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Abstract 
Context Tidal saline wetlands (TSWs) are highly 
threatened from climate-change effects of sea-level 
rise. Studies of TSWs along the East Coast U.S. and 
elsewhere suggest significant likely losses over com-
ing decades but needed are analytic tools gauged to 
Pacific Coast U.S. wetlands.
Objectives We predict the impacts of sea-level rise 
(SLR) on the elevation capital (vertical) and migra-
tion potential (lateral) resilience of TSWs along the 
Pacific Coast U.S. over the period 2020 to 2150 under 
a 1.5-m SLR scenario, and identified TSWs at risk of 
most rapid loss of resilience. Here, we define verti-
cal resilience as the amount of elevation capital and 

lateral resilience as the amount of TSW displacement 
area relative to existing area.
Methods We used Bayesian network (BN) modeling 
to predict changes in resilience of TSWs as probabili-
ties which can be useful in risk analysis and risk man-
agement. We developed the model using a database 
sample of 26 TSWs with 147 sediment core samples, 
among 16 estuary drainage areas along coastal Cali-
fornia, Oregon, and Washington.
Results We found that all TSW sites would lose 
at least 50% of their elevation capital resilience by 
2060 to just before 2100, and 100% by 2070 to 2130, 
depending on the site. Under a 1.5-m sea-level rise 
scenario, nearly all sites in California will lose most 
or all of their lateral migration resilience. Resilience 
losses generally accelerated over time. In the BN 
model, elevation capital resilience is most sensitive to 
elevation capital at time t, mean tide level at time t, 
and change in sea level from time 0 to time t.
Conclusions All TSW sites were projected with 
declines in resilience. Our model can further aid deci-
sion-making such as prioritizing sites for potential 
management adaptation strategies. We also identified 
variables most influencing resilience predictions and 
thus those potentially prioritized for monitoring or 
development of strategies to prevent loss regionally.
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change · Resilience · Bayesian network model
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Introduction

Tidal saline wetlands (TSWs) provide a wide array 
of ecological and social values for key wildlife hab-
itats, biodiversity conservation, recreation sites, and 
traditional cultural uses, and provision of numerous 
ecosystem services including carbon sequestration, 
soil retention, flood and erosion control, shellfish 
industries, plant productivity, and more (Barbier 
et al. 2011; Mcleod et al. 2011; DeLaune and White 
2012; Peck et al. 2020). Sea-level rise will result in 
the potential loss of many of these low-lying eco-
systems (Kirwan and Megonigal 2013; Nevermann 
et  al. 2023; Schibalski et  al. 2022). Coastal TSWs 
are particularly vulnerable to impacts of climate 
change, particularly from sea-level rise, increases 
in temperature, changes in precipitation patterns, 
increases in storm surges, and other factors (Tebaldi 
et al. 2012; Grieger et al. 2020), putting marsh veg-
etation and associated wildlife and ecosystem ser-
vices at risk (Thorne et al. 2012; Rosencranz et al. 
2018). Here, based on the definition in Federal Geo-
graphic Data Committee (2013), we define TSW 
as an area with emergent halophytic plants which 
are regularly flooded and drained by the tides (also 
known as tidal wetland, marsh).

The degree to which TSWs are vulnerable can be 
anticipated by gauging their capacity to respond to 
sea-level rise by building elevation to maintain their 
position in the tidal frame or habitat displacement 
upslope—“upland migration” (Kirwan et  al. 2016; 
Holmquist et al. 2021; Osland et al. 2022). Predicting 
such vulnerability is key to prioritizing planning and 
management activities for climate change adaptation 
and ecosystem conservation management (Berman 
et al. 2020; Lyons et al. 2020) in the coastal zone.

For this analysis, we differentiate between 
resistance and resilience (Griffiths and Philippot 
2013; Holling 1973). Resistance refers to the capacity 
of a system to remain unchanged under a stressor. A 
more appropriate measure for TSWs is that of resil-
ience, which can be defined as the capacity of a sys-
tem to be changed by an exogenous stressor, such as 
sea-level rise, yet still provide some degree of its val-
ues and services (Ferrier et  al. 2020; Marcot 2021). 
Hessburg et  al. (2013, p.806) also defined resilience 
as “the inherent capacity of a landscape or ecosystem 
to maintain its basic structure and organization in the 
face of disturbances, both common and rare.“

The resilience of ecological systems is influenced 
by many factors including characteristics of the biotic 
and abiotic environment and the degree and type of 
stressors (Scheffer and Carpenter 2003; Donaldson 
et  al. 2019). Measures of resilience have been used 
in analyses of socio-ecological systems (Allen et  al. 
2018), functional diversity of rangelands (Chillo 
et al. 2011), restoration of forest lands compromised 
by wildfire (Hessburg et  al. 2015), and much more. 
Some definitions and measures of resilience include 
estimates of recovery times to pre-disturbance condi-
tions (e.g., Schibalski et al. 2018). However, this com-
ponent of resilience is not applicable to the impacts of 
TSWs to monotonic and irreversible global sea-level 
rise as projected by Sweet et  al. (2022) to be 1.5 m 
under the National Oceanic and Atmospheric Admin-
istration (NOAA) report Intermediate-High emissions 
scenario. For the Pacific Coast of North America, 
relative sea-level rise projections range from less than 
0.20 m to over 2.0 m by 2100, and up to 3.70 m by 
2150; the magnitude is dependent on realized green-
house gas emissions and atmospheric warming over 
the coming century and on specific locations along 
the coastline (Sweet et al. 2022). Here, we follow rec-
ommendations by Capdevila et al. (2021) to use exist-
ing theoretical frameworks to define resilience, to use 
common and comparable metrics to measure resil-
ience, to denote and define pre- and post-disturbance 
states, and to explicate the type of disturbance and 
regime impacting the system.

TSW are located along low-energy coastlines 
and can adapt to changing water levels and reside in 
dynamic equilibrium with water levels. Elevation-
building processes related to water level datums 
include below and above ground processes related to 
sediment and organic matter contributions (Callaway 
et al. 2013). The amount of elevation in which a TSW 
can exist above a water level datum has been called 
“elevation capital” (Cahoon and Guntenspergen 
2010). If there is an insufficient amount of material 
to build elevation then submergence with accelerat-
ing sea-level rise will occur (Kirwan and Megonigal 
2013) with consequent loss of elevation capital.

