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Objectives We aim to compare the ability of con-
nectivity surfaces optimised using home range and 
dispersal data to accurately capture lion movement 
during dispersal, using cost-distance and circuit the-
ory approaches.
Methods We delineate periods of dispersal in Afri-
can lions (Panthera leo) to obtain movement trajec-
tories of dispersing individuals across the Kavango 
Zambezi Transfrontier Conservation Area, south-
ern Africa. We use these trajectories to assess com-
parative measures of connectivity values at dispersal 
points across surfaces and the ability of models to 
discriminate between observed and randomised paths.
Results Encouragingly, results show that on aver-
age, all connectivity approaches and resistance sur-
faces used perform well in predicting movements of 
an independent set of dispersing lions. Cost-distance 
approaches were generally more sensitive to resist-
ance input than circuit theory, but differences in per-
formance measures between resistance inputs were 
small across both approaches.
Conclusions Findings suggest that home range 
data can be used to generate resistance surfaces for 
connectivity maps in this system, with independ-
ent dispersal data providing a promising approach 
to thresholding what is considered as “connected” 
when delineating corridors. Most dispersers traversed 
through landscapes that had minimal human settle-
ment and are likely highly connected by dispersal. 
Research into limiting factors and dispersal abilities 
will be critical to understanding how populations 

Abstract 
Context Evaluating connectivity and identify-
ing corridors for protection is a central challenge in 
applied ecology and conservation. Rigorous valida-
tion and comparison of how approaches perform in 
capturing biological processes is needed to guide 
research and conservation action.
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will respond to increasing habitat fragmentation and 
human expansion.

Keywords Circuit theory · Cost distance · 
Dispersal · Connectivity · Corridors · Panthera leo

Introduction

Human population growth has led to extensive 
changes in land-use and habitat fragmentation; these 
changes have in turn led to the increasing isolation 
of wild animal populations (Haddad et al. 2015). The 
long-term viability of these populations relies on the 
existence of corridors that facilitate key biological 
processes such as mating, dispersal and gene flow 
(Rudnick et  al. 2012; Hilty et  al. 2019). Corridors 
allow species to respond effectively to environmental 
changes, such as climate (Chen et  al. 2011; Wasser-
man et al. 2012) and land-use (Cushman et al. 2016; 
Kaszta et  al. 2019, 2020). Among the many species 
facing significant challenges due to habitat fragmen-
tation is the African lion (Panthera leo), which has 
undergone a population decline of 43% between 1993 
and 2014, with only 8% of their historic range remain-
ing (Bauer et  al. 2016). Smaller, more fragmented 
populations of lions experience increased vulner-
ability to local extinctions (Woodroffe and Ginsberg 
1998), disease susceptibility and genetic diversity 
loss (Trinkel et  al. 2011), and human-wildlife con-
flict (Broekhuis et al. 2017; Cushman et al. 2018). As 
landscapes become increasingly fragmented, popula-
tion connectivity will increasingly rely on large-scale 
movement, and in particular dispersal, to ensure long-
term population persistence (Björklund 2003; Cush-
man et  al. 2016). It is therefore crucial to identify 
effective corridors outside of existing protected areas 
to maintain population connectivity for wide-rang-
ing species such as the African lion (Cushman et al. 
2016, 2018).

Modern approaches address the challenges of 
maintaining connectivity by assessing the func-
tional connectivity of landscapes, given a species’ 
population size, their dispersal ability, and landscape 
resistance patterns (Cushman et  al. 2013b). These 
approaches use a resistance to movement surface as 
their foundation (hereafter, resistance surface), which 
quantifies the cost of movement as a function of land-
scape features (Zeller et  al. 2012; Spear et  al. 2015; 

Cushman et al. 2016). While resistance surfaces can 
be generated using a wide variety of input data and 
analytical approaches (reviewed in Zeller et al. 2012), 
surfaces based on GPS collar data have been shown 
to perform well in capturing processes such as dis-
persal in pumas (Zeller et  al. 2018) and road cross-
ings in bears (Cushman et al. 2014). Statistical tools 
like path- and step-selection functions are commonly 
employed to estimate resistance for connectivity stud-
ies. However, animal movement and resource selec-
tion are context-dependent and can vary across sea-
sons (Zeller et  al. 2020) and life stages (e.g. Elliot 
et al. 2014).

Dispersal is the key biological process enabling 
movement of individuals between populations, and 
it follows that dispersal data should produce the most 
reliable resistance values to model connectivity. Pre-
vious studies comparing corridors from dispersal data 
with those based on alternative data inputs have dem-
onstrated substantial differences in predicted connec-
tivity for African lions, Iberian lynx and African wild 
dogs (Elliot et al. 2014b; Gastón et al. 2016; Jackson 
et al. 2016). Interestingly, growing evidence suggests 
that home range data can act as a suitable surrogate 
for dispersal data in capturing habitat use and move-
ment during the dispersal process for diverse mam-
malian species including leopards, desert bighorn 
sheep, kinkajous, brown bears and pumas (Newby 
2011; Fattebert et  al. 2015; Mateo-Sánchez et  al. 
2015; Keeley et  al. 2016, 2017; Zeller et  al. 2018). 
While dispersal data is relatively rare, home range use 
data has already been collected for many large carni-
vore species and leveraging this would allow for rapid 
functional connectivity assessment (Fattebert et  al. 
2015). This is a timely question to address, particu-
larly given the acute need for accurate and defensible 
connectivity models in service of conservation, and 
the considerable challenges associated with obtain-
ing data during dispersal events (Fagan and Calabrese 
2006).

