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plant species: Vaccinium uliginosum L., Empetrum 
nigrum L., Rubus chamaemorus L., Vaccinium vitis-
idaea L., and Viburnum edule (Michx.) Raf..
Results Elevation, soil characteristics, and Janu-
ary and July temperatures were important drivers of 
habitat distributions. Future suitable habitat predic-
tions showed net declines in suitable habitat area for 
all species modeled under almost all future climate 
scenarios tested.
Conclusions Our work contributes to understand-
ing potential geographic shifts in suitable berry plant 
habitat with climate change at a landscape scale. 
Shifting and retracting distributions may alter where 
communities can harvest, suggesting that access to 
these resources may become restricted in the future. 
Our prediction maps may help inform climate adap-
tation planning as communities anticipate shifting 
access to harvesting locations.

Abstract 
Context Climate change is altering suitable habitat 
distributions of many species at high latitudes. Fleshy 
fruit-producing plants (hereafter, “berry plants”) 
are important in arctic food webs and as subsistence 
resources for human communities, but their response 
to a warming and increasingly variable climate at a 
landscape scale has not yet been examined.
Objectives We aimed to identify environmental 
determinants of berry plant distribution and predict 
how climate change might shift these distributions.
Methods We used species distribution models to 
identify characteristics and predict the distribution 
of suitable habitat under current (2006–2013) and 
future climate conditions (2081–2100; representative 
concentration pathways 4.5, 6.0, & 8.5) for five berry 
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Introduction

Global climate change is altering the suitable habitat 
distributions of many biotic communities (Thomas 
2010). Species’ distributions on average have shifted 
16.9  km poleward per decade (Chen et  al. 2011), 
while climate-driven losses to suitable habitat area 
have been observed across taxa and geographies 
(Parmesan 2006; Pecl et al. 2017; Lenoir et al. 2020; 
Masson-Delmotte et  al. 2021; Pörtner et  al. 2022). 
Climate influences species distributions by impos-
ing geographic limits based on species’ physiological 
tolerances to temperature and precipitation gradients 
(i.e., the fundamental niche) (Stevens 1989; Gas-
ton and Spicer 2001). As climate change progresses, 
these geographic limits of tolerable climatic condi-
tions shift in space, forcing species to move or face 
niche mismatch which may increase the vulnerability 
of the species. In northern latitudes where tempera-
tures are rising at nearly four times the rate of the 
global average (Rantanen et  al. 2022), shifts in suit-
able habitat range are affecting proportionally more 
species at faster rates and over greater areas compared 
to global estimates (van Beest et al. 2021; Antão et al. 
2022; Ramalho et al. 2023). Better understanding the 
influence of climate on changes to species’ distribu-
tions will be critical to plan for and remain resilient to 
future climate change. Fortunately, advances in com-
puting power, increasing access to species occurrence 
information, and dissemination of thoroughly tested 
modeling algorithms has allowed for easy imple-
mentation of species distribution models (SDMs) to 
project change under future climate scenarios and 
inform management action (Elith et  al. 2006; Elith 
and Leathwick 2009; Sofaer et al. 2019).

Arctic vegetation community distributions are 
projected to experience significant change in line 
with arctic warming. Most notably, arctic vegeta-
tion communities are expected to undergo “shrubi-
fication,” in which traditionally grass- and sedge-
dominated communities, especially in tundra areas, 
are overtaken by woody shrub and tree expansion 
made possible by increasing soil temperatures, 
microbial activity, and length of the growing season 

allowing for shrub growth and recruitment in pre-
viously unsuitable northern habitats (Tape et  al. 
2006; Myers-Smith et  al. 2011). Some estimates 
indicate tree lines could move as much as 100  km 
northward, expanding in range, while lower-lying 
graminoids’ ranges are expected to shrink (Pearson 
et  al. 2013). The implications of such distribution 
shifts could be far-reaching—for example, vegeta-
tion shifts may alter the arctic carbon cycle, a criti-
cal component of global carbon budgets (McGuire 
et  al. 2009), by decreasing regional albedo and 
increasing solar energy absorption as taller, woodier 
vegetation grows above snowpack (Mekonnen et al. 
2021). Distribution shifts could impact ecology and 
ecosystem functioning in several ways; for exam-
ple, encroaching woody vegetation could shade out 
lower-lying shrubs, altering competition dynam-
ics, (Myers-Smith et  al. 2011), while cold-adapted 
specialist small mammal distributions could shrink 
(Baltensperger and Huettmann 2015), disrupting 
arctic food webs.

A key component of arctic food webs that could be 
impacted in this way are wild, fleshy fruit-producing 
plants (hereafter, “berry plants”). Berry plants are 
ubiquitous in northern latitudes, occurring through-
out the boreal, arctic, and polar regions of the north-
ern hemisphere. Berry plants are vital components of 
arctic food webs often functioning as the only viable 
food source during critical feeding times, like in fat-
tening birds prior to migratory periods (Hupp et  al. 
2013) and in supplementing bear diets when salmon 
and other preferred sources are unavailable (Deacy 
et al. 2017). Berries have also been shown to be influ-
ential in survival of small mammal populations like 
rodents (Krebs et al. 2010). Furthermore, berry plants 
are an important resource for human communities 
across the Arctic, especially Indigenous communities, 
where the harvest of berries is an important cultural 
practice to gather a healthy traditional wild food. Ber-
ries are also an economical food source in remote, 
rural areas where imported fruit alternatives are lim-
ited and expensive (Redwood et al. 2008; Hupp et al. 
2015; Boulanger-Lapointe et  al. 2019). Wild berries 
are a rich source of polyphenolic metabolites, act-
ing as effective anti-obesity and anti-diabetes dietary 
components (Kellogg et  al. 2010), while opportuni-
ties for physical activity afforded by berry harvesting 
are critical in Indigenous communities for exercise 
and community life (Redwood et al. 2008).
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Climate change is already altering wild berry plant 
productivity and phenology. Extreme winter warm-
ing event simulations have demonstrated reductions 
in berry production, flowering, root growth, gross 
primary productivity, and increased shoot mortal-
ity (Bokhorst et al. 2008, 2011). Alaskan berry plant 
phenologies have been observed to shift in line with 
warming trends between seasons, flowering and pro-
ducing fruit earlier during warmer years with ear-
lier snowmelts compared to cooler years with later 
snowmelt (Mulder and Spellman 2019). Indigenous 
communities have been observing these and other 
climate-induced changes to berry plants for decades, 
citing decreasing abundance and/or increasing vari-
ability in berry production over time and observed 
phenological shifts of berries ripening earlier in the 
season (Hupp et  al. 2015; Boulanger-Lapointe et  al. 
2019; Herman-Mercer et al. 2020).

