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Abstract
We estimate the dementia incidence hazard in Germany for the birth cohorts 1900 until
1954 from a simple sample of Germany’s largest health insurance company. Followed
from 2004 to 2012, 36,000 uncensored dementia incidences are observed and further
200,000 right-censored insurants included. Fromamultiplicative hazardmodelwefind
a positive and linear trend in the dementia hazard over the cohorts. The main focus
of the study is on 11,000 left-censored persons who have already suffered from the
disease in 2004. After including the left-censored observations, the slope of the trend
declines markedly due to Simpson’s paradox, left-censored persons are imbalanced
between the cohorts. When including left-censoring, the dementia hazard increases
differently for different ages, we consider omitted covariates to be the reason. For the
standard errors from large sample theory, left-censoring requires an adjustment to the
conditional information matrix equality.

Keywords Censoring · Conditional likelihood · Confidence interval · Dementia ·
Hazard rate

1 Introduction

When studying the incidence of dementia, it is necessary to acknowledge the age of a
person, and useful to study the evolution over time (cohort effect) (Doblhammer et al.
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2013; Wu et al. 2016). From data of the nine-year period 2004 until 2012, we observe,
for the German population born between 1900 and 1954, the ages at which dementia
is diagnosed. For insurants of Germany’s largest Health insurance, we drew a simple
random sample of 250,000 persons in 2004. An insurant with dementia incidence
before the study period, i.e. prior to 2004, is left-censored. Together with the 80%
right-censored persons without dementia in 2013, double-censoring is the required
missing data pattern (see e.g. Ren and Gu 1997; Cai and Cheng 2004; Kim et al. 2013;
Dörre and Weißbach 2017; Shen and Chen 2018).

We estimate the effect of cohort, age and sex from the Health Claims Data (HCD),
with the cohorts in decades as dummy variables. Given that our data are a random
sample, covariates are random as well, and we maximize the likelihood, conditional
on the covariates (CMLE). In order to derive consistency and asymptotic normality
for double censoring, as Ren and Gu (1997) and Cai and Cheng (2004) do, we apply
the results about M-estimation, however for a different model or criterion function.
Effort is devoted to obtaining a uniform convergence of the criterion functions with
Wald’s dominating condition, so that convergence of the criterion function translates
into convergence of the maximizing arguments. Also, the Conditional Information
Matrix Equality needs to be adjusted for left-censoring, in order to avoid the need for
sandwich estimation for an M-estimator in order to calculate standard errors for the
confidence intervals.

As can be expected, for the HCD, we find that standard errors dip when includ-
ing the 11,000 left-censored insurants. The cohort effect is generally negative in
the sense that the dementia hazard has increased over the decades. However, with
left-censoring, the slope of that increase is smaller. Another finding is that includ-
ing left-censored persons increases the incidence of dementia at younger ages
and attenuates the increase in dementia with age. That dementia is slightly more
likely for males than for females becomes almost irrelevant after including left-
censoring.

2 Population andmodel for age-at-dementia-incidence

The population in the demographic sense are, basically Germans born between 1900
and 1954. We will not distinguish between different demarcation frontiers of Ger-
many. As the statistical population, we will use insurance of a person by one German
health insurer in 2004, and use its Health Claims Data (HCD). Note that health insur-
ance is mandatory in Germany. The first three boxes in Fig. 1 depict the selection
of people from the demographic to the statistical population. Our primary variable
is age at dementia incidence and, roughly speaking, we wish to perform a lifetime
data regression with the two covariates ‘cohort’, classified according to decades, and
‘gender’. As the age at dementia incidence is strictly positive, the theoretical simplic-
ity of an additive model (see Kremer et al. 2014) is not appealing in demography, so
that we model the effects multiplicative to the hazard as in Sect. III.1.4 of Andersen
et al. (1993). An unspecified ‘baseline’ hazard a0(t), resulting in the semiparametric
Cox-type model
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Demographic population: Germans born 1900-1954 (N = 76, 239, 006)
��

�
Selection 1st stage: Persons surviving 31/12/2003

��

�
Selection 2nd stage (statistical population): Persons insured by AOK (= 25, 388, 191)

��

Selection 3rd stage: Random 2.2% of persons over 50 (n = 245, 888)

Deselection of (left-censored) dementia incidences before 1/1/2004 (= 10, 986)

Fig. 1 Data: trajectory from population to the right-censored persons via four stages of selecting persons
(data for population size N : German Statistical Office (2004), without stillborn)

a(t |z) = a0(t)e
parameter′z,

would safeguard against model miss-specification. However, a widely acceptable
weight function or smoothing parameter is out of sight in demography, whereas a
Gompertz-baseline is standard.

Definition 1 The duration Y � in years between the person’s 50th birthday (risk onset)
and dementia incidence has a hazard rate, conditional on Z = z,

a(t |z) = aeβ1t eβ ′
2 z̃eβ3zs = eθ ′(1,t,z′)′ ,

where t (also) denotes the age (since the 50th birthday) and z := (z̃′, zs)′. We have
θ1 = log a. It is z̃1 = 1 for a person born between 1900 and 1909, and zero if it is
born in some other decade. It is z̃2 = 1, z̃3 = 1 or z̃4 = 1 for a person who was born
in the 1910s, the 1920s or the 1940s. It is z̃5 = 1 for a person who was born between
1950 and 1954, the latest date possible for a person to become 50 years old, prior
to the start of the study in 2004. (The thirties are the reference cohort.) The coding
of cohorts is displayed in Table 1, and Fig. 2 displays (at the bottom) the coding for
one uncensored person, i. e. with dementia incidence during the study period. The
zs codes the sex (0=male; 1=female). We denote by eβ1t , or β1, the age effect, and
by eβ ′

2 z̃, or β2, the cohort effect. In short, the eight parameters, θk , of the model are
θ := (log a, β1, β21, . . . , β25, β3)

′. We assume that the distribution of Z does not
depend on θ . ��

Dementia is very rare before the age of 50 (see Harvey et al. 2003; Ikejima et al.
2009) and we consider only persons aged 50 years and above in our study. Note also
that according to the last representation of the model, it contains a time-dependent
covariate. The combination of the constant baseline hazard a and age effect eβ1t is
the Gompertz distribution (see Sect. 22.8 Johnson et al. 1995), which is usual in the
demography of age-dependent morbidity and death. For the other typical demographic
baseline of aWeibull hazard, t would have to be replaced by log t (seeChap. 21 Johnson
et al. 1994).
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Table 1 Assigning coordinates
of β2 to the respective cohorts
and corresponding indicator
covariate z̃

Cohort Parameter Dummy

1900–1909 β21 z̃1 = 1

1910–1919 β22 z̃2 = 1

1920–1929 β23 z̃3 = 1

1930–1939 – Reference cohort

1940–1949 β24 z̃4 = 1

1950–1954 β25 z̃5 = 1

The cohort 1930–1939, being the largest, acts as reference cohort and
therefore possesses no parameter

