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Abstract 
Context Salt marsh landscapes at the land-sea inter-
faces exhibit contrasting spatiotemporal dynamics, 
resulting from varying physical constraints that limit 
new marsh establishment. The expansion of salt marsh 
landscapes towards the sea or their retreat towards the 
land is determined by patch-level changes, relying on 
the balance of power between the intrinsic biota traits 
and external physical disturbances.
Objectives Examine how marsh dynamics respond 
to physical constraints, and clarify the pathway from 
coupled physical processes involving hydrodynamic 
forces, sediment transport, and morphological changes 
to rapid patch evolution and landscape changes.
Methods We defined and distinguished four types 
of marsh changes based on patch proximities from 

five-month drone images in two typical marsh pio-
neer zones of the Yangtze Estuary, China: outlying 
expansion, edge expansion, infilling expansion, and 
retreat. Hydrodynamics and sediment transport were 
synchronously measured and compared near the two 
marsh edges, and morphological changes were gen-
erated by drone-derived digital elevation models 
(DEMs).
Results We identified distinct seasonal patterns of 
net marsh expansion at the accretion-prone site, that is: 
Net marsh expansion started from the outlying expan-
sion in spring, followed by edge expansion in summer 
and infilling expansion in autumn. However, at the ero-
sion-prone site that experienced high bed shear stress, 
low sediment availability and high seaward sediment 
transport, we only observed limited infilling and edge 
expansion in spring. This suggests that the potential for 
long-distance patch formation beyond the initial marsh 
edges is diminished in areas subjected to intensive 
physical disturbances.
Conclusions Patch evolution dynamics in response 
to site-specific physical constraints drive state dif-
ferentiation of salt marsh landscape changes. Con-
sequently, the heterogeneous evolution in salt marsh 
landscapes should be taken into account in restoration 
practice.
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Introduction

Salt marshes are one of the most valuable ecosys-
tems on the earth (de Groot et al. 2012). Ecosystem 
services sustained by salt marshes play key roles in 
human welfare, biogeochemical cycles and biodiver-
sity conservation (Costanza et  al. 1997; Kirwan and 
Mudd 2012; Bauer et  al. 2013; Temmerman et  al. 
2013). Nevertheless, with the combined effect of 
sea level rise (Church and White 2011), decreased 
sediment supply (Syvitski et al. 2005; Kondolf et al. 
2014;), extreme events (Woodruff et al. 2013; Vasseur 
et al. 2014; Hanley et al. 2020) and estuarine projects 
(Luan et al. 2018), salt marshes worldwide are facing 
threats, and their deterioration is accelerating (Kir-
wan and Megonigal 2013; Li et  al. 2018; Schuerch 
et al. 2018). Thus, an in-depth understanding of salt 
marsh evolution is needed to incorporate interdisci-
plinary solutions linking land cover and environmen-
tal processes.

Time scale matters in marsh evolution. Shifts of 
marsh cover in pioneer zones often happen within a 
few months due to the short life history of marsh mac-
rophytes (Jiang et al. 2022), and becomes an essential 
portion of cyclic marsh-mudflat dynamics (Bouma 
et al. 2016). Previous studies have made efforts to fill 
the gap between the annual or decadal marsh changes, 
and physical constraints (e.g., van Wesenbeeck et al. 
2008; Wang and Temmerman 2013; van Belzen et al. 
2017). However, spatially explicit short-term marsh 
evolution (usually within a few months) is poorly 
understood and limited by the resolution of data 
acquisitions.

Spatially scaling up amplifies the complexities of 
marsh development (van de Koppel et al. 2012; Fol-
kard 2019). The equilibrium between marsh vegeta-
tion and sediment dynamics at population-community 
level is the prerequisite for marsh survival (Ge et al. 
2019). At the landscape level, unique land covers are 
created as a result of spatial heterogeneities in envi-
ronmental factors (Perry 2002; Moffett et  al. 2012; 
Stein et  al. 2014). Site-specific variables such as 
sediment supply and geomorphology may result in 
distinct trajectories of marsh development (Mariotti 
and Carr 2014; Schuerch et al. 2014; Li et al. 2021). 
Additionally, infrequent but abrupt disturbances (e.g., 
storms and peak riverine runoffs) bring uncertainties 
to marsh evolution (Wang et al. 2016; Leonardi et al. 
2018). Therefore, it is necessary to explore how salt 

marshes spatially respond to the diverse and inter-
twined physical constraints, as this will help in under-
standing the variety of salt marsh landscapes.