Once a resistance surface has been generated, 
researchers must select an appropriate connectivity 
algorithm; these are commonly based on cost dis-
tance (CD) or circuit theory (e.g., CircuitScape; CS). 
Both approaches use resistance as a foundation but 
differ in their assumptions about an animal’s knowl-
edge of unfamiliar landscapes. Source-destination 
models of CD (Cushman et al. 2009), such as least-
cost paths (Adriaensen et  al. 2003) and least-cost 
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corridors, predict optimal, lowest cost routes between 
specified source and destination locations. CS models 
relax the assumption that animals will select optimal 
routes, but still require a priori destinations. Previ-
ous studies formally comparing CD and CS methods 
have found varying performance based on the spe-
cies, the biological process, and the quality of input 
data used. (e.g. Cushman et al. 2014; McClure et al. 
2016; Zeller et  al. 2018). Consequently, it is impor-
tant to understand how generalisable these connectiv-
ity approaches are, and consider their sensitivity to 
different data inputs. At present it is unclear to what 
extent the contrasting results are the result of system- 
or species-specific ecological differences, or differ-
ences in how connectivity is modelled. Repetition of 
studies across species and systems in a comparable 
manner is needed to disentangle biological differ-
ences from methodological artefacts and provide gen-
eral recommendations.

Zeller et  al. (2018) represented a substantial 
advancement in generating general recommendations 
for connectivity modelling by introducing a stand-
ardised approach for assessing the performance of 
multiple data types and connectivity algorithms in 
capturing biological processes. However, despite the 
importance of validating model outputs, few studies 
have used independent dispersal data for this pur-
pose likely due to the inherent difficulties in acquir-
ing dispersal data for wild animals (exemptions can 
be found in McClure et al. 2016; Zeller et al. 2018). 
Lions, in particular, exhibit highly variable and con-
text-dependent dispersal patterns (Elliot et al. 2014c), 
making it challenging to accurately capture the onset 
and duration of dispersal with a GPS collar. Moreo-
ver, the identification of dispersal onset and endpoint 
from GPS data is further complicated by the fact that 
lions may exhibit prospecting searches outside their 
natal territory before dispersal, and may also some-
times exhibit secondary dispersal (Elliot et al. 2014a).

To address these challenges, we present a simple 
and repeatable method to identify dispersal periods 
from GPS data (adapted from Weston et  al. 2013), 
demonstrating its applicability to lions. We then use 
this independent dataset on lion dispersal to inves-
tigate the predicative capability of home range vs. 
dispersal data in determining movement trajectories 
during dispersal, comparing the performance of CD 
and CS approaches and their sensitivity to different 
data inputs. Our findings offer a direct comparison to 

the results of Zeller et al. (2018), contributing to the 
understanding of how generalisable recommendations 
regarding connectivity approaches and data inputs are 
across species. Furthermore, we extend the analyti-
cal paradigms from Zeller et al. (2018) and McClure 
et al. (2016) by incorporating a spatial randomisation 
procedure first described by Cushman et al. (2010a), 
that addresses challenges related to corridor deline-
ation thresholds and the specificity of connectivity 
models, which remain open challenges in the field.

In doing so, we address the following research 
questions: (1) do connectivity surfaces based on dis-
persal data perform quantitatively better than those 
using male and female home range data? And (2) do 
source-destination CD or CS connectivity approaches 
best capture the observed routes selected by African 
lions during dispersal? Prior research has demon-
strated not only substantial demographic difference 
in connectivity for lions (Elliot et  al. 2014b), but 
also that CS is less sensitive to data choice than CD, 
and that for path-based movement data the CD algo-
rithm outperforms CS models (Zeller et al. 2018). In 
line with these findings, we expect that, across both 
algorithms, dispersal surfaces will out-perform those 
produced using home range data in capturing the 
observed dispersal process. We also expect that CS 
will be less sensitive to demographic differences in 
resistance surface values, and that CD models will 
outperform CS models.

Methods

Dispersal data

We identified periods of dispersal from Global Posi-
tioning System (GPS) collar data by adapting a dis-
tance-threshold method from Weston et  al. (2013). 
We confirmed the applicability of this method to 
lions by applying it to five known subadult natal 
dispersers from Elliot et  al. (2014a) and compar-
ing our results to emigration dates determined by 
direct observation (Fig.  1 and Online Resource 1). 
We applied this method to 69 lions collared across 
Zimbabwe and Botswana as part of the Trans-Kala-
hari Predator Programme (Fig. 2). We estimated the 
point of emigration and settlement for dispersers by 
comparing movement distances and excursion dura-
tions to 20 known resident lions. The details for 
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this procedure are given in supplemental informa-
tion (Online Resource 1). This allowed us to iden-
tify a total of 28 dispersal events (Fig. 2), with 19 
examples of natal dispersal (13 males, 6 females) 
and nine of adult dispersal (3 males, 6 females). 
We extracted GPS locations from these dispersal 
periods (n = 39,066) to use as our validation data-
set. These data are independent from those used 
to parameterise the resistance surfaces described 
below.

