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Abstract 
Context Previous studies developed distance-
weighted regression to describe how land use effects 
on aquatic systems attenuate with arrangement of 
source areas within catchments.
Objectives We clarify and extend the conceptual 
foundations of this approach, enhance the spatial and 
statistical methods, and provide new tools to interpret 
the results.
Methods We derive the framework from first prin-
ciples to resolve conceptual issues with how weight-
ing is applied to source area versus total area, and 
we formalize the requirements for an ideal weighting 
function. We quantify the spatial distributions of land 
areas in a way that integrates with model fitting. We 
adapt non-linear optimization to simultaneously fit 

regression and weighting parameters. We quantify the 
spatial distribution of source effects with arrangement 
and document how different weighting functions alter 
that distribution.
Results To verify their utility, we applied these 
methods to a published analysis relating polychlorin-
ated biphenyls in fish to developed land use in catch-
ments. We identified a stronger distance-weighted 
model and more completely characterized the effects 
of weighting on where aquatic impacts originate.
Conclusions Our methods enable more comprehen-
sive analyses of the effects of spatial arrangement to 
better inform a wide range of scientific investigations 
and applications. Our methods can relate almost any 
spatially distributed source or driver to an integrated 
response at a point or along a boundary; and alternate 
hypotheses about the effects of pattern or proximity 
on processes can be tested with alternative weight-
ing functions. New applications will generate addi-
tional weighting functions that enhance the general 
approach.

Keywords Distance weighting · Land use 
regression · Catchment pattern · Spatial arrangement · 
Aquatic impact

Introduction

Freshwater and estuarine ecosystems are intimately 
connected to their catchments (Hynes 1975; Johnson 

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10980- 023- 01706-x.

D. E. Weller (*) 
Smithsonian Environmental Research Center, 647 Contees 
Wharf Rd., Edgewater, MD 21037-3702, USA
e-mail: wellerd@si.edu

M. E. Baker 
Department of Geography and Environmental Systems, 
University of Maryland Baltimore County, 211 Sondheim 
Hall, 1000 Hilltop Circle, Baltimore, MD 21250, USA

R. S. King 
Department of Biology, Baylor University, One Bear Place 
#97388, Waco, TX 76798-7388, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-023-01706-x&domain=pdf
http://orcid.org/0000-0002-7629-5437
http://orcid.org/0000-0001-5069-0204
http://orcid.org/0000-0002-3159-9816
https://doi.org/10.1007/s10980-023-01706-x
https://doi.org/10.1007/s10980-023-01706-x


2688 Landsc Ecol (2023) 38:2687–2703

1 3
Vol:. (1234567890)

et  al. 1997). Hydrologic behavior (Rinaldo et  al. 
1995), biophysical processes, and ecological func-
tions (Black 1997; Johnson et al. 1997; Benda et al. 
2004) are all related to the geomorphology of the 
collection basin. Given these connections, land use 
within catchments can have strong impacts on aquatic 
ecosystems.

Many studies have estimated land use impacts by 
relating aquatic responses to catchment land use pro-
portions (Osborne and Wiley 1988; Allan et al. 1997; 
Herlihy et al. 1998; Liu et al. 2000; King et al. 2005, 
2007; Goetz and Fiske 2008; Jordan et  al. 2018), 
often by applying a linear regression across a sample 
of catchments:

where C is an aquatic response, such as the concen-
tration (mass per unit volume) of a material in the 
receiving water, F is the fraction (proportion) of a 
catchment occupied by the land use that is the source 
of the material, and β0 and β1 are fitted regression 
coefficients. Both regression coefficients have units 
of the response (mass/volume for a concentration 
response), and the land proportion F is dimension-
less. For simplicity, we focus on the case where the 
effect originates from a single land use, here called 
the source land.

For a concentration response, the regression 
parameter β1 can be interpreted by defining the mass 
M of material released from source land in a catch-
ment as M = mS, where S is the area of source land 
and m is mass release per unit area. The entire catch-
ment delivers a volume of water V to the receiving 
water as described by V = vA , where A is the total 
area of the catchment and v is the water yield (volume 
per unit area). Then,

where q = m∕v is the concentration loading rate (in 
mass  volume−1  area−1), and F is the proportion of 
source land relative to total catchment area. Regres-
sion parameter β1 in Eq. (1) provides a statistical esti-
mate of the conceptual loading rate q in Eq. (2).

The regression approach has been modified to 
evaluate how aquatic responses to land use are mod-
erated by spatial factors, such as transport distance 
or the arrangement of source land relative to sink 

(1)C = β0 + β1F

(2)C =
M

V
=

mS

vA
= q

S

A
= qF

ecosystems like riparian buffers, floodplains, or 
stream corridors (Bohlke and Denver 1995; Low-
rance et al. 1997; O’Neill et al. 1997; Omernik et al. 
1981; Sponseller et al. 2001; Weller et al. 1998, 2011; 
Weller and Baker 2014).

To account for transport distance, many studies 
have replaced land use or impervious surface pro-
portions with “effective” proportions derived from 
weighting by distance (Comeleo et  al. 1996; Van 
Sickle and Johnson 2008; Walsh and Kunapo 2009; 
Peterson et al. 2011; Peterson and Pearse 2017; Walsh 
and Webb 2014). Some studies implemented an atten-
uation function within a geographic information sys-
tem (GIS) calculation (Hunsaker and Levine 1995; 
Soranno et  al. 1996; Zhang 2010). Other studies 
separated spatial analysis from weighting by divid-
ing catchments into distance increments, tabulating 
total and source areas within each band, and fitting 
different weighting models using that tabular sum-
mary (King et al. 2004, 2005; Zhang 2010). With this 
enhancement, GIS calculations need not be repeated 
for each weighting considered, but using just a few 
bands can sacrifice distance resolution and reduce the 
accuracy of the analysis.

