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Abstract 
Context Estuarine wetlands provide valuable eco-
system services, but 20–78% of coastal wetlands are 
facing the risk of loss by the end of the century. The 
Yellow River Delta (YRD) wetland, one of the most 
productive delta areas in the world, has undergone 
dramatic changes under the influence of a precipitous 
drop of sediment delivery and runoff, coupled with 
the invasion of Spartina alterniflora. Monitoring the 
spatio-temporal patterns, thresholds, and drivers of 
change in wetland landscapes is critical for sustain-
able management of delta wetlands.
Objectives Generate annual mapping of salt marsh 
vegetation in the YRD wetland from 1986 to 2022, 
analyze the trends of wetland patch area and land-
scape pattern,  and explain the hydrological drivers of 
landscape pattern evolution.

Methods We combined Landsat 5‒8 and Sentinel-2 
images, vegetation phenology, remote sensing indi-
ces, and Random Forest supervised classification to 
map the typical salt marsh vegetation of the YRD. We 
applied piecewise linear regression to analyze YRD 
wetland changes and stepwise multiple linear regres-
sion to assess the impact of hydrological factors on 
landscape pattern.
Results We identified three stages of landscape pat-
tern evolution with 1997 and 2009 as critical junc-
tures, including the rapid expansion stage, gradual 
decline stage, and bio-invasion stage. In the rapid 
expansion stage, the wetland area expanded by 70%, 
while the typical salt marsh vegetation (Phragmites 
australis) area was reduced by 25%. In the  gradual 
decline  stage, the wetland was reduced by 21% and 
the Phragmites australis area was reduced by 16%. In 
the bio-invasion  stage, coverage of Spartina alterni-
flora expanded rapidly, with a 68-fold increase in area 
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relative to 2009, expanding at an average rate of 344 
 hm2 per year.
Conclusions Areas of total wetland, tidal flat, and 
Phragmites australis were significantly influenced by 
cumulative sediment delivery and cumulative runoff, 
which together explained 61.5%, 75.7% and 63.8% 
of their variation, respectively. Wetland and tidal flat 
areas increased with cumulative sediment delivery, 
while cumulative runoff had a weak negative effect. 
For Phragmites australis, cumulative runoff had a 
positive effect, whereas cumulative sediment deliv-
ery had a negative effect. Water resources regulation 
measures should be taken to prevent the degradation 
of wetland ecosystems, and intervention measures 
can be implemented during the seedling stage to con-
trol the invasion of Spartina alterniflora.

Keywords Salt marsh vegetation · Time series · 
Vegetation classification · Hydrologic drivers · 
Landscape indices

Introduction

Estuarine deltas present a global hotspot for ecologi-
cal conservation and socio-economic development 
(Nienhuis et al. 2020; Reader et al. 2022). These del-
tas, characterized by fertile arable land, integrated 
transport nodes driving modern industry, and boun-
tiful aquatic resources sustaining human populations, 
stand as the cradle of human civilization (Loucks 
2019; Chen and Kirwan 2022; Törnqvist 2023). 
Although they cover a mere 0.56% of the Earth’s 
surface, estuarine deltas house 4.1% of the global 
population, with more than 339 million people living 
there (Edmonds et  al. 2020). Wetlands in the estua-
rine deltas have unique coastal ecosystems that pro-
vide a wide range of ecological services, including 
climatic regulation, carbon sequestration and biodi-
versity conservation (Xia et al. 2020; Reid 2005; Liu 
et al. 2023a, b; Yin et al. 2023). Unfortunately, estua-
rine wetlands are dynamic, sensitive and vulnerable 
systems (Ward et al. 2020), which are easily disturbed 
by environmental changes (e.g. flood, saltwater intru-
sion, sea level rise and biological invasion) (Barbier 
2014; Cox et  al. 2022; Zhang et  al. 2023), coupled 
with anthropogenic pressures (e.g. agricultural expan-
sion, urbanization and water resource development) 
(Murray et al. 2022; Lin and Yu 2018; Fu et al. 2022; 

Ye et  al. 2020). In such a complicated and volatile 
environment, estuarine wetlands are facing serious 
risks of area loss and ecological degradation (Li et al. 
2022a, b; Gong et al. 2023; Liu et al. 2023a, b). It is 
estimated that 20–78% of coastal wetlands will be lost 
under high sea-level rise accompanied by maximum 
dike construction by the end of the century, resulting 
in a profound erosion of biodiversity and an increased 
risk of flooding (Spencer et al. 2016; Rodríguez et al. 
2017). Therefore, precise monitoring of the dynamic 
spatio-temporal patterns within wetland landscapes is 
critical for effective conservation, restoration and sus-
tainable management of delta wetlands.

Recent studies on estuarine wetlands primar-
ily focus on area gains and losses driven by human 
activities and natural processes (Nienhuis et al. 2020; 
Wang et al. 2020; Osland et al. 2022; Edmonds et al. 
2023), or geomorphic changes, especially under 
hydrodynamics and morphodynamics (Montaño and 
Carbajal 2008; Paszkowski et  al. 2021), as well as 
ecosystem services assessment (Rosentreter et  al. 
2023). Murray et  al. (2022) used Landsat images to 
assess changes in the global tidal wetlands over the 
past two decades and found that over 13,000   km2 of 
tidal wetlands have recently been lost, but these losses 
have mostly been offset by the  formation  of new 
wetlands. Lin and Yu (2018) interpreted coastal wet-
land distribution maps of three coastal city clusters in 
China. They found that ecological degradation from 
land conversion due to urbanization caused serious 
temporal loss of the remaining natural coastal wet-
lands. However, the lack of detailed time series infor-
mation hinders the accurate identification of regime 
shifts in estuarine wetland evolution and increases the 
uncertainty of identifying driving factors (Wang et al. 
2021a). The Sentinel-2 dataset, with its significant 
advantages in terms of resolution (up to 10m), ena-
bles the possibility of long-term and high spatiotem-
poral resolution wetland mapping (Chang et al. 2022; 
Zhou 2022; Dong et al. 2016), which can improve our 
understanding of the multiple hydrological forces that 
cause regime shifts in estuarine wetland evolution 
(Murray et al. 2019; Goldberg et al. 2020).