Dynamic salt marsh landscapes are formed through 
the life-history processes of pioneer species that 
depend on biophysical interactions, including prop-
agule retention (Zhu et  al. 2020), seedling establish-
ment (Zhao et  al. 2021c), and clonal growth (Huang 
et al. 2022). Yuan et al. (2020) suggested that success-
ful colonization of pioneer species require a suitable 
elevation and a moderate sedimentary regime. Other 
studies have also emphasized the importance of bed 
level changes in marsh establishment (e.g., Bouma 
et  al. 2016; Cao et  al. 2018; Wiegman et  al. 2018). 
To a large extent, hydrodynamic force and sediment 
supply control the local accretion-erosion shifts. Less 
intensive hydrodynamics and high sediment availabil-
ity promote marsh expansion (Ladd et al. 2019), while 
erosion induced by strong hydrodynamics and low 
sediment supply can lead to marsh loss (Poirier et al. 
2017; Willemsen et al. 2022). Given the significance 
of physical settings, the spatially varying external 
forces such as sediment dynamics and morphodynam-
ics may make uneven effects on marsh development, 
and contribute to the differentiation of short-term 
marsh evolution patterns at the landscape scale.

Here, we aim to unravel the underlying links 
between short-term marsh evolution patterns and physi-
cal constraints, taking typical marsh pioneer zones in 
the Yangtze Estuary as the model system (Fig. 1a, b). 
We conducted field investigations in two marsh pioneer 
zones subjected to similar wind and tide conditions (the 
straight-line distance between the two sites is about 
7 km, Fig. 1c), with drone flights and hydro-sediment 
measurements in the five-month survey. We com-
pared sediment dynamics, geomorphology, and marsh 
changes between the two sites, and further clarified the 
relationships between sediment dynamics, morpho-
dynamics, and marsh dynamics. The outcomes of the 
present study will shed light on spatial consequences of 
biophysical interactions and give implications for res-
toration strategies of coastal wetlands in other similar 
mega-delta systems.

Site description

The Yangtze River flows in the length of 6379  km 
with a basin area of 1,800,000  km2 (Dai 2021) before 
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entering the East China Sea (Fig.  1a). The Yangtze 
Estuary (Fig.  1b) is famous for bifurcated patterns 
and high turbidity as one of the mega estuarine sys-
tems worldwide. Due to hydraulic projects and the 
soil conservation policy in the Yangtze River Basin, 
sediment discharge into the Yangtze Estuary has 
started to decline since the 1970s (from > 400 Mt  yr−1 
in 1970 to 105 Mt  yr−1 in 2019, Guo et al. 2019). The 

continuously decreased fluvial sediment input has 
provoked concerns about the vulnerability of coastal 
wetlands in the Yangtze Estuary (Yang et  al. 2006; 
Wang et al. 2014; Leonardi et al. 2021).

Chongming Dongtan National Nature Reserve 
(CDNR) is located at the east head of Chongming 
Island in the Yangtze Estuary (Fig.  1c). Astronomic 
tides in the region are semidiurnal with diurnal 

Fig. 1  Study area: (a) Extent of Yangtze River Basin and location of the Yangtze Estuary; (b) Overview of the Yangtze Estuary; (c) 
Satellite images of CDNR (data source: Landsat-8); (d) Drone images at N-site and (e) at S-site
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inequality. The average tidal range is 2.5  m but can 
reach 3.5–4.0 m during spring tides according to the 
Sheshan gauging station (20 km east of CDNR, Yuan 
et  al. 2022). Winds controlled by the subtropical 
monsoon prevail in the southeast in summer and the 
northwest in winter. Highly variable wind speed can 
reach 36 m  s−1 (GSII 1996).

Two represented marsh pioneer zones were 
selected in CDNR, namely N-site and S-site, respec-
tively (Fig.  1d, e). Properties of vegetation, sur-
face sediment and water at both sites were shown 
in Table  1. The two sites were mainly covered by 
pioneer Scirpus communities (Scirpus mariqueter 
at N-site, and Scirpus triqueter at S-site). Surface 
sediment is muddy at N-site and sandy at S-site. 
Controlled by runoffs of the North Channel in the 
Yangtze Estuary (Fig. 1b), water salinity at S-site is 
lower than that at N-site. Vertical accretion at N-site 
has continued after the new seawall closure in 2014 
(Fig. 1c, Wei et al. 2018), while erosion was found at 
S-site (Zhao et al. 2008; Yang et al. 2020).