However, less progress has been made in under-
standing potential suitable habitat shifts of high-
latitude berry plant species in response to climate 
change. Predictions of habitat shifts will be critical in 
assessing the vulnerability of Alaskan communities to 
shifting accessibility of berries and in helping to tar-
get adaptive management prescriptions on the land-
scape (e.g., Anderson et al. 2018; Reich et al. 2018). 
A limited number of studies from other regions have 
broached this topic, finding minor changes to the suit-
able habitat distribution of Vaccinium uliginosum L. 
in the Khingan Mountains region of Northeast China 
(Li et  al. 2022); net expansion of suitable habitat 
ranges for Vaccinium uliginosum, Vaccinium vitis-
idaea L., Vaccinium macrocarpon Aiton, and Vaccin-
ium oxycoccos L. in Northern Canada (Hirabayashi 
et  al. 2022; Seider et  al. 2022); and net contraction 
of the suitable habitat range of huckleberry (Vaccin-
ium membranaceum Douglas ex Torr.) in the Pacific 
Northwest (Prevéy et al. 2020). These studies provide 
some insight to potential berry plant habitat shifts, 
but more targeted assessments are needed to under-
stand what these shifts might look like in Alaska and 
for species important to Alaskan ecosystems and 
Indigenous communities.

To help address this need, here we aimed to (O1) 
identify dominant environmental drivers of berry plant 
habitat; (O2) predict current berry plant habitat distri-
bution; and (O3) predict how berry plant habitat distri-
bution might change under future climate conditions in 
the Bristol Bay region of southwestern Alaska. To meet 

these objectives, we built SDMs focusing on five berry 
species: Vaccinium uliginosum, Empetrum nigrum 
L., Rubus chamaemorus L., Vaccinium vitis-idaea, 
and Viburnum edule (Michx.) Raf.. V. uliginosum, E. 
nigrum, and V. vitis-idaea are generalist shrub species 
occurring in boreal, arctic, and sub-arctic regions and 
tolerant of a range of soil conditions from very wet 
to very dry (Jacquemart 1996; Nestby et al. 2019). R. 
chamaemorus is a perennial herbaceous forb with cir-
cumpolar distribution likely heat-limited with tempera-
tures exceeding 18° C diminishing its photosynthetic 
capacity (Marks and Taylor 1978). In general it prefers 
acidic peat bog habitat types and wetland soils (Taylor 
1971). V. edule is a shrub growing taller than the other 
species included in this study at heights 1 to 2 m high; it 
can be found throughout northern North America often 
within wooded areas and at the margins of wetlands 
and streambanks, and prefers rich, moist soils (Gould 
et al. 2013).

We expected our models to identify the most influ-
ential variables in determining suitable habitat areas 
to be in line with described habitat preferences in the 
literature and expert communications (e.g., Jacquemart 
1996; Taylor 1971; Nestby et  al. 2019) (O1). Next, 
we expected our models to predict widespread suit-
able habitat distribution for the three generalist, tundra-
associated species (V. uliginosum, E. nigrum, V., vitis-
idaea), and restricted distributions for R. chamaemorus 
and V. edule, under current climate conditions (O2). 
Third, we expected to observe retractions of suitable 
habitat distributions in future model outputs for the 
three tundra species and expansion of suitable habitat 
distribution for the two specialist species (O3). Through 
identifying key environmental and climatic drivers and 
generating spatially-explicit maps of suitable habitat 
distributions, our results can offer an evidentiary basis 
for spatial adaptation planning for conservation of suit-
able habitat areas for these important food-producing 
plants under future climates. Furthermore, our results 
will contribute to further understanding how climate 
change may cause shifts in the distribution of shrubby 
plants and reorganization of vegetative communities in 
the Arctic.
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Methods

Study area

We aimed to map the potential spatial distribution 
of suitable habitat for five key berry plant species 
across Alaska’s Bristol Bay and Togiak areas (Fig. 1). 
Located in southwest Alaska, this study region cov-
ers 47,561  km2 and is home to 31 predominately 
Indigenous Alaskan villages, 7259 people, and over 
300 wildlife and 500 plant species (Bristol Bay 
Native Corporation 2016). Berries and other sub-
sistence resources like salmon are integral compo-
nents of local peoples’ culture and economy in Bris-
tol Bay; its sockeye salmon run is the largest in the 
world, accounting for roughly half the global supply 

of sockeye salmon (Clark et al. 2006), while the rate 
of participation in berry-harvesting in Dillingham, 
the largest village in Bristol Bay, exceeds 80% with 
residents collectively harvesting over 6000 gallons 
of berries annually (Evans et  al. 2010). In this way, 
many Indigenous Alaskans throughout Bristol Bay 
continue to practice traditional activities like hunt-
ing, fishing, and gathering and attribute great cultural 
significance to the subsistence lifestyle (Bristol Bay 
Native Corporation 2016).

The western Alaskan landscape is characterized as 
a semiarid treeless zone of discontinuous permafrost. 
The study area spans the Bristol Bay-Northern Alaska 
Peninsula Lowlands and the Ahklun Mountains 
(USDA 2022). In the Bristol Bay area, the physiog-
raphy is primarily rolling plains, hills, and mountain 

Fig. 1  Map of the two NRCS survey areas which form the 
Study Area Boundaries. NRCS sample locations are displayed, 
overlaid on land cover classes derived from the National Land 

Cover Database (NLCD) and a hillshade relief derived from 
elevation DEM. The inset map highlights the Study Area’s 
position within the state of Alaska
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footslopes while the Ahklun Mountains area primar-
ily consists of low elevation, rugged mountains. Bal-
sam poplar and white spruce forests are common in 
low-elevation valley bottoms and floodplains. Dwarf 
and low scrub communities dominated by ericaceous 
shrubs, feathermoss, and lichen are common on 
the drier soils of hills and plains, while wetter soils 
on these same slopes support low shrub and herba-
ceous peatlands dominated by scrub birch, ericaceous 
shrubs, sedges, and Sphagnum. Tall alder and low 
willow scrub are common on the lower half of moun-
tain slopes, while alpine tundra dominates the upper 
half of mountain slopes. The climate is subarctic with 
long, cold winters and short, warm summers. Areas 
proximal to the coast have a maritime influence that 
quickly becomes continental as distance from the 
coast increases. Average temperatures range from -1 
to 2 degrees C and average annual precipitation is 330 
to 1,270 mm (USDA 2022).