As our approach is movement driven, the periods 
detected correspond to departures from (and return to) 
range-restricted behaviour. These include natal and 
secondary dispersal but may also include prospect-
ing or exploratory trips outside of the normal range 
if these lasted for a sufficient period. Given our aim is 
to validate the movement component of connectivity, 
we focus on these periods of transience more gener-
ally to capture the routes lions selected when mov-
ing between established ranges. For simplicity, we 

Fig. 1  Net displacement from the centroid of the first 3 
months of data as a function of time showing labelled peri-
ods of residency and dispersal for one study animal. Vertical 
dashed lines represent point of dispersal and settlement, light 
red box indicates the window for dispersal estimated by field 
observation (Elliot et  al. 2014). Inset graph shows a spatial 

representation of the same dataset. Horizontal lines represent 
the maximum and 98th percentile of ranging distances from 
the centre of their ranges for reference resident individuals and 
were used as distance thresholds to determine onset and depar-
ture from range restricted behaviour (see Online Resource 1)
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hereafter refer to individuals exhibiting the range of 
transience behaviours as “dispersers”.

Connectivity models

We used three demographic-specific resistance sur-
faces as the foundation for our connectivity mod-
els: adult females, adult males, and natal dispersers 
(Fig. 3, Step 1: a–c). These resistance surfaces were 
generated by  Elliot et  al. (2014b) using GPS data 
from 50 African lions (11 male natal dispersers, 20 
adult males, and 19 adult females) in the Kavango 
Zambezi Transfrontier Conservation Area (KAZA).  
Elliot et al. (2014b) used a path level analysis (Cush-
man and Lewis 2010) to parameterise resistance, 
using three categories of environmental variables: 

land use, habitat, and anthropogenic factors (Online 
Resource 2). Variation in landscape permeability 
was largely driven by demographic differences in the 
strength of selection for protected areas, and avoid-
ance of humans and agropastoral land (Elliot et  al. 
2014b). Details of this procedure are given in sup-
plemental information (Online Resource 2). At the 
time of publication, authors estimated approximately 
31% of their 1.4 million  km2 study extent was man-
aged for wildlife, including 26 National Parks, 297 
Forest Reserves and 117 Wildlife Management Areas. 
Importantly, the study extent covered the Okavango-
Hwange ecosystem, one of Africa’s 10 remaining 
lion ‘strongholds’ (Riggio et al. 2013) and the region 
where we obtained independent dispersal valida-
tion data. Surfaces based on GPS collar data, and 

Fig. 2  Collar data was labelled as either resident or dispers-
ing using a distance-threshold method adapted from Weston 
et al. (2013). Grey points represent the extent of the full GPS 
collar dataset, with points labelled as dispersing highlighted 
in colour. Green hatching represents National Parks and Game 

Reserves. All dispersal data presented here and used in the 
validation procedure were independent from the original data-
set used by Elliot et  al. (2014) to parameterise the resistance 
surfaces
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particularly path selection functions, perform con-
sistently well at capturing dispersal data (Zeller et al. 
2018). These therefore provide a suitable basis from 
which to explore the impact of other factors, such as 
demography, on animal behaviour and movement as a 
function of landscape features.

We applied two connectivity approaches to our 
resistance surfaces: source-destination cumulative 
cost (cost distance; CD) and circuit theory (Cir-
cuitScape; CS). We applied each connectivity algo-
rithm across the three resistance surfaces between the 
start and end points of each dispersal event to produce 
animal-specific surfaces (as in Zeller et al. 2018). We 
ran CS using Circuitscape 5.0 (Anantharaman et  al. 
2019) and CD using the gdistance R package (van 

Etten 2017). The CS approach produces a cumula-
tive current flow surface between the start and end 
points, while the CD approach sums the two cost dis-
tance surfaces calculated on the start and end points. 
This produces a surface whose values are the joint 
cost of moving through a given pixel from the start 
to the end of a movement path. This is also known 
as the least cost corridor between the start and end 
points (Cushman et al. 2013b). We included a 100 km 
buffer around the extent of our validation dataset for 
our connectivity models to ensure any randomised 
paths created from dispersal trajectories (see Spatial 
Randomisation Procedure below) fell within the map 
extent. The final area covered approximately 250,868 
 km2 within the KAZA (Fig. 2).