China’s Yellow River is the most sediment-filled 
river on Earth (Wang et al. 2007; Song et al. 2020). 
Exceptional sediment loads bring excellent land-
building function to the Yellow River Delta (YRD) 
wetland, thus it is considered to have one of the high-
est ecological conservation values among the river 
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deltas in China (Cong et  al. 2019). Although YRD 
wetland was designated as a national nature reserve in 
1992, listed in the Ramsar Convention on Wetlands in 
2013, and approved for the construction of the Yellow 
River Delta National Park in 2021, the intensification 
of anthropogenic pressure and the growing impacts of 
environmental change are still continually affecting 
its tidal wetlands and component intertidal ecosys-
tems (Zhang et al. 2021a, b; Li et al. 2023). Vegeta-
tion of estuary wetlands plays a key role in stabilizing 
the coast and accreting sediment to mitigate the nega-
tive impact of sea level rise (Pang et  al. 2023). Salt 
marsh vegetation in the YRD wetland has changed 
rapidly. Coupled with the rapid invasion of Spartina 
alterniflora (SA) in recent years, the degeneration of 
native plant populations such as Phragmites austra-
lis (PA), which dominates wetland biodiversity and 
carbon sink capacity, has led to a sharp decline in 
the populations of rare waterfowls that live in habi-
tats containing PA, and thus, the biodiversity of these 
wetlands is seriously threatened (Zhang et al. 2021a, 
b). Current monitoring of YRD wetlands mainly 
focuses on artificial and natural wetlands (Li et  al. 
2023; Zhan et  al. 2023) or single ecosystem types 
such as woodland or grassland (Chen et al. 2016; Li 
et al. 2023). Given the difficulty in distinguishing salt 
marsh vegetation from remote sensing images, not 
only monitoring of composite ecosystems is inad-
equate, long-term and continuous interpretation is 
also scarce (Cong et al. 2019; Li et al. 2023). Moreo-
ver, significant changes have taken place in the Yel-
low River’s runoff (RU) and sediment delivery (SE) 
in the past 60  years (Wang et  al. 2016; Song et  al. 
2020), which will have an important impact on the 
estuary wetland landscape pattern change and could 
lead to a regime shift. Therefore, the understanding of 
the interactions between various hydrological factors 
and vegetation-type succession in wetland landscapes 
and ecosystems, as well as the impacts of these multi-
ple driving factors on wetland evolution in the YRD, 
needs to be updated.

In order to explore the evolution trend of wetland 
landscape pattern in the YRD and its hydrologi-
cal driving factors, the objectives of this study are 
as follows: (1) generate a complete time series map-
ping of salt marsh vegetation in the YRD from 1986 
to 2022  by employing a Random Forest supervised 
classification method,  using Landsat-5/7/8 and Sen-
tinel-2 satellite datasets, (2) analyze the trends of 

wetland patch area and landscape pattern, and (3) 
explain the hydrological drivers of landscape pattern 
evolution in the YRD wetland by exploring the poten-
tial associations of wetland patch areas and landscape 
indices with hydrological factors (such as RU, SE, 
cumulative runoff (RU +) and cumulative sediment 
delivery (SE +)).

Methods

Study area

The YRD wetland is located at the mouth of the Yel-
low River in Dongying City, Shandong Province, fac-
ing the Bohai Sag to the east and the West Pacific to 
the west, backing to the Eurasian continent, between 
37°61′- 37°89′N and 119°06′- 119°40′E, with an area 
of 883.26   km2, and an average elevation is about 
2–10 m (Fig. 1a, b). Since the Yellow River formed, 
it has undergone 26 major channel shifts (Fig.  1a). 
Our study area is the modern estuary that stabilized 
after 1976 and was modified by a manual diversion 
in 1996. In the 1990s, under the influence of cli-
mate drought and human excessive water extraction, 
temporary periods with no flow occurred frequently 
on  the lower Yellow River, with the longest interval 
occurring in 1997 (lasted about 226 days) (Kong et al. 
2015). Meanwhile, the completion of the Xiaolangdi 
Dam in 2001, driven by a new regulatory framework, 
helped stabilize the runoff and sediment delivery. In 
the recent decades, it has gradually formed one of the 
world’s fastest-growing deltas, representing typical 
newly formed estuarine wetlands worldwide (Li et al. 
2009).

Influenced by soil salinity gradients, the vegeta-
tion composition across the YRD wetland has a dis-
tinct zonal distribution, with SA, Suaeda salsa, and 
PA occupying sequential niches from the coast to the 
inland regions (Feng et  al. 2018). PA, a dominant 
freshwater species, mainly thrives in wetland water 
bodies and along the Yellow River banks (Fig.  1 
c2–c4). It serves as vital habitat for rare and endan-
gered bird species, playing a critical role in biodi-
versity preservation and ecological integrity (Zhang 
et al. 2021a, b). In contrast, SA is a typical halophytic 
plant, which primarily flourishes within intertidal 
zones along the coastal periphery and tidal flats (Wan 
et al. 2009) (Fig. 1 c2–c4). SA was once considered a 
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“beach protector” due to its ability to stabilize shores, 
promote sediment deposition, resist typhoons, and 
reduce wave impact (Sun et al. 2023). However, pro-
pelled by its robust salt tolerance, flood tolerance, and 
reproductive capacity, it has rapidly spread along the 
Chinese coastal zone, posing a significant threat to 
biodiversity (Chang et al. 2022; Huang et al. 2022).

