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Abstract
Retrospective sampling canbeuseful in epidemiological research for its convenience to
explore an etiological association. One particular retrospective sampling is that disease
outcomes of the time-to-event type are collected subject to right truncation, along with
other covariates of interest. For regression analysis of the right-truncated time-to-event
data, the so-called proportional reverse-time hazards model has been proposed, but the
interpretation of its regression parameters tends to be cumbersome, which has greatly
hampered its application in practice. In this paper, we instead consider the proportional
oddsmodel, an appealing alternative to the popular proportional hazardsmodel. Under
the proportional odds model, there is an embedded relationship between the reverse-
time hazard function and the usual hazard function. Building on this relationship, we
provide a simple procedure to estimate the regression parameters in the proportional
odds model for the right truncated data. Weighted estimations are also studied.

Keywords Biased sampling · Odds ratio · Reverse-time hazard function

Mathematics Subject Classification 62N02

1 Introduction

Truncation is common in survival analysis where the incomplete nature of the obser-
vations is due to a systematic biased selection process originated in the study design.
Right truncated data arise naturally when an incubation period (i.e., the time between
disease incidence and the onset of clinical symptoms) cannot be observed completely
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in a retrospective study. In survival analysis, right truncation will lead to biased sam-
pling in which shorter observations will be oversampled (Gürler 1996). For example,
to studyAIDS caused by blood transfusion (Lagakos et al. 1988), the incubation period
is the time from a contaminated blood transfusion to the time when symptoms and
signs of AIDS are first apparent. However, in those studies, the following-up period
are usually limited. Therefore, only those developed AIDS before the end of study can
be identified.

Many authors have studied right truncated data: Woodroofe (1985) and Wang et al.
(1986) focused on the asymptotic properties the product limit estimator under ran-
dom truncation. Keiding and Gill (1990) studied asymptotic properties of random left
truncation estimator by a reparametrization of the left truncation model as a three-
state Markov process. Lagakos et al. (1988) considered nonparametric estimation and
inference of right truncated data by treating the process in reverse time, they showed
that λB(t) = λ(τ − t), where τ is the study duration, λB(t) and λ(t) are reverse-time
hazard and forward-time hazard, respectively. The authors also discussed the impli-
cations and limitations of introducing reverse time hazard to analyze right truncated
data. Gross (1992) further explained the necessity of reverse time hazard in the Cox
model setting.

However, in most of the current literature, researchers study right truncated data
in nonparametric setting, fairly few studied semiparametric models, among them,
Kalbfleisch and Lawless (1989) formulating the Coxmodel on the reverse time hazard
(or retro hazard, Lagakos et al. (1988); Keiding and Gill (1990)). For other related
work on reverse time hazard, please refer to Gross (1992); Chen et al. (2004), among
others.

In this paper, we study right truncated data under a semiparametric proportional
odds model. Different from a proportional hazards model, the reverse-time hazard
in proportional odds model has a simple log-linear relationship with the forward-
time hazard, which leads to an intuitive estimator. While Sundaram (2009)’s method
can also be adapted to proportional odds model for right truncated data, she focused
on applying a reversed-time argument to an estimator for left truncated data. Our
estimator, on the other hand, utilize a direct relationship between the reverse-time
hazard, the forward-time hazard and the baseline odds function, so that we obtain
a simpler estimator. Weighted functions are also being inserted into the estimating
equation to obtain more efficient estimates.

The rest of the paper is organized as follows. Section 2 describes the inference
procedure as well as asymptotic results, Sect. 3 shows simulation and real data results,
Sect. 5 provides some discussion. Proof of theorems are left into the Appendix part.

2 Inference procedure

Assume that the failure time of interest T follows the semiparametric proportional
odds model:

log

{
1 − S(t | Z)

S(t | Z)

}
= α(t) + Z�β, (1)
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and the observed failure time is subject to a right truncation time variable R. The
observed data is (Ti , Ri ), i = 1, . . . , n, where Ti ≤ Ri . Let τ be the study dura-
tion, which is greater than max{T1, T2, . . . , Tn}. An (observed) reverse-time sample,
(T ∗

i , R∗
i ), i = 1, . . . , n can be constructed, where T ∗ = τ − T , R∗ = τ − R, so that

T ∗ is left truncated by the variable R∗. Denote (T̃ ∗, R̃∗) as the reverse-time sample
(potentially truncated). Then the hazard function of T̃ ∗ is a quantity originated in τ and
counts backward in time. The reverse hazard and cumulative reverse hazard function
of backward recurrence time is defined as

λB(t | Z) = lim
�t→0

Pr{T̃ ∗ ∈ (t − �t, t] | T̃ ∗ ≤ t, Z}
�t

= f (t | Z)

F(t | Z)
,

�B(t | Z) =
∫ τ

t
λB(s | Z)ds.