�
1/1/19101/1/1920 1/1/1930 1/1/1940 1/1/1950

1/1/1955 1/1/2004 1/1/20131/1/1900

���
︷ ︸︸ ︷−−−−−−−−−−−−−

50 years
︷ ︸︸ ︷−−−−−−−−−−−

y� = 34

���
︷ ︸︸ ︷−−−−−−−−−−−−−

50 years
︷ ︸︸ ︷−−−−−−−−−−−

y� = 35

��
︷ ︸︸ ︷−−−−−−−−−−−−−

50 years
︷ ︸︸ ︷−−−−−−−
y = 18

Fig. 2 (Top: right-censored) Path for person born 1/1/1945 with dementia incidence after 1/1/2013, i.e.
with y = 68 − 50 = 18, δ = 1, z̃4 = 1, z̃ j = 0 for j ∈ {1, 2, 3, 5} (middle: left-censored) path for person
born 1/1/1915 with dementia incidence 1/1/2000, i.e. with y� = 35, δ = −1, y = 89 − 50 = 39, z̃2 = 1,
z̃ j = 0 for j ∈ {1, 3, 4, 5} and death 1/1/2005 (bottom: uncensored) path for person born 1/1/1925 with
dementia incidence 1/1/2009, i.e. with y� = 34, δ = 0, z̃3 = 1, z̃ j = 0 for j ∈ {1, 2, 4, 5}

From the conditional hazard function a(·|z) of Definition 1, we require that β1 > 0
and derive as the conditional cumulative hazard rate, density and CDF:

A(y�|z) =
∫ y�

0
a(t |z)dt = a

β1
eβ ′

2 z̃+β3zs
(
eβ1y� − 1

)

f (y�|z) = a(y�|z) exp[−A(y�|z)]
F(y�|z) = 1 − exp[−A(y�|z)] (1)

3 Health claims data, censoring and criterion function

We use HCD from the Allgemeine Ortskrankenkasse (AOK), the largest public health
insurance company in Germany. The claims data contain information about outpa-
tient and inpatient diagnoses and treatments, on a quarterly basis, for each insured
person, with at least one day of insurance coverage, regardless of whether they sought
medical treatment or not. The data include information about sex, age, year of birth
and date of exit (death or switch to another insurance company). All inpatient and
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outpatient diagnoses are coded in the International Statistical Classification of Dis-
eases and Related Health Problems (ICD), revision 10, issued by the World Health
Organization. For this study, the health insurance company drew a random sample
of 250,000 persons with a follow-up until the end of 2012 given that the persons
were insured in the first quarter of 2004. This corresponds to approximately 2.2%
of the statistical population who was born before 1955 and has survived the year
2003 (see Sect. 2). Dementia is defined by the ICD-10 numbers G30, G310, G3182,
G231, F00, F01, F02, F03 and F051 for which we exclusively consider outpatient
diagnoses with the modifier verified, and discharge secondary diagnoses from the
inpatient sector. We do not distinguish according to aetiology, and combine all ICD
codes into one group named dementia. The method of diagnosis validation is laid out
in Doblhammer et al. (2013) and it results in n = 245, 888 observations after data
cleaning.

Let us consider the potential obstacles when applying Definition 1 to the HCD.
Consider the dummy variable that codes the cohort, e.g. Z̃4 for the 1940s (see
again Table 1). Its parameter is the probability of selecting a person born in that
decade from the insurants. The variable is ‘exogenous’ and will not disturb our
inference to the statistical population (see again Fig. 1), as we will use the con-
ditional likelihood. Inference to the demographic population will be considered in
Sect. 5.2.

The typical obstacle to statistical inference for Definition 1 is that the duration Y �

maybe subject to right- or left-censoring. Occasionally, left-censored observations are
deselected in the demographic literature, as depicted in the last box of Fig. 1, and
we aim in this study to assess the consequences thereof. Let us derive the censoring
notation. For each person, we record its year and month of birth, but the year and
month of death is only recorded if it is in the study period between 1/1/2004 and
31/12/2012. We denote the age at the start of the study period on 1/1/2004, given in
months since 50th birthday, by L . Birth and death are assumed to occur in the middle
of a month. For each person, we observe the age in months at the time of dementia
incidence, date of death, loss to follow-up or end of study. We assume an onset of
dementia risk at the age of 50 and denote the subsequent time as Y . We attribute the
diagnosis to the middle of a quarter, and a loss to follow-up at the end of a quarter. A
censoring indicator � is 0, i.e. Y � is uncensored, if the dementia incidence occurs in
the study period. It is � = 1, i.e. Y � is right-censored, if (i) the incidence is past the
study period (i.e. after the forth quarter of 2012 (Q4/2012)), (ii) a patient dies without
having had dementia, or (iii) is lost to follow-up. The censoring is � = −1, and Y � is
left-censored, if the incidence has been prior to the study period, i.e. before Q3/2004.
It is also assumed that a dementia diagnosis in Q1/2004 and Q2/2004 is a prevalent
case, i.e. a left-censored observation (see Table 2).

Table 2 Observed
ages-at-dementia and censoring
information: numbers of persons

Left-censored Uncensored Right-censored

10,986 (4.47%) 35,920 (14.61%) 198,982 (80.92%)
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Altogether:

Y :=

⎧⎪⎨
⎪⎩
Y � (age at dementia diagnosis - 50) for L ≤ Y � ≤ R (� := 0)

L (age at beginning of study period -50) for Y � < L (� := −1)

R (age at event (i)-(iii) minus 50) for R < Y � (� := 1)

Note that although the study period is fixed, entrance is individually different, depend-
ing on the birthday. We do not (and do not need to) model the birthday, as we can
leave the joint distribution for (L, R) unspecified, apart from R > L . We denote its
parameter by θ�. As a consequence, the censoring indicator� is random. We will see
that � is endogenous, that is its distribution depends on θ . As specified for Z̃4 earlier,
the entire covariate Z is random due to sampling and exogenous. The values y, δ and z
can obviously be calculated with the definitions from Sect. 2 for each person. Figure 2
displays the coding for a right- and a left-censored person (top and middle), i. e. with
dementia incidence outside the study period.

We need the distribution of (Y ,�,Z) when defining the criterion function. To
derive the density, we commence with left-censoring and assume Y � and L to be
independent. The age at the beginning of the study period, L , is also assumed to be
independent of Z and we denote its density and CDF as fL(·) and FL(·). We observe

Y := max{Y �, L} and � := 1{Y �≥L} − 1. (2)

with density

fY ,�|Z(y, δ|z) = f (y|z)1+δF(y|z)−δ fL(y)−δFL(y)1+δ. (3)

Note that the conditional density f (·|·) and CDF F(·|·) are those of the ‘latent’
Y �. Right-censoring instead of left-censoring is similar, only with F(y|z) replacing
1 − F(y|z), and 1 − FR(y) replacing FL(y). Of course, with dementia the residual
lifetime will be reduced so that, for the right-censoring cause (ii), age-at-death and
age-at-dementia will not be stochastically independent. However, we think it is non-
informative because we are not interested in mortality, but in morbidity and that death
has an impact on the—still conceptionally existing—time until dementia is not plausi-
ble. The conditional density under double-censoring is easily derived (see Proposition
1 in Dörre and Weißbach (2017) or Formula (3) in Kim et al. 2013).

As the first step towards the criterion function, recall that the distribution of Z does
not depend on θ . The parameter of the covariate is nuisance, so ‘conditioning’ applies
(see Kalbfleisch and Sprott 1970; Reid 1995). For the bivariate dependent variable
(Y ,�), the conditional likelihood method is appropriate for estimating the parameter
vector (θ , θ�). Note that due to endogeneity, it is not possible to separately relate θ to
Y and θ� to �. Also note that the categorical scale of the second dependent variable,
�, is not an obstacle, as more importantly, θ� is on a continuous scale.