Methodology

Data acquisition

Drone monitoring

The RTK-enabled drone (DJI Phantom 4-RTK, DJI, 
China) was equipped to take photos at N-site and 
S-site. The advantage of the RTK-enabled drone 
is its high accuracy without the need for ground 
control points. Four flights were executed on the 
following dates in 2021:  23rd April,  30th June,  31st 
July, and  24th September (see Table  S1 for flight 
time). All flights used the same parameter settings, 
as detailed in Table S2.

Ground validation points were measured instantly 
after each flight using the real-time kinetics GPS units 

(RTK-GPS, Hi-Target, China). Validation points for April 
at the N-site were unavailable due to severe weather con-
ditions. All surveys were horizontally georeferenced in 
China Geodetic Coordinate System 2000 (CGCS2000) 
and vertically georeferenced in the local Wusong datum.

Measurements of hydrodynamics and sediment

Waves  (RBRduo3 T.D| wave, RBR, Canada), currents 
(EMCM, JFE, Japan) and sediment (OBS-3A, Camp-
bell Scientific, USA) were observed synchronously at 
the two marsh edges (Fig. 1b, e) in four spring tides 
from  8th to  10th June in 2021, with an average wind 
speed of 3.6  m   s−1 (Fig.  S1). All deployed sensors 
were placed at 15 cm above the seabed (Fig. S2). Tur-
bidity signals recorded by OBS-3A were calibrated to 
suspended sediment concentration (SSC) using sedi-
ment samples near the instruments (Fig. S3).

Drone‑related data processing

It took three steps in the procedure of drone-related 
data processing (Fig.  S4): (1) Obtain orthoimages 
and rough point cloud; (2) Recognize marsh covers 
in orthoimages; (3) Modify point cloud and gener-
ate a digital elevation model (DEM). The proce-
dure specified a spatial resolution of 10  cm. DEM 
products were validated against ground validating 
points and yielded low errors at both sites (4.34 cm 
at N-site and 4.60 cm at S-site, Fig. S5).

Data analysis

Spatial analysis on marsh evolution

We selected two proxies, the marsh area and the num-
ber of patches, respectively, to represent spatially 
explicit marsh vegetation dynamics. To elaborate, 

Table 1  Properties of 
vegetation, sediment and 
water at N-site and S-site

Items Properties N-site S-site

Vegetation Species Scirpus mariqueter Scirpus triqueter
Canopy height (m) 40.26±3.81 53.14±6.42
Aboveground biomass (g  m−2) 244.96±52.01 177.04±39.73

Sediment Median grain size (ave.±std., μm) 17.48±7.75 43.20±4.50
Water Salinity (median/max., PSU) 10.87/24.44 2.44/16.18
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changes in the marsh area represent the extent of 
marsh vegetation gain or loss covering the landscape, 
while changes in the number of marsh patches explain 
how marsh vegetation patches are spatially rearranged 
(e.g., more clustered or more scattered).

By referencing theories and cases in urban growth 
(Forman 1995; Berling- Hoffhine Wilson et al. 2003; 
Berling-Wolff and Wu 2004; Xu et al. 2007; Liu et al. 
2010), four types of marsh patch changes were defined 
and identified according to patch-to-patch proximities 
(Fig. 2): outlying expansion, edge expansion, infilling 
expansion and retreat.

Outlying expansion means isolated-grown patches 
apart from old patches. Edge expansion is defined as 
the growth adjacent to patch fringes. Infilling expan-
sion refers to the new growth filling gaps inside or 
between old patches. Retreat is the reduction of patch 
area. The three marsh expansion topologies were dis-
tinguished from shared borders between newly-grown 
patches and existing patches, using the method pro-
posed by Xu et al. (2007):

(1)S = LC∕L

where LC is the length of the shared borders between 
new patches and old patches (m), L is the perimeter 
of new patches (m), and S is the ratio of " inherited 
borders" in newly grown patches.