We would like to mention that a similar definition of the reverse hazard can also be
found in Kalbfleisch and Lawless (1989) and Jiang (2011). Denote v(t) = exp(α(t)),
and λ(t) = f (t)/S(t) as the forward-time hazard, then

log λ(t | Z) − log λB(t | Z) = α(t) + Z�β, λB(t | Z)

= 1

{1 + v(t) exp(Z�β)}v(t)

dv(t)

dt
.

Consider the counting process

Ni (t) = I (t ≤ Ti ≤ Ri ),Yi (t) = I (Ti ≤ t ≤ Ri ),

and denote

Mi (t, β) = Ni (t) −
∫ τ

t
Yi (s)

1

{exp(Z�
i β)v(s) + 1}v(s)

dv(s).

Then Mi (t, β) is a martingale with respect to the self-exciting (canonical) filtration
(Keiding and Gill 1990; Stralkowska-Kominiak and Stute 2009) and

Mi (dt, β) = dNi (t) + Yi (t)
1

{exp(Z�
i β)v(t) + 1}v(t)

dv(t). (2)

Multiply both sides of (2) by {exp(Z�
i β)v(t)+1} and summing over n observations,

n∑
i=1

{exp(Z�
i β)v(t) + 1}dNi (t) +

n∑
i=1

Yi (t)
dv(t)

v(t)

=
n∑

i=1

{exp(Z�
i β)v(t) + 1}Mi (dt, β). (3)
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Divide both left-hand side and right-hand side by
∑n

i=1 Yi (t), we obtain:

∑n
i=1{exp(Z�

i β)v(t) + 1}dNi (t)∑n
i=1 Yi (t)

+ dv(t)

v(t)
=

∑n
i=1{exp(Z�

i β)v(t) + 1}Mi (dt, β)∑n
i=1 Yi (t)

.

which is equivalent to:

v(t)

∑n
i=1 exp(Z

�
i β)dNi (t)∑n

i=1 Yi (t)
+

∑n
i=1 dNi (t)∑n
i=1 Yi (t)

+ dv(t)

v(t)

=
n∑

i=1

exp(Z�
i β)v(t) + 1∑
i=1 nYi (t)

Mi (dt, β). (4)

Denote the left-hand side of (4) as:

U (β, dt) = dv(t)

v(t)
+ pn(t)dt − qn(t, β)v(t)dt,

where

pn(t)dt =
∑n

i=1 dNi (t)∑n
j=1 Y j (t)

, qn(t, β)dt = −
∑n

i=1 exp(Z
�
i β)dNi (t)∑n

j=1 Y j (t)
.

From standard counting process arguments (Anderson and Gill, 1982;Aalen10),
we know that the stochastic integral with respect to the counting process martingale
Mi (dt, β) is also a martingale, motivate by the following equation

E

[
1

n
U (β, dt)

]
= E

[
1

n

n∑
i=1

exp(Z�
i β)v(t) + 1∑
i=1 nYi (t)

Mi (dt, β)

]
.

We construct the following estimating equation

1

n
U (β, dt) = 0. (5)

Only v(t) is unknown in (5), let the estimate of v(t) be v̂n(t, β). Denote

Pn(t) = exp

{∫ τ

t

∑n
i=1 dNi (s)∑n
j=1 Y j (s)

}
, Qn(t, β) =

∫ τ

t

∑n
i=1 exp(Z

�
i β)dNi (s)∑n

j=1 Y j (s)
,

then

v̂n(t, β) = Pn(t)∫ τ

t Pn(s)Qn(ds, β)
. (6)
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Multiply (2) by Zi {exp(Z�
i β)v(t) + 1}/n and summing over n observations, we

obtain

1

n

n∑
i=1

Zi

[
{exp(Z�

i β)v(t) + 1}dNi (t) + Yi (t)
dv(t)

v(t)