Ultimately, we want to restrict attention to θ . As the distribution of L is uncon-
nected to the parameter θ , the third and forth factors of (3) will not influence the
point estimate found by maximization with respect to (wrt) θ , as can be seen from the

123



44 R. Weißbach et al.

usual logarithmic transformation. The same is true for R. The impact of θ� on the
standard errors is studied in the next Sect. 4. Note already that θ can be gained from
the conditional model by the smooth function θ := g(θ, θ�). The conditional likeli-
hood, denoted by �c(θ , θ�), is the product over (3) (amended by right-censoring), as
indeed (Y �

i , Li , Ri ,Z′
i )—and hence ((Yi ,�i ),Z′

i )—are independent and identically
distributed. We now collect all factors in �c(θ, θ�) that contain θ and define

�[(yi , δi ), zi ; θ ] := 1{δi=0} log[ f (yi |zi )] + 1{δi=−1} log[F(yi |zi )]
+1{δi=1} log[1 − F(yi |zi )]. (4)

Note that due to the last summand, we need observations for all persons. We cannot
expect a low-dimensional sufficient statistic as is occasionally the case for only right-
censored survival data. We define the exponential of our criterion function as

n∏
i=1

exp{�[(Yi ,�i ),Zi ; θ ]}. (5)

Themaximizing argument is denotedby θ̂ andnumerically determined.An initial value
must avoid negatively infinite log-conditional-likelihood values. Specifically, we start
from a model with only the 35, 920 uncensored observations and without Z, i.e. with
β2 = 0 andβ3 = 0.The closed-formestimate for (a, β1)

′ is then (0.22×10−3, 0.152)′.
Using now the covariates, the logarithmic value for (5) has a numerically maximal
value of −425, 851 at

θ̂
′
uncens. = (0.459 × 10−3, 0.234,−5.016,−3.545,−1.788, 2.365, 4.815,−0.155).

Including now censored observations, the logarithmic (5) has for all n = 245, 888
observations a numerical maximum of −191, 444. The adequacy of the numerical
maximizations were verified ex post for convergence. The resulting point estimates
are given in Table 3 (as the two rows ‘Definition 1’, with and without the left-censored
observations) and will be discussed in Sect. 5, together with standard errors derived
in the next section.

4 Statistical inference

Let us here study the implication of left-censoring for estimator consistency and
normality, the latter with consequences for the confidence intervals. Along with the
nuisance parameter for censoring, θ�, the distribution of the random (multivariate)
covariate also, has a parameter which we do not denote explicitly. Roughly speaking,
studying the asymptotic normality of a Maximum Likelihood Estimator (MLE) for
all parameters enables deferring the normality of the estimator for θ , even when only
maximizing (5).

In more detail, as stated, we aim at disposing of the parameter of the (exogenous)
covariate by conditioning, i.e. by factorizing the likelihood. As censoring is endoge-
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nous, instead of conditioning, we aim at disposing of the θ� by the virtue of fact that
differentiation of �(·), and of the logarithmic unconditional density of [(Yi ,�i ),Z′

i ]
wrt to θ , are equal. To see this, factorize the latter unconditional density into (3) and
the marginal density ofZi . After taking the logarithm and differentiating, the marginal
density ofZi and the distribution of (Li , Ri ) vanish, as both are assumed not be depend
on θ .

Note already that, for the derivation of asymptotic confidence intervals, including
standard errors, arguments will be needed that prevent the use of the entire distribution,
which would again include the covariate parameter and θ�.

In order to establish the asymptotic normality of the estimator, in Sect. 4.2, we will
use a Taylor expansion of the score equation. An important requirement on several
occasions will be the consistency of θ̂ (maximizing (5)). There are several sets of
assumptions underlying such a proof (see e.g. Property 8.1 in Gouriéroux andMonfort
1995a). The main idea behind Wald’s dominating conditions (6) is to ensure that the
convergence of the criterion function (as a sequence in n) will be uniform (as function
of θ ). This will in turn ensure the convergence of the maximizing argument, θ̂ , to
converge to the true parameter θ0 for Y � (conditional on Z = z).

4.1 Wald’s dominating condition

Even though we want to cover double-censored durations, we commence with uncen-
sored observations. And, for simplicity of the argument, we start without covariates.
Hence, the criterion function (5) reduces to the likelihood, and for the MLE, we verify
Wald’s D conditions. Of theWald-conditions, especially condition D3 is cumbersome,
namely tofind an integrable positive function h(y�) that dominates the likelihood ratio:

∣∣∣∣log f (y�; θ)

f (y�; θ0)

∣∣∣∣ ≤ h(y�) ∀ θ ∈ � (being compact)

with
∫
R+

h(y�) f (y�; θ0)dy
� < ∞ (6)

Here f (y�; θ) is synonymous for f (y�|z) in (1). The idea is to set h(y�) as the upper
bound to the left in the first inequality of (6)—wrt to θ—and to show integrability,
wrt to y�.

Let us set 	 = [ε; 1
ε
], for some small ε > 0 and even ignore the age-effect up to

this point, i.e. set β1 = 0.

Lemma 1 For independent Y �
1 , . . . ,Y �

n ∼ Exp(a0) and a0 ∈ (ε; 1
ε
), Wald’s D3-

condition (6) holds.

The proof stems from the following graphical arguments. Obviously, in the y�-
direction, the log-likelihood ratio

log LR(y�, a, a0) := log
f (y�; a)

f (y�; a0) = log
a

a0
− (a − a0)y

� (7)
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Fig. 3 Left: log likelihood ratio (7) for y� = 0.2 and a0 = 0.5, middle: log likelihood ratio (7) for a0 = 0.5,
right: absolute of log likelihood ratio for a0 = 0.5

is linear. It increases for a < a0 and decreases for a0 < a. In both cases, the slope
decreases (in absolute terms) as a approaches the true parameter a0. For a = a0
the function is constant. More important is the direction of argument a, for which
log LR(y�, a, a0) is concave (see Fig. 3 (left)). As a function of both arguments,
the ratio has the shape of a pear leaf (Fig. 3 (middle)). The log likelihood ratio is
concave in a with local minima at the edges of the parameter space, {ε; 1/ε}. If the
function were negative, these would be the only potential maxima of the absolute
value. Unfortunately, this is not the case, as Lemma 4 in “Appendix A” exhibits.

Hence, function

∣∣log LR(y�, a, a0)
∣∣ = | log a

a0
− (a − a0)y

�|

has its maximum either in a = ε, in a = 1/ε or in a = 1/y�. Figure 3 (right) displays
the ‘used-handkerchief shape’ that log LR(y�, a, a0) exhibits as a function of a and
y�. The function h(y�) is composed as maximum over the only three candidates ε,
1/y� and 1/ε. The analytical version of the proof is in “Appendix A”. Graphically, one
considers the three one-dimensional functions through the three-dimensional room
depicted in Fig. 3 (right) as candidates. For the first two candidates, whatever y�, the
maximum is at the same a, namely on the edge (on the room’s left and right wall).
These candidate functions are parallel. This is not true for the third function because
the maxima are at a = 1/y� in the parameter space. (It proceeds in a curve through the
room.) Now imagine the two-dimensional vertical plane spanned by the y�-axis and
the axis of the log-likelihood (i.e. the left wall of a room you enter). And imagine a
projection of the three function graphs on that plane (as shadows on the left wall near
a light source on the right wall), the upper hull in this picture is the graph of h(·). For
the example a0 = 0.5, Fig. 4 depicts h(·) and suggests that one linear edge extremum
quickly dominates the other two candidates.

