle (Berger 1982), the (1 −
α)-confidence bands L�(t0, θ̂1, θ̂2) and U�(t0, θ̂1, θ̂2) are used for both, the non-
inferiority and the equivalence test. The following lemma states that this yields an
asymptotic α-level test.

Lemma 1 The test described in Eq. (16) yields an asymptotic α-level equivalence tests
for the hypotheses in Eq. (12). More precisely it holds for all t0 ∈ T

lim
n1,n2→∞PH0(U�(t0, θ̂1, θ̂2) ≤ δ, L�(t0, θ̂1, θ̂2) ≥ −δ) ≤ α.

The proof is left to Section A1 of the Appendix.

2.2.2 Comparing survival over an entire period of time

From a practical point of view there are situations where it might be interesting
to compare survival not only at one particular point in time but over an entire
period of time [t1, t2], which could also be the entire observation period T . This
means that for instance the null hypothesis in Eq. (12) is extended to investigating
|S1(t, θ1) − S2(t, θ2)| ≥ δ for all t in [t1, t2]. This yields the hypotheses

H̃0 : max
t∈[t1,t2]

|S1(t, θ1) − S2(t, θ2)| ≥ δ against H̃1 : max
t∈[t1,t2]

|S1(t, θ1) − S2(t, θ2)| < δ

(17)

and a similar extension can be formulated for the non-inferiority test (11) and the tests
on the hazard ratio stated in Eqs. (13) and (14), respectively. In this case we conduct
a test as defined in Eq. (16) on each time point in the observational period and reject
the null hypothesis in Eq. (17) if each pointwise null hypothesis as stated in (12) is
rejected. Consequently, this means that the null hypothesis H̃0 in Eq. (17) is rejected
if for all t in [t1, t2], the confidence bands L�(t, θ̂1, θ̂2) and U�(t, θ̂1, θ̂2) derived in
(5) are included in the equivalence region [−δ, δ], which can be also formulated as

− δ ≤ min
t∈[t1,t2]

L�(t, θ̂1, θ̂2) and max
t∈[t1,t2]

U�(t, θ̂1, θ̂2) ≤ δ. (18)

In order to prove that this yields an asymptotic α-level test, we first note that
the rejection region of H̃0 in Eq. (17) is the intersection of the rejection regions
of the two sub-hypotheses H̃1

0 : maxt∈[t1,t2] S1(t, θ1) − S2(t, θ2) ≥ δ and H̃2
0 :

mint∈[t1,t2] S1(t, θ1) − S2(t, θ2) ≤ −δ. Again, due to the intersection–union-principle
(Berger 1982), it is therefore sufficient to show that each of these individual tests is an
asymptotic α-level test. Without loss of generality we consider the non-inferiority test,
where we reject the null hypothesis H̃1

0 if maxt∈[t1,t2] U�(t, θ̂1, θ̂2) ≤ δ. Denoting by
t̃ the point in [t1, t2] with maxt∈[t1,t2] �(t, θ1, θ2) = �(t̃, θ1, θ2) yields
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PH̃1
0
( max
t∈[t1,t2]

U�(t, θ̂1, θ̂2) ≤ δ)

= PH̃1
0
( max
t∈[t1,t2]

U�(t, θ̂1, θ̂2) − �(t̃, θ1, θ2) ≤ δ − �(t̃, θ1, θ2))

≤ P( max
t∈[t1,t2]

U�(t, θ̂1, θ̂2) ≤ �(t̃, θ1, θ2))

and as maxt∈[t1,t2] U�(t, θ̂1, θ̂2) ≥ U�(t̃, θ̂1, θ̂2) the assertion follows with (6).
Of note, this result also implies that the construction of simultaneous confidence

bands, which are wider than pointwise ones and hence would result in a more conser-
vative test, is not necessary.

3 Finite sample properties

In the following we will investigate the finite sample properties of the proposed meth-
ods by means of a simulation study. Survival times are distributed according to a
Weibull distribution and a log-logistic distribution, respectively, where the latter sce-
nario will be used for investigations on the robustness of the approach. We assume
(randomly) right-censored observations in combination with an administrative censor-
ing time in both scenarios.All results are obtained by running nsim = 1000 simulations
and nboot = 500 bootstrap repetitions. For all three scenarios we will calculate confi-
dence bands for both the difference of the survival curves and the log hazard ratio and
observe their coverage probabilities. For the difference of the survival curves, we will
investigate the tests on non-inferiority and equivalence proposed in Eqs. (15), (16)
and (18), respectively. For this purpose we will vary both, the particular time point
under consideration t0 and the non-inferiority/equivalence margin δ. More precisely
we will consider three different choices for this margin, namely δ = 0.1, 0.15 and
0.2. Additionally we also evaluate all scenarios using a non-parametric approach as
described in Sect. 5.2. of Com-Nougue et al. (1993). Precisely we construct confidence
bands for the difference of two Kaplan–Meier curves by estimating the variance using
Greenwood’s formula (Greenwood 1926). This approach also comes along without
the assumption of proportional hazards and consequently it can be directly compared
to our method, which will be referred to as "the parametric approach" in the following.
Further, we investigate the performance of the test when comparing survival over the
entire observational period (that is T = [0, tmax ]) as described in Sect. 2.2.2. Due to
the sake of brevity, the detailed results for this analysis are deferred to Section 4 of
the Supplementary Material.