]

= 1

n

n∑
i=1

Zi {exp(Z�
i β)v(t) + 1}Mi (dt, β). (7)

By virtue of the same idea of (5), take integration on both sides of (7), we can also
construct another equation:

1

n

n∑
i=1

∫ τ

0
Zi

[
{exp(Z�

i β)v(t) + 1}dNi (t) + Yi (t)
dv(t)

v(t)

]
= 0 (8)

Substituting (6) into (8), we can obtain the estimate of β by solving the following
equation:

1

n

n∑
i=1

∫ τ

0
Zi

[{
exp(Z�

i β)v̂n(t, β) + 1
}
dNi (t) + Yi (t)

v̂n(dt, β)

v̂n(t, β)

]
= 0.

Moreover, since

v̂n(dt, β)

v̂n(t, β)
= −

∑n
k=1 dNk(t)∑n
l=1 Yl(t)

−
∑n

k=1 exp(Z
�
k β)dNk(t)∑n

l=1 Yl(t)
v̂n(t, β),

then

1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {
exp(Z�

i β)v̂n(t, β) + 1
}
dNi (t) = 0,

where

Z̄(t) =
∑n

i=1 ZiYi (t)∑n
j=1 Y j (t)

.

Finally, let

Sn(β) = 1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {
exp(Z�

i β)v̂n(t, β) + 1
}
dNi (t), (9)

and denote the solution of Sn(β) = 0 be β̂n , we have the following theorem:
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Theorem 1 Under assumptionsA1-A4 in theAppendix,
√
n(β̂n−β0) convergesweakly

to a mean-zero normal distribution, with covariance matrix U−1V (U−1)�, where V
is the covariance matrix of

√
nSn(β0), U = limn→∞{∂Sn(β)/∂β} |β=β0 . The kth row

of U is:

lim
n→∞

1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}

×
{
Zik exp(Z

�
i β0)v̂n(t, β0) + exp(Z�

i β0)
∂v̂n(t, β)

∂βk
|β=β0

}
dNi (t).

Remark For proportional odds model with the normal logit link:

log

{
S(t | Z)

1 − S(t | Z)

}
= α(t) + Z�β. (10)

Define

M̃i (t, β) = Ni (t) −
∫ τ

t
Yi (s)

exp(Z�β)

1 + exp(Z�β)v(s)
dv(s),

we claim that M̃i (t, β) is a martingale. Recall that v(t) = exp(α(t)), following (10),
we have

S(t |Z) = exp(α(t) + Z�β)

1 + exp(Z�β)v(t)
,

as a result, we can obtain

f (t |Z) = exp(Z�β)v′(t)
(1 + exp(Z�β)v(t))2

, F(t |Z) = 1

1 + exp(Z�β)v(t)
.

Following the definition of reverse hazard in Sect. 2, we can write the reverse hazard
as

λ̃B(t |Z) = f (t |Z)

F(t |Z)
= exp(Z�β)v′(t)

1 + exp(Z�β)v(t)
.

From the general definition of martingale in Fleming and Harrington (1991) (pp. 25),
we can easily show that M̃i (t, β) is a martingale. While for model (1),

λB(t |Z) = v′(t)
1 + exp(Z�β)v(t)

,

and Ni (t) − ∫ τ

t Yi (s)λB(t |Z)dt is the martingale.
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The corresponding estimating equation under model (10) has the following form

S(1)
n (β) =

n∑
i=1

∫ τ

0

{
Zi − Z̄(t, β)

} {
exp(Z�

i β)v̂n(t, β) + 1
}
dNi (t), (11)

where

Z̄(t, β) =
∑n

i=1 ZiYi (t) exp(Z�
i β)∑n

j=1 Y j (t) exp(Z�
j β)

.

Equation (11) also can be used to estimate β, however, comparing with (9), (11) is
more complicated and more computational intensive, while the derivative of (9) with
respect to β can be easily obtained. As a result, (9) can be easily solved by the newton
raphson algorithm. In the following simulations, we will use estimating equation (9).