Inverse power distance weighting (1/d, where d 
is distance) is the most widely used weighting func-
tion (Comeleo et  al. 1996; Goetz and Fiske 2008; 
Peterson et al. 2011), but step, exponential and linear 
weighting functions have also been used (e.g., Van 
Sickle and Johnson 2008; Walsh and Webb 2014). Far 
more studies have implicitly used distance weighting 
by only considering land use within a fixed distance 
from a response point (Osborne and Wiley 1988; 
Johnson et al. 1997; Tufford et al. 1998; Jones et al. 
2001; Sponseller et  al. 2001; Snyder et  al. 2003), 
often implemented with the “buffer” function of a 
GIS package.

Most studies have used a weighting calculation 
that applies distance weights to total area as well to 
as source area (King et  al. 2004, 2005; Van Sickle 
and Johnson 2008; Peterson et  al. 2011; Sheldon 
et  al. 2012; Walsh and Webb 2014), but some have 
left total area unweighted (e.g., Comeleo et al. 1996; 
Walsh and Kunapo 2009). The implications of how 
total area is weighted have not been explored.

Weighting function parameters have not been esti-
mated with statistical rigor. King et al. (2004) tested 
three inverse power functions and chose one that 
yielded the greatest improvement in model R2. Others 
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sought optimum weighting function parameters by 
trying a set of values, creating contours of model skill 
versus parameter value, and visually identifying the 
value maximizing model skill (Hunsaker and Levine 
1995; Soranno et  al. 1996; Van Sickle and Johnson 
2008; Zhang 2010; Walsh and Webb 2014). No stud-
ies have optimized the weighting function parameters 
simultaneously with the slope and intercept in land 
use regression.

Past studies have not effectively quantified how 
weighting changes inferences about where land use 
impacts originate within catchments. Most interpre-
tations have been based on plots of the weighting 
function versus distance (King et  al. 2004, 2005) or 
on the “half distance” at which an effect is reduced 
by 50% (Van Sickle and Johnson 2008; Walsh and 
Webb 2014). These approaches do not account for the 
effects of weighting total land as well as source land, 
nor do they consider how weighting interacts with the 
distance distributions of source and total land.

In this paper, we clarify and extend the conceptual 
foundation of distance-weighted land use regression, 
enhance the spatial and statistical methods, and pro-
vide new tools for understanding spatial patterns. We 
apply these new methods to a published analysis to 
illustrate the improved understanding they provide.

Methods

Conceptual foundations of distance weighting

Derivation of weighted land use regression

Distance-weighted regression is very general and can 
be applied to many problems where an effect propa-
gates from sources to impact points. To simplify the 
derivation, we focus on a material of interest released 
from a single source land use type and transported 
hydrologically to an aquatic measurement point. The 
derivation accounts for non-conservative transport 
and dilution while assuming that the system is at 
steady state so that transport time need not be con-
sidered explicitly. We provide a list of mathematical 
symbols (Table S1) to help interpret the equations.

To account for arrangement effects on an aquatic 
response C, we divide catchments into bands, each 
defined by its distance d from the receiving water. 
The number of bands is B while sb and ab are the 

areas of source and total land in band b. Summing 
across the bands recovers the catchment total source 
area S and catchment area A.

Distance weighting hypothesizes that source land 
further from the receiving water delivers less mate-
rial than closer source land. We implement this by 
multiplying the source area sb in the numerator by a 
distance weighting function w(d) that declines with 
distance d from the receiving water. Distant land may 
also deliver less water than closer land, so we multi-
ply the denominator by another function that declines 
with distance x(d) . The expression for concentration 
in the receiving water becomes

The quantity G is the “distance-weighted source pro-
portion” or “effective source proportion”—the pro-
portion of catchment area occupied by source land 
after adjusting for the effects of distance on the deliv-
ery of material and water to the receiving water. We 
refer to the use of different numerator and denomina-
tor weighting functions [w(d) and x(d)] as “separate 
weighting.” Conceptually, the numerator accounts 
for attenuating, non-conservative transmission of 
the material or effect from source land to the receiv-
ing water, while the denominator accounts for non-
conservative transmission of water or other diluting 
effects from all the land.

Incorporating Eq. (4) into regression Eq. (1) yields 
the weighted of concentration or aquatic response to 
land use

where the regression coefficient β1 provides a statisti-
cal estimate of the conceptual loading rate q.

Two published weighting approaches are special 
cases of Eq.  (5). If water delivery attenuates with 
distance the same way as material delivery, then 
the denominator weighting function is the same as 
the numerator weighting function [x(d) = w(d)] and 
Eq. (5) simplifies to

(3)C =

∑B

b=1
msb

∑B

b=1
vab

= q

∑B

b=1
sb

∑B

b=1
ab

= q
S

A
= qF

(4)C =

∑B

b=1
msbw(db)

∑B

b=1
vabx(db)

= q

∑B

b=1
sbw(db)

∑B

b=1
abx(db)

= qG

(5)C = �0 + �1

∑B

b=1
sbw(db)

∑B

b=1
abx(db)

= �0 + �1G
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This represents the “double weighting” method that 
has been most widely applied (King et al. 2004, 2005; 
Van Sickle and Johnson 2008; Peterson et  al. 2011; 
Sheldon et  al. 2012; Walsh and Webb 2014). If the 
denominator weighting function x(d) has a constant 
value of 1 rather than declining with distance, then 
Eq. (5) simplifies to

This equation incorporates the weighting method 
applied by Comeleo et  al. (1996) and Walsh and 
Kunapo (2009), which implicitly assumes that water 
delivery or other diluting effects do not attenuate with 
distance (“single weighting”). Finally, if w(d) also 
equals 1, then Eq. 7 reduces to the unweighted rela-
tionship (Eq. 2) and G = F.