Berry plant presence/absence data

We used presence and absence data for five berry 
plant species collected by the USDA Natural 
Resources Conservation Service (NRCS) to build 
SDMs. We selected these five species based on their 
appearance in the literature, prevalence in the envi-
ronment, subsistence and cultural significance to 
human communities (Hupp et al. 2015), and through 
personal communications with experts and commu-
nity members.

The NRCS data were collected between the years 
2006–2013 as part of routine soil surveys conducted 
throughout the state. Plot locations for these surveys 
were selected using purposive sampling in which 405 
 m2 plots were established across dominant ecotone 
strata throughout the survey areas. At each plot, sur-
veyors recorded the occurrence and percent cover of 
every plant species in addition to soil metrics includ-
ing soil horizons, presence of redoximorphic features, 
parent material, pH, texture, and structure. These data 
were collected primarily to develop a soil map that 
spatially illustrates the distribution of soil compo-
nents present in the survey area and their associated 
ecological sites (USDA 2022). For our study, we used 
presence/absence data for 1627 plot-level data points 
within the study area for each of the five berry plant 
species.

Climate, soils, and topographic predictor data

For predictor variables, we used a suite of environ-
mental and climate geospatial data layers found to 
influence berry plant distribution based on past vege-
tation SDM studies (e.g., Garamvölgyi 2013; Pearson 
et al. 2013; Niskanen et al. 2019), botanical literature 
detailing berry species preferred habitat conditions 
(Bell and Tallis 1973; Jacquemart 1996; Anderson 
et  al. 2018; Nestby et  al. 2019), and data availabil-
ity. In total, we gathered 29 predictor variable layers 
across three categories of climate, soil, and topog-
raphy from publicly available online GIS database 
repositories.

We sourced temperature and precipitation cli-
mate variables from the Scenarios Network for 
Alaska + Arctic Planning (SNAP) database (Scenar-
ios Network for Alaska + Arctic Planning 2015) for 
current (2006–2013) and future (2081–2100) time 
periods. We used three dataset groups correspond-
ing to three climate Representative Concentration 
Pathways (RCPs) to compare changes to berry spe-
cies suitable habitat distributions under a range of 
potential future climates. The RCPs represent poten-
tial trajectories of radiative forcing agents throughout 
the twenty-first century and cover the span of trajec-
tories detailed in the climate literature (van Vuuren 
et al. 2011). Here we selected three of the four RCPs 
(RCP4.5, RCP6, and RCP8.5) to cover a span of 
potential emissions scenarios. RCP4.5 and RCP6 are 
stabilization scenarios which assume collective inter-
national policy implementation to reduce greenhouse 
gas emissions leading to radiative forcing stabiliza-
tion at 4.5 W/m2 and 6.0 W/m2 by 2100, respectively 
(Thomson et al. 2011). RCP8.5 is considered a high 
emissions scenario which assumes high popula-
tion and slow economic growth and failure to enact 
comprehensive international agreements to reduce 
greenhouse gas emissions resulting in radiative forc-
ing to 8.5 W/m2 by 2100 (Riahi et  al. 2011). SNAP 
produced these climate layers by averaging across 
five climate models (CCSM-4, GFDL-CM3, GISS-
E2-R, IPSL-CM5A-LR, MRI-CGCM3) to account 
for model-specific variation and downscaled to 771 m 
resolution using PRISM climatological datasets from 
1971 to 2000 (Scenarios Network for Alaska and Arc-
tic Planning 2015). For our SDMs, we used modeled 
RCP4.5 baseline conditions averaged for the present 
time period (2006–2013) because observation data 
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were not available at this scale for this time period in 
this region and to improve consistency between pre-
sent and future time period projections. We selected 
RCP4.5 for this purpose because RCP4.5 is the clos-
est (of our chosen scenarios) to present-day (i.e., 
2006–2013) observed conditions (Pielke et al. 2022).

We sourced soil variables including pH, organic 
matter content, clay content, and available water 
storage from the NRCS Gridded Soil Geographic 
(gSSURGO) database for Alaska (Soil Survey Staff 
2022a). The NRCS developed these datasets for 
resource planning and soils analysis purposes by con-
verting vector-based soil map component data from 
two soil surveys [the Bristol Bay-Northern Alaska 
Peninsula, North and Bordering Areas and Togiak 
National Wildlife Refuge-Ahklun Mountains Area 
surveys (Soil Survey Staff 2022b, c)] into gridded 
statewide data layers at 30 m spatial resolution using 
weighted averaging.

We retrieved elevation data from the ArcticDEM 
project of the Polar Geospatial Center (Porter et  al. 
2018) at 32  m resolution from which we produced 
slope and aspect layers using the “terrain” function 
from the raster package in R (Hijmans 2022).

We harmonized all spatial predictor layers to a 
common resolution (30 m), alignment, and coordinate 
reference system (NAD 1983 State Plane Alaska 6 
FIPS) using the nearest neighbor method of the “resa-
mple” function from the raster package in R (Hij-
mans 2022). Then, we extracted these grid values to 
the berry plant presence/absence point dataset to be 
used in model training and to a common raster grid 
across the study area to be used in predictive distribu-
tion mapping. All spatial data manipulation was per-
formed in R version 4.1.3 (R Core Team 2022) using 
packages raster (Hijmans 2022) and sf (Pebesma 
2018).

Model development and evaluation

We used the Random Forests (RF) algorithm (Brei-
man 2001) to build SDMs for five berry plant spe-
cies. RF is an ensemble classification and regression 
tree (CART; see: Breiman et  al. 1984) algorithm 
well suited to the development of SDMs because it 
is capable of handling many high-volume predictor 
datasets across scales and resolutions, and is able to 
resolve non-linear relationships between variables. 
Because species distribution patterns are determined 

by environmental structure across landscape gradients 
(Guisan and Zimmermann 2000), RF is an effective 
technique for its capacity to manage the many geo-
spatial data inputs required for estimating landscape-
scale distribution from point training data.