In addition to the unweighted object function (9), weighted object function can
also being included to obtain a class of weighted estimators of β0. This procedure is
often used to minimize the sandwich estimate as well as improve the efficiency. The
weighted version of object function is

Sn,W (β)

= 1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

} {
exp(Z�

i β)v̂n(t, β) + 1
}
dNi (t) = 0, (12)

here Wn(t) is a predictable weight function with respect to the canonical filtration
which converges to a non-random function w(t). One of the common used weight
function is the Prentice-Wilcoxon type function Wn1(t) = ŜLB(t), where ŜLB(·) is
the Lynden Bell estimate of the baseline survival function for right truncated failure
time data. Denote the corresponding estimate of β as β̂n,w. Thenwe have the following
theorem:

Theorem 2 Under the same assumptions as Theorem 1, when n → ∞, for a prespec-
ified weight function Wn(·) → w(·), √n(β̂n,w −β0) converges weakly to a mean-zero
normal distribution, with covariance matrix U−1

w Vw(U−1
w )�, where Vw is the covari-

ance matrix of
√
nSn,w(β0), Uw = limn→∞{∂Sn,w(β)/∂β} |β=β0 . The kth row of Uw

is:

lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

} [
Zik exp(Z

�
i β0)v̂n(t, β0)

+ exp(Z�
i β0)

{
∂v̂n(t, β)/∂βk

} |β=β0

]
dNi (t).

Recently, many people considered problem of finding the optimal weight in a
weighted estimating equation, including Chen and Cheng (2005); Chen and Wang
(2000); Chen et al. (2012), among others. To achieve this goal, we only need to find
the w(t) such thatUw(β0)

−1Vw(β0)Uw(β0)
−1 achieves the minimum. Since both the
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empirical weight function Wn(t) and its limit w(t) do not rely on unknown parameter
β0, it is reasonable to set β0 = 0. Another explanation for letting β0 = 0 is that it
represents the baseline distribution. Therefore, let β0 = 0, then we have:

Uw(β0) = lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

}
Zi exp(Z

�
i β0)v(t)dNi (t)

= lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

}⊗2
exp(Z�

i β0)v(t)dNi (t)

= lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

}⊗2
Yi (t)

exp(Z�
i β0)v

′(t)
exp(Z�

i β0)v(t) + 1
dt

= lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

{
Zi − Z̄(t)

}⊗2
Yi (t)

v′(t)
v(t) + 1

dt . (13)

Vw(β0) = lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

2 {
Zi − Z̄(t)

}⊗2

×
{
exp(Z�

i β0)v(t) + 1
}2

Yi (t)
1{

exp(Z�
i β0)v(t) + 1

}
v(t)

v′(t)dt

= lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

2 {
Zi − Z̄(t)

}⊗2
Yi (t)

{
exp(Z�

i β0)v(t) + 1
} v′(t)

v(t)
dt

= lim
n→∞

1

n

n∑
i=1

∫ τ

0
Wn(t)

2 {
Zi − Z̄(t)

}⊗2
Yi (t) {v(t) + 1} v′(t)

v(t)
dt (14)

Apply the Cauchy-Schwarz inequality toUw(β0)
−1Vw(β0)Uw(β0)

−1 and let β0 =
0, then it follows that the optimal weight is proportional to

w(t) = v(t)

(v(t) + 1)2
= S(t) {1 − S(t)} , (15)

which minimize the variance of β̂n . Since when (15) holds, we have

Uw(β0) = lim
n→∞

1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}⊗2
Yi (t)

v(t)v′(t)
(v(t) + 1)3

dt,

Vw(β0) = lim
n→∞

1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}⊗2
Yi (t)

v(t)v′(t)
(v(t) + 1)3

dt,

which means when β0 = 0, given w(t) = S(t){1 − S(t)}, we have
Uw(β0)

−1Vw(β0)Uw(β0)
−1 achieves the minimum value Uw(β0)

−1 (or equivalently
Vw(β0)

−1).