Morphological changes

To assess the lateral propagation of tidal flats at the 
two sites, we used the dataset from the Sheshan gaug-
ing station to determine the mean high neap water 
level (MHNW) during the period from March to 
October 2021, with a value of 2.68 m above Wusong 
datum. The dynamic MHNW contour on the DEMs 
visually depicts the landward retreat or seaward 
expansion of tidal flats. Moreover, tidal flats below 
the MHNW were susceptible to inundation during 
most tides. In comparison, tidal flats above MHNW 
possibly would not be inundated by neap tides, thus 
gaining the opportunity for marsh seedlings to anchor 
and establish during the inundation-free period. Con-
sequently, we computed the area of tidal flats (includ-
ing both vegetated marshes and bare mudflats) above 
the MHNW as a proxy for potential habitats suitable 
for marsh establishment and growth.

We focused on vertical accretion or erosion on the 
tidal flats extending 200  m seaward from the initial 
marsh edges at both sites. To determine erosion/depo-
sition rates, we subtracted DEMs from two neighbor-
ing months. To compare the accretion/erosion patterns 
between the two sites, we estimated the probability den-
sity function of monthly accretion rates over a five-month 
period. Additionally, we assessed elevation stability 
using the elevation standard deviation (STD) as a metric. 
This calculation followed the methodology by Xie et al. 
(2017), determining the STD for each spatial location 
over several months (specifically, in this study, four ele-
vation values for calculating STD at each location).

Bed shear stress and sediment transport

In a calm, typhoon-free period, we collected in-situ 
data during four spring tides, including wave, cur-
rent, and SSC measurements, which were utilized 

(2)S =

⎧
⎪⎨⎪⎩

= 0 , outlyingexpansion

∈ (0, 0.5) , edgeexpansion

∈ (0.5, 1] , inf illingexpansion

Fig. 2  Illustrations of marsh changes around the grown 
marshes (the gray part)
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to compute bed shear stress and sediment flux. Bed 
shear stress due to combined waves and currents ( �cw , 
Pa) was estimated to quantify hydrodynamic forces 
(Equation S2-S12). Near-bed sediment flux per unit 
width within a specific duration was calculated and it 
was expressed as (Zhu 2017):

where Qs is sediment flux (kg  m−1), SSC is suspended 
sediment concentration (kg  m−3), V  is current veloc-
ity values (m  s−1), Δt is the burst interval (600 s), n is 
the number of bursts, and H is the height of sensors 
above the seabed (0.15 m).

It assumed that sediment transport at the bottom 
15  cm of the water column is landward in flooding 
stages and seaward in ebbing stages. Net sediment flux 
per tide was calculated as follows (Yang et al. 2020):

where Qnet is net sediment flux per tide (kg  m−1 
 tide−1) and positive in the landward direction, Qs−flood 
and Qs−ebb refer to the sediment flux of flooding tides 
and ebbing tides, respectively.

Results

Spatiotemporal characteristics of salt marsh changes

Marshes at N-site expanded seaward, whereas those 
at S-site migrated landward during the surveyed five 
months (Fig. 3a). The marsh area at N-site grew from 
4900  m2 in April to 16,121  m2 in September with 
a gradually compacted spatial structure over five 
months, while the marsh area at S-site decreased from 
11,781 to 10,458  m2 during the same period (Fig. 3b, 
c). At the stage of Scirpus establishment in spring 
(T1, from April to June), the number of patches at 
N-site increased explosively from 17 to 2874 but only 
45 to 50 at S-site. Scattered patches at N-site quickly 
merged in summer (T2, from June to July) and con-
tributed the greatest amount to marsh growth even 
though typhoon In-Fa attacked at the end of July 
(Fig.  S6). Marshes at S-site began to shrink at the 
rate of 569  m−2  month−1 after typhoon In-Fa, result-
ing in an increased number of patches (from 50 to 
148) due to fragmentation. Although the marsh area 

(3)Qs =

n∑
i=1

SSCiViHΔt

(4)Qs−net = Qs−flood − Qs−ebb

at both sites decreased from summer to autumn (T3, 
July to September), marsh loss at S-site was 2.4 times 
quicker than that at N-site.

Distinctly different patch-level marsh changes were 
evident at the two sites (Fig. 3d). At N-site, marshes 
exhibited varying patterns of expansion throughout 
seasons, that was: from outlying expansion in spring 
(T1), to edge expansion in summer (T2), and to infill-
ing expansion in autumn (T3). Conversely, the domi-
nant pattern at the S-site shifted from infilling and 
edge expansion in spring (T1) to subsequent retreat 
following the impact of typhoons (T2 and T3).