For the first two scenarios we assume the data in both treatment groups to follow a
Weibull distribution, that is F�(t, θ�) = 1 − exp

{−(t/θ�,2)
θ�,1

}
, � = 1, 2, where θ�,1

denotes the shape parameter and θ�,2 the scale parameter corresponding to treatment
group � = 1, 2. We consider a time range (in months) given by T = [0, 9], where
tmax = 9 is the latest point of follow up. For the first configuration we choose

θ1 = (1.5, 3.4), θ12 = (1.5, 4.9), θ22 = (1.5, 3.7), (19)
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where θ1 corresponds to the referencemodel and the secondmodel is varied by its scale
parameter. Here θ12 is used for investigating the type I errors and coverage probabilities
and θ22 for simulating the power, respectively (see Figs. 1 and 2). As an example, Fig. 1a
displays the survival curves for a choice of θ12 . Both configurations result in a constant
log hazard ratio of log (1.5) ≈ 0.4, representing the situation of proportional hazards.
We assume the censoring times to be exponentially distributed and choose the rates of
the two groups such that a censoring rate of approximately 25% results, that is a rate of
ψ1 = 0.1 for the referencemodel and rates ofψ1

2 = 0.09 andψ2
2 = 0.05 for θ12 and θ22 ,

respectively. In order to investigate the effect of non-proportional hazards we consider
a second scenario of intersecting survival curves, where we keep the reference model
specified by θ1 and all other configurations as above, but vary the parameters of the
second model, resulting in

θ1 = (1.5, 3.4), θ12 = (2, 2.5), θ22 = (2, 3.4). (20)

Here the choice of θ12 is used for investigating the type I errors and coverage proba-
bilities and θ22 for simulating the power, respectively. Again, we consider censoring
rates of approximately 25% for both treatment groups, meaning a rate of ψ1

1 = 0.14
and ψ1

2 = 0.1 for θ12 and θ22 , respectively. In the following scenario (19) is denoted as
“PH” (proportional hazards) and scenario (20) as “NPH” (non-proportional hazards).

In order to investigate the effect of different censoring rates on both procedures, we
additionally consider the NPH Scenario (20) with a fixed sample size of (n1, n2) =
(100, 100) but vary the parametersψ�, � = 1, 2, such that given the latest time point of
follow-up by tmax = 9, between 10 and 75% of the individuals are censored. Precisely,
we also consider unbalanced situations where censoring rates are different across the
two groups. The results are presented and discussed in Sect. 2 of the Supplementary
Material.

Afterwards, we will analyze the robustness of the approach in two different ways.
First, we will use the NPH scenario (20) in order to investigate the effect of mis-
specifying the distribution of the censoring times. Precisely, we will assume the
censoring times to follow a uniform distribution instead of the true underlying expo-
nential distribution. Note that this only affects the bootstrap-based confidence bands
described in Algorithm 1 as the asymptotic bands do not require any estimation of
the underlying censoring distribution. The detailed results of this analysis will be
deferred to Sect. 1 of the Supplementary Material, we will briefly summarize them in
Sect. 3.1. For further robustness investigations, we consider a third scenario, where we
generate survival times according to a log-logistic distribution. Precisely we choose
F�(t, θ�) = 1 − 1

1+(t/θ�,1)
−θ�,2

, � = 1, 2. We now generate censoring times according

to a uniform distribution on an interval [0, c�], where c� is chosen such that a censoring
rate of approximately 20% results, � = 1, 2. We consider a time range (in months)
given by T = [0, 12] and define the scenario by the set of parameters given by

θ1 = (1.5, 2.6), θ2 = (2.1, 3.9), (21)

where θ1 corresponds to the reference model, see Fig. 1c. We will use this configu-
ration to investigate the performance of the proposed method under the situation of
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Fig. 1 The three scenarios under consideration used for simulating type I error rates and coverage prob-
abilities a Survival curves for Scenarios (19) and (20) with θ1 = (1.5, 3.4), θ2 ∈ {(1.5, 4.9), (2, 2.5)}. b
Corresponding hazard rates. c Survival curves for Scenario (21)
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Fig. 2 The two scenarios used for simulating the power. a Survival curves for Scenarios (19) and (20) with
θ1 = (1.5, 3.4), θ2 ∈ {(1.5, 3.7), (2, 3.4)}. b Corresponding hazard rates

misspecification of the event times. Precisely, we assume that the event times fol-
low a Weibull distribution instead of the log-logistic distribution. The results will be
presented in Sects. 3.1 and 3.2 and compared to the non-parametric approach.

3.1 Coverage probabilities

In order to investigate the performance of the confidence bands derived in Eqs. (5) and
(8) we consider the scenarios described above for three different sample sizes, that is
(n1, n2) = (20, 20), (n1, n2) = (50, 50) and (n1, n2) = (100, 100), resulting in total
sample sizes given by n = 40, 100 and 200, respectively.We choose a nominal level of
α = 0.05 and calculate both, the asymptotic (two-sided) confidence bands obtained by
using the Delta method, and the bands based on the bootstrap described in Algorithm
1, which we call in the following asymptotic bands and bootstrap bands, respectively.
All bands were constructed for an equidistant grid of 23 time points ranging from 1.5
to 6 months for the first scenario and for a grid of 14 different points ranging from 1.5
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to 4 months for the second one, respectively. For the investigations on the situation of
misspecification we consider 21 time points, ranging from 1 to 5 months.