Previous assessments of the impact of climate 
change and sea-level rise on coastal wetlands (coastal 
marshes) in the U.S. have focused on regions of 
the Atlantic Coast (Titus et  al. 2008; White et  al. 
2022) and Gulf of Mexico (Geselbracht et  al. 2011; 
Enwright et  al. 2016), including coastal Florida 
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Everglades (Ross et al. 2022), and on tidal marsh and 
tidal freshwater forested wetlands (Maegonigal et al. 
2016; Stagg et al. 2016) and other coastal freshwater 
wetlands (Grieger et  al. 2020). Thorne et  al. (2018) 
evaluated the response to a range of sea-level rise 
scenarios of a selected set of 14 tidal wetlands along 
the U.S. Pacific Coast and reported that all high- and 
middle-marsh habitats would be lost, and 83% of the 
current tidal wetlands would become unvegetated by 
2110 under a high rate of sea-level rise. This type of 
mechanistic modeling is constrained to tidal wetlands 
with available site-specific data, making it difficult 
to expand the analysis outside of the original data 
domain. Brophy and Ewald (2017) provided maps of 
current and future tidal wetlands in Oregon based on 
elevation data but did not specifically model wetland 
response and resilience from other dynamic factors 
such as sea-level rise.

Coastal wetlands can be vulnerable to sea-level 
rise by loss of elevation relative to a tidal datum (ver-
tical) capital or by loss of lateral (horizontal) capi-
tal, the degrees to which are determined by sediment 
accretion, topography, plant communities, and human 
modifications or barriers in the estuary. As sea level 
rise occurs, the margins of a TSW can become inun-
dated or erode leading to loss in TSW area; however, 
at upper elevation boundaries of the TSW, there may 
exist potential for the TSW to migrate inland.

In analyses of coastal estuaries in Europe and 
Atlantic Coast U.S., Kirwan and Temmerman 
(2009) concluded that, under continuous sea-level 
rise, modeled accretion rates lagged sea-level rise 
rates by about 20 years and will never reach equi-
librium. Kirwan and Guntenspergen (2010) found 
that tidal range was an important factor contribut-
ing to resilience, concluding that coastal wetlands 
with high tidal ranges were more stable. Further, 
Kirwan et  al. (2010) found that nonlinear feed-
backs among site factors including inundation, plant 
growth, organic matter accretion, and sedimenta-
tion rate could provide for some resilience to sea-
level rise; however, under projections of higher 
sea-level rise, coastal wetlands were predicted to 
be fully inundated by the end of the current cen-
tury. Wetland area gains under sea-level rise have 
been observed in Big Bend, central west coastal 
Florida, if sediment and upland migration space is 
available (Raabe and Stumpf 2016). Enwright et al. 
(2016) and Osland et al. (2022) also found landward 

migration opportunities for coastal wetlands in large 
regions of the Gulf of Mexico, especially Louisiana, 
presumably providing gains in area with sea-level 
rise. Schieder et al. (2017) suggested that the loss of 
wetlands due to SLR in the Chesapeake Bay of Vir-
ginia were roughly equivalent to gains from upland 
migration.

Field measurements using sediment cores, marker 
horizons, or surface elevation tables (Cahoon et  al. 
2002) can provide information on whether a TSW 
is building elevation to outpace sea-level rise (Rog-
ers et al. 2012; Thorne et al. 2013; Webb et al. 2013; 
Steinmuller et  al. 2020; Langston et  al. 2022). This 
information is often published to understand vulner-
ability or resilience of the TSW. Most modeling of 
coastal wetland response to sea-level rise is mecha-
nistic and as such requires much data, but can pro-
vide high resolution analyses, down to a few meters, 
as used in the models WARMER (Wetand Accretion 
Rate Model of Ecosystem Resilience; Swanson et al. 
2014) and MEM (Marsh Equilibrium Model; Mor-
ris et  al. 2012). State-transition models of sea-level 
rise are simpler and have been employed extensively 
(e.g., SLAMM, Sea Level Affecting Marshes Model; 
Geselbracht et al. 2011; Linhoss et al. 2013) but may 
be coarser, lack resolution in many areas, and do not 
express variation and uncertainty. Other models of 
marsh response to sea-level rise can be theoretical 
(e.g.,. Allen 1997, Carr et al. 2020) by which to gen-
erate hypotheses about causal relationships.

Thorne et  al. (2018) conducted mechanistic mod-
eling using the WARMER model to simulate biologi-
cal and physical processes, including sea level rise, 
that affect marsh accretion and marsh elevation. This 
approach requires extensive modeling capabilities and 
field data. Our study illustrates a Bayesian network 
approach that uses a framework that is not explicitly 
mechanistic and does not require site specific exten-
sive sediment and biological data, but can also pro-
vide similar outcomes for sea level rise vulnerability. 
This type of modeling is needed because many deci-
sion makers may not have mechanistic modeling abil-
ities nor the resources to collect site specific biophysi-
cal data. and could use the approach outlined here to 
generate similar outcomes. This use of Bayesian net-
works is a novel approach and has not been applied 
to the Pacific Coast, and we believe this approach can 
provide lessons learned to transfer the applicability to 
sites without robust datasets.



3064 Landsc Ecol (2023) 38:3061–3080

1 3
Vol:. (1234567890)

For the current analysis we chose to model the 
influence of sea-level rise on TSW resilience with 
causal structures represented in a Bayesian network 
(BN). BNs are widely used in environmental mod-
eling (Aguilera et  al. 2011), including prediction of 
impacts on wetlands and coastal conditions (e.g., 
Sahin et al. 2019; Rachid et al. 2021). General meth-
ods of developing BN models were reviewed by Dar-
wiche (2009), Fenton and Neil (2012), Kjaerulff and 
Madsen (2007), and others. BNs are structured as 
directed acyclic graphs (networks without feedback 
cycles) and they depict causal and correlational links 
among variables as conditional probabilities. Input 
variables in BNs are denoted with prior probabilities 
represented in Dirichlet distributions, and outcome 
results are calculated as posterior probabilities using 
Bayes’ Theorem (Fenton and Neil 2012).

Two main advantages of modeling the resilience 
response of TSWs to sea-level rise in BNs over the 
use of “frequentist” multivariate statistical mod-
els are that (1) BNs explicitly denote uncertainties 
as probability distributions that propagate accord-
ingly throughout the network, and (2) BNs can pro-
vide calculated results in the face of missing data 
where default prior distributions are used (Darwiche 
2009; Aguilera et  al. 2011;  Marcot 2019). Further, 
BNs can be structured using empirical data, expert 
knowledge, or a combination (Marcot 2019), and as 
new observations are collected, parts or all of a BN 
model can be updated, improving the accuracy of 
model predictions. BNs serve well to inform vulner-
ability, can identify strength of evidence and areas of 
key uncertainties, and can provide clear expressions 
of knowledge and probability distributions to inform 
risk analyses and decision-making under uncertainty. 
In our current study, the Bayesian network modeling 
approach addressed results for 26 TSWs, whereas 
Thorne et al. (2018) covered 12 study sites that over-
lapped, which means our study expanded to 14 addi-
tional TSWs.