Lateral propagation and vertical accretion-erosion of 
tidal flats

Tidal flats at S-site experienced obvious landward 
retreat, while N-site maintained more laterally stable 
tidal flats, as evidenced by the movement of MHNW 
at both sites (Fig. 4a). Similarly, the area of tidal flats 
above MHNW remained relatively stable at N-site 
but decreased at a rate of 1058  m2  month−1 at S-site 
(Fig.  4b). These observations highlight that N-site 
provides a larger and more stable space along the 
sea-to-land gradient with a low inundation frequency, 
which is conducive to marsh survival, compared to 
S-site. Comparatively, S-site had narrow space for 
new marsh establishment beyond the initial marsh 
edge and this limited space was vulnerable to erosion.

S-site was generally more prone to erosion than 
N-site (Fig. 4c). Both sedimentary regimes were ero-
sion-dominant because of typhoons but N-site was 
more prone to accretion. The erosion rate with the peak 
possibility was around 1.4  cm   month−1 at N-site and 
approximately 7.5 cm  month−1 at S-site. Besides, high 
elevation variabilities represented by elevation STD 
further explained that bed level at S-site was unstable 
(Fig. 4d). In summary, S-site experienced much more 
intensive erosion and variable bed level changes com-
pared to N-site. These differences may be attributed to 
site-specific hydrodynamics and sediment availability.

Hydrodynamics and sediment transport near marsh 
edges

Marsh edges at S-site experienced stronger hydrody-
namics and lower sediment availability than N-site 
(Fig.  5a-e). Among the observed four tides, maxi-
mum water depth (h), maximum significant wave 
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height  (Hs) and mean flow velocity (V) at S-site 
were significantly 2.9, 3.6 and 1.8 times greater than 
those at N-site (Fig.  5a-c, p < 0.01, pairwise t-test), 
respectively. Intensive wave and current acted as 
significantly greater bed shear stress ( �cw ) at S-site 
(tide-averaged, 0.29±0.06 Pa), while 0.20±0.03 Pa at 
N-site (Fig.  5d, p = 0.04, two-sample t-test). Unlike 
differences in hydrodynamics between the two sites, 
SSC at S-site was significantly lower than that at 
N-site (tide-averaged, 3.22±0.19 kg  m−3 at S-site and 
4.07±0.28  kg   m−3 at N-site, Fig.  5e, p < 0.01, pair-
wise t-test).

Sediment flux  (Qs) expressed that S-site had a higher 
magnitude of seaward-dominated sediment transport 
than N-site, within the range from -68.89 to 22.56 kg  m−1 
 tide−1 at N-site and -187.20 to -67.19 kg   m−1  tide−1 at 
S-site (Fig.  5f). The results proved that high �cwand 
low SSC significantly promoted seaward sediment 

transport (R2 = 0.53, p = 0.04  for the former, Fig.  5g; 
R2 = 0.75,  p < 0.01 for the latter, Fig.  5h). This implied 
that marsh edges with high bed shear stress plus low sed-
iment availability (e.g., S-site in the study) would poten-
tially be prone to being eroded due to weak sediment 
retention capacity.

Discussion

The present study aims to investigate how different 
physical constraints, including sediment dynam-
ics and morphodynamics, influence seasonal marsh 
dynamics. This investigation was carried out by 
comparing two typical marsh pioneer zones in the 
Yangtze Estuary, China. Evidence from drone-based 
images reveals that all three types of the patch-level 
marsh expansion (outlying, edge, and infilling) were 

Fig. 3  Salt marsh changes at N-site and S-site: (a) Marsh 
cover; (b) Marsh area; (c) Number of patches; and (d) The 
growth area belonging to different change types in different 

periods. T1, T2 and T3 refer to the time interval from April to 
June, June to July and July to September, respectively
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observed in the expanding marsh system (N-site). 
In contrast, in the retreating marsh system (S-site), 
only distance-limited infilling and edge expansion 
were evident. This finding underscore the signifi-
cance of patch level marsh changes in sustaining 
and accelerating seasonal net marsh expansion, 
which is tightly associated with site-specific sedi-
ment dynamics and morphodynamics.