Fig. 3  Conceptual diagram representing (1) the inputs for 
connectivity modelling and (2) the validation process. Step 1 
(a–c) depict resistance surfaces generated using dispersing 
individuals, adult females, and males, from left to right. Resist-
ance is depicted from a gradient of low (white) to high (black) 
at a resolution of 500 m. Relative resistance values across the 
study extent range from 1–5312 for dispersers, 3–10,007 for 
adult males, and 2–23,497 for adult females. Overlaid are the 
start and end points of a single dispersal event represented as 
a lion and a cross, respectively. Step 2 (a) illustrates the spatial 
randomisation process, giving five examples (out of the total 
100,000) of possible routes the same lion could have taken in 

grey, alongside the observed points in black. Step 2 (b–e and 
f–i) show performance measures 1–4 for CircuitScape (top 
row) and cost-distance (bottom row) for the disperser surface 
inputs. Mean percentile value (b) & (f) are shown with high 
connectivity values gaining increasingly blue colours, as with 
the 90th percentile corridors (e) & (i). In the latter case, eve-
rything outside the corridor has been cropped. (c) & (g) repre-
sent the null resistance comparison, and (d) & (h) the compari-
son with neighbourhood average landscape resistance. Both 
comparisons are shown with negative values gaining increas-
ingly brown colours, and positive values in blue



3211Landsc Ecol (2023) 38:3205–3219 

1 3
Vol.: (0123456789)

Evaluating performance

We used five complementary validation methods to 
evaluate the performance of each connectivity surface 
(Fig.  3, Step 2: a–i), building on frameworks from 
previous studies (Cushman et al. 2014; McClure et al. 
2016; Zeller et al. 2018),

Performance measure 1 (PM 1): connectivity value 
at observed dispersal points

We extracted the values at dispersal points on each 
connectivity surface to estimate mean connectivity as 
our first performance measure. To facilitate compari-
son across different connectivity algorithms, we per-
centile scaled connectivity values (Zeller et al. 2012; 
McClure et  al. 2016). A higher performing model 
is assumed to result in higher connectivity values at 
observed dispersal points (Zeller et al. 2012; McClure 
et  al. 2016), and would therefore evaluate how well 
the connectivity surface as a whole captures patterns 
of the dispersal process (represented here as GPS 
points from dispersal events).

Performance measure 2 (PM 2): comparison 
with null resistance

We then compared the connectivity values from our 
surfaces generated using empirical resistance to those 
using a null, isolation-by-distance model. We gener-
ated distance-only models by running connectivity 
algorithms on surfaces where resistance is set to a 
value of one for all pixels. We calculated the differ-
ence at each dispersal point between empirical and 
null resistance connectivity values. Any resulting 
surface with net positive values is identified as sig-
nificantly outperforming the null model (Zeller et al. 
2018). This isolates the performance of the resist-
ance component of a connectivity surface by testing 
the null hypothesis that observed dispersal movement 
is unrelated to the resistance of the landscape i.e., 
that animals travel without regard to habitat quality 
(McClure et al. 2016).

Performance measure 3 (PM 3): comparison 
with resistance‑only model

We generated local resistance-only models based on 
neighbourhood average landscape resistance (NALR). 

To do this, we calculated the focal mean of land-
scape resistance for each of our three resistance sur-
faces using a 5 × 5 matrix of neighbourhood cells (1 
km buffer) centred on the focal pixel. This produced 
focal average resistance values, which we compared 
to empirical connectivity values sampled under dis-
persal points. As above, we calculated the difference 
at each dispersal point between empirical connectiv-
ity (based on CD and CS) and connectivity based on 
local resistance alone. This provides a counterpart to 
the null resistance comparison by testing the hypothe-
sis that observed dispersal movement is driven largely 
by local resistance, rather than the wider pattern 
across the landscape (Cushman et al. 2014).

Performance measure 4 (PM 4): proportion 
of dispersal points in percentile corridors

Connectivity models are often used to delineate cor-
ridors for wildlife management by taking an upper 
percentage of the connectivity values (e.g., the 90th 
percentile, or the most traversable 10% of the land-
scape). In practice, a successful connectivity map for 
this purpose should therefore encompass a high pro-
portion of dispersal points within the upper percentile 
of connectivity values (McClure et  al. 2016; Zeller 
et  al. 2018). We calculated the proportion of points 
(per lion) that fall in the top 10, and 1% of connec-
tivity values to estimate mean proportion of points 
in corridors for each connectivity surface. Repeat-
ing the analysis for two percentile cut-offs allowed 
us to explore how the definition of what is consid-
ered “connected” impacts a simple corridor model’s 
performance.

We used the package lme4 (Bates et  al. 2015) to 
fit mixed-effects models in R (R Core Team 2020) 
describing each of our above performance meas-
ures as a function of resistance type (male-, female-, 
disperser-, generated resistance) and connectivity 
approach (CD vs. CS). We also included a categorical 
variable describing the length of the dispersal event 
(short vs. long, i.e., > approximately 3 home range 
crossings). Animal ID was modelled as a random 
intercept to account for repeated samples from each 
individual. In the case of proportion of points, we 
used a binomial error distribution (with logit link). 
For PMs 1–4, we allowed up to three-way interac-
tions in the maximal models, using likelihood ratio 
tests (of nested models) to provide an estimate of 
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the statistical significance of each term and contrasts 
of estimated marginal means using the R package 
emmeans (Lenth 2020) to assess statistical differences 
across and within factor levels. This allowed us to 
test how PMs varied by resistance surface, if this was 
consistent between dispersal categories, and if these 
relationships depended on the connectivity approach 
used.