Gutierrez et  al. (2011) developed a Bayesian net-
work model predicting changes in shorelines and vul-
nerability of environments along the Atlantic Coast, 
U.S., and concluded that BNs are useful for depict-
ing important factors affecting coastal changes from 
sea-level rise as probability predictions aiding coastal 
management decisions. The challenge in the current 
effort was that the dynamics of conditions, defin-
ing the structure of a prediction model, for wetlands 

along the U.S. Eastern Seaboard are significantly 
different than those along the Pacific Coast, and at 
a scale relevant to projections of individual TSWs 
(Thorne et al. 2015a, b). TSWs of the Pacific Coast sit 
within a different biogeomorphic setting than they do 
along the Atlantic Coast (Osland et al. 2019). TSWs 
along the Pacific Cost experience mixed semi-diurnal 
tides (flooded with two high tides a day), tend to con-
tain mineral-dominated soils (Callaway et al. 2012a), 
and contain different vegetation communities and cli-
mate zones than do wetlands on the Atlantic Coast 
(Janousek et  al. 2019). These differences required 
devising a new causal framework applicable to the 
Pacific Coast region for informing management.

The overall objective of this effort was to devise 
a causal structure more specific to Pacific Coast U.S. 
conditions and convert it to a BN based on the current 
state of understanding. We compiled a database of 
selected TSWs by which to parameterize and calibrate 
the BN model; run the BN model on incremental 
future decadal conditions of sea-level rise and project 
the resilience of each selected TSW; interpret results 
in terms of applying the model to all Pacific Coast 
U.S. TSWs to aid management decision-making; and 
explore potential future updates and improvements to 
the model.

Methodology

Study areas

This project focused on TSWs along the Pacific Coast 
of the continental U.S., namely coastal California, 
Oregon, and Washington. The topography, hydroge-
omorphology, and patterns of human development 
and occupation of TSW conditions in this region 
vary significantly among estuaries (Fig.  1). Some 
of the coastline contains densely-populated urban 
centers (e.g., Los Angeles, California) or more rural 
estuaries that are dominated by agriculture and log-
ging (e.g., Willapa Bay, Washington). Some TSWs 
are development-bounded such as Newport Bay in 
urban southern California, and others are seasonally 
blocked from direct ocean influence by sand bars 
such as Big Lagoon in Northern California. Central 
San Francisco-San Pablo-Suisun Bays EDA, Califor-
nia (37,438 ha), and Puget Sound EDA, Washington 
(2914  ha), are two of some of the largest estuaries 
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in the U.S. with a mosaic of urban development and 
agriculture. In this analysis, we calculated resilience 
by estuarine drainage area (EDA; Frazier et al. 2013). 
An EDA consists of the terrestrial and water compo-
nents of a watershed that directly drains into an estu-
ary and that contains a TSW.

Data collection

Here, we define vertical resilience as the amount of 
elevation capital and lateral resilience as the amount 
of TSW replacement area relative to existing area.

Geomorphic setting

Elevation, Mean High Water (MHW) and Mean 
Tide Line (MTL) were determined for each core 
location using VDatum (https:// vdatum. noaa. gov/), 
with the range of maximum cumulative uncertainty 
for this region being noted as 6.5-8  cm. Eleva-
tion [m, North American Vertical Datum of 1988 
(NAVD88)] for each core location is denoted by z 
and was obtained from the Coastal Carbon Atlas 
database (https:// ccrcn. shiny apps. io/ Coast alCar bonAt 
las/), Thorne et al. 2015a, b), (2016). Here, elevation 
capital, Z*, is a dimensionless ratio of the elevation 

relative to MTL (Swanson et al. 2014), calculated as 
Z∗ = (z −MTL)∕(MHW −MTL).

Accretion rates

In our database, individual cases pertain to sediment 
core sample locations within TSW sites. We used 
results of sediment core analyses based on isotopes 
of cesium (Cs237; n = 64 core samples) and lead 
(Pb210; n = 87 core samples) as date-markers. Core 
samples are denoted with corresponding latitude and 
longitude locations, and the core data were acquired 
from a variety of literature sources (Callaway et  al. 
2012b; Peck et  al. 2020; Thorne et  al. 2015a, b, 
2016). The resulting sample of 147 cores derives 
from 26 TSW and 16 EDA ranging latitudinally from 
northern Washington to southern California (Supple-
mentary Information Fig. A).

Elevation capital

Elevation capital is the material accumulated during 
tidal wetland development that establishes the height 
of a wetland within the tidal frame (i.e., conversion 
from subtidal open water to intertidal mudflat to 
emergent marsh) (Cahoon and Guntenspergen 2010; 
Cahoon et  al. 2018) and vertical resilience is the 

Fig. 1  Examples of tidal saline wetlands along the Pacific 
Coast U.S. illustrating the diversity of topographic and devel-
opment settings. a Golita Slough, Golita Slough Ecologi-
cal Reserve, California, with a variety of estuarine, riverine, 
and other environments amidst a history of diking and chan-
nelization (photo: K. Backe, USGS); b Brian Booth—Beaver 

Creek State Park, Oregon, connected to but constrained by 
old-growth conifer forest bluffs (photo: B. Marcot, USFS); c 
Tijuana Slough, Tijuana Estuary, California, constrained by 
developments (photo: K. Thorne, USGS); d Skokomish, Puget 
Sound, Washington, restored from channelized agricultural 
lands (photo: K. Thorne, USGS)

https://vdatum.noaa.gov/
https://ccrcn.shinyapps.io/CoastalCarbonAtlas/
https://ccrcn.shinyapps.io/CoastalCarbonAtlas/
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maintenance of elevation capital determined by rates 
of marsh surface elevation change relative to the sea-
level rise for the same time interval.

Current tidal saline wetland extent

Current TSW extent in hectares for each EDA was 
determined using the Coastal Change Analysis Pro-
gram (C-CAP) Regional Land Cover and Change 
(National Oceanic and Atmospheric Administra-
tion)1. Estuarine Emergent Wetland category was 
used to calculate area by EDA.

Migration capacity

TSW migration capacity was determined using the 
methodology presented in Osland et  al. (2022) and 
was acquired from Chivoiu et  al. (2022). We exam-
ined the migration potential for a 1.5 m global mean 
sea level rise scenario, which corresponds to the 2100 
Intermediate-High emission scenario and the 2150 
Intermediate-Low and Intermediate emission scenar-
ios (Sweet et al. 2022).