We tuned and ran SDMs in R version 4.1.3 (R Core 
Team 2022). To do so, we first specified input predic-
tor variables and model hyperparameters custom for 
every species. We conducted variable selection first 
using the “vifstep” function of the usdm package in R 
(Naimi et al. 2014) to remove highly collinear predic-
tors. Although RF is a nonparametric technique rela-
tively inoculated from problematic variable collinear-
ity and overfitting, variable selection has nevertheless 
been shown to be useful in improving variable impor-
tance estimates and model interpretability (Biau and 
Scornet 2016; Genuer et al. 2010). “vifstep” works to 
remove collinear predictors according to the variance 
inflation factor (VIF) of each variable. A VIF above 
10 is indicative of problematic predictor collinearity 
(Chatterjee and Hadi 2006). Thus, we implemented 
the “vifstep” argument at a VIF threshold of 10. This 
stepwise procedure removed the variable with the 
highest VIF above the threshold then recalculated 
VIF for all variables again, repeating the process until 
all variables above the threshold were removed. Then, 
we used the VSURF package in R (Genuer et  al. 
2022) to select a subset of the remaining variables 
based on RF’s internal variable importance ranking 
functionality. This procedure facilitated clearer inter-
pretation of results by removing barely influential and 
confounding variables from analysis. Variable subsets 
were determined for each species using the “Thresh-
old” VSURF option which retains variables highly 
related to the response, even if somewhat redundant.

Following variable selection, we calibrated RF 
model hyperparameters using the “train” function of 
the caret package in R (Kuhn 2008). We used this 
function first to find the optimal “mtry” parameter 
which specifies the number of predictor variables to 
be used at each tree split using an out-of-bag (OOB) 
error estimation. Then, we employed this same pro-
cedure to find the optimal “ntree” parameter which 
specifies the number of decision trees to be grown. 
For two species, R. chamaemorus and V. edule, we 
corrected for class imbalance during this proce-
dure by specifying a method of downsampling of 
the majority class (absence class) to be equal to the 
number of samples of the minority class (presence 
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class) (Chen et al. 2004). Class imbalance is a com-
mon issue in SD modeling, especially when dealing 
with rare species and/or a high number of background 
(absence/pseudo-absence) data points (Valavi et  al. 
2021), and is important to correct for because class 
imbalance can result in biased classification accu-
racy due to an overrepresentation of the majority 
class in model fitting (Evans et al. 2011). This down-
sampling occurs at the tree level by randomly sam-
pling from the majority class with replacement, and 
thus still makes use of information embedded within 
the majority class across the high number of trees 
grown. This technique has been shown to be effective 
in improving model accuracy over the default sam-
pling regime for imbalanced data (Valavi et al. 2021). 
Finally, we ran all models, specifying custom hyper-
parameter values according to the outputs generated 
from the procedure above, using the ModelMap pack-
age (Freeman et al. 2018) which implements the RF 
algorithm through the randomForest package in R 
(Liaw and Wiener 2002).

We evaluated the effectiveness of our models using 
two metrics: threshold-dependent classification error 
rates expressed as the OOB error rate; and a thresh-
old-independent metric, the area under the curve of 
the receiver operator characteristic (AUC ROC). The 
OOB error rate reflects model misclassification on a 
subset of data automatically withheld from the boot-
strap sample used to build trees. The AUC ROC is a 
well-established metric for evaluating systems aiming 
to distinguish between two classes of events without 
relying on a probability threshold at which classes 
are separated (Swets 1988), and is given by the area 
under the curve of the plot of sensitivity (true positive 
predictions) against 1-specificity (i.e., false-positive 
predictions). An AUC of 0.5 is indicative of a bad 
model unable to discriminate between classes better 
than random, while an AUC of 1.0 reflects a model 
with perfect discrimination capacity. AUCs above 0.7 
are generally considered acceptable (Swets 1988). 
We report both of these metrics because of (1) the 
relevance of threshold-dependent binary classifica-
tion accuracy given our interest in evaluating species’ 
potential distribution change, calculated by differenc-
ing binary classification maps; and (2) the robustness 
of the ROC metric for threshold-independent model 
evaluation.

For one species, R. chamaemorus, where we 
expected soil variables to be particularly important 

relative to climate, we conducted an additional anal-
ysis (following Feng et  al. 2020) building separate 
models for soil and climate variables, respectively 
(see Supplementary Materials S1.6 for Methods 
detailing the development of these separate models).

Analysis

We extracted ranked variable importance information 
from our RF models and constructed variable impor-
tance and partial dependence plots to make inference 
about the relationships between climate and environ-
mental predictor variables and habitat suitability for 
each species. We reported relative variable impor-
tance for each model according to the mean decrease 
in accuracy metric which reflects the decrease in 
model predictive accuracy resulting from a step-
wise removal of each predictor variable in the model 
(Liaw and Wiener 2002). We also constructed partial 
dependence plots for the top three ranked variables 
for each species. Partial dependence plots visualize 
the relationship between individual predictor vari-
ables and the predicted probabilities of classification 
in the positive class.

Model outputs reflect suitable habitat distributions 
(not occurrence) because the approach employed 
here (predictive RF modeling) does not account for 
dynamic ecological processes which factor into real-
world spatial distribution of vegetation including dis-
persal potential, germination, recruitment, and other 
factors. They also do not reflect the suitable range 
for fruiting and potential harvesting range, as these 
species can all be present and reproduce asexually 
in suboptimal conditions for fruiting. Rather, this 
approach finds associations between environmental 
conditions and species occurrence (and absence) and 
is thus more descriptive of the suitability of a given 
location to support each species (i.e., the realized spe-
cies niche vs. the fundamental species niche (Guisan 
and Zimmermann 2000)). Within this framework, we 
mapped suitable habitat across the study area cor-
responding to each of the five models we produced 
using the ModelMap package in R (Freeman et  al. 
2018).

To predict the distribution of suitable habitat under 
future climate scenarios, we substituted future pro-
jected climate layers into the five models during the 
map building process. This approach assumes a static 
relationship between climate variable influence and 
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classification probability over time; thus, the future 
projection is based on extrapolation of this relation-
ship from the present time period model. All other 
model predictors (soils, topography) were unchanged. 
This procedure produced 15 suitable habitat distri-
bution probability maps corresponding to each of 
three future RCP projections and five berry species. 
To visualize change in the probability of classifica-
tion between time periods, we subtracted the present 
time period probability surface from each future time 
period surface, resulting in probability change maps.

To quantify suitable habitat across the study area, 
we next converted probabilities to binary classes of 
“suitable” and “unsuitable” habitat at a threshold 
probability value of 0.5. We selected this threshold 
value for consistency between models and because 
we found, through testing of four other thresholds 
using the PresenceAbsence package in R (Freeman 
and Moisen 2008), that some models’ classifica-
tions were sensitive to the selected threshold values 
(See Supplementary Materials S2). Because of this 
sensitivity, we present results and evaluate the accu-
racy of our predictions regarding patterns of suitable 
habitat distribution both through quantification of 
binary classification maps and through non-threshold 
dependent outputs including probability distribution 
and probability distribution change maps.