As consequence, the second half of condition (6) is fulfilled as it is proportional to
the expectation of an exponential distribution, being 1/a0 and hence finite, due to the
compact support of the parameter space.

The aim is now to include the left-censoring. But then, the criterion function will
not be the likelihood, but only a factor thereof. It is the product over

fY ,�(y, δ; a) ∝ f (y; a)1+δF(y; a)−δ
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Fig. 4 Bound h(y�) for a0 = 0.5

so that without right-censoring and covariates, (4) becomes

�L(y, δ; a) := (1 + δ) log f (y; a) − δ log F(y; a).

There is an analogous criterion toWald’s D3-condition (6) for M-estimation (see Sect.
24.2.3, condition C2’ in Gouriéroux and Monfort (1995b), originally Theorem 2 from
Jennrich 1969). For the proof of the following Lemma, see 1.

Lemma 2 Assume Y �
1 , . . . ,Y �

n ∼ Exp(a0) and L1, . . . , Ln ∼ FL(·) to be all inde-
pendent and 0 < P(Y � < L) < 1. For Y and � as in (2), there is a function hL(y, δ)
such that

|�L(y, δ; a)| ≤ hL(y, δ) ∀a ∈
[
ε,

1

ε

]

with

∑
δ∈{−1,0}

∫
R+

hL(y, δ) fY ,�(y, δ; a0)dy < ∞. (8)

In contrast to the method of proof in Kremer et al. (2014), the method here easily
extends to double-censored observations. The sum (8) then has three summands. And
in the third summand, hL(y, 1) = 1

ε
y is easily found by the linearity of ay wrt a. The

resulting integral is then again proportional to the expectation of Y �, given that right-
censoring is neither impossible nor sure. The Lemma also carries over to covariates,
as we consider the conditional densities. The aim is also to include the age-effect.
The parameter space now has two dimensions, β1 being between a small and a large
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positive real value and the log-likelihood ratio becomes (see Definition 1 and (1))

log
f [y�; (a, β1)]
f [y�; (a0, β10)] = log

a

a0
+ (β1 − β10)y

� − a

β1

(
eβ1y� − 1

)

+ a0
β10

(
eβ10 y� − 1

)

as A(y�) = a
β1

(
eβ1y� − 1

)
and log f [y�; (a, β1)] = log a(y�) − A(y�), log a(y�) =

log a + β1y�. Now the second half of (6) does not simplify to an expectation, but
interchanging the integral with the sum, the summands are either limited because of the
density property, because of the finite expectation, or because eβ1y�

can be absorbed
into the exponential function of the density to form a new Gompertz distribution’s
density. Takingmaxima over the parameter space does not hinder this, as the parameter
space is bounded and all functions are continuous in the parameters.

4.2 Standard error for �̂

The maximum of (5) also maximizes �c(θ, θ�) wrt to the first argument. It even
maximizes the likelihood wrt to θ , as we assume the distribution ofZ not to depend on
θ .Neither θ� nor the parameters of the covariateZ are of concern for the point estimate.
The asymptotic standard error of an MLE, classically builds upon the unconditional
expectation of the squared gradient of the logarithmic density for one observation,
namely the Fisher information matrix. Such expectation wrt the joint distribution of
((Yi ,�i ),Z′

i ) will add θ� and the covariate parameters into the expression. Roughly
speaking, we can partition the Fisher information matrix into blocks, where the upper
left block is for θ , and then, on the block-diagonal a block for θ� follows, and the lower
right block is for the covariate parameters. The arguments for point estimation also let
conclude that the off-diagonal block matrices will all be zero. Classically, the standard
errors for the parameters are deduced from the inverse of the Fisher information. Due
to the Schur complement (see e.g. Section A.2.2.d in Gouriéroux andMonfort 1995b),
only the inverse of the upper-left block must be inverted to achieve a standard error of
θ . Standard errors can be estimated with the observed Fisher information.

Let us now be more specific and denote by E0 the expectation wrt (Y ,�), condi-
tional on Z, by EZ the expectation wrt to the marginal distribution of Z. Define, with
finally unconditional expectations

J := EZE0

(
−∂2�[(Y ,�),Z; θ0]

∂θ∂θ ′
)

I := EZE0

(
∂�[(Y ,�),Z; θ0]

∂θ

∂�[(Y ,�),Z; θ0]
∂θ ′

)
.
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Theorem 1 For the maximizing argument θ̂ of (5), it holds for a compact subspace
for θ0 in (R+)2 × R

6:

√
n

(
θ̂ − θ0

)
d−→ N8(0,J −1IJ −1)

Proof Denote the column vector

U(θ) := ∇θ log �c(θ , θ�) = ∇θ

n∑
i=1

�[(Yi ,�i ),Zi ; θ ]

and perform a multivariate quadratic Taylor expansion thereof, evaluated at the max-
imizing argument and expanded around the true parameter value for each of the eight
coordinates:

0 = 1√
n
Uk(θ̂) = 1√

n
Uk(θ0) − 1

n
∇θU

k(θ0)
′√n(θ̂ − θ0)

+√
n(θ̂ − θ0)

′ 1
2n

∇2
θU

k(θ∗)(θ̂ − θ0)

Here ∇2
θU

k(θ∗) denotes the Hessian matrix and θ∗ is a point on the line between θ̂

and θ0. The last summand is asymptotically negligible by Slutzky’s Lemma, for three
reasons: (i) Its second factor, the Hessian (divided by n), can be shown to be bounded
at θ0 by the usual arguments of continuous functions on compact support and because
θ∗ will converge to θ0 because θ̂ is consistent. (ii) Its last factor converges to zero, as
θ̂ is consistent. (iii) Its first factor (including

√
n) converges weakly. The entire last

summand is dropped in the following analysis. In a more precise version of the proof,
one applies Theorem 10.1 of Billingsley (1961).

The first summand Uk(θ0)/
√
n is now a sum of iid random variables and will be

asymptotically normal with mean zero and variance-covariance matrix I , due to the
CLT by the usual arguments. Subtract the second summand, and multiply the equation
with the inverse of ∇2

θU
k(θ∗)/n. It becomes a first factor on the right side and can

be replaced with its deterministic matrix limit, namelyJ −1, by the LLN. (We refrain
from verifying a sufficient assumption such existence of moments or differentiability
for the characteristic function of ∇θ�[(Yi ,�i ),Zi ; θ ].) We will also not verify that
the model is identified. ��

For a conditional likelihood �c(θ, θ�), the ‘Conditional InformationMatrix Equal-
ity (CIME)’ follows, and for our criterion function, i.e. the logarithm of (5), a similar
equation holds for θ .

Lemma 3 I = J .