No assumption about the attenuation of water with 
distance can be universally correct. One can avoid 
both assumptions by statistically fitting separate func-
tions for the numerator and denominator (Eq.  4), 
allowing the data to indicate how much the diluent is 
attenuated.

Weighting functions

Four weighting functions have been applied (King 
et  al. 2004, 2005; Van Sickle and Johnson 2008; 
Walsh and Kunapo 2009; Walsh and Webb 2014):

Step function with threshold ts

Linear function with threshold tl

Exponential function with constant k

Power function with power p

(6)C = �0 + �1

∑B

b=1
sbw(db)

∑B

b=1
abw(db)

= �0 + �1G

(7)

C = �0 + �1

∑B

b=1
sbw(db)

∑B

b=1
ab

= �0 + �1

∑B

b=1
sbw(db)

A

(8)w(d) =

{
1, d < ts
0, d ≥ ts

(9)w(d) =

{
1 − d∕tl, d < tl

0, d ≥ tl

(10)w(d) = e−kd

Each of these has a single fitted parameter (ts, tl, k, 
or p). We also tested a generalized threshold function 
that can represent concave, convex, linear, and step 
functions (see Supplemental Information).

An ideal proximity weighting function has three 
characteristics: declines with distance d, approach-
ing 0 as d gets large; is 1 (no distance effect) at 
d = 0, and yields the same model results regardless 
of the units of distance measurement (scale invari-
ance). The last condition can be met if changing 
units does not change the weighted source propor-
tions G or if changing units multiplies the weighted 
proportion of every catchment by a constant γ so 
that regression with the rescaled data yields the 
same intercept and fit statistics as the unscaled data, 
but with rescaled slope β1∕γ . The step, linear, and 
exponential functions meet all three criteria. The 
inverse distance function d−p meets two criteria 
but is discontinuous at d = 0. A modified version, 
(d + 1)−p (Van Sickle and Johnson 2008; Peterson 
et al. 2011; Sheldon et al. 2012; Peterson and Pearse 
2017) is 1 at d = 0 but can yield different results in 
statistical models if the distance measurement units 
are changed. We also tested two other modified 
power functions that do meet all three criteria (see 
Supporting Information).

Spatial distributions of weighted source land 
and delivered materials

The proportion of source land in distance band b 
expressed as a fraction of the total catchment area is

Without distance weighting, the contribution of band 
b to material concentration at the response point is

The sum across bands 
∑B

b=1
fb is the overall fraction of 

source land in the catchment (F) and the sum 
∑B

b=1
cb 

is the concentration in the receiving water (C).

(11)w(d) =
1

dp
= d−p

(12)fb =
sb

A

(13)cb = qfb = q
sb

A
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The proportion of distance-weighted source land 
gb in band b as a fraction of distance-weighted total 
catchment area is

And the weighted contribution hb of the band to 
delivered concentration H in the receiving water is

The sum across bands 
∑B

b=1
gb is the weighted catch-

ment source proportion (G) and the sum 
∑B

b=1
hb 

(plus β0) is the weighted concentration delivered to 
the receiving water (H). These equations are concep-
tually related to the “width function” describing the 
distribution of basin area with distance from the out-
let (Rinaldo et al. 1995). In the regression model, β1 
provides a statistical estimate of the loading rate q so 
hb = β1gb can be used to interpret the spatial distribu-
tion of material source for the regression model.

When applied across the distance bands of a 
catchment, Eq.  (14) captures the combined effect 
of the spatial distributions of source and total land, 
weighting of source land, and weighting of total 
land on the spatial distribution of effective source 
land. Equation (15) provides the same integration to 
capture the combined effects on the spatial distribu-
tion of material delivery.

The relationships in Eqs. (14) and (15) help visual-
ize and summarize the spatial distributions of source 
land and delivered materials in a catchment as well as 
to quantify how those distributions shift in a weighted 
analysis compared to an unweighted one. Plot-
ting weighted source land proportion minus actual 
source land proportion against distance reveals where 
weighting increases or decreases effective source 
proportion relative to actual source proportion. Simi-
larly, plotting hb − cb reveals how weighting shifts the 
distances from which materials are delivered to the 
receiving water.

Weighted source land proportion minus actual 
source land proportion is

(14)gb =
sbw(db)

∑B

b=1
abx(db)

(15)hb = �1gb = �1
sbw(db)

∑B

b=1
abx(db)

At high distances, w
(
db
)
 approaches 0, so gb − fb 

approaches a negative value ( −sb∕A) . At the distance 
where w

(
db
)
 = 
�∑B

b=1
abx

�
db
��
∕A , the term in brack-

ets is 0 so that gb = fb and their difference is zero. 
Below that distance, the weighted source proportion 
gb is greater than unweighted proportion fb , while 
above that distance the weighted proportion gb is less 
than unweighted source proportion fb.

If the total land area in the denominator is not 
weighted (single weighting), then Eq. (16) simplifies 
to

Because w
(
db
)
 is a fraction, the term in brackets is 

always negative, so that with single weighting, the 
weighted proportion gb is less than the unweighted fb 
at all distances.

The same patterns apply to the difference in mate-
rial delivery between weighted and unweighted mod-
els because material delivery is simply the constant q 
times weighted proportion (Eq. 16).