Performance measure 5 (PM 5): ranking in spatial 
randomisation procedure

Finally, we used a spatial randomisation procedure 
to compare connectivity values obtained at disper-
sal points to values obtained at random samples of 
points. We generated random samples of points by 
rotating each observed path using the trajR package in 
R (McLean and Volponi 2018) around its origin (by 
a value of radians drawn from a normal distribution) 
over 1 ×  105 iterations (e.g. Cushman et  al. 2010). 
By comparing values at observed points to the dis-
tribution of values from the random samples we can 
obtain an estimate of the probability of the observed 
outcome given the data (Fortin and Dale 2005). This 
allows us to test the hypothesis that routes taken dur-
ing dispersal are unrelated to the predicted connectiv-
ity (Cushman et al. 2014). This measure is analogous 
to the second performance measure from McClure 
et al. (2016).

To quantify this comparison, we recorded the 
proportion of instances of 1 ×  105 random samples, 
where a random draw of 39,066 points (total of 
observed dispersal points) produced a performance 
measure value higher than or equal to the value at the 
observed points. This allowed us to examine the spec-
ificity of the surfaces in capturing observed dispersal 
events and tells us which surfaces produce higher val-
ues than we would expect by chance given the distri-
bution of connectivity across the landscape.

Comparing connectivity values at dispersal points 
to the distribution from the random samples pro-
vides a scale-independent means to compare sur-
faces without rescaling, as values obtained at points 
from the random samples implicitly fall on the same 
scale (per surface) as observed points. This is advan-
tageous as it avoids the need to discretise the con-
tinuous connectivity values into bins. We therefore 
repeated the spatial randomisation procedure for PM 
1, but directly using unscaled connectivity values to 

estimate the mean values. We included all connectiv-
ity surfaces (i.e., empirically-derived and null) in this 
ranking. This allowed us to examine how the process 
of discretising connectivity values (as is done in the 
generation of e.g., a percentile corridor) impacted the 
specificity of the surfaces. The response values used 
for the comparison of unscaled surface values were 
strictly positive, and right skewed. Therefore, we 
used the gamma and inverse gaussian families (with 
a “log link” function) in the mixed-effects models as 
a good, flexible option for bounded data. We selected 
the family which best fit each resistance/approach 
combination by comparing AIC values and examined 
the residuals of the models to confirm there were no 
major violations of model assumptions.

Results

Performance measures 1–4

For both CircuitScape (CS) and cost-distance (CD) 
surfaces, variation in mean percentile value at 
observed dispersal points (PM 1) was best described 
by an interaction term between resistance input and 
dispersal category (CS: 2(2) = 168.12, p = < 2.2e–16; 
CD: 2(2) = 751.2, p = < 2.2e–16), indicating that the 
effect of resistance input on mean percentile connec-
tivity varied between long and short dispersal cat-
egories. Although statistically significant, differences 
between surfaces were small (< 1 percentile value) 
and all surfaces predicted mean values of > 97th per-
centile for all dispersal distance categories.

The data also supported an interaction term 
between resistance input and dispersal category in 
describing variation in the difference between empiri-
cal and null resistance surface (PM 2) percentile con-
nectivity values for both connectivity approaches 
(CS: 2(2) = 443.63, p = < 2.2e–16; CD: 2(2) = 14.326, 
p = 0.00078). No combinations of connectivity 
approach and resistance input produced estimated 
differences where the lower boundary of 95% con-
fidence intervals fell above 0 (i.e., no surfaces were 
identified that significantly outperformed a surface 
based on isolation-by-distance as measured by a 
higher percentile value on empirical surfaces under 
dispersal points).

Conversely, all empirical surfaces significantly 
outperformed null surfaces based on neighbourhood 
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average local resistance (NALR) alone (PM 3). There 
was no support (at the 0.05 level) for the inclusion of 
either an interaction term, or the main effect of dis-
persal category in describing difference from NALR 
surfaces. Estimated marginal means (EMMs) for 
the CS and CD surface differences were 24, 20, and 
30 for disperser, female and male surfaces, respec-
tively. Contrasts between estimated marginal means 
(EMMs) for resistance inputs were all significant 
(p < 0.001, p-value adjustment: Bonferroni method 
for 3 tests).

All observed dispersal points in the short-distance 
dispersal category (bar two individuals on the CD-
female surface combination) fell within the 90th per-
centile corridor (PM 4). This made modelling vari-
ation in the proportion of points redundant, and the 
predicted proportion of points for the long-distance 
category was > 0.999 for all surface-connectivity 
combinations. The 99th percentile corridors also 
captured a high proportion of dispersal points, with 
the lowest combination (long distance category on 
the CD-female resistance surface) predicting 72% 
of points in corridors. There was statistical sup-
port for the inclusion of a three-way interaction 
(2(3) = 135.27, p = < 2.2e–16) between connectivity 
algorithm, dispersal category and resistance input. 
The effect of resistance input on proportion of points 
in 99th percentile corridors varied between dispersal 
categories, and the magnitude of this effect varied 
between connectivity approaches. This implied there 
was a difference in the sensitivity of the approaches 
to resistance inputs, and that this relationship varied 
depending on the dispersal distance category. For 
short-distance dispersers, all combinations predicted 
98% of points in corridors and above. For long-dis-
tance dispersers, surfaces optimised using disperser 
resistance consistently performed best (83 and 85% 
for CD and CS), followed by male resistance (80 and 
85% for CD and CS), with female resistance captur-
ing the lowest proportion of points (72 and 80% for 
CD and CS). The discrepancy between the top and 
bottom ranking combinations was larger for CD than 
CS (difference of 11 vs. 5%, respectively), and the 
difference between the top two CS surfaces was < 1%.