The proof uses elementary analysis and is given in “AppendixB”.As a consequence
J −1IJ −1 = J −1. By Theorem 1, the asymptotic standard errors can be derived
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now as square roots of the diagonal elements from J −1 and consistently estimated
from

Ĵ := 1

n

n∑
i=1

−∂2�[(yi , δi ), zi ; θ̂ ]
∂θ∂θ ′ . (9)

There are only minor numerical considerations when estimating the standard errors
for the eight-dimensional function of Definition 1 with a Newton algorithm. The
resulting standard errors are given in the rows ‘Definition 1’ of Table 3 (in brackets
below the point estimates).

5 Data analysis

5.1 For the statistical population

Let us here study the implications of left-censoring on the estimates from HCD, espe-
cially on the confidence intervals. We now study the implication of deselection for
the inference from the sample (3rd stage selection) onto the statistical population (2nd
stage selection) (see Fig. 1). The rows ‘Definition 1’ inTable 3 summarize the inference
drawn from the sample for θ in the statistical population of Germans born between
1900 and 1954 and insured by the AOK in 2004. The results enable an assessment of
excluding or including left-censored observations (see third to fifth boxes in Fig. 1).
As a first general finding, by including left-censoring, confidence intervals become
narrower for almost all parameters, as to be expected, with the exception of a. Overall,
given the interpretation of the standard error as half of a half confidence interval by
Theorem 1, no small sample size argument needs to be taken into consideration and
almost all effects are statistically significant in the sequel.

Beforewe compare point estimates and standard errors for themodel ofDefinition 1,
we fit two smaller preliminary models for dementia incidence to the data. Both models
neglect the gender effect, i.e. generally set β3 = 0. In one model, we neglect the age
effect, i e. set β1 = 0, and in the other model the cohort effect is neglected, i.e. we set
β2 = 0. Of course we are convinced that both effects exist, but still want to build a
model by forward selection of covariates.

The preliminary model with only a cohort-effect has a likelihood (and (5)) with
one factor for each cohort. Such stratified analysis simply fits each cohort to a sep-
arate (one-dimensional) Exponential distribution. With or without left-censoring, the
right-censored data sets do not pose any numerical obstacles. The point estimates
for excluded (top) and included (bottom) left-censored persons (Table 3, first rows)
generally suggest a decrease in dementia hazard over the cohorts. The effect of includ-
ing left-censoring is that the hazard rate is increased for all cohorts. Of course this
is expected, because excluding right-censored observations is known to overestimate
the hazard, and hence excluding left-censored observations should underestimate the
hazard. The increase in hazard over the cohorts is not constant and wewill observe and
soon explain this phenomenon in themodel of Definition 1. For the twentieth century’s
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first decade, the hazard itself is exp(1.138) ≈ 3 (with left-censored observations), i.e.
it is three times higher then in the 1930s. In the most recent cohort of the 1950s, the
hazard is exp(−0.977) ≈ 0.4, i.e. only 40% of the risk that prevails in the 1930s. We
will soon see that this remarkable range can be explained (in part) with the model of
Definition 1.

For the preliminary model with only an age-effect, we need to maximize (5) in two
parameters, being a slightly larger numerical effort, because a visual inspection of (5)
no longer suffices. Estimates are given in the second rows of Table 3 and the effect
of β1 ≈ 0.14 (again with left-censored observations) means that with each additional
year (starting at age 50), the dementia hazard (which is approximately the probability
acquiring dementia within one year), is multiplied by exp(0.137) ≈ 1.15, i.e. by 15%.
Again, excluding left-censoring decreases the parameter â, here by a remarkable 50%.

The results of the Cox-type model in the third rows are similar to the next rows of
Definition 1’s results, only with slight increases in standard errors due to accounting
for the increased insecurity by the nonparametric baseline. This indicates robustness
or admissibility of the Gompertz-assumption in Definition 1. The point is further
verified by plotting the Breslow-estimate of the cumulative nonparametric base-
line hazard in the Cox-type model and one finds that (for different resolutions) the
(double-)exponential increase in age fits.

Let us now come to the model of Definition 1 with estimates given in the forth rows
of Table 3. We discuss the cohort effect β̂2, the age effect β̂1 and the sex effect β̂3.

Let us start with the cohort effect and with a finding known as Simpson’s paradox.
The ‘slope’ of the cohort effect is reverted, in comparison with the preliminary model
with only the cohort effect. The sign of a linear approximation through β21, . . . , β25
was preliminarily positive and is now negative. As an example, for a person born
between 1900 and 1910, the dementia hazard is estimated as exp(−2.095) ≈ 0.12, i.e.
is only 12% of those born in the 1930’s (with left-censored observations). By contrast,
for a person from the 1950s, the hazard is exp(1.342) ≈ 4 and hence almost four
times as high. As an interpretation, apparently, estimating the preliminary model with
cohort effects only, in addition to a constant age-independent hazard which identifies
the 1930 cohort, attributes the entire age effect of dementia incidence to the cohorts.
Obviously, in the more recent cohorts, we exclusively observe lower ages, and we
wrongly attribute the age effect to that cohort. By doing so, we greatly overestimate
the decline in dementia incidence over cohorts.

A consequence of including left-censored persons, already remarked upon in the
preliminary model with only the cohort effect, is that the slope in the cohort effect
declines (in absolute terms). The reason why the hazard-increasing inclusion of left-
censoring is not constant across cohorts is as follows. As can be seen from two rows in
Table 3, the percentages of left-censored persons differ between the birth cohorts (i.e.
within z̃). In older, earlier cohorts, the portion is larger than in younger, more recent
cohorts. As a result, in the older cohorts, the hazard estimate increases more than in
younger cohorts, and the slope of such a cohort effect in β2 becomes smaller. (The
overall hazard increase is absorbed in the parameters a and β1.)

Let us study the impact of left-censored persons in the model of Definition 1 on the
age effect. First note that by including left-censored persons, â, i.e. of the hazard for a
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Fig. 5 Five-year dementia incidence rates (top) male, born in 1920s, (bottom) female, born in 1930s—
excluding left-censored persons (left), including left-censored persons (right)—for t + 50 = 50, 55, 60, …,
95 year olds

50-year-old male person born in the 1930s, rises, as to be expected. More interesting
than the increase of â from 0.058 to 0.190 is the dip of β̂1 from 0.226 to 0.183. That
means the increase in hazard is stronger for younger people compared to older ones.
The impact becomes evident with the five-year incidence rates calculated from the
conditional CDF (1), P(Y � ∈ [t, t+d)|Y � ≥ t) = [F(t+d|z)−F(t |z)]/[1−F(t |z)]
(d = 5), for a man born in 1920s, i.e. for z̃3 = 1, zs = 0 (for t = 0, 5, 10, . . . 45
in Fig. 5, top) and a woman born in 1930s, coded by z̃ j ≡ 0 and zs = 1 (bottom).
Including left-censored persons seems to produce a general dip in the hazard function,
but the hazard really increases for younger people and decreases for older ones.
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The statistical reason we advocated in the cohort effect, namely that more persons
in earlier cohorts are left-censored, so that including them increases the estimate more
than for later cohorts, is not applicable here. To the contrary, the fact that more persons
are left-censored in earlier cohorts, now means that fewer are left-censored at lower
ages. We cannot comment on the effect without a degree of speculation. Assume that
(i) an older person, say born before 1930, belonging to the data, i.e. alive in 2004, is
an indication of a health privilege. (Younger persons in the data who were been born
after 1930 are not indicated.) Hence, the proportion of health-privileged among the
elderly in the data must be disproportional. Assume further that (ii) a left-censored
person has had dementia incidence early in life, and therefore cannot be regarded as
health-privileged. As a consequence of both assumptions, including the left-censored
ones, will reduce the disproportion of privileged and the age-effect must dip. Inference
regarding the topic would require including further covariates in the model, observed
or unobserved.