Realized weighting function

We define the “Realized weighting” yb for a band b 
as the ratio of weighted source proportion gb for that 
band (Eq. 14) to the unweighted source proportion fb 
for that band (Eq. 13)

(16)

gb − fb =
sbw

�
db
�

B∑
b=1

abx
�
db
�
−

sb

A
= sb

⎡
⎢
⎢
⎢
⎢⎣

w
�
db
�

B∑
b=1

abx
�
db
�
−

1

A

⎤
⎥
⎥
⎥
⎥⎦

(17)gb − fb =
sbw

(
db
)

A
−

sb

A
= sb

[
w
(
db
)
− 1

A

]

(18)

hb − cb = qsb

⎡

⎢

⎢

⎢

⎢

⎣

w
(

db
)

B
∑

b=1
abx

(

db
)

− 1
A

⎤

⎥

⎥

⎥

⎥

⎦

= �1sb

⎡

⎢

⎢

⎢

⎢

⎣

w
(

db
)

B
∑

b=1
abx

(

db
)

− 1
A

⎤

⎥

⎥

⎥

⎥

⎦
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The realized weighting function yb is simply a 
constant (J) times the distance weighting function 
w(db) , but that constant differs among catchments. 
The term A∕

∑B

b=1
abx(db) is the ratio of unweighted 

to weighted total catchment area. For each catchment, 
this ratio takes a unique value (J) that depends on 
weighting function x(db), catchment area A, and the 
distance distribution of total area within that catch-
ment (the width function, Rinaldo et al. 1995). With 
an ideal weighting function, weighted total area is 
less than total area, so that the term is greater than 
one and amplifies the effect of the weighting func-
tion. The function yb takes the value 1 at the dis-
tance where w

(
db
)
= 1∕J . This point is helpful for 

interpreting the behavior of yb. At smaller distances, 
realized weighting yb is > 1, while yb < 1 at distances 
beyond this point.

New tools for implementing weighted regression

Geographic methods for quantifying spatial 
distributions

We quantified the distance distributions of source and 
total land for catchments using a GIS script that inte-
grates digital maps of land use or land cover, water 
bodies, and elevation to calculate the distance from 
each cell of the raster land use or land cover map to 
the receiving water body. The script can calculate 
Cartesian distance or distances along downhill flow 
paths. Raw distance values were divided by 10 and 
converted to integers to produce compact tabular 
summaries, which were exported to files with col-
umns for  catchment identifier, distance increment, 
total land, and source land. This method delivers dis-
tance distributions resolved to the precision of the 
land cover raster instead of lumping distances into a 
few bands defined by arbitrary, a priori ranges (as in 
King et al. 2004, 2005; Zhang 2011).

Improved regression methods

We implemented non-linear least squares regres-
sion for estimating weighting function parameters 

(19)

yb =
gb

fb
=

sbw(db)∑B

b=1
abx(db)

sb

A

= w
�
db
� A
∑B

b=1
abx

�
db
� = w

�
db
�
J

simultaneously with the regression slope and inter-
cept (Eq. 1). We used the R optimx package (Nash 
and Varadhan 2011), which includes algorithms 
that work well with discontinuous functions (e.g., 
Eqs. 8 or 9). optimx requires a user-supplied func-
tion to calculate the model residual sum of squares 
(RSS) for any values of the weighting and regres-
sion parameters. We wrote an R function that uses 
the tabular summaries of distances from the spatial 
analysis. It applies the weighting equation with the 
parameters supplied by optimx to all distance val-
ues, source areas, and total areas for each catch-
ment. Those weighted areas are summed for each 
catchment to produce a weighted source proportion 
G for each catchment. Then, the values of regres-
sion parameters β0 and β1 provided by optimx are 
applied to each weighted source proportion G to 
calculate a predicted response. Finally, observed 
values are subtracted from the predictions, squared, 
and summed for return to optimx.

We performed model comparisons based on 
information theory to contrast model performance 
for different weighting functions and to test hypoth-
eses about weighting (Akiake Information Crite-
rion, AICc, Burnham and Anderson 2002). We 
also calculated model probabilities (Akaike model 
weights) as a weight of evidence for the best model 
within a model set (Burnham and Anderson 2002).

Case study

Test data

To test our methods, we reanalyzed data from a 
published study of how the distance from devel-
oped land to the shoreline affected the concentra-
tion of polychlorinated biphenyls (PCBs) in the 
tissues of fish caught in 14 subestuaries of Chesa-
peake Bay (King et al. 2004). In that study, the dis-
tance between each land cover cell and the shoreline 
was calculated. Cartesian distance was used even 
though downhill flow path distance provides a bet-
ter description of hydrologic transport in most land-
scapes (King et  al. 2005; Baker et  al. 2006, 2007; 
Weller et al. 2011; Weller and Baker 2014), because 
flow path algorithms did not perform effectively 
for the very flat catchments of the subestuaries. 
For four possible measures of developed land cover 
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(total developed, high intensity residential plus 
commercial, commercial, and impervious surface) 
and for all land, the counts of pixels were aggre-
gated into seven distance classes. Subestuary aver-
age PCB concentration in fish was related to devel-
oped land covers using inverse distance-weighted 
regression. Percent commercial land, weighted by 
d−1, was the best predictor of PCBs in fish, and 
weighting increased R2 to 99% compared to 55% 
for unweighted commercial land. The study demon-
strated a strong spatial effect but left opportunities 
to improve the analysis and refine its interpretation. 
King et al. (2004) provide more details and results.

Catchment characteristics

We used the watershed boundaries and land cover 
data presented by King et al. (2004) but applied our 
new spatial analysis (above) to obtain more precise 
tabulations of the spatial distributions of the Carte-
sian distances from commercial land and all land to 
the subestuary. To visualize the distributions, we plot-
ted histograms of commercial land area and total land 
area versus distance to the subestuary using 200  m 
distance bins.