We first consider the two correctly specified scenarios (event distribution of refer-
ence and test group is Weibull and modelled as such). For the first configuration the
hazard ratio is constant over time, for the second it varies between 0.5 and 2 on the
grid described above, or, equivalently, from −0.6 to 0.7 considering the log hazard
ratio. The first two rows of Fig. 3 summarize the simulated coverage probabilities for
these scenarios. In general it turns out that for both scenarios and all approaches, i.e.
the asymptotic bands and the bootstrap bands for S1 − S2 and log h1

h2
, respectively,

the approximation is very precise when sample sizes increase, as the coverage prob-
abilities are very close to the desired value of 0.95 in this case. Further it becomes
obvious that the confidence bands obtained by estimating the variance by bootstrap
(10) are always slightly more conservative than their asymptotic versions (4) and (7),
respectively.

However, considering the bands on S1 − S2 for very small sample sizes, that is
n1 = n2 = 20, the coverage probability lies between 0.91 and 0.94 and hence these
bands are rather liberal. The bootstrap bands perform slightly better, but still have
coverage probabilities around 0.93 instead of 0.95, see the first column of Fig. 3. This
effect already disappears for n1 = n2 = 50 where a highly improved accuracy can be
observed. The asymptotic bands for log h1

h2
perform similarly, whereas the bootstrap

bands show a different behaviour, that is being rather conservative for small sample
sizes, but also getting more precise with increasing sample sizes. For smaller sample
sizes, all confidence bands under consideration vary in their behaviour over time. This
effect gets in particular visiblewhen considering theNPH scenario (20), see the second
row of Fig. 3. The coverage probabilities of the bands for S1 − S2 start with a very
accurate approximation during the first two months but then decrease to 0.93. This
effect can be explained by the fact that in the setting of a very small sample, that is
n1 = n2 = 20, after this period only very few patients remain (note that the median
survival for the reference model is given by 2.6 months) and hence the uncertainty in
estimating the variance increases. The same holds for all bands under consideration,
explaining the decreasing accuracy at later time points.

We further investigated the effect of misspecifying the censoring distribution. Of
note, this misspecification does only affect the bootstrap bands and not the asymptotic
confidence bands, as these do not take the censoring mechanism into account. To this
end, we considered the NPH scenario (20) and assumed a uniform distribution of the
censoring times instead of the true underlying exponential distribution. A figure show-
ing the coverage probabilities compared to the correctly specified situation is deferred
to the Supplementary Material. It turns out that the effect of misspecification is rather
small. The bands tend to be slightly more conservative as the coverage probabilities
are close to 1 for the small sample size setting of n1 = n2 = 20. However, in general
they are above the desired value of 0.95 in all scenarios and for increasing sample sizes
this approximation is very precise. We therefore conclude that the bootstrap bands are
very robust against misspecification of the censoring distribution.

Finally, we consider the log-logistic scenario of misspecification (21), where we
erroneously assumed a Weibull distribution instead of the underlying log-logistic dis-
tribution. Further, concerning the bootstrap approach, the censoring distribution was
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assumed to be exponential and hence misspecified as well. In this scenario the hazard
ratio varies from 2.5 to 0.8 over a time from 1 to 5 months, meaning that hazards are
non-proportional. The corresponding coverage probabilities are shown in the third row
of Fig. 3. It turns out that the performance is worse than in case of a correctly identified
model as the coverage lies between 0.85 and 0.9 and hence below the desired value of
0.95. However, considering S1 − S2, in a majority of the cases the coverage is above
0.9, even for a small sample size of n = 40, where the bootstrap approach performs
slightly better than the asymptotic analogue despite of suffering from an additional
missspecification issue due to the censoring assumption. This result is in line with
our findings from the NPH scenario (20), demonstrating that the bootstrap confidence
bands are very robust against misspecifying the censoring distribution. For increasing
sample sizes the coverage, which varies over the time, approximates 0.95, whereas
the bands for log h1

h2
still do not come sufficiently close to this desired value, even for

the largest sample size of n = 200. Consequently we conclude that these bands suffer
more from misspecification than the ones for S1 − S2, where the latter prove to be
robust if sample sizes are sufficiently large.

3.2 Type I errors

In the following we will first investigate type I error rates for the non-inferiority test
(15) and the equivalence test (16) on the pointwise difference of survival curves.
Secondly we will consider entire time intervals, as described in (18). We set α = 0.05
and consider different sample sizes, i.e. n1 = n2 ∈ {20, 50, 100, 150, 250}, resulting
in total sample sizes given by n = 40, 100, 200, 300 and 500, respectively. As already
indicated by the simulated coverage probability presented in Fig. 3 the difference
between asymptotic and bootstrap based bands is very small, in particular for total
sample sizes larger than 50. This also holds for the test and hence, for the sake of
brevity, we only display the results for the asymptotic version here.