To specifically quantify suitable habitat change, we 
first calculated the amount of suitable habitat area for 
each species under each climate scenario by summing 
suitable habitat cells for each binary classification 
surface and converting to square kilometers. Then, we 
calculated raw change in suitable habitat area by sub-
tracting the predicted suitable habitat area amount in 
the present time period from predicted suitable habi-
tat area amount from three climate futures. We also 
estimated geographic patterns of distribution change 

across elevation and latitude gradients by extracting 
elevation and latitude values of suitable habitat cells 
for each binary classification surface, calculating the 
average value, and subtracting future predictions from 
the present time period estimate.

Results

Predictive performance and variable importance

The five SDMs all showed reliable predictive perfor-
mance according to the threshold independent AUC 
ROC metric (AUC > 0.7, Table  1). The threshold-
dependent metric, OOB error, also showed relatively 
reliable predictive performance though these varied 
between models (Table 1).

Top predictors varied between species modeled. 
Unexpectedly, elevation appeared within the top two 
most important for 3/5 species (Fig.  2a, b, d) with 
the probability of classification in the suitable habi-
tat class for each of these species increasing with 
increasing elevation to ~ 200  m and then plateauing 
(Fig.  3a, b, d), and with its mean decrease in accu-
racy ranging from 80.0% for E. nigrum to 27.8% for 
V. uliginosum.

Following elevation, soil variables including pH, 
available soil water storage, and soil organic mat-
ter content ranked highly across various models. For 
example, in line with our predictions, soil pH (0 to 
30  cm depth) and soil water storage were the first 
and fourth most important variables for V. uligi-
nosum, with the probability of classification in the 
suitable habitat class decreasing with increasing pH 
and increasing with increasing soil water storage 
(Fig.  3a) and showing a mean decrease in accuracy 
of 28.7% and 26.0% respectively (Fig.  2a). Organic 

Table 1  RF SDMs summary: five berry plant species models

Common name listed, followed by scientific name, number of presence observations in dataset, number of absence observations in 
dataset, SDMs’ area under curve of the receiver operator characteristic (AUCROC), and SDM estimate of the out-of-bag (OOB) 
error rate

Common name Scientific name Presences (n) Absences (n) AUCROC OOB error (%)

Bog blueberry Vaccinium uliginosum 811 816 0.77 29.85
Crowberry Empetrum nigrum 848 779 0.755 30.08
Cloudberry Rubus chamaemorus 389 1238 0.743 29.56
Lowbush cranberry Vaccinium vitis-idaea 828 799 0.712 33.54
Highbush cranberry Viburnum edule 139 1488 0.848 22.30
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matter content (0–30 cm depth), organic matter con-
tent (30–100 cm depth), and soil pH (0–30 cm depth) 
were the first, second, and third most important vari-
ables for R. chamaemorus, with the probability of 
classification in the suitable habitat class positively 
correlated with each of these variables (Fig. 3c), and 
showing a mean decrease in accuracy of 9.8%, 9.6%, 
and 9.2%, respectively (Fig. 2c).

Across models, January temperature, July tempera-
ture, and July precipitation appear most frequently as 
relatively important climate variable predictors. July 
temperature was the second most important variable 
for V. edule, (Fig.  3e) showing a mean decrease in 
accuracy of 8.2% (Fig. 2e); July temperature was the 
third most important for V. uliginosum and E. nigrum 
showing mean decreases in accuracy of 26.2% and 
54.1% respectively (Fig. 2a, b). January temperature 
was the second most important variable for E. nigrum 
and the fourth most important for V. vitis-idaea with 
the probability of classification in the suitable habitat 
class decreasing with increasing January temperature 
for both of these species (Fig.  3b, d), and showing 
mean decreases in accuracy of 61.4% and 46.97%, 
respectively; (Fig.  2b, d); January temperature was 

also the highest ranked of all climate variables for R. 
chamaemorus (Fig. 2c).

Current suitable habitat

Current time period (2006–2013) probability distri-
bution maps showed variability in predicted patterns 
of viable habitat across the study area for each of the 
species. For three species (V. uliginosum, E. nigrum, 
and V. vitis-idaea), the highest probabilities were 
generally located in the eastern and northern regions 
of the study area, while lower probabilities were in 
the western parts of the study region (Fig. 4a, b, d). 
Meanwhile, the map for R. chamaemorus showed 
high probability of suitable habitat in the low-lying 
wetland areas of the south and center of the study 
region, and low probability in the mountainous north-
east and west (Fig.  4c). V. edule showed low prob-
ability of suitable habitat throughout the majority of 
the study region, with its highest probabilities con-
centrated in the boreal forested center-west and loamy 
flood plains along the Nushagak river (Fig. 4e).

Binary classification maps, which con-
verted probabilities into classes of suitable and 

Fig. 2  Variable importance rankings for five berry plant spe-
cies. Rankings were determined by the “Mean Decrease in 
Accuracy” metric which reflects the decrease in model predic-

tive accuracy resulting from a stepwise removal of each predic-
tor variable in the model. Climate variables are colored purple, 
soils green, and topographic orange
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Fig. 3  Partial dependence plots for top three variables for each of five species modeled. Partial dependence plots visualize the rela-
tionship between individual predictor variables and the predicted probabilities of classification in the positive class
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unsuitable habitat, highlighted these patterns fur-
ther and revealed species-specific variability in pre-
dicted suitable habitat areas (Fig. 5). Under present 
climate conditions, these maps estimated a majority 
of the study region to be suitable habitat for three 
species (V. uliginosum: 65.59%, E. nigrum: 62.81%, 
V. vitis-idaea: 61.64%), and majority unsuitable for 
two species (R. chamaemorus: 35.65%, V. edule: 
7.31%), results which are in line with our expecta-
tions and current knowledge surrounding the rar-
ity of these species (pers. comm. J. Johanson & B. 
Spellman, NRCS). Three species, V. uliginosum, E. 
nigrum, and V. vitis-idaea, were predicted to have 
suitable habitat spread throughout much of the study 
region, especially concentrated in the northern and 
eastern halves of the study region (Fig.  5a, b, d) 
and at higher mean elevations (268 m, 291 m, and 
275 m, respectively). In contrast, R. chamaemorus’ 
predicted suitable habitat area was concentrated in 
the lower elevation south, central, and north central 
regions along the Nushagak river, mapping closely 
to the distribution of soil organic matter content in 
the region (Fig. 5c). V. edule was predicted to have 
relatively little suitable habitat area throughout 
much of the region, with some small pockets in the 

west and among the forested center-west and along 
the Nushagak river (Fig. 5e).