Model comparisons

We fit 15 weighted models to test hypotheses about 
distance weighting and to identify the most effective 
weighting functions. These 15 models reflect three 
ways of weighting the total area in the weighting 
equation (single, double, and separate) and four dis-
tance weighting functions (step, linear, exponential, 
and power) plus the unweighted model. For the power 
function, we used (d + 1)−p instead of d−p. We quan-
tified model performance with four metrics (RMSE, 
R2, AICc, and Akaike model weight). We compared 
models within three subsets that were selected to 
answer three questions:

• Is there evidence for an arrangement effect?
• How should total land be weighted?
• What is the best weighting function?

How does weighting affect apparent land use 
proportions?

For each weighting function, we quantified how 
weighting changed the catchment proportion of 
weighted source land (G) relative to the unweighted 
proportion (F) as well as weighted material concen-
tration (H) relative to the unweighted concentration 
(C). We also plotted predicted material concentration 
versus weighted source proportion (G) for the 14 sub-
estuaries along with the fitted regression line to show 
how weighting affected the strength of association 
and the magnitude of residuals around the fitted line.

Where in the system do materials originate?

For models with four weighting functions as well as 
the unweighted model, we visualized the spatial dis-
tributions of how weighting shifts source land pro-
portions (gb − fb, Eq. 16) and contribution to material 
concentration (hb − fb, Eq. 18) using histograms with 
200 m distance bins. We examined aggregate distance 
distributions for all the catchments together to focus 
on the differences among models, and we examined 
them for individual catchments to reveal how weight-
ing functions interact with differences in catchment 
land use patterns.

Evaluation of extreme observations

Like King et al. (2004), we repeated the analysis after 
omitting two systems with distinctly high PCB to ver-
ify that key results do not depend on extreme values 
(see Supporting Information).

Results of the case study

Distance distributions of source land and total land

The catchment areas of the 14 subestuaries ranged from 
46 to 662  km2 and summed to 2720  km2. The propor-
tion of commercial land ranged from 0.25 to 13.9% 
among the catchments and was 4.33% of the summed 
study area. GIS analysis of distances to shoreline yielded 
4715 unique increments ranging from 30 to 47,180 m as 
well as the areas of commercial and total land at each 
distance for each catchment. The distributions of total 
and commercial land areas versus distance from the 
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subestuary for two example catchments illustrate differ-
ences among catchments in size, shape, and the spatial 
distributions of source and total area (Fig. 1). Watershed 
32 was larger than catchment 29, and the distribution of 
catchment area declined much less strongly with dis-
tance in watershed 32. Commercial land in watershed 32 
was concentrated very close to the subestuary, while the 
peak in commercial land area for watershed 29 occurred 
at some distance from the subestuary.

Model comparisons

AICc-based model comparisons within subsets of 
models addressed the specific hypotheses or ques-
tions represented in the headings and tables pre-
sented below.

Is there an arrangement effect?

There was very strong evidence that spatial arrange-
ment is important for the test data. Among dou-
ble-weighted models with four different weighting 
functions, even the poorest lowered AICc by 43.0 
compared to the unweighted model (Table 1), trans-
lating to a model probability of 1.0 for the weighted 
model compared to 0.0 for the unweighted. Any of 
the models was overwhelmingly more likely than 
the unweighted model, providing rigorous, probabil-
istic evidence that spatial arrangement is important 
and should be included in relating land use to the 
observed PCB concentrations in fish.

How should total land be weighted?

For the test data, there was strong support for double 
weighting (Eq. 6) and virtually no support for single 
weighting (Eq. 7). With double weighting, any of the 
weighting functions (Eqs. 8–11) provided a far better 
explanation of the data than the unweighted model 
(Table 2) improving R2 from 51% to at least 98% and 
lowering AICc by at least 43.0. None of the weighting 
functions applied with single weighting provided any 
increase in R2 and all had higher AICc values than the 
unweighted model (see also Supporting Information).

The test data did not support separate weight-
ing parameters for the numerator and denomina-
tor of the weighting function. Across all weighting 

Fig. 1  Distributions of watershed area (gray) and commercial 
land area (black) versus distance from the subestuary for the 
watersheds of two numbered subestuaries and for the aggregate 
of all study watersheds

Table 1  Performance metrics and model parameters for the unweighted model and for double-weighted models of the test data with 
five different weighting functions

a ΔAICc relative to the best model, positive indicates poorer model

Weighting function R2 AICc ΔAICca wi β0 SE β0 β1 SE β1 t SE t k SE k p SE p

Unweighted 0.511 181.3 55.0 0.000  − 8.11 44.09 2720 768
Step 0.993 126.3 0 0.912  − 0.46 5.07 1670 50 1606 94
Linear 0.990 131.3 5.0 0.075  − 1.04 6.27 1662 73 2405 350
Exponential 0.986 135.2 8.9 0.011  − 1.95 7.20 1665 86 0.0010 0.0002
Power 0.983 138.4 12.1 0.002 25.33 8.38 2120 143 0.798 0.052
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functions, fitting separate weighting functions (which 
added a parameter to any weighted regression model) 
increased R2 at most by 0.0032 and raised rather than 
lowered AICc, which increased between 1.2 and 5 
above the unweighted model (Table  3). Also, fitted 
parameters of the separate weighting functions in the 
numerator and denominator were similar.

What is the best weighting function?

With double weighting, the step function provided 
the best model among the four candidate functions 
(Table  1). The AICc for the step function was 5.0 

lower than for the next best fit, the linear function. 
Relative probabilities were 0.91 for the step func-
tion and 0.08 for the linear function. Exponential and 
power weighting functions performed more poorly, 
with ΔAICc values of 8.9 and 12.1 and model prob-
abilities of 0.01 and 0.002, respectively. When the 
two subestuaries with the highest PCB levels were 
removed, the step function still provided the strongest 
model, but its AICc differences with the linear, expo-
nential, and power functions were reduced (ΔAICc 
1.3, 1.9, and 4.2, respectively, Table S7).