We start with the PH scenario (19) and choose θ2 = (1.5, 4.9), such that the
difference curve S2(t) − S1(t) attains values of 0.1, 0.15 and 0.2 at time points 1.6,
2.3 and 4, respectively, see Fig. 1a. Themedian survival is given by 3.8months and 2.7
months, respectively. The first row of Fig. 4 displays the type I errors simulated on the
margin of the null hypothesis for every choice of δ for both, the non-inferiority tests
(dashed lines) and the equivalence tests (solid lines). It turns out that the approximation
of the level is very precise, for the non-inferiority test (15) in general and for the
equivalence test (16) for sufficiently large sample sizes, as the type I errors are very
close to 0.05 in these cases. For small samples, that is n = n1 + n2 < 100, the
equivalence test (16) is conservative as the obtained type I errors are close to zero. The
same conclusions can be drawn for the non-parametric approach (red lines). Again, the
non-inferiority test approximates the significance level very precisely for all scenarios
under consideration,whereas the equivalence test is conservative, but getsmore precise
with increasing sample sizes. Similar arguments hold for the NPH scenario (20) with
θ2 = (2, 2.5), see the second row of Fig. 4. All results obtained here are qualitatively
the same as the ones for the PH scenario (19), demonstrating that the presence of a
non-constant hazard ratio does not affect the performance of the test. In general, for
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Fig. 3 Simulated coverage probabilities for the PH scenario (19) (first row), the NPH scenario (20) (second
row) and the scenario of misspecification (21) (third row) at different time points for sample sizes of
n1 = n2 = 20, 50, 100 (left, middle, right column). The dashed lines correspond to the confidence bands
for the difference of the survival functions (5), the dotted lines to the confidence bands for the log hazard
ratio (8). Black lines display the asymptotic bands, red lines the confidence bands based on bootstrap,
respectively

all procedures the most precise approximation of the significance level is obtained
for a large equivalence/non-inferiority margin of δ = 0.2. For situations, where the
(absolute) difference of the survival curves is even larger than δ, the type I errors are
practically zero for all configurations. The corresponding tables, which also include
the numbers visualized in Fig. 4, are deferred to the Supplementary Material, Section
3.

Finally, we used the log-logistic scenario (21) to investigate the robustness of the
approach regarding the type I error. It turns out that the robustness depends on the
equivalence/non-inferiority margin. For the large margin δ = 0.2 and for some few
configurations of δ = 0.15we observe a low tomoderate type I error inflation, whereas
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Fig. 4 Simulated type I errors for the PH scenario (19) (first row) and the NPH scenario (20) (second row)
depending on the sample size. Type I errors have been simulated on the margin of the null hypothesis, that
is |S2(t0) − S1(t0)| = δ = 0.1, 0.15, 0.2 (left, middle, right column). The dashed lines correspond to the
non-inferiority test, the solid lines to the equivalence test. Black lines display the new, parametric approach
((15), (16)), red lines the non-parametric method (Color figure online)

for δ = 0.1 there is no single type I error above its nominal level. Of note, these results
depend on the chosen scenario, i.e. the true underlying models and the time points
under consideration. As expected, the non-parametric approach does not suffer from
this misspecification issue, which is a direct consequence of its construction with no
need of assuming a particular distribution. We conclude that the correct specification
of the underlying distribution is very important for the performance of the paramet-
ric approach. Although the choice of the equivalence/non-inferiority margin should
clearly be determined by practical considerations rather than statistical properties, it
should be noted that the risk of a type I error can be reduced by choosing a conserva-
tive, i.e. smaller, margin. The detailed tables presenting the simulation results can be
found in Section 1 of the Supplementary Material.

3.3 Power

For investigations on the power we consider the same configurations as given above.
Wenowobserve thePHscenario (19) such that the difference curve S1(t)−S2(t) attains
values of 0.01, 0.02 and 0.04 at time points 0.7, 1.2 and 2.3, respectively. Hence all
chosen configurations belong to the alternatives in (15) and (16). For the NPH scenario
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(20) we consider θ2 = (2, 3.4), resulting in differences of 0.01 and 0.04, attained at
time points 0.2 and 0.6 (0.01) and 3.2 and 2.7 (0.04), respectively (see Fig. 2). Figure5
visualizes the power of both scenarios in dependence of the sample size. Therefore we
chose two specific configurations, that is (t0, S2(t0)− S1(t0)) = (0.7, 0.01) for the PH
scenario (19) (first row) and (t0, S2(t0) − S1(t0)) = (0.6, 0.04) for the NPH scenario
(20) (second row). It becomes obvious that in general the power of all tests clearly
increases with increasing sample sizes and a wider equivalence/non-inferiority margin
δ. For instance, when considering δ = 0.2 the maximum power is close to or larger
than 80% for all sample sizes and both tests. In general, the power of the parametric
approach is higher than for the non-parametric method for all configurations. Of note,
considering amedium threshold of δ = 0.15, both tests have a power of approximately
1 if the sample size is sufficiently large, i.e. n = n1 + n2 > 300. However, for smaller
sample sizes or a smaller margin δ the parametric approach provides a power benefit
of up to 0.2 which underlines the theoretical findings.