In simulation, let Wn2(t) = ŜLB(t)
{
1 − ŜLB(t)

}
, the results are shown in Table 1

, it can be seen that the weight Wn2(t) achieve the minimal variance among the three
estimators.
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3 Simulation and real data

We perform simulation studies to evaluate the finite sample properties of the proposed
estimator. In simulation, let α(t) = 3 log t , β0 = (1, 0.5)�, Z1 is a continuous variable
follows a uniform distribution from 0 to 2, Z2 is a discrete variable follows a Bernoulli
distributionwith probability 0.5. The failure time variable is generated frommodel (1).
The right truncation variable follows a uniform distribution from 0 to 4. This makes
the truncation rate equals to 20%. For each simulation, 1000 datasets are generated, in
each dataset, there are n observations, n = 300, 400, 500, 600, respectively. Wn1(t)
and Wn2(t) are chosen as the weight functions in weighted estimating equations.
As is shown in Table 1, three estimation equations yield unbiased estimates and the
empirical coverage probability is around nominal level 95%, when weighted function
is incorporated into the estimation equation, the efficiency is greatly improved, and
the variance achieve minimal for Wn2(t) under three estimates.

As pointed out by one of the referees and the associate editor, Shen et al. (2017)
also studied right truncated data under linear transformationmodels, and we know that
when the error term in the linear transformation model follows logistic distribution
(Fine et al., 1998), the model becomes the proportional odds model. Let

N †
i (t) = I (τ − Ti ≤ t) = I (Ti ≥ τ − t),

Y †
i (t) = I (τ − Ri ≤ t ≤ τ − Ti ) = I (Ti ≤ τ − t ≤ Ri ),

then the estimating equations (3) and (4) in Shen et al. (2017) can be written as

U (β, α(τ − t))

=
n∑

i=1

∫ τ

−∞
Zi

[
dNi (t) − Yi (t)d

(
log

exp(Z�
i β + α(τ − t))

1 + exp(Z�
i β + α(τ − t))

)]
= 0,

n∑
i=1

[
dNi (t) − Yi (t)d

(
log

exp(Z�
i β + α(τ − t))

1 + exp(Z�
i β + α(τ − t))

)]
= 0.

We recognize that Shen et al. (2017)’s methodology is general and works for all
the linear transformation models, including the proportional odds model. However,
our approach will be more convenient compared with Shen et al. (2017)’s under the
proportional odds model, since our approach has a simpler form, and the estimation of
the intercept α(t) can be done beforehand and plugged in the final estimating equation,
while Shen et al. (2017) can not achieve this and their estimation produce involves
a complicated iteration which increases the risk of non-convergence. Besides, Shen
et al. (2017) only deal with the reverse time but not the reverse hazard function, and
we utilize the relationship between the reverse hazard function and the forward-time
hazard function and produced a more intuitive estimator.

We conduct simulations for Shen et al. (2017)’s method and the results are reported
in Table 1. The code was obtained from the authors via personal communication.
However, one of the authors, Prof. Pao-Sheng Shen mentioned that they were unable
to calculate the asymptotic variance and coverage probabilities, the existing results
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in their paper contain some errors, and their current code only consists of bias and
standard error. As a result, we only report bias and standard error of Shen et al.
(2017)’s method. All the simulations were conducted under the same model as ours.
We also want to mention that we found the computation speed is very slow for Shen
et al. (2017)’s method, though asymptotic variance and coverage probability were not
calculated, their method is still more than 3 times slower than ours under the same
model setting and the sample size. The SSE of Shen et al. (2017)’s method is smaller
than our unweighted estimator, but is bigger than the two weighted estimators. For the
second approach in their paper, i.e. the conditional maximum-likelihood approach,
since the bias is large, we did not perform further comparisons here. We would like to
mention that the large bias of the conditional maximum-likelihood approach is also
confirmed in Vakulenko-Lagun et al. (2020).

As suggested by one of the reviewers, we also perform simulationswithout account-
ing for the truncation, and the results are shown in Table 2. We choose the truncation
distribution as uniform distributions from 0 to 4, 2 and 1, respectively, which cor-
responds to 20% truncation rate (mild truncation), 40% truncation rate (moderate
truncation) as well as 70% truncation rate (heavy truncation). As we can see from
Table 2, all the estimators are biased, and a larger truncation rate will lead to a bigger
bias and variance, though for the same truncation, variances will decrease when the
sample sizes increase. These results also coincide with Table 2.1 (pp. 20) in Rennert
(2018) and Table 1 in Rennert and Xie (2018), though the two articles deal with the
doubly truncated data under the Cox model.