Future suitable habitat

Future climate models predicted all species to exhibit 
both positive and negative suitable habitat prob-
ability changes in response to climatic change into 
2081–2100 across the study area (Fig. 6). E. nigrum 
and V. vitis-idaea exhibited increases in the central 
region of the study area, while increases appeared in 
the south for V. uliginosum, in the east, center-south, 
and northwest for R. chamaemorus, and across the 
vast majority of the study area for V.edule. Areas of 
decreasing probability appeared in the northern half 
of the region for most of the species (excluding V. 
edule), with other patterns of decreasing probability 
variable between species and RCPs.

Binary distribution change maps further high-
lighted that spatial patterns of species’ predicted 
habitat losses, gains, and persistence were variable 
across the landscape (Fig.  7). Broadly, E. nigrum 
and V. vitis-idaea were estimated to lose substantial 
suitable habitat area in the south and center-north of 
their predicted distributions. R. chamaemorus was 

Fig. 4  Maps depicting species-specific probability of suitable 
habitat classification under current climate conditions (2006–
2013) based on Random Forests model outputs using presence/

absence data collected in NRCS surveys during the same time 
period. Values range from 0 to 1 on a scale from yellow to 
green
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predicted to lose suitable habitat area concentrated 
in the center-west of the study area but make gains 
in other locations, and V. edule was projected to lose 
most of its north-central habitat.

Quantification of these changes at the landscape 
scale using binary classifications revealed net retrac-
tions in suitable habitat area across the study area 
by the end of the century across RCPs for all spe-
cies (Table  2), with the greatest declines predicted 
to occur under RCPs 6.0 and 8.5 and the least under 
RCP4.5 (average: 26.01%, 23.62%, and 17.99% 
respectively). Counter to our expectations, accord-
ing to this metric V. edule and R. chamaemorus were 
not predicted to gain suitable habitat area across all 
RCPs; V. edule was predicted to lose roughly half 
of its predicted suitable habitat area across RCPs, 
while R. chamaemorus was predicted to experience a 
small net gain of suitable habitat area under RCPs 4.5 
(1.0%) and small net losses under RCPs 6.0 and 8.5 
(9.3% and 4.4% respectively).

Most species’ suitable habitat distributions were 
predicted to move little, on average, across the 
elevation gradient (See Supplementary Material, 
Table  S1.5). Average movement among species was 

slightly upslope across RCPs 4.5, 6.0, and 8.5 (4.6 m, 
26.2 m, and 18.3 m respectively).

Average predicted suitable habitat distribution 
shifts across the latitudinal gradient exhibited simi-
larly varied patterns, with two species’ habitat dis-
tributions predicted to move northward on average 
under RCPs 4.5, 6.0, and 8.5 (E. nigrum and V. vitis-
idaea), one species moving slightly southward (V. 
edule) and two species with little net movement in 
either direction (V. uliginosum and R. chamaemorus).

Discussion

We constructed SDMs for five important wild berry 
plant species across the Bristol Bay region of south-
western Alaska. Models identified key drivers influ-
encing predicted habitat suitability in elevation, soil 
variables like soil pH and available water storage, and 
climate variables like January and July temperatures, 
mostly in line with our expectations surrounding each 
species’ habitat preferences. Current suitable habitat 
distribution maps aligned with our expectations and 
assessments from experts in terms of geographic 

Fig. 5  Maps depicting species-specific suitable habitat clas-
sification under current climate conditions (2006–2013) based 
on Random Forests model outputs using presence/absence data 
collected in NRCS surveys during the same time period. Pix-

els were converted from probabilities to suitable/unsuitable 
habitat classes at a 0.5 probability threshold. Suitable habitat is 
depicted in green and unsuitable habitat in white
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patterns and areas. Using future climatic state pro-
jections drawn from Alaska-specific climate mod-
els, we predicted variable changes to the probability 
of suitable habitat among species across the study 
area and across RCP scenarios; quantification of 
predicted habitat changes revealed net retractions in 
suitable habitat area for all five species, aligning with 
our expectations for three species (V. uliginosum, E. 
nigrum, V., vitis-idaea), and running counter for two 
(R. chamaemorus, V. edule).

Drivers of berry plant habitat distribution

Elevation appeared as an important predictor of suit-
able habitat classification, ranking within the top two 
important variables for three SDMs (V. uliginosum, 
E. nigrum, and V. vitis-idaea). Elevation is commonly 
understood as an indirect variable in SDMs in that 
its effects typically have to do with correlative fac-
tors along the altitudinal gradient like temperature 
and moisture regimes (Guisan and Zimmermann 

2000; McCain and Grytnes 2010; Oke and Thomp-
son 2015). These correlated climate variables change 
more rapidly with elevation than with latitude, which 
may help to explain elevation’s strong influence in 
limiting suitable habitat areas in this study, especially 
considering the relatively narrow latitudinal breadth 
of the study area. In contrast, the range in elevation 
across the study area is wide (− 19.93 to 1526.35 m) 
due to the presence of both very low-lying areas at 
the mouth of Bristol Bay and along the Nushagak 
river and very high elevation areas of the Kuskok-
wim mountains in Togiak in the west and the west-
ernmost parts of the Alaska Mountains in the east. 
These elevation extremes manifest as different habitat 
types on the landscape which could bind species to 
certain areas based on their tolerance for correlated 
elevation-adjacent conditions. Because we included 
elevation data in our models at a much finer spatial 
resolution than our climate variables, elevation may 
have better captured these realized microclimate con-
ditions on the ground at a scale relevant to berry plant 

Fig. 6  Maps depicting species-specific probability of suitable habitat classification for five berry plant species between for present 
time period (2006–2013; first row) and three future RCP scenarios (2081–2100)
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Fig. 7  Maps depicting species-specific change in suitable hab-
itat classification based on a 0.5 probability threshold for five 
berry plant species between two time periods, 2006–2013 and 

2081–2100, and under three RCP scenarios. Suitable habitat 
loss is depicted in red, while suitable habitat gains are depicted 
in blue

Table 2  Suitable habitat 
change metrics: estimated 
suitable habitat area metrics 
for five berry species for 
two time periods (2006–
2013 and 2081–2100) under 
3 RCPs (4.5, 6.0, 8.5)

Change metric calculated 
by subtracting 2006–2013 
estimate from 2081 to 2100 
estimates under 3 RCPs

Species RCP Time period Area  (km2) Area change  (km2)