Considering different time points, the results for the PH scenario (19) can be found
in Table 1 for the parametric approach and in Table 2 for the non-parametric approach,
respectively. Similarly, Tables 3 and 4 display the power of the two methods in case
of the NPH scenario (20), taking four different time points into consideration. For the
latter, it becomes obvious that for later time points but equal distances between the
two survival curves the power decreases, in particular in presence of small sample
sizes. This can be explained by the fact that the remaining subjects become less with
progressing time, resulting in a higher uncertainty after 3 months compared to 0.2 and
0.6 months, respectively. Of note, at 3 months more than half of the subjects experi-
enced an event in this scenario. Again, comparing the results of the two approaches
demonstrates a clear superiority of the parametric approach if sample sizes are small.
For example, considering the PH scenario (19) with δ = 0.1 and a sample size of
(n1, n2) = (50, 50) we observe a maximum power of 0.121 for the equivalence test
based on the non-parametric approach whereas it is 0.416 for the new parametric
approach.

4 Case study

In the following we will investigate a well known benchmark dataset regarding sur-
vival analysis. The data set veteran from Veteran’s Administration Lung Cancer Trial
(Kalbfleisch and Prentice 2011), implemented in theR package survival (Therneau
2020), describes a two-treatment, randomized trial for lung cancer. In this trial, male
patients with advanced inoperable lung cancer were allocated to either a standard ther-
apy (reference treatment, � = 1) or a chemotherapy (test treatment, � = 2). Numerous
covariates were documented, including time to death for each patient, which is the
primary endpoint of our analysis. In total 137 observations, allocated to n1 = 69
patients in the reference group and n2 = 68 in the test group, are given. The code
reproducing the results presented in the following has been implemented in the R
package EquiSurv (Möllenhoff 2020). As our analysis is model-based, we start
with a model selection step. More precisely we split the data into the reference group
and the test group and assume six different distributions, that is a Weibull distri-
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Table 1 Simulated power of the non-inferiority test (15) (numbers in brackets) and the equivalence test (16)
for the PH scenario (19) with θ2 = (1.5, 3.7) at three different time points t0 = 0.7, 1.2, 2.3 for different
sample sizes and equivalence margins δ. The nominal level is chosen as α = 0.05

(n1, n2) (t0, S2(t0) − S1(t0)) δ = 0.1 δ = 0.15 δ = 0.2

(20, 20) (0.7, 0.01) 0.103 (0.436) 0.387 (0.647) 0.714 (0.814)

(1.2, 0.02) 0.002 (0.242) 0.019 (0.370) 0.191 (0.560)

(2.3, 0.04) 0.000 (0.133) 0.000 (0.187) 0.000 (0.263)

(50, 50) (0.7, 0.01) 0.416 (0.655) 0.855 (0.883) 0.988 (0.988)

(1.2, 0.02) 0.004 (0.344) 0.371 (0.584) 0.716 (0.793)

(2.3, 0.04) 0.000 (0.153) 0.000 (0.236) 0.149 (0.415)

(100, 100) (0.7, 0.01) 0.804 (0.838) 0.991 (0.992) 1.000 (1.000)

(1.2, 0.02) 0.265 (0.473) 0.787 (0.822) 0.979 (0.980)

(2.3, 0.04) 0.000 (0.190) 0.240 (0.429) 0.582 (0.652)

(150, 150) (0.7, 0.01) 0.951 (0.957) 1.000 (1.000) 1.000 (1.000)

(1.2, 0.02) 0.510 (0.619) 0.940 (0.942) 0.999 (0.999)

(2.3, 0.04) 0.004 (0.249) 0.460 (0.527) 0.818 (0.827)

(250, 250) (0.7, 0.01) 0.993 (0.993) 1.000 (1.000) 1.000 (1.000)

(1.2, 0.02) 0.803 (0.820) 0.989 (0.989) 1.000 (1.000)

(2.3, 0.04) 0.272 (0.375) 0.734 (0.743) 0.942 (0.942)

Table 2 Simulated power of the non-parametric approach for the non-inferiority test (numbers in brackets)
and the equivalence test for the PH scenario (19) with θ2 = (1.5, 3.7) at three different time points for
different sample sizes and equivalence margins. The nominal level is chosen as α = 0.05

(n1, n2) (t0, S2(t0) − S1(t0)) δ = 0.1 δ = 0.15 δ = 0.2

(20, 20) (0.7, 0.01) 0.047 (0.333) 0.240 (0.531) 0.418 (0.666)

(1.2, 0.02) 0.001 (0.204) 0.021 (0.303) 0.054 (0.429)

(2.3, 0.04) 0.000 (0.119) 0.000 (0.197) 0.000 (0.282)

(50, 50) (0.7, 0.01) 0.121 (0.493) 0.608 (0.744) 0.874 (0.915)

(1.2, 0.02) 0.002 (0.264) 0.106 (0.435) 0.456 (0.643)

(2.3, 0.04) 0.000 (0.160) 0.000 (0.210) 0.007 (0.312)

(100, 100) (0.7, 0.01) 0.510 (0.664) 0.918 (0.930) 0.995 (0.996)

(1.2, 0.02) 0.019 (0.341) 0.534 (0.644) 0.844 (0.866)

(2.3, 0.04) 0.000 (0.155) 0.010 (0.324) 0.315 (0.489)

(150, 150) (0.7, 0.01) 0.773 (0.838) 0.987 (0.987) 0.999 (0.999)