Database of tidal saline wetlands

Our case file database is organized hierarchically by 
EDA name, TSW name, and site locations of sedi-
ment core samples (available at https:// doi. org/ 10. 
59381/ efgk0 939). The database consists of 16 EDAs, 
26 TSWs, and 147 core sample locations, with 1 to 7 
TSWs per EDA, and 1 to 17 cores per TSW, distrib-
uted over selected sites in coastal California, Oregon, 
and Washington (Table 1).

Development of the Bayesian network model

We began an iterative process of developing our BN 
model in a graphical software application (Netica©; 
Norsys, Inc.). We first reviewed the available litera-
ture on the hydrodynamics of coastal wetlands and the 
influence of sea-level rise, which focused on coastal 
regions elsewhere or only on specific locations along 
the U.S. Pacific Coast. We built a succession of BN 
model structures as causal networks denoting TSW 

dynamics using this prior information and from our 
collective empirical experience. We also explored 
statistical relationships among variables in the data 
that we initially compiled from selected sites on the 
Pacific Coast, for example accretion rate as a func-
tion of wetland elevation, as derived from the 147 
sediment core samples (Fig.  2). Our causal network 
evolved as a series of concept maps exploring hypoth-
esized and expected relationships among variables, 
and our data analyses led variously to discovery of 
poor correlations, non-significant and potentially 
spurious correlations, and of unexpected but sali-
ent correlations among variables, all of which led to 
incrementally amending and improving the network. 
We have traced these steps in model development in 
the spirit of full disclosure and documentation (Sup-
plementary Information TSW Model Development 
Phases).

One of the main drivers in the model is, naturally, 
change in sea level over time. For this metric, we 
used the findings from the NOAA report (Sweet et al. 
2022) which are based on future increase in mean sea 
level relative to current sea level at time 0 (2020), 
gauged to a projection of an ultimate 1.5-m sea-level 
rise. Values for change in sea level varied spatially, 
which we read from Sweet et al.‘s 1-degree grids for 
each of the TSW locations in our case file database 
and represent the medium 1.5 m scenarios. We also 
assumed that, at time 0, mean sea level is identical 
to mean tide level (MTL), as evidenced by Wood-
worth (2017) and that tidal datums relative to MTL 
remained constant with SLR. We additionally com-
piled values on many more variables in the database 
than we ultimately used explicitly in the final BN 
model, but were useful during the model evolution 
phases to explore correlations and degrees of predict-
ability among variables (Supplementary Information 
TSW Model Development Phases).

During our explorations of alternative causal net-
work structures and data relationships, we produced a 
series of functioning predictive BN models. The final 
model structure was developed by a combination of 
our statistical explorations of data relationships and 
our experience and expert knowledge on the hydro-
dynamics of TSWs. The BN model uses continuous-
value variables that are discretized into states with 
exclusive value ranges based on the known values 
in our compiled TSW case file database. We experi-
mented with varying the number of discretized 

1 https:// coast. noaa. gov/ digit alcoa st/ data/ ccapr egion al. html, 
2016.

https://doi.org/10.59381/efgk0939
https://doi.org/10.59381/efgk0939
https://coast.noaa.gov/digitalcoast/data/ccapregional.html
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states to best balance model precision and accuracy 
because, in BN modeling, more states provide greater 
precision but with a potential tradeoff of accuracy. 
Given the sample size of cases in the database, and 
the model structure (numbers of parent nodes), we 
decided on using no more than 5 states per node for 
each continuous-value variable.

We used the empirical data from our TSWs case 
file to parameterize the prior (unconditional) prob-
abilities and the conditional probability tables, by 
employing the widely-used machine-learning expec-
tation maximization (EM) algorithm (in Netica). EM 
is a convergent log-likelihood function that iteratively 
adjusts probability values in the model so as to best fit 
to the case file data (Do and Batzoglou 2008), and its 

advantage is to efficiently and effectively parameter-
ize models for optimal parameter output to best fit to 
a known set of case examples (Zhou et al. 2010). Use 
of the empirical data set for informing values of prob-
ability distributions is an important step in ecologi-
cal Bayesian modeling (Wesner and Pomeranz 2021), 
and essentially serves to calibrate the model to the 
overall conditions of all cases in the database.

We expressed TSW resilience to sea-level rise in 
the model along two axes elevation capital (vertical) 
resilience and migration capacity (lateral) resilience. 
We further explored alternative means of combining 
elevation capital and lateral migration into one over-
all resilience outcome variable, such as by a simple 
sum of their Weber fraction values, but we ultimately 

Table 1  Locations by 
U.S. state and names of 
16 estuary drainage areas 
(EDAs) and their 26 tidal 
saline wetlands (TSWs), 
and number of sediment 
cores, used in the case file 
database to parameterize 
the Bayesian network model 
predicting TSW resilience 
to sea-level rise

EDA-estuary drainage srea TSW-tidal saline wetland No. sediment 
cores per TSW

CALIFORNIA (n = 5 EDAs, 11 TSWs, 74 cores)
 Central San Francisco-San Pablo-Suisun Bays Bolinas Lagoon 1
 Central San Francisco-San Pablo-Suisun Bays Browns Island 11
 Central San Francisco-San Pablo-Suisun Bays China Camp 12
 Central San Francisco-San Pablo-Suisun Bays Coon Island 17
 Central San Francisco-San Pablo-Suisun Bays Petaluma River 5
 Central San Francisco-San Pablo-Suisun Bays Rush Ranch 12
 Central San Francisco-San Pablo-Suisun Bays Whales Tail 6
 Newport Bay Newport Marsh 1
 San Diego Bay Sweetwater Marsh 2
 Santa Barbara Channel Carpinteria Marsh 1
 Tijuana Estuary Tijuana Slough 6

OREGON (n = 8 EDAs, 10 TSWs, 62 cores)
 Alsea River Alsea 10
 Columbia River Youngs 5
 Coos Bay-Tenmile Coos Bay 2
 Coquille River Bandon 2
 Coquille River Coquille 6
 Nehalem River Nehalem 6
 Salmon River Salmon River 10
 Siletz Bay Siletz 2
 Wilson-Trusk-Nestuccu-Netarts Bay Netarts 15
 Wilson-Trusk-Nestuccu-Netarts Bay Tillamook 4

Washington (n = 3 EDAs, 5 TSWs, 11 cores)
 Dungeness-Elwha Washington Harbor 1
 Grays Harbor-Willapa Bay Grays Harbor 2
 Puget sound Nisqually River Delta 5
 Puget sound Padilla Bay 1
 Puget sound Skokomish 2
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omitted that outcome node from the model as it 
proved unnecessarily redundant to, and less informa-
tive than, the individual elevation and lateral migra-
tion resilience outcomes.