Table 2  Comparison of models of the test data using single or double distance weighting

a ΔAICc relative to the unweighted model, negative for better models and positive for poorer

Weighting function R2 AICc ΔAICca β0 β1 t k p

Unweighted model
 Unweighted 0.511 181.3 0.00  − 8.11 2720

Single-weighted models
 Step 0.511 185.4 4.04  − 8.11 2720 50,000
 Linear 0.511 185.4 4.04  − 8.10 2720 1.5E + 10
 Exponential 0.511 185.4 4.04  − 8.11 2720 0
 Power 0.511 185.4 4.04  − 8.11 2720 0

Double-weighted  models
Step 0.993 126.3  − 55.04  − 0.46 1670 1606
 Linear 0.990 131.3  − 50.04  − 1.04 1662 2405
 Exponential 0.986 135.2  − 46.11  − 1.95 1665 0.00103
 Power 0.983 138.4  − 42.97  − 25.33 2120 0.798

Table 3  Comparison of models for the test data using double or separate distance weighting

a ΔAICc relative to double weighting, positive if separate weighting is poorer

Weighting type R2 AICc ΔAICca wi β0 β1 t td k kd p pd

Step  function
 Double 0.99281 126.3 0 0.87  − 0.46 1670 1606
 Separate 0.99344 130.1 3.8 0.13  − 2.68 1891 1641 1918

Linear function
 Double 0.98973 131.3 0 0.64  − 1.04 1662 2405
 Separate 0.99221 132.5 1.2 0.36  − 2.90 2340 2039 3301

Exponential function
 Double 0.98641 135.2 0 0.65  − 1.95 1665 0.00103
 Separate 0.98965 136.5 1.2 0.35  − 5.13 2742 0.00129 0.00066

Power function
 Double 0.98298 138.4 0 0.92  − 25.33 2120 0.798
 Separate 0.98303 143.4 5.0 0.08  − 24.33 1863 0.784 0.806
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How does weighting affect apparent land use 
proportions?

Different weighting functions applied in double-
weighted models reduced effective source and 
total areas by differing degrees. Compared to the 
unweighted total area of 2720  km2, weighted total 
areas for step, linear, exponential, and power func-
tions were reduced to 750, 594, 486, and 116  km2, 
respectively, while commercial land area was reduced 
from the unweighted 118  km2 to 42.3, 33.4, 27.4, and 
0.71  km2, respectively. Smaller and smaller fractions 
of the catchment appeared to contribute to material 
delivery as the strength of weighting increased, and 
the contributing fraction of catchment was especially 
small with inverse distance weighting.

Weighted commercial land cover proportions (G) 
were higher than unweighted proportions (F) for 
some catchments and lower for others (Figs.  2, S4; 
Table S8). All four weighting functions increased G 
relative to F for watershed 32 and did the opposite 
for watershed 29. Watershed 3 and 4 showed smaller 
changes. The remaining watersheds had lower com-
mercial land proportions that were not shifted much 
by weighting.

Shifts in G relative to F increased the correlation 
of the dependent variable (PCB concentration) with 
G compared to the correlation of PCB with F, thus 
increasing the explanatory power (R2) of weighted 
compared to unweighted regressions (Fig. 2; Table 1). 
The increase in G relative to F for watershed 32 had 
the strongest leverage in increasing the correlation of 
PCB versus G compared to the correlation of PCB 
versus F and in yielding a stronger weighted regres-
sion (higher R2, lower AICc) with narrower confi-
dence limits compared to the unweighted regression. 
The decrease in G relative to F for watershed 29 had 
the next strongest effect, followed by watersheds 4 
and 3.

Where in the system do materials originate?

Distance weighting changed where PCBs appeared 
to originate within the study catchments. The four 
weighting functions had different effects, and the 
effects of each function differed among catchments.

All weighting functions increased weighted 
source proportions (gb) relative to simple proportions 
(fb) for small distances while decreasing weighted 

proportions relative to simple proportions at larger 
distances (Fig. 3). The power function generated the 
greatest increases in effective proportion at small 
distances, followed in order by the exponential, lin-
ear, and step functions. The same patterns were seen 

Fig. 2  Regressions of PCB concentration versus commercial 
land proportion (blue lines with gray confidence intervals) for 
unweighted proportions and for weighted proportions from 
four different distance weighting functions applied with double 
weighting. Four numbered watersheds are highlighted in red. 
Grey lines show how distance weighting shifts the commercial 
land proportions from their unweighted values (gray dots) to 
distance-weighted values (black or red dots)
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in other measures: material delivery (hb) (Fig.  3), 
the minimum distance needed to supply certain per-
centages of material delivery (Table  S9), and the 
cumulative distribution of delivery (Fig.  4). In the 
unweighted model, land less than 2811  m from the 

subestuary supplied half of the material delivery 
across the entire study area, while the step function 
model indicated land less than 516 m supplied half of 
material delivery. The distance decreased further to 

Fig. 3  Distance distributions of four measures of material 
source strength for the aggregate of all study watersheds. The 
measures are (top) distance-weighted commercial land pro-
portion (gb), (second row) distance-weighted material source 
strength (hb), (third row) the ratio hb/cb of weighted material 
delivery to unweighted material delivery (the realized weight-

ing), and (bottom) the difference between distance-weighted 
material delivery and unweighted material delivery (hb − cb). In 
the lower two panels, data for distances where weighted deliv-
ery is greater than or equal to unweighted delivery (hb ≥ cb) are 
shown in black, while data for distances where weighted deliv-
ery is less than unweighted delivery (hb < cb) are shown in red
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413, 351, and 101 m for the linear, exponential, and 
power functions, respectively (Fig. 4, Table S9).