The consequence of including left-censored persons for the sex effect is an increase.
The negative sex-effect, favourable to women, becomes smaller (in absolute terms)
being ultimately almost irrelevant.

5.2 Inference to demographic population

A next step is to consider the statistical population as random sample of the demo-
graphic population (see Fig. 1). We will refrain here to comment on the effect of the
2nd stage selection of persons to the specific health insurance. However, we consider
1st stage selection of left-truncating those not surviving 2003. We will see that, for the
morbidity analysis, left-censoring is a competing concept to left-truncation. For study-
ingmeasurements such asmortality causing absorption, the case is different. Including
measurements that are not absorbed, but contain only left-censored information, must
be better than ignoring them combinedwith a general adjustment for left-truncation. In
order to precisely discriminate between truncation due to early dementia and truncation
due to prior death, we must include another state in the healthy-ill model and advance
to a multi-state model, namely a healthy-ill-dead model (see Fig. 6(any panel)). In
a Markovian model left-censoring, with respect to the illness, can be combined with
left-truncation, caused by death.

An analytic treatment of the multi-state model, however without left-censoring and
left-truncation, is found e.g. in Weißbach and Walter (2010); Kim et al. (2012). For
an introduction to truncation see Weißbach et al. (2013); Frank et al. (2019); Dörre
and Emura (2019). Here we simulate (i) homogeneous Markov processes, i.e. without
time-effect (see Fig. 6(top)) and (ii) an inhomogeneous Markov process, i.e. with
time-effect which will be a cohort-effect (simplified here to two intervals, z = 0 and
z = 1) (see Fig. 6(bottom)). A homogeneous Markov process can be easily simulated
by its construction of exponential waiting times and target states with multinomial
distribution (Albert 1962, see e.g.). An inhomogeneous process is simulated as easily.

We assumebirths, i.e. the 50th birthday, to be uniformly distributed on [1950, 2004].
The time-homogeneous, i.e. age- and cohort-constant, transition intensities are a =
1/35 (in the notation of Definition 1), b = 1/45 and c = 1/45 and resemble the
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Fig. 6 Three possible models: with equal death intensities (top, left), with unequal death intensities (top,
right), with cohort/age effect (bottom) (H healthy, I ill, D dead)

Table 4 Left-truncation ignored, right-censoring considered

N E(n) E(nLT ) E(nLC ) BIAS(aH I ) rBIAS(aH I )

Left-censoring ignored

100 34.05 41.80 24.15 − 0.01905 − 66.69

250 85.30 104.43 60.27 − 0.01911 − 66.90

1000 340.90 417.78 241.32 − 0.01913 − 66.94

Left-censoring considered

100 58.29 41.71 24.11 0.000369 1.29

250 145.47 104.53 60.27 0.000166 0.58

1000 582.30 417.70 241.19 0.000055 0.19

data set. Durations are right-censored either by death or end of data collection (at the
beginning of 2014). A person is omitted by left-truncation if it does not survive 2003.

All simulation results are based on 10,000 repetitions of the same set-up. For all
models, the transition intensity from healthy to ill is the hazard rate and estimated with
(3). (Fitting all parameters to the data would be based on the partial likelihood of the
multiple Markov process (see Andersen et al. 1993, equation 2.7.4’), however includ-
ing left-censoring is not straight-forward.) The Bias of any estimator γ̂ is calculated
as B(IAS)(γ̂ ) := ¯̂γ − γ and the relative Bias as rB(IAS)(γ̂ ) := 100 · B(IAS)(γ̂ )/γ .
Recall from Fig. 1 that N denotes the size of the demographic population, before
1st stage selection, i.e. left-truncation, and n the (random) sample size (after trunca-
tion and possibly after removing left-censored persons). The number of left-truncated
persons is denoted by nLT and of left-censored persons by nLC .

First, ignoring left-truncation does not necessarily bias the illness incidence esti-
mation, if left-censoring is taken into account (see Fig. 6(top, left)). Table 4 shows
the negative bias for ignoring both and a negligible bias when accounting for left-
censoring.
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Table 5 Multiplicative cohort effect, left-truncation ignored, right-censoring considered

N E(n) E(nLT ) E(nLC ) B(aH I ) B(β) rBI(aH I ) rBI(β)

Left-censoring ignored

100 27.8 41.6 30.6 − 0.02290 1.061 − 80.15 151.5

250 69.2 104.5 76.3 − 0.02339 0.985 − 81.85 140.7

1000 277.2 417.9 304.9 − 0.02258 0.879 − 79.02 125.5

Left-censoring considered

100 58.2 41.8 30.6 0.00161 −0.00803 5.63 − 1.15

250 145.6 104.4 76.4 0.00048 0.00191 1.55 − 0.27

1000 582.5 417.5 305.6 0.00006 0.00190 0.22 0.27

Table 6 Left-truncation ignored, left-censoring and right-censoring considered, varying mortality

N n E(nLT ) E(nLC ) BIAS(aH I ) rBIAS(aH I )

100 43.2 56.8 9.1 −0.00991 −34.7

250 108.0 142.1 22.7 −0.01005 −35.2

1000 431.9 568.1 91.0 −0.0101 −35.3

Second, that the statistical population is not a simple sample, i.e. with equal selec-
tion probabilities, becomes visible, when assuming cohort effects. Persons of an earlier
cohort have a smaller probability to survive 2003 than later cohorts. Hence it is ques-
tionable whether the cohort effect β2 of Definition 1 is estimated correctly. In order to
account for a cohort effect (see Fig. 6 (bottom)), define for cohort 1950–1977 z = 0
with hazard a(t |0) ≡ 1/35, i.e. with a = 1/35, and for cohort 1978–2003 z = 1
with hazard a(t |1) = 1

35 exp(β) and β = 0.7. Again, truncation due to death does
introduce a bias into the estimate of the cohort effect (see Table 5(top)). However, the
cohort effect is apparently estimated consistently, at least for age-constant intensities,
if left-censoring is accounted for (see Table 5(bottom)).

Third, one should not have the impression that left-censoring can replace left-
truncation in any situation. If the death intensity is different for the transition from
healthy to dead c as compared to the transition from ill to dead b (see Fig. 6(top,
right)), a (small) bias is introduced by ignoring the left-truncation phenomenon even
if one accounts for left-censoring (see Table 6).

With respect to standard errors for the inference to the demographic population,
note that EZ of Theorem 1 will still have a proper meaning, however, (9) will not
necessarily estimate the asymptotic variance. One reason is that the covariate Z is not
random but deterministic from the demographic population to 1st stage selection (see
Fig. 1), another theory must be applied (see e.g. Bradley and Gart 1962; Weißbach
and Radloff 2020).
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6 Conclusion

The study reveals that even when including left-censored observation in a survival
analysis, the asymptotic analysis of the model may use elementary means. However,
bypassing lengthy calculations, as inKremer et al. (2014) for left-censored observation
only, is no longer possible. Only with right-censoring, would the model be a member
of the exponential family (and also a generalized linear model). Whether double-
censoring can be analysed more easily in a counting process framework, was not
investigated. As are the additional conditions to (6) for consistency. Also, togetherwith
themajor assumption of estimator consistency, there are also further assumptions, such
as the existence of J −1, needing investigation in order to conclude asymptotically
normality estimator (see e.g Theorem 5.21 in van der Vaart 1998).