Rankings in spatial randomisation procedure

For both CD and CS, the mean percentile connec-
tivity value of observed dispersal points was much 

higher than the distribution produced from the spa-
tial randomization procedure (PM 5), indicating 
strong, non-random association of selected paths 
with routes through the landscape with higher pre-
dicted connectivity. The same pattern was observed 
using unscaled connectivity values to an even greater 
extent (Table 1). For percentile-scaled mean connec-
tivity values, the relationship between the number 
of random draws (out of 100,000) that produced a 
mean of greater than or equal to the dispersal values 
and the resistance input differed between CS and CD 
approaches: CD surfaces performed better for shorter 
distance dispersers across all resistance surfaces, but 
while this also held true for male and disperser resist-
ance under CS, for female resistance the opposite was 
true (Table 1).

For unscaled values, all CircuitScape (CS) and 
resistance combinations generated higher mean 
cumulative flow values at dispersal points than any 
of the randomised paths (Fig.  4, row 3). For short 
distance dispersers, all CD and resistance combina-
tions had mean cost values lower than all randomised 
paths (Fig. 4, row 2). For animals travelling a longer 
distance (Fig. 4, row 1), a small number of the ran-
dom draws for the female (67) and male (2) resist-
ance inputs produced lower mean cost values than the 
observed dispersal points, with all observed values 
for disperser and null resistance inputs outperform-
ing the random samples. Under the NALR scenario 
(Fig.  4, row 4), a proportion of 0.00003, 0.00054, 
and 0.01770 random samples produced mean aver-
age resistance values lower (i.e., performed equal to 
or better) than those observed at dispersal points for 
disperser, male and female resistance inputs, respec-
tively. Note that, when considering unscaled con-
nectivity, the generated values (cost for CD surfaces, 
cumulative flow for CS surfaces, and average focal 
resistance for NALR surfaces) differ in their interpre-
tation, with lower values conferring higher connectiv-
ity for CD and NALR, and the converse for CS.

Both CS and CD again performed well for 
most combinations of approach, resistance input, 
and dispersal category in capturing proportion of 
points falling into both the 90th and 99th percentile 
corridors with a high level of specificity. CD and 
CS for all three resistance inputs (disperser, male 
and female) performed very well in the long-dis-
tance category, with a proportion less than 0.002 
of randomized paths producing a higher number of 
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points within the 90th percentile corridor and close 
to none in the 99th percentile corridor (Table  1). 
The short-distance dispersal category showed less 
discrimination in terms of proportion of points 
falling in percentile corridors, compared with the 
distribution of the randomized paths. This suggests 
that short distance dispersal is less strongly linked 
to predicted connectivity across these resistance 
surfaces than long distance dispersal. Using the CD 
method, the disperser resistance model performed 
best at discriminating short distance dispersal val-
ues, followed by the male resistance surface, with 
the female resistance surface performing least 
effectively (Table  1). In contrast, for CS methods 
in the low dispersal distance category, the disperser 
and male resistance surfaces both performed less 
well than the female resistance surface (Table 1).

Discussion

Our study draws together multiple approaches for 
evaluating connectivity models (e.g., Cushman et al. 
2014; McClure et  al. 2016; Zeller et  al. 2018) and 
applies them concurrently in an integrated frame-
work. By doing so we are able to draw conclusions 
about the relative performance of each connectivity-
resistance surface, both as a whole and in its com-
ponent parts. In addition, we can infer the likelihood 
that the observed dispersal process is related to the 
underlying connectivity.

Our first expectation—i.e., models based on dis-
persal-optimised resistance will outperform home 
range data in capturing dispersal movements—was 
supported in many, but not all, performance met-
rics and combinations of dispersal category and 

Table 1  Ranking of mean 
values of connectivity and 
proportion of points in 
corridors in the distribution 
of means obtained from 
100,000 random samples. 
Values are presented 
as proportion (out of 
100,000) where a random 
draw performed equal to 
or better than the values 
at dispersal points and 
can be interpreted as 
the probability that our 
observed movement is 
related to the underlying 
landscape connectivity. 
Text in grey represents 
surfaces included only 
as null comparisons in 
the percentile-scaled 
performance measures

Connectivity 
approach

Resistance input Dispersal 
category 
(km)