Projections of elevation capital resilience were 
time-specific because the model calculated mean tide 
level and TSW elevation for each time period, in part 
as a function of year, spanning 2020 to 2150 by dec-
ade. In contrast, calculations of TSW lateral migra-
tion resilience were invariant to time, as they were 
based on comparing current TSW extent with TSW 
upslope migration capacity at the full 1.5-m sea-level 
rise projection. This approach was chosen given the 
overall lack of understanding on TSW migration pro-
cesses and rates to parameterize a temporal model 
approach. Therefore, we focused on the total area 
possible for upland migration.

The BN model calculates resilience outcomes dis-
played as probability distributions among the 5 dis-
cretized states in each of the output nodes (Fig.  3). 
These probability distributions represent the propa-
gation of uncertainties and distributions of values in 
other variables in the model as known from the case 

Fig. 2  Correlation of core sample sediment accretion rate (m/
yr; n = 147 core samples) by current wetland elevation (m) for 
26 tidal saline wetlands along the U.S. Pacific Coast, with best-
fit linear regression and histograms of data frequencies on each 
axis (Pearson r = − 0.485, p < 0.001)

Fig. 3  Bayesian network model analyzing time-specific eleva-
tion capital resilience and migration resilience of tidal saline 
wetlands (TSW) along the Pacific Coast U.S. Note that the val-

ues represented in the bottom of each node in the model (x ± y) 
are the expected value ± 1 standard deviation (assuming Gauss-
ian distributions)
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file database of TSWs. On a site-by-site basis, the 
probability distributions in the resilience outcome 
nodes can be used to denote the degree of uncertainty 
of resilience effects, although projection calcula-
tions always led to a strongly dominant probability 
outcome for a single state. However, for greater sim-
plicity, to compare resilience effects among sites and 
time periods, we used the expected value from each 
calculation (Fig. 3) which is the sum of the midpoint 
of each state’s range of values weighted by the calcu-
lated probability of that state.

Our final selection of 15 model variables (listed in 
footnote in Table  2) constituted the building blocks 
for the causal network. We parameterized five sum-
mary variables (nodes) in the final BN model with 
equations either derived from the literature, or, for 
representing elevation capital and lateral migration 
resilience, by using Weber fractions comparing start-
ing (2020) conditions to those in future time periods 
(Table  2). All elevation values in the Table  2 equa-
tions are in meters. Equation  1 computes the mean 
tide level at specified time period t (taken from the 
VDatum source cited further above), as the sum of the 
mean tide level at time 0 (present) and the relative sea 
level at time t. Equation 2 computes the elevation of 
the TSW at time t as the sum of the TSW’s elevation 
at time 0, and the product of the per-annum accretion 
rate and the number of years from time 0 to time t. 
Equation 3 computes the elevation capital of the TSW 
as the difference between the TSW elevation at time 
t and the mean tide level of the TSW at time t (from 

VDatum), normalized by the difference between the 
mean high water level at time 0 and the mean tide 
level at time 0 (from VDatum). Equation 4 calculates 
the TSW elevation capital resilience at time t as a 
Weber fraction by comparing the change in elevation 
capital from time 0 to time t, per elevation capital at 
time 0, and converting this fraction to a [0,100] per-
centage scale. Equation 5 calculates the TSW migra-
tion resilience independent of the elevation capital 
resilience, also as a Weber fraction by comparing the 
upslope migration capacity at time t to that at time 0, 
per upslope migration capacity at time 0, and con-
verting the fraction to a [0,100] percentage scale. In 
compiling the parameterized model, for model nodes 
containing equations we used Netica’s equation-to-
table function that discretizes each node’s equation to 
create a discrete conditional probability table (Sup-
plementary Information Model Probabilities).

Because the model was structured in part with our 
equations calculating specific outcomes, there was 
no other database by which we could conduct inde-
pendent model validation testing, and our case file 
database was too small to employ cross-validation 
methods (Marcot and Hanea 2021). To this end, we 
ensured that the model at least adhered to computa-
tional reproducibility, which is defined as obtaining 
consistent results using the same input data, computa-
tional steps, methods, code, and conditions of analy-
sis (NASEM 2019,  p. 46), by providing access to the 
final model, all of its values and components, and the 
case file database. However, lacking an independent 

Table 2  Equations used in 5 nodes of the Bayesian network model predicting tidal saline wetland (TSW) resilience to sea-level rise 
along the Pacific Coast, U.S.

a Variables and abbreviations used and units of measure
AccRate_0 Accretion rate at time 0 (m/yr); CurrWetExt Current wetland (TSW) extent (ha); Denom  (MHW_0)-(MTL_vdatum_0) 
(m); ElevCap_0 Elevation capital at time 0 (dimensionless unit; Swanson et al. 2014); ElevCap_t Elevation capital at time t (dimen-
sionless unit; Swanson et al. 2014); TSWMigRes_t TSW migration resilience (dimensionless unit; Weber fraction); TSWElev_0 TSW 
elevation at time 0 (m); TSWElev_t TSW elevation at time t (m); TSWEleRes_t TSW elevation capital resilience at time t (dimen-
sionless unit; Weber fraction); MHW_0 Mean high water at time 0 (m); MTL_vdatum_0 Mean tide level at time 0 (m). MTL_
vdatum_t Mean tide level at time t (m); RSL_t Change in sea level time 0 to time t (m); t Year; 10-year increments from 2020 to 2150; 
0 in variable names denotes year 2020; TSW Tidal saline wetland. UpMigCap_t Upslope migration capacity at time t (ha)

Model variable Equation number Equationa

Mean tide level at time t 1 MTL_vdatum_t = MTL_vdatum_0 + RSL_t
TSW elevation at time t 2 TSWElev_t = (TSWElev_0) + (AccRate_0 * (t-2020))
Elevation capital at time t 3 ElevCap_t = (TSWElev_t - MTL_vdatum_t) / Denom
TSW elevation capital resilience at 

time t
4 TSWEleRes_t = ((ElevCap_t - ElevCap_0) / ElevCap_0) * 100

TSW migration resilience 5 TSWMigRes_t = ((UpMigCap_t - CurrWetExt) / CurrWetExt)*100
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database by which to strictly test model validation, 
we did strive to test model replicability, which is 
defined as obtaining consistent results across studies 
of the same issue (NASEM 2019, p. 46), by compar-
ing our results to the projections of TSW resilience 
from other studies. Model replicability may be an 
important indicator of the utility and reliability of our 
final predictive model for its intended application to 
other coastal TSWs along the U.S. Pacific Coast.