An application to issues of human morbidity in follow-up studies is appealing,
because a disease typically does not ‘absorb’ the statistical unit. And due to the
longevity of humans, many follow-up studies typically cannot start before to the first
disease incidence. In particular here, left-censoring accounts for the general weakness
of the HCD that it one does not follow each cohort from a given age, but rather for a
given period.

From a broader perspective, estimating the duration distribution conditional only
on survival may be unsatisfactory. However, note that the probability of an incidence
exceeding age t , given the lifetime surpassed age s, can be multiplied with the last
probability, so as to result in the joint distribution. In order to obtain the marginal
distribution of the disease incidence, only the second argument needs to be integrated
out. Hence, because the mortality distribution will typically be known quite accu-
rately from other data sources such as a register of deaths, knowing the conditional
distribution is already a major achievement.

An unconditional estimate, solely from the HCD, will first have to reconsider the
assumption in Definition 1, that the dummy variable coding the cohort, e.g. Z̃4 for
the 1940s (see again Table 1), is endogenous for the demographic population. Its
parameter is the probability of selecting a person born during that decade in the data
process of Fig. 1. This probability is dependent on the probability of surviving 2003. If
the probability of surviving depends on having dementia (which is widely accepted),
the probability of dementia incidence (and hence the model of Definition 1 and its
parameter θ ) will be influential.

Acknowledgements The financial support from the Deutsche Forschungsgemeinschaft (DFG) of R.
Weißbach and G. Doblhammer is gratefully acknowledged (Grant 386913674 ‘Multi-state, multi-time,
multi-level analysis of health-related demographic events: Statistical aspects and applications’,WE 3573/3-
1, Do 1313/2-1). For the support with data we thank the AOK Research Institute (WIdO). The linguistic
and idiomatic advice of Brian Bloch is also gratefully acknowledged.

Funding Open Access funding provided by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123



58 R. Weißbach et al.

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Proofs for Sect. 4.1

Lemma 4 There �(y�, a0), y� ∈ R
+, a0 ∈ 	, such that lra0,y� (a) := log(a/a0) −

(a − a0)y� < 0 as a function of a, i.e ∀ a ∈ 	.

Proof Assume the converse. The function lra0,y� (a) has its maximum with respect to
a in 1/y�, so negativity is equivalent to

log
1

y�a0
−

(
1

y�
− a0

)
y� < 0 ⇔ qa0(y

�) := − log(y�a0) + y�a0 < 1. (A.1)

Function qa0(·) is convex as its second derivative is 1/y�2 > 0. (Note that, being in
survival analysis, we may refrain from allowing y� = 0.) The first derivative of qa0(·)
is zero for y� = 1/a0, being the minimum. At the minimum of qa0(·) is

qa0

(
1

a0

)
= − log

(
1

a0
a0

)
+ a0

1

a0
= 1 �< 1.

Hence it is ≥ 1 for any a0, and there exists no a0 to fulfil (A.1), being a contradiction.
��

Before we continue the proof of Lemma 1, we note some useful properties:

ε < a0 ⇔ ε
a0

< 1 ⇔ log ε
a0

< 0
a0 < 1

ε
⇔ 1 < 1

εa0
⇔ log 1

εa0
> 0

a0 < 1
ε

⇔ εa0 < 1 ⇔ 1 − εa0 > 0
(A.2)

Inserting ε, 1/y� or 1/ε into log likelihood ratio (7) as a) bounds it in absolute terms.
Of course relevant candidate can vary for different y�. We denote the potential bounds
by gabsε (y�), gabs1

y�
(y�) and gabs1

ε

(y�) and give the definition in the following table. It

contains also simplified versions thereof, useful as we see soon.

gε(y�) := log ε
a0

− (ε − a0)y�

gabsε (y�) :=
∣∣∣log ε

a0
− (ε − a0)y�

∣∣∣
g 1

y�
(y�) := log 1

y�a0
− ( 1

y� − a0)y�

gabs1
y�

(y�) :=
∣∣∣log 1

y�a0
− ( 1

y� − a0)y�
∣∣∣

g 1
ε
(y�) := log 1

εa0
− ( 1

ε
− a0)y�

gabs1
ε

(y�) :=
∣∣∣log 1

εa0
− ( 1

ε
− a0)y�

∣∣∣
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Using (A.2), one sees that function gε(·) is linearly increasing, with negative y�-axis
off-set, and function g 1

ε
(·) is linearly decreasing, with positive y�-axis off-set.

Both, gabsε (·) and gabs1
ε

(·), are positive and linear functions with slopes a0 − ε and

1/ε −a0 from some point y� on. (A linear function in the integration of (6) will result
in an expectation, and hence be finite.)

Unfortunately this is not true for gabs1
y�

(·) but the following will simplify the integra-

tion. Function g 1
y�

(·) is convex, because d2

dy�2 g 1
y�

(y�) = 1
y�2 > 0. As d

dy� g 1
y�

(y�) =
a0 − 1

y� it is minimal in y� = 1/a0. Because g 1
y�

( 1
a0

) = 0 the function is non-negative

and hence g 1
y�

(·) ≡ gabs1
y�

(·) ≡ g+
1
y�

(·).
This and using max(x, y) ≤ x + y (for positive x and y) we define

h(y�) := max{gabsε (y�), gabs1
ε

(y�)} + gabs1
y�

(y�)

= max
a∈{ε, 1

ε
}

∣∣∣∣log a

a0
− (a − a0)y

�

∣∣∣∣ + log
1

y�a0
−

(
1

y�
− a0

)
y�. (A.3)

For the two bounding function candidates gabsε (0) and gabs1
ε

(0) are below positive

− log ε
a0

or log 1
εa0

(see (A.2)).
Now

∫ ∞

0
h(y�) fa0(y

�)dy� ≤
∫ ∞

0
max{gabsε (y�), gabs1

ε

(y�)} f (y�; a0)dy�

+
∫ ∞

0
log

1

y�a0
− (

1 − a0y
�
)
f (y�; a0)dy�. (A.4)

Both candidate functions gabsε (·) and gabs1
ε

(·) can be bounded from above by linear

function max{− log ε
a0

, log 1
εa0

} +max{ε − a0,
1
ε

− a0}y�. Hence the first integral on
the right in (A.4) is smaller than

max

{
− log

ε

a0
, log

1

εa0

} ∫ ∞
0

f (y�; a0)dy� + max{ε − a0,
1

ε
− a0}

∫ ∞
0

y� f (y�; a0)dy�

and finite as the first integral is one and the second the expectation 1/a0.
For the second line in (A.4), with the above arguments, it suffices to show

∫ ∞

0
− log(y�a0) f (y

�; a0)dy� <

∫ 1
a0

0
− log(y�a0) f (y

�; a0)dy� < ∞

Furthermore wlog a0 can be set to 1 here, i.e. the only term to ensure finiteness is

lim
y�
n→0

∫ 1

y�
n

−log(y�)e−y�

dy� ≤ lim
y�
n→0

∫ 1

y�
n

−log(y�)dy� = lim
y�
n→0

− [
y� log y� − y�

]1
y�
n
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= lim
y�
n→0

− [
log 1 − 1 − y�

n log y
�
n + y�

n

] = 1 + lim
y�
n→0

log y�
n

1
y�
n

= 1 − lim
y�
n→0

1
y�
n

1
y�2
n

= 1

For the first equality, see Formula 4.1.49 in Abramowitz and Stegun (1970), the last
but one equality follows from de l’Hôspital’s rule. This ends the proof of Lemma 1.