Datasets

Image data and processing

A total of 1728 surface reflectance images over the 
period 1986–2022 were selected from Landsat-5 TM, 
Landsat-7 ETM + , and Landsat-8 OLI (the scene 
of 121/34) imagery with a spatial resolution of 30m 
and Sentinel-2 MSI (scenes of 50SPG and 50SQG) 

imagery with a spatial resolution of 10m and 20m, 
which are all available from the Google Earth Engine 
(GEE) cloud computing platform. For the Landsat 
series datasets, we adopted the Level 2, Collection 2, 
and Tier 1 versions, which have been subject to sys-
tematic radiometric and geometric correction by the 
United States Geological Survey (Google 2023a). The 
Sentinel-2 MSI Level-2A imagery not only reduces 
the impact of atmospheric interference on the spectral 
measurements, but also includes cloud and atmos-
pheric masks, exhibiting excellent performance in 
quantitative analysis of the surface landscape (Google 
2023b). The number of Landsat images varies by 
season and year (Fig. 2 a1, a2), averaging 17 images 
annually. In contrast, the annual average for Senti-
nel-2 imagery is much higher, at 294 images. Finally, 
we used the median composite of all images for each 

Fig. 1  Location (a), elevation (b) of the YRD (Yellow River Delta) wetland and interpretive markers of wetland patches in the YRD 
wetland (c1–c4)



Landsc Ecol (2024) 39:51 

1 3

Page 5 of 19 51

Vol.: (0123456789)

phenological period as the image data for supervised 
classification.

Hydrological data

Hydrological data were sourced from the hydro-
logical monitoring station located at Lijin, which is 

Fig. 2  Available Landsat and Sentinel observation numbers 
for different sensors and periods during 1986–2022 (a1-a2), 
NDVI/EVI curves and standard deviation of PA and SA (b1-
b2), number of different samples, accuracy and Kappa coeffi-
cient of supervised classification (c). (b1-b2) The solid line is 

the mean value of NDVI/EVI during 2011–2021, and the semi-
transparent band represents the total standard deviation (δ). 
The dotted line divides the life cycle of the PA/SA. PA, SA, 
TA, and WA represent Phragmites australis, Spartina alterni-
flora, tidal flat and water body, respectively
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situated in the lowest downstream region of the Yel-
low River Basin. Specifically, we obtained the annual 
runoff and sediment delivery data from 1986 to 2021 
for the Lijin hydrometric station, which were acquired 
from the Yellow River Conservancy Commission of 
the Ministry of Water Resources.

Classification and Assessment

The YRD wetland was classified into four land cover 
types: water body, tidal flat, PA, and SA. Later, based 
on field surveys and visual interpretation, addi-
tional land cover types such as oilfield, pond, aqua-
culture, salt pan, and cultivated land were included. 
The detailed process for monitoring classification is 
described below.

Phenology identification

PA and SA share remarkable morphological and color 
similarities, which create significant challenges for 
accurate cross-temporal supervised classification 
(Chang et al. 2022). However, there exist discernible 
differences in the phenology of these saltmarshes, 
providing an opportunity for differentiation. Both the 
Normalized Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI) serve as widely 
used indices for precise vegetation monitoring (Bol-
ton and Friedl 2013; Shammi and Meng 2021). Con-
sequently, we constructed monthly NDVI and EVI 
time series curves spanning a decade (2011–2021) to 
elucidate the phenological characteristics of these two 
saltmarshes.

Prior studies indicate that PA’s growth spans April 
to October, peaking between late July and early August, 
whereas SA’s growth lags behind PA in the YRD wet-
land by about a month (Zhang et al. 2021a, b; Chang 
et  al. 2022). Therefore, we synthesized remote sens-
ing imagery for three timeframes in 2021: April to 
June, June to October, and October to November, and 
displayed in a false-color composite of near-infrared, 
infrared, and green bands (Fig. 1 c2–c4). These com-
posites revealed distinct color variations for PA and 
SA throughout these periods: (1) From April to June, 
PA displayed a bright red shade, while SA exhibited 
a brownish hue. (2) From June to October, SA’s color 
gradually shifted to a deeper red tone, surpassing the 
intensity of red in PA and becoming a dark red color. 
(3) From October to November, PA’s color faded, 

transitioning to a reddish-brown shade, whereas SA 
appeared as a bright red color. Subsequently, we incor-
porated PA and SA samples into the GEE platform for 
the 2011–2021 period, with varying sample numbers 
across different years (Fig.  2c). Ultimately, monthly 
NDVI and EVI time series curves were generated for 
PA and SA (Fig. 2 b1–b2).

The phenological cycle of PA includes four stages: 
seedling, growth, maturity, and senescence (Fig.  2 
b1). PA experiences vigorous growth from April to 
June, evident in rising NDVI and EVI curves. From 
June to August, PA’s vegetation follows a bimodal 
pattern, reaching its annual peak, the maturity stage. 
Post-August,  observes  a rapid decline, marking the 
senescence period. In contrast, SA’s growth phase lasts 
longer (Fig.  2 b2), spanning five months, beginning 
gradually in April, accelerating until July, and peak-
ing in September. However, after reaching its peak, SA 
swiftly enters the senescence phase.

Feature indices

Wetlands in YRD were primarily classified into three 
main types: salt marsh vegetation, tidal flat, and water 
body, with a further subdivision of PA and SA within 
the salt marsh vegetation. To facilitate precise moni-
toring, we incorporated five commonly used remote 
sensing indices: NDVI, EVI, Normalized Difference 
Water Index (MDWI), Modified Normalized Differ-
ence Water Index (mNDWI), and Land Surface Water 
Index (LSWI) (Eq. 1–5). Specifically, NDVI and EVI 
were employed for vegetation detection, MDWI and 
mNDWI for surface water detection, and LSWI as 
an auxiliary index for identifying green vegetation 
(Li et al. 2022a, b; Zeng et al. 2022). In addition, we 
referred to monitoring algorithms developed in recent 
studies (Wang et  al. 2021b) specifically for extracting 
coastal vegetation ( Cveg ) and coastal water bodies 
( Cwat ) (Eq. 6 and 7).

(1)NDVI =
�nir − �red

�nir + �red

(2)EVI = 2.5 ×
�nir − �red

�nir + 6 × �red − 7.5 × �blue + 1

(3)NDWI =
�green − �nir

�green + �nir
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where �blue, �green, �red, �nir, and�swir1 are the surface 
reflectance values of blue, green, red, near-infrared, 
and shortwave infrared1 bands in Landsat 5/7/8 and 
Sentinel-2 images.