Comparison with random samples

Mean surface values Proportion in % tile 
corridor

Unscaled % tile-scaled 90th 99th

CD Disperser <75 0 0 0.10122 0
≥75 0 0.00184 0.00074 0

Male <75 0 0 0.16030 0
≥75 0.00002 0.00330 0.00148 0

Female <75 0 0.00004 0.22352 0
≥75 0.00067 0.01285 0.00006 0.00001

Null <75 0
≥75 0

CS Disperser <75 0 0 0.18408 0
≥75 0.00017 0.00001 0

Male <75 0 0 0.18260 0
≥75 0.0001 0 0

Female <75 0 0.00041 0.09574 0
≥75 0.00006 0 0.00016

Null <75 0
≥75

NALR Disperser <75 0.00003
≥75

Male <75 0.00054
≥75

Female <75 0.01770
≥75
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connectivity approach. For models based on local 
resistance alone (neighbourhood average land-
scape connectivity; NALR), the disperser surface 
received 18- and 590-times greater support than 
male and female resistance respectively, as captured 
by our spatial randomisation procedure (Table  1). 
This shows clear support for the idea that dispersal-
optimised resistance provides the strongest match to 
observed dispersal routes. However, once a connec-
tivity algorithm was applied, the performance for all 
three empirical resistance inputs was fundamentally 
very similar, and there was strong support that routes 

selected during dispersal are driven by landscape con-
nectivity pattern (even for lower ranking combina-
tions of resistance-connectivity; Table 1).

Our second expectation was that CS models would 
be less sensitive than CD to demographic differences 
in resistance surface values. This was clearly shown 
in our results from performance measure 4: propor-
tion of points in percentile corridors. For both CD 
and CS approaches, models using disperser resist-
ance captured the highest proportion of points for 
long-distance dispersal in a 99th percentile corridor, 
followed by male then female resistance. However, 

Fig. 4  Observed mean connectivity values from unscaled 
surfaces within distribution of mean values from randomised 
paths. Mean values of cost (rows 1–2), current flow (row 3), 
and neighbourhood average resistance (row 4) from 100,000 
random samples of points are presented at histograms, with 
the mean value obtained at dispersal points shown as a dashed 
vertical line. Where the mean value at dispersal points outper-
formed all random samples, the times smaller (or larger, for 

cumulative flow) than the lowest (or highest) value obtained in 
the random samples is shown next to the line. When connec-
tivity surfaces were unscaled, cost-distance (CD) surfaces were 
the only connectivity approach that indicated statistical support 
for the inclusion of a term describing the maximum displace-
ment of dispersers (Disperser: 2(1) = 7.43, p = 0.006; Female: 
2(1) = 5.208, p = 0.007; Male: 2(1) = 7.406, p = 0.022, Null: 
2(1) = 8.787, p = 0.003)
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the discrepancy between the top and bottom ranking 
combinations was larger for CD than CS (with a dif-
ference of 11 vs. 5%, respectively), and the discrep-
ancy between the top two CS surfaces was < 1%.

Our final expectation—that CD models will out-
perform CS models—was not met. Under the imple-
mentation we used to generate connectivity, both 
connectivity approaches and all resistance surfaces 
generated high connectivity values at dispersal points, 
and all were convincingly specific to points at dis-
persal. This is highly encouraging and supports the 
growing body of evidence that home range data can 
act as a surrogate to adequately capture the dispersal 
process (Newby 2011; Fattebert et  al. 2015; Keeley 
et al. 2016, 2017; Zeller et al. 2018).

It is notable that no resistance-connectivity 
approach outperformed a null model based on dis-
tance alone, and that distance-only models showed 
perfect performance for both connectivity approaches 
in the spatial randomisation procedure (Table  1). In 
contrast, all resistance-connectivity combinations out-
perform surfaces based on focal average resistance 
alone. The high relative support for disperser-NLAR 
over the male- and female-NALR surfaces suggests 
these demographic differences are biologically based 
and one part of the story. However, the strong perfor-
mance of the null resistance model implies that resist-
ance is not the major driver of performance in this 
system. Rather, our results suggest that it is the con-
nectivity algorithms that drive good fit in our mod-
els, paired with known source-end points. The KAZA 
area is comprised of a large network of protected 
areas and forms one of the remaining strongholds for 
lions, and as such, the dispersal events we observed 
are likely moving through a highly-connected system. 
The fact that isolation by distance seems to play a 
large role in dispersal in our system is therefore con-
sistent with previous findings that when landscapes 
are not highly limiting due to fragmentation, patterns 
of relative resistance and connectivity will not vary 
from isolation by distance (Cushman et al. 2011; Bar-
ros et al. 2019). Similar patterns have been shown for 
the effects of dispersal on genetic differentiation, both 
in simulation (Cushman et  al. 2013a) and empirical 
studies (Short Bull et  al. 2011; Vergara et  al. 2017; 
Barros et al. 2019).