(1.2, 0.02) 0.228 (0.479) 0.768 (0.801) 0.959 (0.961)

(2.3, 0.04) 0.000 (0.203) 0.175 (0.378) 0.588 (0.664)

(250, 250) (0.7, 0.01) 0.956 (0.962) 0.999 (0.999) 1.000 (1.000)

(1.2, 0.02) 0.557 (0.663) 0.936 (0.938) 0.990 (0.990)

(2.3, 0.04) 0.012 (0.267) 0.507 (0.575) 0.828 (0.836)
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Fig. 5 Simulated power for the PH scenario (19) at (t0, S2(t0) − S1(t0)) = (0.7, 0.01) (first row) and the
NPH scenario (20) at (t0, S1(t0) − S2(t0)) = (0.6, 0.04) (second row) depending on the sample size for
different non-inferiority/equivalence margins δ = 0.1, 0.15, 0.2 (left, middle, right column). The dashed
lines correspond to the non-inferiority test, the solid lines to the equivalence test. Black lines display the
new, parametric approach ((15), (16)), red lines the non-parametric method (Color figure online)

bution, an exponential distribution, a Gaussian distribution, a logistic distribution, a
log-normal distribution and a log-logistic distribution, respectively. We fit the cor-
responding models separately per treatment group, resulting in 12 models in total.
Finally we compare for each group the six different models using Akaike’s Informa-
tion Criterion, AIC (Sakamoto et al. 1986). It turns out that for the group receiving the
reference treatment the Weibull and the exponential model provide the best fits (AICs
are given by 749.1, 747.1, 799.9, 794.7, 755.1 and 758.1 in the order of the mod-
els mentioned above) whereas in the test group the log-logistic, the log-normal and
the Weibull model are the best ones (AICs given by 749.1, 750.1 and 751.7, respec-
tively). Therefore we decide to base our analyses on Weibull models for both groups.
However, note that all tests could also be performed assuming different distributions
for each treatment. We assume the censoring times to be exponentially distributed
and maximizing the likelihood (1) yields θ̂1 = (4.82, 1.01), ψ̂1 = 0.00063 and
θ̂2 = (4.76, 1.3), ψ̂2 = 0.00046. These low censoring rates can be explained by the
fact that in total only 9 of the 137 individuals have been censored, precisely 7.3%
in the reference treatment group and 5.8% in the test treatment group, respectively.
Fig. 6a displays the corresponding Weibull models and the non-parametric analogue
given by Kaplan–Meier curves. It turns out that for both treatment groups the para-
metric and the non-parametric curves are very close to each other. Further we observe

123



Investigating non-inferiority or equivalence in time-to-event 501

Table 3 Simulated power of the non-inferiority test (15) (numbers in brackets) and the equivalence test
(16) for the NPH scenario (20) with θ2 = (2, 3.4) at four different time points t0 = 0.2, 0.6, 2.7, 3.2 for
different sample sizes and equivalence margins δ. The nominal level is chosen as α = 0.05

(n1, n2) (t0, S1(t0) − S2(t0)) δ = 0.1 δ = 0.15 δ = 0.2

(20, 20) (0.2, 0.01) 0.964 (0.964) 0.996 (0.999) 1.000 (1.000)

(0.6, 0.04) 0.372 (0.448) 0.712 (0.712) 0.891 (0.893)

(2.7, 0.04) 0.000 (0.124) 0.000 (0.219) 0.000 (0.297)

(3.2, 0.01) 0.000 (0.179) 0.000 (0.284) 0.000 (0.374)

(50, 50) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.637 (0.640) 0.938 (0.938) 0.997 (0.997)

(2.7, 0.04) 0.000 (0.151) 0.047 (0.339) 0.436 (0.563)

(3.2, 0.01) 0.000 (0.258) 0.054 (0.468) 0.481 (0.684)

(100, 100) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.818 (0.841) 0.995 (0.995) 1.000 (1.000)

(2.7, 0.04) 0.001 (0.246) 0.442 (0.555) 0.803 (0.833)

(3.2, 0.01) 0.006 (0.406) 0.558 (0.728) 0.869 (0.921)

(150, 150) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.927 (0.927) 1.000 (1.000) 1.000 (1.000)

(2.7, 0.04) 0.206 (0.326) 0.678 (0.701) 0.922 (0.928)

(3.2, 0.01) 0.267 (0.553) 0.797 (0.859) 0.903 (0.984)

(250, 250) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.987 (0.987) 1.000 (1.000) 1.000 (1.000)

(2.7, 0.04) 0.437 (0.471) 0.882 (0.883) 0.993 (0.993)

(3.2, 0.01) 0.609 (0.742) 0.968(0.975) 0.998 (0.998)

that the survival curves of the two treatment groups cross each other which indicates
that the assumption of proportional hazards is not justified here. Indeed, the hazard
ratio ranges from 0.55 to 1.93 from the first time of event (3 days) until the end of the
observational period (999 days) and therefore an analysis using a proportional hazards
model is actually not applicable here. The p-value of the log-rank test is 0.928 and
thus does not detect any difference between the two groups.