Vaccinium uliginosum 4.5 2006–2013 29,462.7 NA
4.5 2081–2100 27,809.7 − 1653.0
6.0 2081–2100 26,509.7 − 2953.0
8.5 2081–2100 26,909.8 − 2552.9

Empetrum nigrum 4.5 2006–2013 28,212.2 NA
4.5 2081–2100 22,962.4 − 5249.8
6.0 2081–2100 19,250.1 − 8962.1
8.5 2081–2100 19,148.2 − 9064.0

Rubus chamaemorus 4.5 2006–2013 16,015.3 NA
4.5 2081–2100 16,176.0 160.7
6.0 2081–2100 14,523.2 − 1492.1
8.5 2081–2100 15,305.0 − 710.3

Vaccinium vitis-idaea 4.5 2006–2013 27,688.3 NA
4.5 2081–2100 22,569.6 − 5118.7
6.0 2081–2100 18,621.8 − 9066.5
8.5 2081–2100 19,768.6 − 7919.7

Viburnum edule 4.5 2006–2013 3283.9 NA
4.5 2081–2100 1732.8 − 1551.1
6.0 2081–2100 1470.1 − 1813.8
8.5 2081–2100 1686.1 − 1597.8
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species compared to broad-scale climate layers. The 
three species for which elevation was an important 
variable all exhibited a similarly positive marginal 
relationship with elevation; this pattern could be 
reflective of this correlation between elevation and 
temperatures, with these species having an affinity for 
colder temperatures at higher elevations.

Soil characteristics have long been recognized to 
strongly influence plant population dynamics (Bever 
et al. 1997) but until recently they have been largely 
overlooked in SDM studies due to limited access to 
accurate datasets at the spatial scales needed to be 
relevant for analysis (Roe et al. 2022; Thuiller 2013; 
Xu et  al. 2023). Increasingly, as these datasets have 
become more widely available, SDM studies have 
demonstrated the importance of soil variables in 
determining species distributions (Coudun et  al. 
2006; Beauregard and de Blois 2014; Chauvier et al. 
2021; Roe et al. 2022; Xu et al. 2023). We leveraged 
one such dataset that included co-located soil and 
plant presence/absence training data and showed that 
soil variables were important predictors of suitable 
habitat consistent with our predictions. For example, 
V. uliginosum’s most influential predictor was soil 
pH (0–30 cm depth), with the probability for suitable 
habitat classification partially dependent on this vari-
able exhibiting a positive relationship to ~ 5 pH before 
sharply declining (Fig.  3a). Meanwhile, its fourth 
most important variable was available water storage. 
These rankings are consistent with descriptions of V. 
uliginosum’s affinity for acidic, peaty soils and bog 
habitats (Jacquemart 1996; Holloway 2006; Nestby 
et al. 2019). Soil variables were also very important 
for R. chamaemorus, representing eight out of ten top 
variables in its model.

Climate variables were ranked with middling rela-
tive importance among models, appearing as the top 
variable for only one model (V. edule), but within the 
top five for four models. January and July temperature 
in particular appeared in several models’ top vari-
able importance rankings, suggesting that changes 
in average temperatures during these months may be 
the most significant climatic drivers of shifting berry 
plant habitat suitability in the future. Rising tempera-
tures shift habitat distributions by delimiting zones of 
species-specific physiological tolerances—for berry 
plants, changes to temperature minima and maxima 
may cross thresholds relevant to life history processes 
like germination and bud break, which may have a 

cold temperature requirement (Jacquemart 1996; 
Bell and Tallis 1973). As minimum winter tempera-
tures increase with climate change, some areas in the 
study region may move out of zones where this tem-
perature threshold exists, limiting areas of suitable 
habitat. This could be the ecological explanation for 
V. uliginosum, E. nigrum, and V. vitis-idaea’s mod-
els’ predicted relationships between the probability of 
suitable habitat area and January temperatures, all of 
which show a stark decline in probability ~ 9 °C (See 
Supplementary Material, Fig. S1.2).

Habitat distribution shifts

Binary classification maps projected net retrac-
tions in suitable habitat area for all five species we 
tested, slight northward and upslope movement 
for R. chamaemorus and V. vitis-idaea, northward 
and downslope movement for V. uliginosum and E. 
nigrum, and southward and downslope movement for 
V. edule. These results were in line with our expecta-
tions for the three tundra-associated species (V. uligi-
nosum, E. nigrum, and V. vitis-idaea) and consistent 
with observations that show, on average, species will 
move poleward in latitude following shifting biocli-
matic envelopes in those directions driven by climate 
change, especially at trailing edges of species distri-
butions (Breshears et al. 2008; Thomas 2010). Mean-
while, these results ran counter to our expectations 
for the two specialist species, R. chamaemorus and 
V. edule, which we expected to benefit from warm-
ing temperatures and shifting precipitation regimes. 
However, when examining the probability distribu-
tion change maps for R. chamaemorus and V. edule, 
gains in probability of suitable habitat classification 
across the majority of the study region were evident 
(see Supplementary Material, Fig.  S1.4), indicating 
that future climate conditions in Bristol Bay may in 
fact be more conducive to supporting these species. 
This interpretation is more in line with our expecta-
tions, particularly for potential habitat expansion for 
V. edule, given its more southerly, warm-adapted 
known distribution today, its affinity for forested habi-
tats (which are projected to expand in Bristol Bay 
under future climates (Pearson et  al. 2013)), and its 
positive relationship with climate variables (July pre-
cipitation, July temperatures, January temperatures) 
illustrated in its partial dependence plots (Fig.  3e). 
This discrepancy between binary classification and 
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probability maps is likely driven by the small num-
ber of positive observations of these species in our 
training data (low prevalence), leading to an underes-
timation of positive classifications at the default (0.5) 
probability threshold (Jiménez-Valverde and Lobo 
2007; Valavi et al. 2021).

With regards to R. chamaemorus, we opted to 
conduct an additional analysis to test the sensitiv-
ity of our predictions of habitat change for this spe-
cies. We did so because the R. chamaemorus model 
demonstrated an outsized importance of soil vari-
ables relative to climate variables, a dynamic which 
some recent SDM studies have suggested can produce 
unreliable predictions through a potential “mask-
ing” effect of the climate variables, especially when 
climate variables are the sole drivers of future habi-
tat predictions (Feng et al. 2020). The results of this 
additional analysis showed much more substantial 
habitat loss predictions under RCPs 4.5, 6.0, and 8.5 
compared to our original analysis. In our view, this 
outcome represents a possible future landscape of R. 
chamaemorus habitat distribution if, in the future, 
climate variables emerge as more influential drivers 
of distribution than they are now under current con-
ditions. However, given ecological evidence of the 
importance of soils governing the distribution of R. 
chamaemorus (e.g., Taylor 1971; Karst and Turner 
2011; Āboliņa et al. 2023), we view these predictions 
as less likely than those of our original analysis (see 
Supplementary Material S1.6 for methodological 
details, results, and discussion of this analysis).