Supervisory classification and accuracy assessment

Random Forests (RF) model is a widely employed 
machine learning method for supervisory classifica-
tion in remote sensing applications (Watts et al. 2009; 
Stumpf and Kerle 2011; Belgiu and Drăguţ, 2016; 
Chen et  al. 2022), which combines the strength of 
decision trees with random subsampling and feature 
selection. However, the model has exhibited rela-
tively low sensitivity to overfitting, while displaying 
higher sensitivity to the selection of sampling points 
(Rodriguez-Galiano et  al. 2012; Belgiu and Drăguţ, 
2016). Given the significant inter-annual variability in 
the YRD wetland, the identification of reliable sam-
ple points that span across different years is a chal-
lenge. Therefore, we selected new samples from the 
imagery nearly every year, with a total of 4391 sam-
ples throughout the time series (Fig. 2c).

The whole supervisory classification process can 
be divided into the following steps: (1) adding sam-
ple points through the optimal phase remote sens-
ing images by referring to the interpretation signs 
in Fig.  1 c1–c4, (2) following the image processing 
approach used for phenology extraction, we synthe-
sized remote sensing images for each of the three 
periods and inputting the feature indices bands 
for supervised classification, (3) obtained the pre-
liminary annual supervised classification maps as a 
result. Due to the significant striping artifacts in the 
ETM + imagery in 2011, the mapping results were 
subject to considerable errors; therefore, (4) for the 
year 2011, we only selected the imagery from the 

(4)mNDWI =
�green − �swir1

�green + �swir1

(5)LSWI =
�nir − �swir1

�nir + �swir1

(6)
Cveg = (EVI ≥ 0.1)and(NDVI ≥ 0.2)and(LSWI > 0)

(7)
Cwat = (mNDWI > EVIorNDWI > EVI)and(EVI < 0.1)

less-affected period of 6 to 10  months for training 
and (5) manually corrected erroneous patches based 
on field surveys and visual interpretation, including 
oilfield, cultivated land, aquaculture, salt pan, and 
delineated ponds from the water body within the ter-
restrial interior of the wetland (Fig. 1 c1). (6) For esti-
mating how well the resulting RF model performed, 
we used 70% of the samples to train the trees with the 
remaining 30% used in an internal cross-validation 
technique, then generated a confusion matrix and cal-
culated the kappa coefficient and accuracy.

Statistical analysis

Landscape indices

Landscape indices are quantitative measures used to 
assess and describe the spatial arrangement and com-
position of landscapes (Tischendorf 2001). These 
indices provide valuable insights into the structure, 
connectivity, fragmentation, and heterogeneity of 
landscapes, providing a deeper understanding of land-
scape dynamics and ecological processes (Li and Wu 
2004). Here, we selected nine landscape pattern indi-
ces (Table 1) to quantitatively describe the landscape 
pattern of the YRD wetland in five dimensions: area, 
landscape fragmentation, shape, diversity and aggre-
gation. Then, we calculated the landscape pattern 
indices of the YRD wetland from 1986 to 2022 using 
Fragstats 4.2.1 software.

Regression analysis

We calculated the inter-annual variation and trends in 
YRD wetland area for the period 1986–2022 through 
piecewise linear regression models with a test at the 
5% significance level.

To assess the impact of long-term hydrological 
processes on wetland areas, we employed a stepwise 
multiple linear regression model. This model neces-
sitates comprehensive diagnostic evaluations, encom-
passing three key aspects: collinearity, significance, 
and the Durbin-Watson (DW) test. Collinearity indi-
cates a high correlation among independent variables, 
with a Variance Inflation Factor (VIF) exceeding 10 
signifying strong collinearity. Significance assess-
ment relies on the P-value for regression coefficients, 
with P-values below 0.05 allowing rejection of the 
null hypothesis. Lastly, the DW test detects temporal 
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correlation in regression model residuals, with criti-
cal values determined based on sample size (n) and 
the number of independent variables (k) using a table 
lookup method.

We established the potential relationships between 
sediment delivery (SE), runoff (RU), cumulative sedi-
ment delivery (SE +), cumulative runoff (RU +) and 
landscape indices to explore the factors driving land-
scape pattern evolution in the YRD wetland. Firstly, 
we examined the correlation between hydrological 
data and landscape indices, including the Pearson cor-
relation coefficient and Spearman correlation coeffi-
cient. Secondly, based on the correlation coefficients, 
we established three distinct conditions for further 
analysis. Condition 1: using the Pearson correla-
tion coefficient, we selected variables with P < 0.001 
and conducted simple linear regression between the 
qualifying landscape pattern indices and the hydro-
logical variables that exhibited a significant influence. 
Condition 2: for landscape indices that did not meet 
Condition 1, we used the Spearman correlation coef-
ficient and selected two hydrological variables that 
simultaneously satisfied P < 0.001 or P < 0.01, then 
performed either multivariate nonlinear fitting or 
segmented linear fitting. Condition 3: if none of the 
conditions were met, we exclusively plotted scatter 
plots of the hydrological variables that demonstrated 
higher correlation coefficients. Through these sys-
tematic steps, our goal was to investigate the relation-
ships between each landscape index and hydrological 
forces.

Results

Spatial changes of YRD wetland during 1986–2022

A total of 37 spatial distribution maps depicting the 
typical salt marsh vegetation in the YRD wetland for 
the period 1986–2022 were generated. The overall 
classification accuracy exceeded 96%, with a mini-
mum Kappa coefficient value of 0.94, indicating that 
our classification results are reliable and highly accu-
rate (Fig. 2c). Over the course of these 37 years, we 
present eight maps that are representative (Fig.  3). 
It is evident that in the past four decades, the YRD 
wetland has undergone substantial changes in terms 
of morphology, riverine pathways, and typical salt 
marsh vegetation.