To better illustrate how to employ the proposed method in real situation, we ana-
lyze the Centers for Disease Control’s blood-transfusion data, this data was used by
Kalbfleisch and Lawless (1989) andWang (1989). The data include 494 cases reported
to the Center of Disease Control prior January, 1, 1987, and diagnosed before July,
1, 1986. Only 295 of the 494 has consistent data, and they got infection by a single
blood transfusion or a short series of transfusions, analyse is restricted to this subset.
We obtain the raw observation data via personal communication, Thomas Peterman,
Centers for Disease Control and Prevention. The data contains three variables: T is the
time from blood transfusion to the diagnosis of AIDS (in months), R is the time from
blood transfusion to the end of the study (July, 1986, in months), Age is the age of the
person when transfusing blood (in years). Comparing the data with Kalbfleisch and
Lawless (1989)’s as well as Wang (1989)’s, the observation (X=16, T=33, Age=34)
cannot be found in the raw data, thus is being deleted and the final sample size is 294,
and a few fractions of the data are also corrected because these entries are not correct
compared to the raw data.

We apply the proposed method to this data and treat Age as the covariate in regres-
sion. InWang (1989)’s paper, the data are categorized into three age groups: ‘children’
aged 1-4, ‘adults’ aged 5-59, and ‘elderly patients’ aged 60 and older because of dif-
ferent patterns of survivorship, the survivor behaviour of groups ‘adults’ and ‘elderly
patients’ are similar except for the right tail while there is an evident distinction com-
pared with ‘children’, in current analysis, we delete the data from ‘children’, and focus
on a combined sample of ‘adults’ and ‘elderly patients’ with a sample size equal to
260. Finally, the range of T is from 0 to 89, and the range of R is from 0 to 99. For
all i ∈ {1, . . . , 260}, we have Ti ≤ Ri . As a result, our dataset will not have the
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Table 3 Age effect for blood
transfusion data

Age SSE

unweighted -0.0128 0.0153

Prentice-Wilcoxon -0.0120 0.0143

Wn2(t) -0.0122 0.0122

Shen et al. (2017) -0.0125 0.0150

identifiability issue as mentioned in Seaman et al. (2022). We also applied Shen et
al. (2017)’s method and the result is similar. All the results are shown in Table 3 ,
where the weights are chosen asWn1(t) andWn2(t), the estimated parameter between
unweighted and weighted estimation equation does not show much difference, but
the variance is reduced when weights are considered. In both situations mentioned
above, Age has a very weakening positive effect on the odds ratio, but the effect is not
significant.

4 Discussion

Directly consider the right truncated data in normal time order can be failed because
‘at risk’ process is not adapt to the history of the process (Gross 1992). Retro hazard
solves this problem which transform right truncated data to left truncated in reverse
time (Woodroofe 1985). Statistical modelling is even more flexible by incorporat-
ing the nature structure of proportional odds model. The usual form of proportional
odds model can also be utilized but the theoretical and computational burden for the
estimator will be increased, employ (1) can substantially improve the situation.
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Appendix 1

Assumptions:
A1: β0 ∈ R

p is the interior point of a compact set B.
A2: Z is a bounded process.
A3: V (β0) is non-negative.
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A4: f (t) is continuous.
Assumption A1 is also used by Chen et al. (2012), A2 is a standard assumption

to ensure martingale properties holds (Fleming and Harrington 1991), A3 is also a
standard assumption to avoid theoretical discussion, it is also being used in Huang and
Qin (2013), A4 is being used in prove themartingale representation of v̂n(t, β0)−v(t).
Besides that, we also need an condition to ensure that the truncated distribution to
be correctly identified, let F(·) and G(t) be the distribution function of T and R,
define (aF , bF ) and (aG , bG) be the support of F(·) and G(·) of T and R under the
meaning that aW = inf{x : W (x) > 0}, bW = sup{x : W (x) < 1}, where W is
a distribution function. Under right truncation, actually, only conditional distribution
P(T ≤ x |T ≤ bG) and P(R ≤ x |R ≥ aF ) can be estimated, thus we assume
aF = aG = 0, bR = ∞, so that the conditional distribution will be the actual
distribution of T and R, we also assume P(T ≤ Y ) = α > 0 to ensure that there exist
observations satisfy our condition, similar assumption and discussion also appeared
in Woodroofe (1985); Wang (1989), and Sundaram (2009), among others.