The shaping role of physical constraints in salt marsh 
establishment

Our results expressed that high bed shear stress 
plus low SSC decreased sediment retention capac-
ity (Fig.  5g, h) and thus potentially accelerated ver-
tical erosion near marsh edges. Theoretically, a high 
flow velocity can carry more sediment than a low one 
(Winterwerp, 2001). Low SSC can activate sediment 
resuspension by  τcw-induced erosion to compensate 
the deficit in mass balance (Zhang et  al. 2009; Deb-
nath and Chaudhuri 2011). In addition, an increased 
sandy portion of surface sediment could weaken 

sediment resistance to erosion by decreasing critical 
shear stress for erosion ( �ce ) (Panagiotopoulos et  al. 
1997). High �cw (Fig.  5d), low SSC (Fig.  5e), and 
sandy surface sediment (Table  1) at S-site increased 
erosion risks by increasing hydrodynamic forces and 
decreasing sediment erodibility. It was reasonable to 
infer that the bed level at S-site was more prone to 
being eroded and less stable than N-site from the four-
tide observations, and the five-month morphological 
changes solidly evidenced this hypothesis (Fig. 4).

Strong hydrodynamics and unstable bed levels are 
effective signatures of physical disturbances to marsh 
establishment. Recent studies have revealed that the 
floatation of post-germinated seedlings promoted the 
onset of Scirpus quick dispersal (Zhao et  al. 2021b; 
Jiang et  al. 2022). The mechanism explained large-
scale outlying expansion beyond existing marshes 
from April to June at N-site (Fig. 3d). Contrastingly, 
the limited outlying expansion at S-site (Fig.  3d) 
showed that a clear way from seedling floatation to 
the successful establishment depends on site-specific 
conditions. Physical disturbances induced by bed 

Fig. 4  Morphological changes at N-site and S-site: (a) Eleva-
tion distribution; (b) Change of area above MHNW; (c) Esti-
mated probability density of accretion rate the 200-m seaward 
tidal flats beyond the initial marsh edge; and (d) Standard devi-

ations among the four DEMs on the 200-m seaward tidal flats 
beyond the initial marsh edge. MHNW: mean high neap water 
level; STD: standard deviation
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Fig. 5  Comparisons of sediment dynamics between the two 
marsh edges: (a) Water depth (h); (b) Significant wave height 
 (Hs); (c) Values of flow velocity (V); (d) Bed shear stress due 
to combined wave-current actions ( �cw ); (e) Suspended sedi-
ment concentration (SSC); (f) Net sediment flux in four tides 

 (Qs); (g) Relationships between  Qs and tide-averaged �cw ; 
and (h) Relationships between  Qs and tide-averaged SSC. All 
statistical analysis was finished with the significance level 
α = 0.05
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shear stress and consequent bed level changes would 
act as the force on seedlings at multiple stages, such 
as seedling settlement (Zhang et  al. 2022), seedling 
anchoring (Zhao et  al. 2021c), and seedling growth 
(Bouma et  al. 2009), which facilitated seedling dis-
lodgement and hampered its establishment. It would 
be challenging for seedling establishment in an envi-
ronment with low SSC and activated resuspension by 
high bed shear stress (e.g., S-site in the study).

From the perspectives of landscape changes, we 
found marsh expansion at the two sites occurred 
within different spatial extents, as proven by the dis-
tance between the initial marsh edge and MNHW 
(Fig. 4a), also tidal flat area above MNHW (Fig. 4b). 
Elevations determine the spatial extent of marsh 
expansion by opening the first "windows of opportu-
nity" (Balke et al. 2014; Hu et al. 2015b; Fivash et al. 
2021). Low elevations that result in high inundation 
frequency lead to seedling death due to physiologi-
cal stress (Cui et al. 2020; Xue et al. 2020). Sufficient 
habitats with moderate inundation frequency at N-site 
helped accommodate new scattered patches, while 
new marshes at S-site would enlarge in size by merg-
ing into the existing ones in the narrow space above 
MHNW.

Our field-based study gives empirical insights into 
the shaping role of physical constraints at the site-
scale marsh pattern dynamics (Fig.  6a, b). It under-
lines two key variables: i) disturbance induced by 
bed shear stress and SSC, and ii) elevation-depend-
ent spatial extent for expansion. Marsh pioneer spe-
cies tend to select adaptive reproduction strategies to 
enhance survival in highly disturbed environments 
(Friess et al. 2012). Unsuitable physical disturbances 
decrease the possibility of success in sexual repro-
ductions. To increase the population, asexual repro-
ductions with high survival rates (e.g., Minden et al. 
2012; Hu et  al. 2015a; Silliman et  al. 2015) would 
therefore take over, reducing the effective distance of 
species spread (Belzile et  al. 2010; Liu et  al. 2014). 
This informs that the distance-limited marsh expan-
sion (e.g., infilling and edge expansion) is dominant 
at the seriously disturbed sites with high bed shear 
stress, low SSC, sediment resuspension, and bed 
erosion (Fig.  6b). Moreover, we supported the view 
that long-distance outlying expansion is more likely 
to occur at sites with large spatial extent that is suf-
ficiently high in the tidal frame (Fig. 6a). The vary-
ing spatial extent often leads to changing biological 