We then conducted model sensitivity analysis to 
determine the degree to which the TSW elevation 
capital resilience node is sensitive to the other nodes 
in the model used in its calculation. Sensitivity of 
continuous-value nodes is best expressed by calcula-
tions of variance reduction (and normalized as percent 
variance reduction), which is the expected reduction 
in variance of an outcome node due to the incremen-
tal influence of an input node (Pearl 1988; see Marcot 
2012 for equation used). Greater values of variance 
reduction denote greater sensitivity of the outcome 
node to a given input node. Variables (nodes) with 
high sensitivity, most affecting outcome predictions 
of TSW resilience, and that are also poorly quantified 
or studied, may helpfully suggest priorities for future 
inventory, monitoring, or research.

Projecting elevation and migration resilience to 
sea-level rise

Each of the 147 cases in the database pertains to a 
unique sediment core sample. Although the final BN 
model excluded explicit use of sediment core data, 
those data were instrumental in the included variable 
of accretion rate as derived from the sediment core 
values. Further, other input variables in the model 
were specified for each sediment core location, so we 
used the model to calculate TSW resilience for each 
sediment core site individually.

We used our model to project the degree of eleva-
tion capital and lateral migration resilience for each 
sediment core sample location in each TSW and 
EDA in our database, for each decadal period from 
2020 to 2150. We present results of elevation capi-
tal resilience by individual sediment core sample in 
each TSW and for each TSW averaging results among 
the core samples, and also, as comparison, by EDA. 
Given that core samples were not evenly distributed 
by TSW or elevation we decided an average accretion 
rate for each TSW was the most suitable option. The 

plotted depictions can provide a site manager with 
information on how quickly a given TSW and specific 
sediment core location might lose specific percent-
ages of its resilience, and to potentially help prioritize 
wetlands for management actions based on those los-
ing their resilience the quickest.

Results

Here we present results of our case file database of 
TSWs, structure of the BN model, model sensitivity 
analysis, and projections of TSW elevation capital 
resilience and lateral migration resilience.

Bayesian network model

Our final BN model (Fig. 3) consisted of 15 nodes, 16 
links, 8 unconditional prior probability tables, 7 con-
ditional probability tables, and 3449 unconditional 
or conditional probability values (Supplementary 
Information Model Probabilities). We parameterized 
the model with the case file database of the 147 sedi-
ment core samples (Supplementary Information Tidal 
Saline Wetland Case File Database). In this way, the 
prior probability distributions of the input variables 
(Fig. 3) represent the frequency distributions of val-
ues from the case file database.

The BN model projects the degree of TSW eleva-
tion capital resilience as the percent change of eleva-
tion capital of a TSW from current to each future dec-
ade of 2020 to 2150, where values > 0 mark increases 
in resilience (rarely occurring, and only temporar-
ily) and < 0 mark decreases, with values of − 100% 
denoting complete loss of current elevation capital 
resilience (Table 2). TSW lateral migration resilience 
is calculated similarly but only for the ultimate effects 
of a projected 1.5-m sea level rise, so is presented as 
time-invariant.

Projections of elevation capital resilience of tidal 
saline wetlands

Trends by tidal saline wetland

The TSWs vary in their predicted degree of loss of 
resilience over time. Projections of elevation capital 
resilience of the 26 TSWs along Pacific Coast, U.S. 
(Fig.  4), as analyzed in this study, suggest marked, 
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mostly monotonic, and accelerating declines over 
time (Fig.  5). Our projections suggest that the 26 
TSWs will lose half of their elevation capital resil-
ience by between 2060 to just before 2100, and all 
of their resilience by 2070 to 2130, depending on the 
site.

We rank-ordered the TSWs by how dire their loss 
of elevation capital resilience at years 2020, 2050, 
and 2100 will be (Table  3). Notable is that most of 
the sites with the highest loss of elevation capital 
resilience are in California (3 of the top 5 rankings 
in 2020, all 5 in 2050, and 4 of 5 in 2100), among 9 
TSWs in that state (Bolinas Lagoon, Browns Island, 
Carpinteria Marsh, China Camp, Coon Islands, New-
port Marsh, Petaluma River, Rush Ranch, and Sweet-
water Marsh) given changes in rank-orderings of sites 
across time. In comparison, Oregon has only 3 sites 
(Bandon, Coquille, and Nehalem) ranked this way in 

the top 5. Washington has none so-ranked, with our 
TSW sites being less immediately vulnerable than 
those in the other states, although all TSWs in Wash-
ington also are projected to eventually lose all of their 
elevation capital resilience, given time. In particular, 
in California, the San Francisco Bay and delta system, 
comprising the Central San Francisco—San Pablo—
Suisun Bay Estuary Drainage Area in our database, 
with its seven named TSWs (Table 1), has been heav-
ily altered since the middle 19th century with contin-
ued threats to its ecosystem functions, resilience, and 
possible restoration (Takekawa et al. 2006).

Trends by sediment core location

We also traced the decline in marsh elevation capi-
tal resilience at each sediment core sample location 
in each TSW, in part to depict the potential expected 

Fig. 4  Projections of the 
average decade in which A 
50%, and B 100% loss of 
elevation capital resilience 
occurs within each estuarine 
drainage area based on 26 
tidal saline wetlands (TSW) 
along the Pacific Coast 
U.S., 2020 to 2150, and 
averages among sediment 
core samples in each TSW. 
See Table 1 for U.S. state 
locations and estuary drain-
age areas of each wetland
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within-watershed variation of resilience (see Supple-
mentary Information Figures  B1–B22). An example 
is Browns Island, located in California, which, aver-
aging across all 11 sediment core samples (Table 1), 
ranked in the top 5 TSW sites with the lowest ele-
vation capital resilience in 2020, 2050, and 2100 
(Table 3). It appears as the steepest curve among all 

TSWs, losing 100% of its resilience the soonest, by 
2070 (Fig. 5). Breaking down elevation capital resil-
ience for each of the 11 sediment core sample loca-
tions, however, shows some variation with one sam-
ple location initially increasing in resilience over the 
first two decades but then quickly declining thereafter 
(Supplementary Information Fig. B3). A few other 

Fig. 5  Projections of 
loss of elevation capital 
resilience of 26 tidal saline 
wetlands (TSW) along the 
Pacific Coast U.S., 2020 
to 2150, based on aver-
ages among sediment core 
samples in each TSW. See 
Table 1 for U.S. state loca-
tions and estuary drainage 
areas of each wetland. 
Values of − 100% denote 
loss of all elevation capital 
resilience capacity. Resil-
ience values are based on 
the expected values in the 
resilience outcome nodes in 
the model (Fig. 2)
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TSWs showed outliers of single sediment core sam-
ple locations with somewhat greater resilience (e.g., 
China Camp, Supplementary Information Fig. B4) 
or lesser resilience (e.g., Netarts Bay, Supplemen-
tary Information Fig. B10) than the average across all 
other core samples for those TSWs. It is noted that 
the core data leveraged was repurposed from other 
studies whose goals and choice of core location and 
sampling may not directly align with the specific 
objective of this study and as such outlier differences 
may be due to such discrepancy.