Proof of Theorem 1 To prove the Theorem 1, the first step is to derive the martin-
gale representation of Ŝn(β0). To do this, we need the martingale representation of
v̂n(t, β0) − v0(t). Notice that

n∑
i=1

{exp(Z�
i β0)v0(t) + 1}dNi (t) +

n∑
i=1

Yi (t)
dv0(t)

v0(t)

=
n∑

i=1

{exp(Z�
i β0)v0(t) + 1}Mi (dt, β0) (16)

n∑
i=1

{exp(Z�
i β0)v̂n(t, β0) + 1}dNi (t) +

n∑
i=1

Yi (t)
v̂n(dt, β0)

dt

1

v̂n(t, β0)
= 0.

(17)

Denote w0(t) = 1/v0(t) and ŵn(t, β) = 1/v̂n(t, β), then (17) and (16) becomes:

n∑
i=1

{exp(Z�
i β0) + w0(t)}dNi (t) −

n∑
i=1

Yi (t)dw0(t)

=
n∑

i=1

{exp(Z�
i β0) + w0(t)}Mi (dt, β0), (18)

n∑
i=1

{exp(Z�
i β0) + ŵn(t, β0)}dNi (t) −

n∑
i=1

Yi (t)ŵn(dt, β0) = 0. (19)

(19)-(18) and divide both side by −∑n
i=1 Yi (t):

∂{ŵn(t, β0) − w0(t)}
∂t

− pn(t)dt{ŵn(t, β0) − w0(t)}

123



On a simple estimation of the proportional... 551

=
∑n

i=1{exp(Z�
i β0) + w0(t)}Mi (dt, β0)∑n

i=1 Yi (t)
.

Then

ŵn(t, β0) − w0(t) = 1

Pn(t)

n∑
i=1

∫ τ

t
Pn(s)

{
exp(Z�

i β0) + w0(s)
}

∑n
j=1 Y j (s)

Mi (ds, β0).

In the interval (0, τ ), since 0 < v0(t) < ∞, by delta method,

v̂n(t, β0) − v0(t) = − 1

w2
0(t)

{
ŵn(t, β0) − w0(t)

}

= − v20(t)

Pn(t)

n∑
i=1

∫ τ

t
Pn(s)

v0(s) exp(Z�
i β0) + 1∑n

j=1 Y j (s)v0(s)
Mi (ds, β0).

(20)

At the point 0, (20) holds without condition because v̂n(0, β) = v0(t) = 0. At the
point τ , if denote 0 × ∞ = 0, then (20) also holds.

By using (20), for Sn(β0):

Sn(β0) = 1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {
exp(Z�

i β0)v̂n(t, β0) + 1
}
dNi (t)

= 1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {
exp(Z�

i β0)v̂n(t, β0) + 1
}
Mi (dt, β0)

−1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}
Yi (t)

exp(Z�
i β0)v̂n(t, β0) + 1

exp(Z�
i β0)v

2
0(t) + v0(t)

dv0(t)

= I + II.

In the following, we will show that the second part can also be represented as a
summation of integral with respect to martingale.

II = − 1

n

n∑
i=1

∫ τ

0
{Zi − Z̄(t)}Yi (t)

{
exp(Z�

i β0)v̂n(t, β0) + 1 − exp(Z�
i β0)v0(t) − 1

exp(Z�
i β0)v

2
0(t) + v0(t)

+ 1

v0(t)

}
dv0(t)

= − 1

n

n∑
i=1

∫ τ

0
{Zi − Z̄(t)}Yi (t) exp(Z�

i β0)

exp(Z�
i β0)v

2
0(t) + v0(t)

{
v̂n(t, β0) − v0(t)

}
dv0(t).

(21)
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Substitute (20) into (21) and change the integration order, then

II = 1

n

n∑
j=1

∫ τ

0

{
Pn(t)

exp(Z�
j β0)v0(t) + 1∑

k=1 Yk(t)v0(t)

n∑
i=1

∫ t

0
{Zi − Z̄(s)}Yi (s) exp(Z�

i β0)v0(s)

exp(Z�
i β0)v0(s) + 1

1

Pn(s)
dv0(s)

}
Mj (dt, β0).