The distributions of material delivery relative to the 
unweighted model ( hb − cb , Eq. 18, Fig. 3) for individual 
catchments (Fig.  4) also explain how weighting inter-
acted with the distributions of source land and total area 
to produce shifts in G relative to F (Sect. 3.3). The great-
est change with all four weighting functions was a more 
than threefold increase in G relative to F for watershed 
32 (Figs. 2, S4; Table S8). The subestuary of watershed 
32 had the highest measured PCB concentration and its 
distributions of land were unusual (Fig. 1). The distribu-
tion of source (commercial) land fb versus distance had 
a strong peak at small distance (around 300 m), reflect-
ing higher prevalence of source land near the subestuary 
shorelines than in the aggregate of all the catchments. In 
addition, the distribution of catchment area in watershed 
32 fell off more slowly with distance than in the other 
watersheds because a greater fraction of total catchment 
area was further from the subestuary than in the aggre-
gate. Weighting functions that increased effective propor-
tion gb relative to simple proportion fb at small distances 
strongly increased overall effective proportion G in this 
catchment where source land was more prevalent near 
the subestuary. Watershed 32 had very high values of 

gb − fb and hb − cb at small distances with any weighting 
function (Fig. 5).

Watershed 29 showed the next greatest change in 
G relative to F, but in the opposite direction: G was 
reduced to roughly half of F by any of the weighting 
functions (Fig. 2, Figure S4, Table S8). In watershed 
29, the peak of the distribution of commercial land 
relative to distance was at larger distances, peaking 
around 2900 m (Fig. 1). Compared to watershed 32, 
less commercial land occurred close to the subestu-
ary where weighting increased effective proportions 
gb relative to fb, whereas more occurred farther away 
where weighting reduced gb relative to fb (Fig.  5). 
Watershed 32 showed big gains in gb and hb at small 
distances and minor changes in gb and hb at larger dis-
tances. This led to the large increase in G relative to 
F. In contrast, low fb values close to the subestuary in 
watershed 29 provided little opportunity for weight-
ing to yield high gb values, but weighting did lead to 
large reductions in gb relative to fb at larger distances 
where much commercial land was located (Fig. 5).

Realized weighting

Realized weighting for any of the weighting functions 
(black lines, Figure S7) emphasized nearby land relative 
to distant land even more strongly than suggested by the 
weighting function alone (red lines, Figure S7). Exag-
geration of realized weighting relative to the weighting 
function was greatest for the power function and less for 
the exponential, linear, and step functions, in that order. 
Realized weighting also differed among catchments 
because the realized effect depends on the spatial dis-
tributions of both source and total land (Eq. 19), which 
differed among catchments. The ratio of realized weight-
ing to the weighting function was a distance-independ-
ent constant that differed among catchments (factor J in 
Eq. 19, Table S8).

Discussion

We have presented a comprehensive set of methodo-
logical improvements for fitting and interpreting spa-
tially weighted regressions relating land use to aquatic 
responses. We tested our methods by reanalyzing a pub-
lished data set to focus on the methodological enhance-
ments rather than on introducing new data. King et  al. 

Fig. 4  Cumulative fraction of total material delivery versus 
distance from a subestuary for the aggregate of all study water-
sheds. Cumulative distributions are shown for double-weighted 
models with four distance weighting functions as well as for 
the unweighted model
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(2004) had already documented that distance weighting 
yields strong increases in explanatory power for the test 
data. Our new methods were able to enhance an already 
strong published analysis by providing more rigorous 
answers to the following four questions:

Is there an effect of arrangement?

The first challenge for models incorporating land-
scape pattern is demonstrating an arrangement effect. 
Model comparison with AICc demonstrated that 
even the poorest of the four double-weighted mod-
els for the test data has a model probability of 1.0 
compared to an unweighted model–rigorous, proba-
bilistic evidence that spatial arrangement is impor-
tant and should be included in relating land use to 
the observed PCB concentrations in fish. The previ-
ous study reported that distance-weighted models 
increased R2 relative to unweighted models (King 
et  al. 2004), but that measure alone provides much 
weaker evidence for an arrangement effect.

What is the best weighting function?

Specifying the weighting function is also an impor-
tant step in spatially weighted regression. Most stud-
ies have just used inverse distance weighting (1/d). 
King et  al. (2004) tested inverse power functions 
(d−p) with three different p values. Other studies con-
sidered additional mathematical functions and esti-
mated weighting parameters with response surfaces 
created from small sets of possible values (Van Sickle 
and Johnson 2008; Walsh and Webb 2014). We tested 
several functions, optimized weighting and regression 
parameters simultaneously, and compared models 
with AICc. For the test data, we identified an inverse 
distance power function with p = 0.80 that gave a 
stronger weighted model (model probability = 0.92, 
Table  S3) than originally reported with p = 1 (King 
et al. 2004). Furthermore, exponential, step, and lin-
ear weighting functions all produced even stronger 
models.

Fig. 5  Changes in PCB delivery with distance in double-
weighted models with four distance weighting functions rela-
tive to the unweighted model, calculated as weighted delivery 
minus unweighted delivery (hb − cb) at each distance. Black 
bars show how much weighted delivery exceeds unweighted 

delivery, while red bars show how much weighting reduces 
delivery relative to the unweighted model. Distributions are 
shown for the watersheds of two subestuaries and for the 
aggregate of all the watersheds
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A step function gave the best distance-weighted 
model for the test data. Considering only land use 
within a fixed distance is a simple idea that is easy to 
implement with the GIS “buffer” function, making it 
the most common way to represent a greater impact 
of nearby land than distant land. However, our results 
do not support this method because our implemen-
tation of the step function has important differences 
from applying a fixed width buffer. We treated the 
threshold distance for the step function as a parameter 
to be estimated from the data rather than an arbitrar-
ily, a priori value; and the step function was judged 
best only when it excelled compared to other func-
tions. This approach brings the idea of a fixed zone of 
impact under the more general and rigorous umbrella 
of spatially weighted regression.