Trends by elevation capital resilience exceedance 
probabilities

Next, a different way to depict change, particularly 
loss, of elevation capital resilience, is with exceed-
ance probability curves (Fig.  6). These curves 
depict the percent of all TSW and sediment core 
sample locations that will have specified levels of 
remaining elevation capital resilience, for each dec-
adal time period 2020–2150. For example, in 2050, 
70% of all sites will have ≤ 90% of their elevation 
capital resilience remaining and, of these, only 10% 
of all sites will have ≤ 80% remaining, but by 2100, 
70% of all sites will have only ≤ 20% of their eleva-
tion capital resilience remaining and, of these, half 
of all sites will have lost all of their remaining resil-
ience. Overall, rates of decline in elevation capital 
resilience increase over time.

Projections of lateral migration resilience of tidal 
saline wetlands

As with the projections of elevation capital resil-
ience, TSW sites and EDAs with the lowest lateral 
migration resilience were also found in California, 
with those having the highest resilience in Oregon 
and Washington (Fig.  7, Supplementary Informa-
tion Fig. C). Much of the difference is because 
California sites are already laterally constrained by 
human development and steep topography, imped-
ing any upland migration of TSWs under sea-level 
rise. For example, southern California and San 
Francisco Bay estuaries have extensive developed 
areas or steep coastlines which accounts for a latitu-
dinal gradient of lateral migration capital resilience 
(Supplementary Information Fig. D), with greater 
resilience being found in EDAs further north. All 
sites, except Sweetwater Marsh (San Diego Bay), 
that had a positive lateral TSW migration resilience, 
occur in Washington and Oregon. The largest sites 
are in Oregon and include Bandon TSW in Coquille 
EDA, and Youngs TSW in the Columbia River EDA 
associated with the Columbia River Basin. Much of 
the lateral migration space in the Pacific Northwest, 
apart from Puget Sound, occurs up narrow riverine 
valleys.

Table 3  Rank orders of 26 tidal saline wetlands (TSWs) along 
the U.S. Pacific Coast by their elevation capital resilience for 
years 2020, 2050, and 2100, ranked in increase order of least 
to most resilient

Highlighted in each year are the five TSWs with the lowest 
elevation capital resilience. See Table 1 for state locations, and 
Fig. 4 for mapped locations, of the TSWs
States include CA California, OR Oregon, WA Washington

TSW State 2020 2050 2100

Alsea OR 14 14 16
Bandon OR 2 12 12
Bolinas Lagoon CA 1 6 1
Browns Island CA 4 1 2
Carpinteria Marsh CA 3 26 23
China Camp CA 18 8 3
Coon Island CA 23 10 4
Coos Bay OR 25 17 18
Coquille OR 16 7 5
Grays Harbor WA 26 23 20
Nehalem OR 5 18 19
Netarts OR 15 13 17
Newport Marsh CA 22 3 6
Nisqually River Delta WA 7 22 26
Padilla Bay WA 12 24 22
Petaluma River CA 20 5 7
Rush Ranch CA 6 4 8
Salmon River OR 9 9 9
Siletz OR 21 20 24
Skokomish WA 11 19 25
Sweetwater Marsh CA 17 2 10
Tijuana Slough CA 8 25 14
Tillamook OR 13 15 21
Washington Harbor WA 10 16 13
Whales Tail CA 19 21 15
Youngs OR 24 11 11
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Fig. 6  Exceedance probabilities of tidal saline wetland (TSW) elevation resilience remaining, by time period (2020–2150), across all 
26 sample wetlands and 147 sediment core locations along the U.S. Pacific Coast

Fig. 7  Values of lateral 
migration resilience of tidal 
saline wetlands along the 
U.S. Pacific Coast, where 
upland migration poten-
tial can occur. Values are 
dimensionless Weber frac-
tions denoting percentage of 
upslope migration capacity 
of each wetland at 1.5-m 
sea-level rise as compared 
to current wetland extent 
(see Table 2 for equation), 
with higher value denoting 
greater migration capacity 
resilience (− 100 denoting 
loss of all resilience). See 
Table 1 for state locations, 
and Fig. 4 for mapped loca-
tions, of the TSWs
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Bayesian network model sensitivity analysis

Elevation capital resilience is most sensitive in the 
BN model to elevation capital at time t, mean tide 
level at time t, and change in sea level from time 0 
to time t (each with > 10% variance reduction sensi-
tivity). Other covariates also had sensitivity effects 
on resilience but with lesser influence (Table 4). Lat-
eral migration resilience is highly sensitive to current 
TSW extent and to a lesser degree to upslope migra-
tion capacity at 1.5-m sea-level rise (Table 4); these 
sensitivity results are largely dictated by the Weber 
fraction equation that relates the difference in the 
values of these two covariates to that of current TSW 
extent (Table 2).

Discussion and conclusions

The process of decision-making regarding appropri-
ate and best management of TSW is difficult espe-
cially considering the uncertainty related to the 
details of climate change and projected rates of sea-
level rise. Climate change adaptation decision-mak-
ing may be challenged by the need to choose which 
actions should be undertaken at what time, espe-
cially if site-specific data are uncertain or lacking. 
Prioritization across regional scales may be needed 

to appropriately allocate resources for climate-adap-
tation management. There is an increasing need for 
tools to predict the effects of ongoing and impend-
ing impacts of sea-level rise on coastal ecosystems, 
particularly as extreme weather events increase in fre-
quency and intensity, affecting coastal conditions as 
well as limiting inland capacities of the land base to 
absorb increased surface runoff (e.g., effects of veg-
etation denudation from catastrophic wildfires) (Sisco 
et al. 2017; Grace 2023; Perks et al. 2023). The model 
we present here accounts for some of the main hydro-
logic dynamics affecting resilience of TSW along the 
Pacific Coast, U.S., and is intended to serve as an ini-
tial advisory tool for management decisions. It can 
also be a platform for further consideration of other 
stressor events affecting TSWs. Predicting and main-
taining resilience of TSWs as well could help con-
serve their suite of ecosystem services.