We will now perform a similar analysis using the parametric models and the theory
derived in Sect. 2. For the sake of brevity we will only consider difference in survival,
analyses concerning the (log) hazard ratio can be conducted in the same manner.
We consider the first 600 days of the trial. We set α = 0.05 and calculate lower
and upper (1 − α)-pointwise confidence bands according to (5) at several points
0 ≤ t ≤ 600. Estimates of the variance σ̂� are obtained by both, the asymptotic
approach and bootstrap as described in Algorithm 1, respectively. Figure6b displays
the estimated difference curve �(t, θ̂1, θ̂2) = S1(t, θ̂1) − S2(t, θ̂2) and the pointwise
confidence bands on the interval [0, 600]. We note that there is almost no difference
between the two methods, meaning that the asymptotic and the bootstrap approach
yield very similar results here, which can be explained by the rather high sample
size combined with the very low rate of censoring. We start our analysis considering
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Table 4 Simulated power of the non-parametric approach for the non-inferiority test (numbers in brackets)
and the equivalence test for the NPH scenario (20) with θ2 = (2, 3.4) at four different time points for
different sample sizes and equivalence margins. The nominal level is chosen as α = 0.05

(n1, n2) (t0, S1(t0) − S2(t0)) δ = 0.1 δ = 0.15 δ = 0.2

(20, 20) (0.2, 0.01) 0.709 (0.755) 0.951 (0.953) 0.968 (0.968)

(0.6, 0.04) 0.144 (0.289) 0.529 (0.606) 0.651 (0.706)

(2.7, 0.04) 0.000 (0.124) 0.000 (0.168) 0.000 (0.263)

(3.2, 0.01) 0.000 (0.169) 0.000 (0.229) 0.000 (0.298)

(50, 50) (0.2, 0.01) 0.961 (0.963) 0.999 (0.999) 1.000 (1.000)

(0.6, 0.04) 0.389 (0.447) 0.774 (0.779) 0.949 (0.949)

(2.7, 0.04) 0.000 (0.150) 0.000 (0.272) 0.130 (0.425)

(3.2, 0.01) 0.000 (0.230) 0.000 (0.349) 0.125 (0.506)

(100, 100) (0.2, 0.01) 0.998 (0.998) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.598 (0.600) 0.946 (0.946) 0.998 (0.998)

(2.7, 0.04) 0.000 (0.188) 0.183 (0.425) 0.590 (0.657)

(3.2, 0.01) 0.000 (0.307) 0.232 (0.581) 0.668 (0.807)

(150, 150) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.772 (0.772) 0.991 (0.991) 1.000 (1.000)

(2.7, 0.04) 0.000 (0.255) 0.465 (0.530) 0.790 (0.806)

(3.2, 0.01) 0.000 (0.411) 0.537 (0.702) 0.857 (0.902)

(250, 250) (0.2, 0.01) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

(0.6, 0.04) 0.906 (0.906) 0.999 (0.999) 1.000 (1.000)

(2.7, 0.04) 0.229 (0.329) 0.703 (0.718) 0.949 (0.949)

(3.2, 0.01) 0.316 (0.575) 0.848 (0.889) 0.980 (0.984)

t0 = 80, which is close to themedian survival of both treatment groups. The difference
in survival is�(80, θ̂1, θ̂2) = 0.047 and the asymptotic confidence interval at this point
is given by [−0.068, 0.163], while the bootstrap yields [−0.067, 0.162]. Note that
these are two-sided 90%-confidence intervals, as we use 95%-upper and 95%-lower
confidence bands for the test decisions. Of note, if we assume an alternative censoring
distribution, namely a uniform distribution, we obtain [−0.076, 0.175], which is a
bit wider but still very close to the other two intervals. Continuing with the narrower
confidence bands and investigating the hypotheses (11) and (12) we observe that both,
non-inferiority and equivalence can be claimed for all δ > 0.163 (0.162), respectively.
Consequently, for δ = 0.15, which is indicated by the shaded area in Fig. 6b, H0
cannot be rejected in both cases, meaning in particular that the treatments cannot be
considered equivalent with respect to the 80-days survival. Figure6b further displays
these investigations for δ = 0.15 simultaneously at all time points under consideration.
We conclude that the chemotherapy is non-inferior to the standard therapy regarding
survival after 96 days, as this is the earliest time point where the upper confidence
bound is smaller than δ = 0.15, which means that the null hypothesis can be rejected
for the first time. The same conclusion can be made concerning equivalence as for
all t in [0, 600], the lower confidence bands are completely contained in the rejection
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Fig. 6 a Survival curves (Kaplan–Meier curves and Weibull models) for the veteran data. Solid lines
correspond to the reference group, dashed lines to the test treatment. b Difference in survival, pointwise
confidence bands obtained by the asymptotic approach (dashed) and bootstrap (dotted), respectively, on the
interval [0, 600]. The shaded area indicates the equivalence margins with δ = 0.15

region, meaning that they are larger than−δ = −0.15. Consequently we can conclude
that both treatments are equivalent concerning for example the 6-months or one-year-
survival, respectively. Finally we further observe that considering for instance δ = 0.2,
equivalence would be claimed at all time points under consideration.