In the early stages of the formation of the YRD, 
1986, the wetland exhibited a relatively regular and 
open elliptical shape, with the typical salt marsh veg-
etation, PA, primarily distributed along the inland 
tidal flats on both sides of the Yellow River. Subse-
quently, as river erosion intensified, by 1990, the 
shape of the wetland became increasingly pointed, 
resembling a bird’s beak.

Later, in 1996, a notable year for the YRD wet-
land, the long-established southeastward outlet chan-
nel was abandoned artificially, giving way to a new 
northeastward channel. Initially, the new channel had 
a smaller mouth, but by 2006, after nearly 10  years 
of development, the northeastward channel gradually 
expanded and formed one of the two major branches 
of the YRD wetland, alongside the southeastward 
channel. Furthermore, in 2006, extensive seasonal 
water ponds started to emerge in the southern part of 
the YRD wetland.

Table 1  Landscape indices, dimensions and meanings

Dimensions Landscape indices Meanings

Area Largest patch index (LPI) Percentage of the largest patch of a landscape
Fragmentation Interspersion and juxtaposition Index (IJI) Arrangement and interspersion of landscape

Splitting index (SPLIT) Splitting or fragmentation of patches
Patch density (PD) number of patches per unit area in a landscape

Shape Landscape shape index (LSI) The complexity of patch shapes in a landscape
Perimeter-area fractal dimension (PAFRAC) Irregularity and complexity of patch boundaries

Diversity Shannon’s evenness index (SHEI) Evenness or uniformity of patch type
Aggregation Aggregation index (AI) spatial clustering or aggregation of landscape

Contagion (CONTAG) Reflects the connectivity of the landscape
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In 2009, fragmented patches of SA began to be 
observed, particularly in areas  close to the coastal 
tidal flat. Additionally, human footprints such as 
aquaculture ponds, cultivated land, and salt fields 
gradually became evident in the same year. By 2012, 
the northeastern branch of the new flow path had 
further extended towards the ocean. Near the coastal 
areas, apparent patches of SA were observed, indicat-
ing its successful colonization. Simultaneously, larger 
seasonal water ponds also  appeared in the northern 
part of the YRD wetland.

Over the subsequent decade, the SA flourished and 
expanded its coverage, progressively extending its 
territory from the coastal tidal flats towards the inland 

areas and becoming another dominant species in this 
ecosystem. Furthermore, by 2022, it gradually started 
to encroach on the habitat of the established dominant 
species in the region, PA, which traditionally thrived 
along the Yellow River. Moreover, the morphological 
transformation of the YRD wetland during this period 
witnessed the continuous strengthening of the north-
eastern flow path, while the southeastern flow path 
gradually declined.

Fig. 3  Eight representative spatial maps of the saltmarshes in the YRD wetland were selected from 1986 to 2022
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Patch area changes of YRD wetland during 1986–
2022

Through visualizing the temporal changes of patches 
area in the YRD wetland over the past 37 years, we 

identified three stages of landscape pattern evolu-
tion: rapid expansion stage, gradual decline stage, 
and bio-invasion stage (Fig. 4a). From 1986 to 1997 
was the first stage of wetland expansion. During these 
12 years, both total wetland area (sum of the PA, SA, 

Fig. 4  Three phases of the wetland landscape evolution in the 
YRD wetland during 1986–2022. (a) Temporal variation curve 
and piecewise linear fitting line of wetland typical patch area 
from 1986 to 2022. (b) Sankey map of wetland patch transfer 
at four key time nodes (1986, 1997, 2009, 2022). (c) Inter-
annual variation and piecewise linear trend fitting of wetland 
landscape indices in the YRD wetland from 1986 to 2022. 

PA, SA, TA, PO, and WE represent the areas of Phragmites 
australis, Spartina alterniflora, tidal flat, pond, and wetland, 
respectively. The wetland area is the sum of the SA, PA, PO, 
and TA areas. WA, SL, CL, OL and AL represent the areas of 
water body, salt pan, cultivated land, oilfield, and aquaculture, 
respectively
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tidal flat, and pond area) and tidal flat area showed a 
rapid increasing trend, with a 70% increase in the wet-
land area, reaching the peak of the entire time series 
in 1997 at 387.62  km2, which laid the foundation for 
the wetland pattern. During this period, however, the 
dominant salt marsh vegetation, PA, was reduced by 
25%. The second stage is the wetland decline stage, 
from 1997 to 2009, during which the wetland and 
tidal flat areas showed a slow declining trend, with 
the area of wetland reduced by 21% and PA reduced 
by 16%. The third stage is the bio-invasion stage. 
From 2009 to 2022, SA demonstrated a trend of rapid 
increase, with an area increase of 68 times relative to 
2009, expanding at an average rate of 3.44   km2 per 
year, approaching the area of PA by 2021 and becom-
ing another dominant species in the YRD wetland. 
During the same time period, the PA area increased 
by 18%, however, extensive tidal flat areas were being 
encroached upon by SA, resulting in the tidal flat area 
being reduced by 23%.

Making a general observation of the transition 
matrix of patch areas across the three stages (Fig. 4b), 
we can draw four findings: (1) the YRD wetland 
underwent three different strengths of patch changes; 
(2) in the first stage, although there were significant 
variations in patch flows, the types of changes were 
relatively simple; (3) in the second stage, there was 
a noticeable increase in human activities, leading to 
an increase in the transfer flows and the density of the 
flow network; (4) In the third stage, although the area 
size of the transition between patches decreased, the 
network formed by the change flows became more 
complex.

In the first stage, the area of tidal flats doubled 
in size, with 161.77   km2 contributed by wetland, of 
which 51.57   km2 was contributed by PA, indicating 
a certain degree of degradation in the PA ecosystem. 
In the second stage, an area of 35.19  km2 of tidal flat 
transformed into waterbody, signifying increased sea-
water intrusion. Additionally, a small portion of the 
tidal flat was converted into pond, salt pan, and cul-
tivated land, indicating the manifestation of human 
activities. In the third stage, an area of 24.79   km2 
of tidal flat and 19.27   km2 of water body were 
encroached upon by SA, while 38.38  km2 of tidal flat 
was occupied by water body. Furthermore, an area of 
19.55  km2 of the water body transformed into a tidal 
flat, accounting for the counterbalance of both ero-
sion and deposition in the tidal flat during this stage.