In the spirit of evaluating model replicability as 
discussed in methods, results presented in this paper 
align well with the WARMER modeling results 
in Thorne et  al. 2018. Thorne et  al. (2018) used a 
mechanistic modeling approach to address vertical 
resilience and a topography GIS spatial exercise to 
determine horizontal migration potential. There were 
12 TSW in common analyzed by Thorne et al. (2018) 
and with our analysis, and both approaches found 
similar conclusions that elevation capital (vertical 

Table 4  Sensitivity 
analysis of tidal saline 
wetland (TSW) elevation 
capital resilience and lateral 
migration resilience (along 
the U.S. Pacific Coast) 
to their covariates in the 
Bayesian network model 
(see Fig. 2)

Variable Variance reduction Percent vari-
ance reduc-
tion

Sensitivity of elevation capital resilience
 Elevation capital at time t 2815.00 51.900
 Mean tide level at time t 1224.00 22.500
 Change in sea level from time 0 to time t 662.50 12.200
 TSW elevation at time t 201.90 3.720
 TSW elevation at time 0 96.30 1.770
 Mean tide level at time 0 16.31 0.301
 Elevation capital at time 0 14.88 0.274
 Mean high water at time 0 minus mean tide level at time 0 11.66 0.215
 Year 9.51 0.175
 Accretion rate t time 0 5.71 0.105
 Mean high water at time 0 0.04 0.001

Sensitivity of lateral migration resilience
 Current TSW extent 47590.00 46.600
 Upslope migration capacity at 1.5-m sea-level rise 6718.00 6.580
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resilience) will decrease over time with sea-level 
rise. This included high vertical resilience for Grays 
Harbor, WA (highest by 2100) using the Bayesian 
approach which was similar to Thorne et al. (2018). 
The lowest vertical resilience was at Bolinas Lagoon, 
CA by 2100, also similar to published results (Thorne 
et  al. 2018). Also, Buffington et  al. (2021) modeled 
two sites (Browns Island and Petaluma River) in 
San Francisco Bay-Delta that overlapped with our 
analysis, and we found that our results were similar 
to theirs for both sites, projecting the loss of eleva-
tion capital before 2100 (Fig.  5). However, Buffing-
ton et  al. (2021) did not address lateral resilience 
explicitly.

Testing and improving the model presented here 
can benefit from monitoring sites and conducting 
research on key variables and their relationships, par-
ticularly those most uncertain but that have greater 
sensitivity influence on resiliency predictions, such 
as those affecting and affected by sediment accre-
tion rate. In addition are the very likely effects on 
TSW resilience from unknown and unstudied latent 
variables, and from impacts of infrequent but intense 
events such as storm surge events (Tebaldi et al. 2012; 
Neumann et  al. 2015; Caffrey et  al. 2018). As well, 
there may be threshold effects or “tipping points” 
of sea-level rise beyond which TSW resilience may 
be unrecoverable (Wagener 2020). Our model, how-
ever, does not currently denote such potential abrupt 
changes in our predictions of TSW resilience (Fig. 4) 
but could be modified to include them as more infor-
mation becomes available.

Our model is based on the fullest set of site data 
available at the time of the analysis, constituting 147 
sediment core samples among 26 TSWs within 16 
estuary drainage areas. Although this data set repre-
sents the results of major field sampling efforts, it is 
likely too sparse to use for a reliable cross-validation 
analysis of the BN model, given the variability among 
the sample values. This is a common limitation of 
landscape-level analyses. We recommend expanding 
the data set, as feasible, to include additional TSWs of 
diverse conditions, focusing, in part, on sites that may 
be experiencing greater short-term loss of resilience 
based on their geographic setting as discussed fur-
ther above. The new data then can be integrated into 
the BN model to incrementally test, and then update, 
the model probability parameters. Further, segments 
of the BN model could be separately evaluated for 

validity, such as estimates of future mean tide level, 
TSW elevation, and accretion rates.

Using our predictions of TSW resilience to sea-
level rise carries the caution to land managers that 
various additional stressor factors as noted above are 
not explicitly part of our BN model. However, we 
do suggest that our model structure is novel and our 
results could be useful for initially considering pri-
oritizing sites for management decisions, for several 
reasons. First, the BN model explicitly shows how 
missing or incomplete information can propagate 
through the network as uncertainty, which can be use-
ful for risk analysis and risk management decision-
making. Second, the model provides information on 
the rate and the degree to which different TSWs, or 
core sample location sites within, may lose their resil-
ience to sea-level rise (examples given above), and 
thus to help prioritize sites for management consider-
ation. Third, the model can help suggest priorities for 
future inventory, monitoring, and research on param-
eters that are most uncertain and that can most affect 
resilience outcomes.

Our data set on TSWs included specific values 
of each input variable in the BN model (the yellow 
nodes in Fig. 3), so the posterior probability calcula-
tions are deterministic measures of TSW resilience 
(Fig.  5). However, the BN model can also provide 
measures of uncertainty in several ways. If any of the 
input data values are missing or uncertain, then the 
model can still be run by using the default prior prob-
ability distribution of that variable, as calculated from 
the set of TSW cases where those values are known, 
or by individually specifying a particular distribution 
of values for that TSW. Also, we ran the model for 
each core sample individually in each TSW (Supple-
mentary Information Figs. B1–B22), so the spread of 
those results on elevation resilience can be viewed as 
measures of variation or uncertainty for each TSW.

Our projections to future decades assume that 
physiographic and management conditions at each 
TSW are unchanged over time. Clearly, specific man-
agement actions could be considered (e.g., Zhao et al. 
2016), especially for sites losing resilience the soon-
est, that may serve to slow or stabilize resilience loss. 
Examples may include management intended to cur-
tail loss of TSW elevation capital resilience, such as 
by addition of sediment or vegetation and nutrients 
to stabilize the substrate (Stagg et al. 2016). Loss of 
migration resilience could be offset by removal of 



3077Landsc Ecol (2023) 38:3061–3080 

1 3
Vol.: (0123456789)

levees to allow for lateral movement of the wetland, 
along with appropriate land acquisition and other site 
restoration actions. Other actions may be feasible.

In summary, in the spirit of Bayesian learning 
whereby predictions are improved by incorporating 
additional knowledge, our resilience prediction model 
is intended to be updated, and predictions enhanced, 
over time with new site data. As management activi-
ties change over time, they could be incorporated into 
the model or the model updated into a fuller, explicit 
decision structure.
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