For the proof of Lemma 2 note first that

�L(y, δ; a) = (1 + δ)(log(a) − ay) − δ log(1 − e−ay).

The search for maxima of |�L(y, δ; a)| wrt a for a fixed (y, δ) means that we need
maxima for |�L(y, 0; a)| and |�L(y,−1; a)|, both for a fixed y. The maxima of the
first are known from the proof of Lemma 1 to be in ε, 1/y and 1/ε. Now look at the
necessary condition

∫
R+

hL(y, 0) fY ,�(y, 0; a0)dy +
∫
R+

hL(y,−1) fY ,�(y,−1; a0)dy < ∞. (A.5)

In the first summand the second factor is proportional to the density of (Y ,�) con-
ditional on �. It only needs to be divided by one minus the probability of censoring,
P(Y � > L), which is by assumption smaller than one. The function hL(y, 0) can
now be chosen as h(y) in Lemma 1 and hence the summand is proportional to
E(Y �) = 1/a0 < ∞.

For the second summand in (A.5) define g(a) := log(1 − e−ay). The argument
of the logarithm is a monotone CDF of an Exponential distribution, as a function of
a. It starts in zero and ends in one and hence g(a) < 0 and lima↘0 = −∞ and
lima→∞ = 0. Hence

hL(y,−1) := max
a∈[ε,1/ε] |g(a)| = −g(ε) = − log(1 − e−εy)

and the second summand in (A.5) is

∫
R+

− log(1 − e−εy)(1 − ea0 y) fL(y)dy (A.6)

as fY ,�(y,−1; a0) is (1−ea0 y) fL(y)due to (3).Wewill nowdiscusswhy the integrand
(without fL(y)) is bounded so that the integral is finite. For y → ∞ we have

h̃L(y) := − log(1 − e−εy)(1 − ea0 y)

becomes zero, because (1− ea0 y) converges to one and − log(1− e−εy) to zero. It is

lim
y↘0

− log(1 − e−εy)︸ ︷︷ ︸
→+∞

(1 − ea0 y)︸ ︷︷ ︸
→0

= lim
y↘0

− log(1 − e−εy)

(1 − ea0 y)−1 = 0,
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as can be seen by two times applying l’Hôspital’s rule. Note the h̃L(y) > 0 and is zero
on both edges of its support R

+ = (0,∞). It is continuous on [0,∞], as a product
of continuous functions on R

+, where the first is continuous as a composition of
continuous functions. By the mean value theorem there must be a y with h̃′

L(y) = 0,
being a maximum. Even if we do not show here uniqueness, as a continuous function
on the compact [εy, 1/εy] for sufficiently small εy , it must attain itsmaximum.Without
poles on [0,∞] this must be a finite M . The density fL(y) now bounds (A.6) with M
and ends the proof of Lemma 2.

Appendix B: Proof for Sect. 4.2

For the log likelihood it is well-known that the expected squared first derivative and the
expected negative second derivative of the log likelihood are equal (see e.g. Formula
(5.36) of van der Vaart 1998), alike for the CMLE (see Formula (13.27) ofWooldridge
2010 or Sec. 7.2.2 ofMcCullagh and Nelder 1989). Lemma 3 disposes of the covariate
parameters and finally of θ�, in order to state the similar result for the ‘upper-left’
8 × 8-block matrix.

To conclude I = J in more detail denote the logarithmic conditional den-
sity for person i by Li (θ , θ�) := L[(Yi ,�i ),Zi ] := log fY ,�|Z(Yi ,�i |Zi ) from
(3), only with additional right-censored observations and generic θ . Now define
si (θ) := ∇θ Li (θ, θ�) = ∇θ�[(Yi ,�i ), zi ; θ ] as vector of eight partial derivatives,
as the factors of (3) belonging to censoring will vanish after taking logarithm and
differentiation.

Lemma 5 It holds E0[si (θ0)] = 0, and hence unconditionally EZ{E0[si (θ0)]} = 0.

Proof Denote by Eθ ,θ�
(·|Zi = zi ) the conditional expectation with respect to density

(3) (again with right-censoring), which is similar to E0, however, with generic (θ , θ�).
It is

Eθ ,θ�
(si (θ)|Zi = zi ) =

∫
R+

∑
δ∈{−1,0,1}

si [(y, δ), zi , θ ] fY ,�|Z(y, δ|zi )dy. (B.1)

Due to the chain rule for differentiation, applied to the logarithm in Li (θ, θ�), it is

∇θ fY ,�|Z(yi , δi |zi ) = {∇θ L[(yi , δi ), zi ]} fY ,�|Z(yi , δi |zi ). (B.2)

Integrating wrt yi and summation wrt δi results on the left-hand side in zero, because
after interchanging differentiation ∇θ with integration and summation, what needs to
be taken a derivative of, is one, due to the density property. On the right-hand side,
recall the definition of si (θ). Now set θ0 for θ . ��

As Li (θ , θ�) is twice differentiable wrt θ , let the Hessian for observation i denote

Hi (θ) := ∇θ ′si (θ) = ∇2
θ Li (θ , θ�),
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where ∇θ ′ leads to a row vector (for each coordinate of the column vector to be taken
the derivative of). It is obviouslyJ = −EZE0[Hi (θ0)] and we are now ready to show
−EZE0[Hi (θ0)] = I . Because of the product rule for differentiation—generalized
to vector coordinates—it is

∇θ ′ [s [(yi , δi ), zi , θ ] fY ,�|Z(yi , δi |zi )]
= ∇θ ′s [(yi , δi ), zi , θ ] fY ,�|Z(yi , δi |zi ) + s [(yi , δi ), zi , θ ]∇θ ′ fY ,�|Z(yi , δi |zi ).

(B.3)

Again applying
∫
R+

∑
δ∈{−1,0,1} to the left-hand side and interchanging with ∇θ ′

results in a zero to be taken the derivative of (due to the arguments after (B.1)). When
integrating the the right-hand side, replace in the second summand∇θ ′ fY ,�|Z(yi , δi |zi )
with the transpose of (B.2). so that

−Eθ ,θ�
[Hi (θ)|Zi = zi ] = Eθ ,θ�

(
si (θ)si (θ)′|Zi = zi

)
.

Inserting θ0, we have the conditional information matrix equality

−E0[Hi (θ0)] = E0[si (θ0)si (θ0)′] = E0

(
∂�[(Y ,�),Z; θ0]

∂θ

∂�[(Y ,�),Z; θ0]
∂θ ′

)
,

because, again, Li and � have equal derivatives. Then, we take EZ on both sides and
use the iterated expectation theorem. This ends the proof of Lemma 3.
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