Compared to wetland patch areas, the landscape 
indices can comprehensively reflect information 
about landscape composition and spatial configura-
tion, representing a highly condensed characteri-
zation of landscape pattern features. The temporal 
variations of landscape indices from 1986 to 2022 
displayed a dual-stage or tri-stage pattern, with nota-
ble differences observed in the timing and trends of 
various indices (Fig.  4c). LSI, SPLIT, LJI, and PD, 
which represent landscape shape complexity, frag-
mentation, interspersion and juxtaposition, and patch 
density, respectively, exhibited two distinct stages 
with the year 2001 serving as the turning point. From 
1986 to 2001, these indices displayed a decreasing 
trend. However, after 2001, they exhibited a signifi-
cant upward trend. Before 2001, the wetland tended 
to exhibit a trend towards regularity and uniformity, 
while afterwards, it became increasingly fragmented 
with more complex shapes. AI reflects the connec-
tivity between each patch type, which, in contrast, 
exhibited a trend of initial increase followed by a 
decrease, with the year 2001 as a turning point.

LPI, representing the proportion of the largest 
patch in the wetland, showed a decreasing trend from 
1986 to 1997 and remained relatively high thereafter 
(Fig. 4c). In the YRD, the largest patch was the water 
body, which was replaced by the tidal flat during the 
wetland expansion stage. Subsequently, as the tidal 
flat gradually receded, the water body area increased. 
Therefore, LPI is consistent with the changing trend 
of water body.

SHEI exhibited a significant increasing trend 
before 1988 (Fig.  4c). A higher value of the index 
indicates a closer proportion of different patch types 
and a higher level of evenness. This suggests that the 
evenness of the landscape continuously increased 
until 1998, after which it dropped significantly and 
remained at a low level. PAFRAC, reflecting the 
complexity of patch boundaries, gradually decreased 
before 1995 but experienced a sudden increase after 
2006, maintaining a high level thereafter. Unlike AI, 
CONTAG reflects the overall connectivity of the 
landscape. Before 1998, the wetland exhibited poor 
connectivity with a declining trend. However, after 
1998, the connectivity suddenly increased and then 
gradually declined at that higher level.
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Hydrological forces of wetland patch area

Stepwise linear regression results (Table  2) indicate 
that the dependent variables of wetland, tidal flat, 
and PA passed the model diagnostics  (Pi < 0.001; 
at the significance level of 0.05, n = 36 and k = 3, 
1.35 < DW < 1.59), and SE + and RU + passed the 
collinearity diagnostics  (VIF3-4 < 10). The areas of 
wetland, tidal flat, and PA in the YRD wetland were 
significantly influenced by SE + and RU + , explain-
ing 61.5%, 75.7% and 63.8% of their variations 
respectively, while RU and SE are excluded from the 
model. Specifically, the wetland and tidal flat area 
are positively correlated with the SE + (β31 = 2.61, 
β32 = 4.62), while the RU + shows a weak nega-
tive effect (β41 = −  0.023, β42 = -0.063). However, 
for PA, as a hydrophilic vegetation, the situation 
is the opposite, as the RU + has a positive effect on 
its area (β43 = 0.008). SA is likely limited by sam-
ple size, with high VIF and overfitting indicated by 
adjusted  R2, concluding that the model fails. There-
fore, we separately analyzed the relationship between 
SA and hydrological factors. There was a signifi-
cant positive correlation between SA and RU + and 
SE + (Fig. 5b  P < 0.001), and the linearly fitted mod-
els perform well (Fig. 5c).

Although the correlation between RU, SE and the 
important wetland patch areas (wetland, tidal flat, 
SA, and PA) were not statistically significant, we 
found an interesting phenomenon: in 1997, when the 
area of wetland and tidal flat reached the peak in the 
rapid expansion stage, the Yellow River experienced 
the most serious flow cutoff (lasted about 226 days), 
and both RU and SE showed a decreasing trend dur-
ing the period of wetland expansion (Fig. 5 a1). This 
suggests that the formation and evolution of wetland 
area is not determined by the short-term effects of 

runoff and sediment delivery in the current year, but 
may instead be affected by processes and influences 
on longer time scales.

Hydrological forces of landscape pattern

The correlation of RU + and SE + with the landscape 
indices demonstrated a higher overall significance 
compared to RU and SE (Fig. 6 a1–a2). The indices 
that satisfied Condition 1 (in the Pearson correlation 
analysis of landscape indices and hydrological vari-
ables, P < 0.001) included PD, LSI, CONTAG, IJI, 
SPLIT, and AI, while  LPI and SHEI satisfied Con-
dition 2 (fail to meet the condition 1, but the signifi-
cance of Spearman correlation analysis is P < 0.001 
or P < 0.01), and PAFRAC satisfied Condition 3 (nei-
ther condition 1 nor condition 2 is satisfied).

The patch density (PD) in the YRD wetland 
increases with an increase in RU (Pearson’s r = 0.65) 
and RU + (Pearson’s r = 0.68) (Fig. 6 b1). The two fit-
ted curves of the landscape pattern index (LPI) are 
shown in Fig.  6 b2. As RU + and SE + (both Spear-
man’s r = − 0.51) increase, the maximum patch, that 
is the water body, continues to decline, indicating an 
increase in the total terrestrial wetland area. In other 
words, increasing RU + and SE + are associated with 
the expansion of YRD wetland, with both variables 
explaining 46% of the variation in LPI. The shape 
complexity, represented by the landscape shape index 
(LSI), significantly increases with increasing RU 
(Pearson’s r = 0.57) and RU + (Pearson’s r = 0.63) 
(Fig. 6 b3).