Denote

ξi (t, β0) = {
Zi − Z̄(t)

} {
exp(Z�

i β0)v̂n(t, β0) + 1
}

+Pn(t)
exp(Z�

i β0)v0(t) + 1∑
k=1 Yk(t)v0(t)

×
n∑
j=1

∫ t

0
{Z j − Z̄(s)}Y j (s)

exp(Z�
j β0)v0(s)

exp(Z�
j β0)v0(s) + 1

1

Pn(s)
dv0(s).

Then the martingale representation of Sn(β0) is

Sn(β0) = 1

n

n∑
i=1

∫ τ

0
ξi (t, β0)Mi (dt, β0). (22)

Through (22), it is obvious to prove that Sn(β0) converges to zero 0 in probability by
the weak law of large numbers.

Let

μ(t) = lim
n→∞

∑n
i=1 Yi (t)Zi∑n
j=1 Y j (t)

, v(t, β) = lim
n→∞ v̂n(t, β).

Denote

sn(β) = 1

n

n∑
i=1

∫ τ

0
{Zi − μ(t)}

{
exp(Z�

i β)v̂n(t, β) − exp(Z�
i β0)v̂n(t, β0)

}
dNi (t).

The derivative of Sn(β) and sn(β) are

S′
n(β) = 1

n

n∑
i=1

{Zi − Z̄(t)}
{
exp(Z�

i β)Zi v̂n(t, β) + exp(Z�
i β){∂v̂n(t, β)/∂β}

}
dNi (t),

s′
n(β) = 1

n

n∑
i=1

{Zi − μ(t)}
{
exp(Z�

i β)Zi v̂n(t, β) + exp(Z�
i β){∂v̂n(t, β)/∂β}

}
dNi (t).

Notice sn(β0) = 0. Assume that there exists ε > 0 such that (A5): P{| Zi − μ(t) |>
ε, i = 1, 2, · · · , n} > 0, whichmeans covariate can not be identical for all individuals.
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Together with the assumption (A6):

| E
{
exp(Z�β0)Z v̂n(t, β0)

}
+ E

[
exp(Z�β0){∂v̂n(t, β)/∂β} |β=β0

]
|> 0.

we have | limn s′
n(β0) |> 0. Without loss of generality, let limn s′

n(β0) > 0, then there
exist a neighborhood of β0 such that sn(β) is strictly increasing. Further notice that
Sn(β) = sn(β) + op(1), S′

n(β) = s′
n(β) + op(1), then Sn(β) is strictly increasing in

a neighborhood of β0, thus prove the consistency of β̂n .
By martingale central limit theorem, the variance of Sn(β0) is

V (β0) = lim
n→∞ Vn = lim

n→∞ < n−1/2Sn(β0), n
−1/2Sn(β0) > (τ)

= lim
n→∞

1

n

∫ τ

0

n∑
i=1

ξi (t, β0)
⊗2d

∫ τ

t
−Yi (s){exp(Z�

i β0)v
2(s) + v(s)}−1dv(s)

= lim
n→∞

1

n

∫ τ

0

n∑
i=1

ξi (t, β0)
⊗2Yi (t){exp(Z�

i β0)v
2(t) + v(t)}−1dv(t).

Further using the delta method will complete the proof of Theorem 1.
�

Proof of Theorem 2 Since Theorem 1 and 2 are quite similar, in this part, we will omit
the proof detail and only give the detailed expression of Vw.

Vw(β0) = lim
n→∞

1

n

∫ τ

0

n∑
i=1

ξi,w(t, β0)
⊗2Yi (t){exp(Z�

i β0)v
2(t) + v(t)}−1dv(t).

where

ξi,w(t, β0) = Wn(t)
{
Zi − Z̄(t)

} {
exp(Z�

i β0)v̂n(t, β0) + 1
}

+Pn(t)
exp(Z�

i β0)v0(t) + 1∑
k=1 Yk(t)v0(t)

×
n∑
j=1

∫ t

0
Wn(s){Z j − Z̄(s)}Y j (s)

exp(Z�
j β0)v0(s)

exp(Z�
j β0)v0(s) + 1

Pn(s)
−1dv0(s).

�
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