responses in landscapes (Holland et al. 2004; Miguet 
et al. 2016; Martin 2018). At sites with limited spa-
tial extent, such as the S-site in this study, large-scale 
outlying expansion beyond the initial marsh edges 
becomes challenging due to the narrow potential 
habitats available for marsh establishment. In all, the 
spatially explicit marsh establishment was the con-
sequence of trade-offs among physical disturbance, 
spatial extent and reproductive traits of marsh pioneer 
species.

Short-term marsh evolution: a temporal relay racing 
with opportunities and risks

The distinctly different spatial paradigms of marsh 
changes between the two sites highlight the signifi-
cance of outlying expansion, particularly in sustain-
ing salt marshes during storms. Scattered patches at 
N-site quickly grew through edge expansion (Fig. 3c) 
and became spatially compact (Fig. 3b), while sparse 
new patches at S-site were insufficient to support 
large-scale edge expansion and disappeared during 
typhoon In-Fa (Fig. 3a). At the patch level, high tem-
peratures in summer steer clonal growth with dense 
tillers in salt marshes (Nieva et al. 2005). When scal-
ing up to the site level, multiple patches of Scirpus 
tend to coalescence rather than collision (Zhao et al. 
2021a). The number of previously established patches 
contributes to a homogeneous state of marsh cover, 
enhancing system resilience (Holling 1973) by setting 
the origin of edge expansion and invoking intraspe-
cific positive feedback (Duggan-Edwards et al. 2020; 
Huang et al. 2022).

We represented the "relay-racing" spatial processes 
mentioned above using a conceptual diagram based on 
our results (Fig. 6c). It simplified marsh growing peri-
ods into three stages: establishment (stage I), growth 
(stage II), and recovery from abrupt events (stage III). 
Successful establishment at stage I does not immedi-
ately promote marsh growth but occupies blank eco-
logical niches through outlying-expansion patches. 
These dense small patches expand around patch edges 
at stage II and substantially accelerate marsh growth. 
If marsh growth at stage II exceeds the threshold dur-
ing extreme events, the grown marsh patches can per-
sist into stage III (State A in Fig. 6); otherwise, marsh 
patches may begin to retreat (State B in Fig.  6). As 
a result, successive effects of landscape configura-
tion settings in marsh establishment and landscape 
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composition changes in marsh growth finally shape 
the state of short-term marsh evolution and eventually 
influence the long-term pattern at inter-annual scale. 
The former is indispensable and heavily dependent on 
the magnitude of physical constraints.

It is important to note that opportunities and risks 
coexist in marsh establishment due to the intrin-
sic temporal variability of physical forces (Hu et  al. 
2021; van Belzen et al. 2022). Organism tolerance is 
enhanced by episodic low disturbances within spe-
cific temporally varying cycles. For example, adequate 
inundation-free periods help stabilize seedlings by 
forming forked roots (Jiang et  al. 2022). Conversely, 
instantaneous peak hydrodynamics might lift seedlings 

off and lead to failures of marsh colonization on mud-
flats (Poppema et al. 2019). A similar occasion-related 
mechanism also comes into play when facing typhoon 
events. The timing, strength and track of typhoons are 
uncertain (Sobel Adam et  al. 2016; Lanzante 2019). 
Once the population size exceeds the tipping point for 
maintaining a stable state (Didham et al. 2005; Dakos 
et al. 2019), the opportunity for marsh survival can be 
created before typhoons. However, insufficient marsh 
growth might open "windows of risk" while encoun-
tering the "unknown" typhoon (e.g., S-site in the 
study). Therefore, subtle shifts between opportunities 
and risks in biophysical processes would facilitate for-
mation of various salt marsh landscapes.