Our SDM predictions are reflective only of 
potential changes to suitable habitat, not species 
occurrence; future realized distribution shifts will 
also be driven by how well species traits allow for 
movement and recolonization of newly suitable 
habitat, and thus are difficult to predict with preci-
sion. Exclusion of species traits important to dis-
tributional change, like dispersal mode and seed 
mass for example, is a well-recognized limitation of 
correlative SDMs (e.g., Kearney and Porter 2009; 
Wang et al. 2018; Regos et al. 2019). Several stud-
ies have found that SDM accuracy can vary with 
vegetation species traits (Hanspach et  al. 2010; 
Syphard and Franklin 2010), and traits like disper-
sal will be important in determining vegetation’s 
ability to colonize newly suitable habitat areas in 
the future. Species that reproduce clonally with high 
intraspecific genetic diversity like V. uliginosum, for 

example, may be better equipped to adapt to climate 
change (de Witte et  al. 2012), while species reli-
ant on insect-mediated pollination to set fruit, like 
R. chamaemorus (Thiem 2003), may have a harder 
time moving in line with shifting climate envelopes 
if their symbionts cannot move as well.

Similarly, distribution shifts are expected to be 
greatly influenced by emergent conditions of future 
novel ecological community organization, species 
organization, and abiotic landscape conditions (Gil-
man et  al. 2010). Across the Arctic, the suitable 
habitat range of low-lying vegetation classes like 
shrubs and graminoids are largely predicted to con-
tract while woody vegetation and tree classes are 
predicted to expand (Pearson et  al. 2013); interac-
tions provoked by these community reorganizations, 
such as increasing shade cover by taller, woodier 
plants, increased competition for soil nutrients, and 
introduction of new predators could further reduce 
berry plant population size. On the other hand, pos-
itive feedbacks for shrubby vegetation could also 
occur and offset some of these losses (Myers-Smith 
et al. 2011), including positive changes to soils like 
increased nutrient availability and moisture, two 
factors that our models suggest can be important in 
determining habitat suitability.

Finally, there is some uncertainty in the future 
projections of habitat shifts presented here inherent 
to the RF algorithm. RF is a nonparametric machine 
learning approach which learns the relationship 
between variables using the original distribution 
of response values in the training dataset. Thus 
RF cannot, with certainty, project into future novel 
climatic domain space which may lie outside the 
bounds of the training data, because the algorithm 
cannot predict whether the relationship between the 
variables will change beyond those bounds (Hengl 
et al. 2018). Nevertheless, RF has been used exten-
sively in SDM applications projecting into future 
novel climate space because it is a robust learner 
resistant to overfitting and produces highly accurate 
predictions (e.g., Drew et al. 2011; Billerman et al. 
2016; Iverson et al. 2019; Mosebo Fernandes et al. 
2020; Bagaria et  al. 2021; Ebrahimi et  al. 2022). 
These studies employ RF under the assumption of 
stationarity in the relationship between predictor 
variables and the response, even when projecting 
into potential no-analog future climates. We make 
this same assumption here.
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Climate adaptation and management implications

Overall, the results presented here suggest that cli-
mate change may cause shifts in the habitat distribu-
tion of berry plant species in the Bristol Bay region, 
which could potentially restrict communities’ ability 
to access and make use of these plants as subsistence 
resources. Many Alaskan families harvest as much 
as 75 L of wild berries every year (Hupp et al. 2015) 
representing an important local fresh food source with 
positive health benefits (Kellogg et  al. 2010). Thus, 
changes in the distribution or accessibility of berries 
could have cultural, food security, and health impacts 
for many small rural and remote Alaskan communi-
ties. Additionally, a reduction in access to berries 
with climate change is likely to occur in parallel with 
other climate-related food stressors and changes to 
the physical environment like reduced sea ice and 
windier conditions making travel for resources more 
treacherous (Brinkman et  al. 2016) amounting to an 
increasingly challenging landscape for subsistence 
food resources in Alaska under future climate change.

The predictive maps and analyses presented here 
can be applied to planning and management of berry 
resources in Bristol Bay. Our predictive maps may 
be able to help communities target climate adapta-
tion efforts on the landscape, while our variable 
importance outputs could help to prioritize manage-
ment actions for important habitat characteristics 
conducive to supporting these species. For instance, 
in addition to potential habitat loss, our maps also 
show areas of persistence, or no predicted change, as 
well as potential areas of expansion. These areas may 
remain or enter into berry plant viable habitat niche 
space under future climate conditions, and thus man-
agers might consider these areas as starting points 
for targeting management action to facilitate plants’ 
movement and future survival in these locations. In 
addition, our models ranked environmental variables 
by their importance in predicting berry plant habitat 
preferences; managers could make use of these rank-
ings to prioritize management actions which are likely 
to be the most impactful in supporting these species. 
For example, soil variables consistently ranked highly 
throughout several models with soil water storage in 
particular appearing highly important for V. uligi-
nosum, E. nigrum, and R. chamaemorus. This rank-
ing suggests that these species are highly associated 
with peat forests and/or low shrub and herbaceous 

peatlands, and thus managers may consider focusing 
protection efforts on these habitats throughout Bristol 
Bay.

Conclusion

Understanding the response of berry plant species to 
climate change is critical to mitigating potential loss 
in access to these important resources for both human 
and animal communities under future climate condi-
tions. Here, we used SDMs to predict change in suit-
able habitat distribution for five berry plant species 
in southwestern Alaska. Our models suggest that all 
five species tested here would see shifts in suitable 
habitat area and geographic location within Bristol 
Bay under three RCP scenarios. We also identified 
key drivers of berry plant habitat distribution includ-
ing elevation, soil variables like pH, water storage, 
and organic matter, and climate variables like mean 
January and July temperatures, and we mapped areas 
that are likely to lose or gain habitat suitability; these 
insights could guide management action to mitigate 
the impacts of climate change on berry plant habitat. 
Our methods could be applied to predict berry plant 
species distribution and shifts in other regions of the 
Arctic. In addition, future studies should explore rela-
tionships we identified here at the individual plant 
or plant population level, and develop more com-
plex SDMs incorporating dynamic processes, and at 
a broader spatial extent, to better understand berry 
responses across the entire Arctic under future novel 
conditions.
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