Among all the landscape indices, PAFRAC is the 
only index that is not sensitive to any of the hydro-
logical variables. As shown in the Fig. 6 b4, most of 
the points are concentrated in the upper left quadrant, 
indicating a positive correlation with SE and RU, but 

Table 2  Stepwise multiple linear regression results of YRD wetland patch area with hydrological variables

RU, SE + , RU + respectively represent runoff, cumulative runoff, and cumulative sediment delivery. 
* means P ≤ 0.05, ** means p ≤ 0.01, and *** means P ≤ 0.001 (the same as below)

Patch area 
 (Xi, i=1,2,3,4)

Adjusted  Ri
2 DWi Fi Constant RU SE + RU + 

β
0i

β
1i

VIF1 β
3i

VIF3 β
4i

VIF4

Wetland 0.615 1.463 28.944 223.984*** 2.611*** 7.367 − 0.023*** 7.367
Tidal flat 0.757 1.516 55.488 141.277*** 4.620*** 7.367 − 0.063*** 7.367
PA 0.638 1.374 31.788 87.259*** − 0.868*** 7.367 0.008*** 7.367
SA 0.989 2.262 282.100 235.371** − .025* 3.898 − 6.738*** 141.503 0.066*** 119.275
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without any statistical significance. CONTAG, which 
reflects landscape connectivity, decreases with SE 
(Fig.  6 b5, Pearson’s r = −  0.55) but increases with 
the SE + (Pearson’s r = 0.53). RU (Pearson’s r = 0.61) 
and RU + (Pearson’s r = 0.68) have a significant pro-
moting effect on IJI (Fig. 6 b6), with explanatory val-
ues of 37% and 47%, respectively. This suggests that 
increased runoff intensifies the fragmentation of wet-
land patches.

SPLIT is significantly positively influenced by 
both RU + (Pearson’s r = 0.53) and SE + (Pear-
son’s r = 0.58) (Fig.  6 b7). SHEI is a special land-
scape index that reflects landscape uniformity. The 
results indicate that when RU + at the Lijin station 
is less than 2040.63 ×  108  m3 and SE + is less than 
53.94 ×  108 t, SHEI increases significantly with 
RU + and SE + (Fig.  6 b8), with explanatory val-
ues of 82% and 79%, respectively. However, beyond 
these values, the scatter plot becomes disordered and 
remains at a lower level. AI, which reflects landscape 

spatial aggregation, decreases with RU (Pearson’s 
r = −  0.58) and RU + (Pearson’s r = −  0.61) (Fig.  6 
b9).

Discussions

Spatial changes

The shape of river delta is usually influenced by riv-
ers, tides, and waves (Nienhuis et al. 2020). Though 
there was a sharp decrease in sediment delivery dur-
ing the period 1986–1997 in the Yellow River (Wang 
et  al. 2016), it is generally recognized that the mor-
phology of YRD was river-dominated, given the 
reputation of the Yellow River for significant sedi-
ment delivery. However, there were differences in the 
drivers that dominated delta morphology in different 
stages. Firstly, before 1996, the morphology of the 
YRD exhibited a single lobe extending continuously 

Fig. 5  The trends of annual runoff and sediment delivery 
(a1) and cumulative runoff and sediment delivery (a2) in Lijin 
hydrology station of the Yellow River from 1986 to 2021, 
and the Pearson correlation analysis (b) and linear fitting 

of SA area (c) with hydrological factors. SA, RU, SE, SE + , 
RU + represent Spartina alterniflora, runoff, sediment delivery, 
cumulative runoff, and cumulative sediment delivery, respec-
tively
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towards the ocean, suggesting that the dominant fac-
tor was the river at this stage. Secondly, in 1996, the 
significant alteration that shaped the geomorphologi-
cal structure of the estuary was driven by artificial 
diversion (Yu et  al. 2021). This diversion was con-
structed to form land through sediment deposition at 
the Shengli oil field, which is on the near-sea area of 
the YRD.

After 1996, the newly formed northeast passage 
experienced continuous sediment deposition and con-
tinued extension to the ocean, while the abandoned 
estuary in the southeast weakened under marine 
erosion. Therefore, though the river discharge con-
tinued to play a dominant role, the erosive effects of 
ocean waves cannot be ignored in this stage. In sum, 
throughout the entire time series, the morphological 
changes in the YRD were predominantly governed by 
the influential force of the river, with marine erosion 
as the auxiliary factor, and human activities played a 
key role in the transformative changes in 1996.

Patch area changes

From 1986 to 2022, the wetland area underwent rapid 
expansion, followed by a gradual decline, and then 
a slow increase (Fig. 7a). This trend is mainly influ-
enced by SE + and RU + , with SE + playing a more 
significant role, positively affecting wetland area (Yu 
et al. 2021), while RU + has a weaker negative impact 
(Fig. 7b).

The tidal flat area exhibited a pattern of initial 
increase followed by continuous decrease (Fig.  7a). 
In the first stage, the tidal flat area increased with ris-
ing SE + . In the second stage, 35.19  km2 of tidal flats 
transitioned to seawater, while a small portion con-
verted to ponds, salt fields, and cultivated land, indi-
cating a consistent decline due to seawater intrusion 
and human activities. In the third stage, 24.79  km2 of 
tidal flats were invaded by SA and 18.83  km2 were 
eroded by seawater. Consequently, invasive SA and 
seawater erosion were the primary causes of tidal flat 
reduction in the third stage. The reduction of tidal flat 

Fig. 6  Pearson and Spearman correlation coefficient matrix of 
landscape indices with hydrological drivers (a1-a2), and func-
tion fitting and scatter plots between them (b1-b9). Where, * 
means P ≤ 0.05, ** means p ≤ 0.01, and *** means P ≤ 0.001. 
RU, RU + , SE, and SE + respectively represent the runoff, 
cumulative runoff, sediment delivery and cumulative sediment 

delivery of the Lijin hydrographic station. The fitting function 
and  R2 of the landscape index with a specific hydrological var-
iable are displayed at the intersection of the two axes (except 
for SHEI, its fitting functions are displayed near the fitting 
trend lines)
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area may lead to a series of ecological problems, such 
as reducing the habitat of rare and endangered birds, 
because more than 90% of water birds are dependent 
on the natural habitats like tidal flats (Li et al. 2013).