Fig. 6  Conceptual diagrams of different marsh establishment 
and marsh growth under varying physical conditions: (a) Seed-
ling establishment at sites with low bed shear stress, high SSC 
and large spatial extent; (b) Seedling establishment at sites 

with high bed shear stress, low SSC and narrow spatial extent; 
(c) Different states of short-term marsh evolution, where state 
A represented net seasonal marsh expansion and state B repre-
sented the net seasonal marsh shrink
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Decreased sediment challenges salt marsh con-
servation, spanning from monthly or seasonal (Lacy 
et  al. 2020) to annual and decadal (Li et  al. 2021) 
scale. Our results illustrated that low SSC ham-
pers sediment retention near marsh edges (Fig.  5h) 
and shapes an erosion-prone sedimentary regime 
(Fig. 4c). Morphological responses to on-shore sedi-
ment supply determine the dynamic habitat size for 
marsh growth by elevating mudflats (Donatelli et al. 
2018; Ladd et  al. 2019). Sediment starving induces 
gradual shifts from accretion to erosion and threat-
ens the safety of coastal wetlands by enlarging the 
drowned areas in mega-delta systems, such as the 
Yangtze (Yang et  al. 2011; van Maren et  al. 2013), 
the Mississippi (Jankowski et  al. 2017; Sanks et  al. 
2020), and the Nile (Alfy Morcos 1995). Global sedi-
ment deficits might undermine the positive effect of 
marsh development and put it at a persistent risk.

Implications for restoration

It is a necessary step to convert risks into opportunities 
for the success in the practice of salt marsh restoration. 
We agree with previous studies emphasizing crucial 
window periods of salt marsh establishment in spring 
(Hu et al. 2015b; Fivash et al. 2021; Ning et al. 2020). 
Additionally, we further figured out that marshes 
should expand as soon as possible in spring to with-
stand subsequent typhoons in summer. Specific artifi-
cial assists can help organisms in coping with physical 
stress by optimizing their habitats. Auxiliary structures 
at the patch level, such as mesh bags to reduce loss of 
sowed seeds (Vanderklift et  al. 2020) and mimics to 
strengthen stems (Temmink et  al. 2020) can enhance 
individual survival. Expanding spatial extent at the 
site level can be achieved by elevating tidal platforms 
in front of salt marsh edges with dredged materials 
(Wiegman et  al. 2018; Baptist et  al. 2019) in case of 
insufficient accretions. Bio-based infrastructures on 
mudflats, such as oyster beds (Chowdhury et al. 2019), 
can dissipate wave energy, thus accelerating marsh 
establishment and delivering multiple ecological func-
tions (Dafforn et al. 2015; Gittman et al. 2016).

The findings of this study highlight the signifi-
cance of site-specific properties in salt marsh evolu-
tion. This is highly relevant to design strategies for 
restoration projects. Choosing the appropriate restora-
tion site can reduce unnecessary costs by harnessing 

"power from nature" (Cheong et  al. 2013; Kumar 
et al. 2021). Marsh expansion in the accretion-prone 
site (e.g., N-site in this study) tends to be spatially sig-
nificant and inherently resilient, primarily due to the 
robust performance of seedling survival in an accret-
ing environment (Cao et  al. 2018). Conversely, the 
erosion-prone sites (e.g., S-site in this study) are more 
likely to experience limited seaward marsh expan-
sion and landward marsh migration. Hence, applying 
uniform measures for marsh restoration at the land-
scape scale may not be appropriate, even when deal-
ing with the same estuarine system and similar wind 
exposures. It is advisable to prioritize investments in 
vulnerable marshes at erosion-prone sites.

Conclusion

The present study has demonstrated that physical 
constraints drive state differentiations in short-term 
marsh evolution at the landscape scale. We recog-
nized that the seasonal net marsh expansion started 
from outlying expansion in spring, followed by edge 
expansion in summer, and infilling expansion in 
autumn. In contrast, only distance-limited infilling 
and edge expansion can be observed when the marsh 
is in a net seasonal retreat. This finding, combined 
with comparisons of hydrodynamics, sediment trans-
port, and morphological changes, demonstrates that 
site-specific physical constraints drive variations in 
the state of short-term marsh evolution. Marsh devel-
opment faces significant challenges in seizing fleet-
ing opportunities and mitigating uncertain risks dur-
ing extreme events and sediment decline. As a result, 
we propose that prioritizing the restoration of the 
erosion-prone sites should be the primary focus at the 
landscape scale. This information would contribute to 
the increased knowledge of coastal management strat-
egies, especially for other similar mega-delta systems.
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