Conclusions regarding the relative importance of 
resistance in explaining emergent movement patterns 
is likely system- and process-specific. For example, 

Cushman et  al. (2014) found substantial differences 
in performance between empirically derived resist-
ance surfaces for both resistant kernel and factorial 
least cost path approaches in predicting the location 
of road crossing for American black bears. Were 
the landscape to contain greater variation in perme-
ability, and more constraint in the routes available to 
lions, it is quite possible that the pattern of resistance 
across the landscape would be a much greater driver 
of the emergent pattern of observed dispersal paths. 
This highlights the need for large-scale replication of 
such studies across the species’ range to determine 
the location and effects of limiting factors and how 
they affect movement patterns. If resistance does not 
play a major role in determining the performance of 
connectivity models, then there is little need to fur-
ther optimise resistance inputs (e.g., Cushman et  al. 
2013a). We would suggest future research might 
most productively focus on how to best define source 
points and identify suitable thresholds for defining 
corridors. Conversely, if different estimates of resist-
ance are found to be important when landscapes are 
highly fragmented and limiting (e.g., Cushman et al. 
2011; Short Bull et  al. 2011; Vergara et  al. 2017; 
Kaszta et  al. 2021) this suggests that accurate esti-
mation of resistance surfaces is important, especially 
when landscape variation limits movement. That 
would, in turn, focus future work on quantifying 
when landscape features become limiting to move-
ment (Short Bull et  al. 2011) and gene flow (Cush-
man et al. 2013a).

After observing the strong relative performance of 
the null resistance input, we estimated post-hoc the 
proportion of points that fell inside a 90th percentile 
corridor. While the proportion of dispersal points 
inside the corridors was comparable to the empirical 
surfaces, the null surface corridor did not outperform 
even a single draw of random points, as all points—
random or observed—fell inside the corridor. A simi-
lar pattern was seen in short-distance dispersers for 
the empirical surfaces, where the proportion of points 
from the random samples was at least as high as the 
observed dispersal points in around 10–20% of the 
cases. As we increased the cut-off for the corridor to 
the 99th percentile, the proportion of dispersal points 
in the corridor remained high, but the models’ abil-
ity to discriminate between the dispersal points and 
the random samples improved (Table  1). This high-
lights two key points. First, that selecting a percentile 
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threshold to consider a corridor may not be a trivial 
choice, and second, that binning values from a con-
tinuum of connectivity into categories risks losing 
some of the match between pattern and process (e.g., 
Cushman et al. 2010b). All models were convincingly 
specific at discriminating observed paths from those 
randomly generated in terms of unscaled mean con-
nectivity, and this held when connectivity was per-
centile scaled (100 bins), although to a lesser extent. 
The percentile corridors were our most extreme form 
of categorisation and performed the worst at dis-
criminating observed from random paths, until a suf-
ficiently high threshold was selected. Here, we binned 
the continuous connectivity values into percentiles; 
however, a finer level of discretisation might be more 
appropriate as an approximation of a continuous 
scale.

There is a clear need for further research on 
thresholding and optimising the delineation of corri-
dors, particularly in areas where human populations 
are expanding and demand for land is at a premium. 
Where available, using independent dispersal data is 
one way to select an appropriate threshold. However, 
given the challenges in obtaining such data, explicitly 
including a dispersal threshold into the estimation of 
connectivity offers a powerful alternative. The use of 
resistant kernels (Compton et  al. 2007) may offer a 
particular improvement for cost-distance approaches, 
given these relax assumptions about known destina-
tion points and are able to explicitly incorporate a 
biological threshold for dispersal ability (e.g. Cush-
man et  al. 2013; Wasserman et  al. 2013; Cushman 
et al. 2015, 2018). We used single source-destination 
implementations of CD and CS in this study as the 
start and end points of our dispersal trajectories were 
known a priori. This allowed us to directly evaluate 
the connectivity approaches and resistance inputs—
the focus of our study—while controlling for uncer-
tainty in source points. Further research could use-
fully evaluate the performance of resistant kernel 
approaches relative to CS and source-destination 
formulations of CD, particularly for movement at the 
population-level.

Our results provide important advances in under-
standing the performance of different connectivity 
modelling methods and the sensitivity of this perfor-
mance to the resistance surfaces used. These results 
have also led us to believe that more attention should 
be given to areas such as limiting factors, the relative 

importance of different resistance levels, and to eval-
uating a broader range of connectivity modelling 
methods (such as all-directional, dispersal limited 
modelling with methods like resistant kernels). Sev-
eral studies have suggested that density, distribution, 
and dispersal ability of the study species can be as 
important, if not more than, differential resistance on 
functional connectivity (e.g., Cushman et al. 2013a). 
Future work should therefore build on this to also 
evaluate the effects of different numbers and spacing 
of dispersal source points and different dispersal abil-
ities on connectivity predictions.

The overall outcome that all assessed connectivity-
resistance combinations perform well is encouraging 
in its implications for modelling corridors for conser-
vation. It is also encouraging that the performance of 
connectivity models using resistance based on param-
eters from home range data captures the observed 
dispersal movements well in this system. This means 
connectivity maps can be generated for multiple sites 
across the lions’ range where these data already exist. 
For each new context, validation will still be a critical 
element of defensible connectivity maps; however, 
given the range of species now supported, the outlook 
is positive. Understanding how connectivity and dis-
persal varies across the range of environments where 
these animals exist will be important in understand-
ing the population viability of this rapidly declining 
carnivore.
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