5 Discussion

In this paper, we addressed the problem of survival analysis in the presence of non-
proportional hazards. Here, commonly used methods, as Cox’s proportional hazards
model or the log-rank test, are not optimal and suffer from a loss of power. There-
fore we proposed another approach for investigating equivalence or non-inferiority
of time-to-event outcomes based on the construction of (pointwise) confidence bands
and applicable irrespectively of the shape of the hazard ratio. We proposed two ways
of constructing confidence bands for both the (log) hazard ratio and the difference of
the survival curves. One is based on asymptotic investigations, and the other on a para-
metric bootstrap procedure. Both approaches show a similar performance. The latter
has the advantage that it can be used for small sample sizes and does not require calcu-
lating the asymptotic variance. Our approach provides a framework for investigating
survival in many ways. Apart from specific time points entire periods of time can be
observed and the difference in survival compared to a specific equivalence margin.
We demonstrated that the presence of non-proportional hazards does not affect the
performance of the confidence bands and the non-inferiority and equivalence tests,
respectively, which means that they do not rely on this assumption. Consequently, this
framework provides a much more flexible tool than standard methodology.

Our methods are based on estimating parametric survival functions, which can be
an effective tool once the model’s suitability is proven. The latter has to be assessed
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in a preliminary study, using, for instance, model selection criteria as the AIC. If
a model has to be prespecified, which can be necessary in some clinical trials, the
model-selection step cannot be performedproperly and themodelmay suffer frommis-
specification. To this end we investigated the robustness of our approach and it turned
out that if the underlying distribution of the event times is not correctly specified a type I
error inflation occurred in some configurations with a relatively large equivalence/non-
inferiority margin. In general, the choice of the margin should clearly be determined
by clinicians and practical considerations rather than by statistical properties. If one
wants to reduce the risk of a type I error, a conservative, i.e. smaller, margin should
be chosen, as no type I error inflation occurred for these configurations. However,
we note that for those margins the power, that is correctly claiming equivalence/non-
inferiority, can be decreased. Further, as another non-parametric alternative one could
also investigate confidence bands based on the classical bootstrap for survival data
(Efron 1981; Akritas 1986).

In clinical research there might be situations where it makes sense to consider
different metrics as the (maximum) difference between survival curves. Such a metric
could, for example, be the area between the survival curves, that is the difference in
mean survival times.We leave the investigation and extension of the proposedmethods
to this situation for future research.
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Appendix

A1. Proof of Lemma 1

In the following we prove that the equivalence test described in Eq. (16) is an asymp-
totic α-level test. Under the null hypothesis in Eq. (12) the probability of rejecting H0
is given by

lim
n1,n2→∞PH0(U�(t0, θ̂1, θ̂2) ≤ δ, L�(t0, θ̂1, θ̂2) ≥ −δ)
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= lim
n1,n2→∞PH0(−δ − �(t0, θ1, θ2) + z1−ασ̂� ≤ �(t0, θ̂1, θ̂2) − �(t0, θ1, θ2)

≤ δ − �(t0, θ1, θ2) − z1−ασ̂�). (22)

We now consider the margin of the null hypothesis (that is �(t0, θ1, θ2) = ±δ).
Without loss of generality we assume that �(t0, θ1, θ2) = δ and (22) becomes

lim
n1,n2→∞P(−2δ + z1−ασ̂� ≤ �(t0, θ̂1, θ̂2) − �(t0, θ1, θ2) ≤ −z1−ασ̂�)

≤ lim
n1,n2→∞P(�(t0, θ̂1, θ̂2) − �(t0, θ1, θ2) ≤ −z1−ασ̂�)

= lim
n1,n2→∞P(U�(t0, θ̂1, θ̂2) ≤ �(t0, θ1, θ2))

≤ α,

due to (6). The same arguments hold for �(t0, θ1, θ2) = −δ. When considering the
interior of the null hypothesis, that is |�(t0, θ1, θ2)| > δ, the probability in Eq. (22)
gets even smaller and, moreover, converges to zero due to the asymptotic normality of√
n(�(t0, θ̂1, θ̂2)−�(t0, θ1, θ2)), as δ −�(t0, θ1, θ2) < 0 or −δ −�(t0, θ1, θ2) > 0.

A2. Asymptotic variances for aWeibull distribution

In order to calculate confidence bands as given in Eq. (5) and (8), respectively, we
need a formula for the gradients yielding asymptotic variances as described in Eq. (4)
and (7). We now present an exemplary calculation assuming a Weibull distribution,
that is F�(t, θ�) = 1 − exp

{−(t/θ�,2)
θ�,1

}
, � = 1, 2. The gradients are given by

∂
∂θ�

S�(t, θ�) = exp
{−(t/θ�,2)

θ�,1
} · ( − (t/θ�,2)

θ�,2 · log(t/θ�,2), t
θ�,1 · θ�,1 · θ

−θ�,1−1
�,2

)
,

� = 1, 2, and

∂
∂θ�

log h�(t, θ�) = (
1/θ�,1 + log (t/θ�,2),−θ�,1/θ�,2

)
, � = 1, 2.

Substituting these gradients in the formula (4) and (7), respectively and using the
MLE and the corresponding Fisher information matrix obtained via maximizing (1)
finally yields the asymptotic variance of�(t, θ1, θ2) and r(t, θ1, θ2), respectively. The
estimates can be obtained by using standard statistical software as for example R, the
concrete implementation can be found in the R package EquiSurv (Möllenhoff 2020).
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