The PA area continuously decreased in the first 
and second stages but showed a slight rebound in 
the third stage (Fig.  7a). This was mainly influ-
enced by RU + and SE + , where RU + played a 
positive role (Zhang et  al. 2022) and SE + had a 
negative effect (Fig. 7b). Furthermore, the rebound 
in the third stage might also be attributed to recent 
ecological conservation policies. For instance, 
since 2008, the Yellow River Commission has been 
conducting regular freshwater replenishment to the 
YRD by ditching, promoting the recovery of the 
PA ecosystem.

For SA, in 2009, small patches were first 
observed in the YRD wetland. Around 2010, it 
rapidly expanded, which was positively associ-
ated with RU + and SE + . Moreover, research 
had revealed that the density, height and basal 
diameter of clonal ramets or sexual seedlings 
of SA increased with tidal inundation (Ma et  al. 
2019).  Once the harm that SA caused was rec-
ognized, local control measures such as "enclo-
sure and flooding" and "cutting and ploughing" 
were implemented, so that in 2022 we observed a 
decline of SA area.

Landscape pattern changes

The YRD wetland landscape fragmentation, 
shape complexity and aggregation were primarily 

Fig. 7  Landscape pattern evolution diagrammatic drawing of 
YRD wetland (a), and hydrological driving factors of wetland 
landscape pattern evolution (b). The arrows in the diagram-

matic drawing (a) represent the trend of the typical patch area 
during this period
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influenced by RU and RU + (Fig. 7b). It implies that 
under the erosive forces of flowing water, estuarine 
wetland landscapes tend to exhibit fragmentation 
and increasing complexity in shape, resulting in a 
decrease in landscape aggregation, particularly dur-
ing flood events (Liu et al. 2022).

The YRD wetland landscape connectivity was 
mainly influenced by SE and SE + , which had a posi-
tive impact. SE played a significant role in shaping 
the connectivity of the YRD wetland (Fig.  7b). As 
sediment erodes and is transported by flowing water, 
it can contribute to the formation of channels, channel 
networks, and water pathways, enhancing the connec-
tivity between different wetland areas. This promotes 
the exchange of water, nutrients, and biota within the 
wetland ecosystem, supporting the overall ecological 
health and functioning of the YRD wetland.

The hydrological driving effect on YRD patch 
evenness was controlled within a certain range: when 
the Lijin Station’s cumulative runoff was lower than 
2040 ×  108  m3 and cumulative sediment delivery was 
lower than 54 ×  108  t, the Shannon’s Evenness Index 
(SHEI) significantly increased with the increase of 
RU + and SE +  which highlights the importance of 
regulating hydrological factors to achieve optimal 
patch evenness in the YRD wetland.

In addition, trends in landscape fragmentation, 
shape complexity, and aggregation showed important 
turning points around 2001, which are likely related 
to the formal operation of the large-scale hydrau-
lic project, Xiaolangdi Reservoir. As a major water 
diversion and sediment control project in the lower 
reaches of the Yellow River, the Xiaolangdi Reser-
voir regulates the runoff and sediment delivery down-
stream (Xia et al. 2016) and therefore is likely to be 
an important factor influencing the landscape pattern 
in the YRD. Moreover, other landscape indices, such 
as SHEI, PAFRAC, CONTAG, and LPI, all showed 
important turning points in 1995–1998, which may 
have been affected by the period of flow stoppage and 
river diversion in the Yellow River.

Sources of uncertainty

We generated high spatial and temporal resolution 
maps of typical salt marsh vegetation in the YRD 
wetland from 1986 to 2022 and analyzed its land-
scape pattern changes and hydrological driving fac-
tors, providing a quantitative basis for the scientific 

management of wetlands. However, due to the rapid 
changes in the landscape pattern of the YRD wetland, 
it is almost necessary to replace the sample points 
in GEE every year to achieve long-term supervised 
classification, and this visual-based sampling pro-
cess may introduce potential and unavoidable errors. 
Moreover, the landscape pattern of the YRD wetland 
may also be influenced by other anthropogenic factors 
on the landscape such as salt fields, cultivated land, 
and aquaculture ponds, which may also contribute to 
the recent increase in landscape fragmentation and 
shape complexity (Li et al. 2021).

Conclusions

By combining high-resolution remote sensing 
images, we generated a 30-m resolution, annual time-
scale dataset of typical salt marsh vegetation in the 
YRD from 1986 to 2022 and discussed the hydrologi-
cal driving factors of wetland landscape evolution. 
We identified that the YRD has experienced three 
stages of landscape pattern changes with 1997 and 
2009 as turning points, including the rapid expan-
sion stage, gradual decline stage, and bio-invasion 
stage. The proliferation of Spartina alterniflora in the 
YRD needs to be given sufficient attention, because 
it is approaching the Phragmites australis habi-
tats and competing with it for resources, potentially 
affecting the development of the Phragmites austra-
lis ecosystem. Furthermore, in the most recent two 
decades, human impacts have encroached upon this 
natural wetland area intensively, with seawater intru-
sion also taking place at the same time, threatening 
the tidal flat area. Moreover, we found that the YRD 
wetland landscape tended to exhibit fragmentation 
and increasing shape complexity with the increase of 
runoff and cumulative runoff, resulting in a decrease 
in landscape aggregation, while sediment delivery 
and cumulative sediment delivery had a positive 
impact on wetland landscape connectivity. To prevent 
the degradation of tidal flat and Phragmites australis 
areas, measures such as regulating sediment delivery 
and runoff from upstream regions and implementing 
ecological replenishment  should be taken. To con-
trol the extensive proliferation of Spartina alterni-
flora, intervention measures can be implemented 
during the seedling stage. These findings extended 
the theoretical basis of landscape regime shift for the 
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conservation, management, and sustainable devel-
opment of the YRD wetland. Further exploring the 
relative influences of natural factors (such as climate 
change, sea-level rise, and seawater intrusion) and 
human factors (such as water conservancy projects, 
dam construction, expansion of cultivated land, and 
aquaculture) on the changes in salt marsh vegeta-
tion of estuarine wetlands is recommended in future 
research.
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