The best weighting function will likely differ 
among data sets that represent different variables 
and processes. For some problems, a priori consid-
erations may suggest a particular weighting function. 
For example, the exponential weighting function can 
represent a distance effect arising from a first order 
uptake process while inverse distance models are 
often used for processes like seed dispersal (Canham 
and Uriarte 2006). We recommend comparing models 
with different weighting functions. Better performing 
models for other published data sets might have been 
found if more weighting functions and parameter val-
ues had been considered, and comparing models can 
yield insight into likely mechanisms. For future anal-
yses, our general framework for fitting and comparing 
multiple models should become a standard approach 
for catchment-scale assessment of land use impacts 
on aquatic responses. Applying our methods to other 
data sets will test the generality of our findings with 
the test data.

How should total land be weighted?

The question of how to weight total land in the 
denominator of the weighting equation was not 
thoroughly discussed in previous papers. For the 
test data, there was very strong support for weight-
ing total land the same way as source land (double 
weighting) and virtually none for leaving source 
land unweighted (Table  2). Double weighting 
also performed better than using different weight-
ing parameters for source and total land (separate 
weighting) although R2 and AICc values for this 

comparison were similar. Conceptually, the superi-
ority of double weighting suggests that PCBs from 
source land and water from all land decline with 
distance from the estuary in a similar way. The test 
data results support the common choice of double 
weighting (as in King et al. 2005, 2004; Van Sickle 
and Johnson 2008; Peterson et  al. 2011; Sheldon 
et al. 2012; Walsh and Webb 2014). We expect that 
the best choice will differ among problems and data 
sets. More studies need to explicitly compare single, 
double, and separately weighted models to assess 
the generality of our findings for other problems 
and processes. Larger data sets could also support 
fitting more weighting parameters and so provide 
more scope for separate weighting to yield different 
results from double weighting. There may also be 
cases where weighting of numerator and denomina-
tor should use different mathematical functions, not 
just the same function with a different parameter.

Where in the system do materials originate?

Our new interpretative tools reveal how weighting 
affects the attribution of where effects originate. 
Comparing the spatial distributions of weighted 
source proportion (Eq.  14) and weighted material 
delivery (Eq.  15) to the corresponding distribu-
tions for an unweighted model reveals how weight-
ing affects the relative contributions of land near to 
and more distant from receiving waters (Figs. 3, 5; 
Table  S9). Such comparisons enable us to visual-
ize, quantify, and interpret the impacts of different 
weighting functions. These analyses also reveal how 
weighting effects differ among catchments (Figs. 5, 
S5, S6; Tables S8, S9) because of differences in 
spatial distributions of source land and total land 
(Fig.  1). This is a key strength of our approach. 
Previous studies with distance-weighted land use 
regressions could not offer such interpretations 
because they relied only on plots of the weighting 
function versus distance (e.g., King et  al. 2004) or 
on half decay distances (Van Sickle and Johnson 
2008; Walsh and Webb 2014). To correctly quantify 
the weighting effect, one must integrate effects of 
applying a weighting function in both the numera-
tor and denominator of the weighting equation as 
well as the actual distributions of source and total 
land, as achieved here. Accomplishing this provides 
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enhanced guidance for environmental management. 
In the test case, the best model suggests that half the 
PCBs originate within just 0.516 m of a subestuary 
(Fig.  4, Table  S9), so that concentrating manage-
ment actions to reduce sources within that specific 
zone would have the maximum benefit.

Generality and applicability

The methodological enhancements provided here 
make it easier to conceptualize and operational-
ize models linking landscape pattern to biophysical 
processes. For simplicity and clarity, our language 
has focused on the context of materials released 
from source areas and transported hydrologically to 
response points in aquatic systems. Studies in this 
vein have applied distance weighting to understand 
both water quality and biological responses (e.g., 
Frimpong et  al. 2005; King et  al. 2005; Van Sickle 
and Johnson 2008; Peterson et  al. 2011). However, 
the underlying mathematics are completely general 
and can be applied to other contexts where patterns 
affect processes, such as understanding the impacts 
of proximate physiography on ground water delivery, 
land cover on animal occupancy or movement within 
landscape patches, or the influence of surrounding 
land cover on urban heat (e.g., Baker et  al. 2003; 
Cushman et al. 2008; Cunningham and Johnson 2016; 
Dixon et al. 2020; Alonzo et al. 2021).

Different transport or movement processes can be 
represented by choosing different measures of dis-
tance. In the test case, we measured distance as the 
shortest path from each land pixel to the receiving 
water (Cartesian distance). Other ways of express-
ing can represent different levels of specificity about 
effect transmission. Many studies have measured 
distance along downhill flow paths (e.g., King et  al. 
2005, 2012; Baker et al. 2006; Walsh and Webb 2014; 
Weller et al. 2011, 1998; Weller and Baker 2014) or 
along in-stream flow paths through a stream network 
(e.g., King et  al. 2005; Sheldon et  al. 2012; Walsh 
and Webb 2014). Distance measures can also inte-
grate other hydrological factors, such as local slope, 
flow path gradient, upslope contributing area (Peter-
son et al. 2011), or other spatial indices of hydrologic 
function. Because models are fit  by numerical opti-
mization rather than linear regression, our method 
can also be applied to problems where the underling 
response model is non-linear.

Our methods can be further extended to questions 
arising from many disciplines, including ecology, 
evolution, geography, geomorphology, epidemiology, 
public policy, and others. For problems in which spa-
tial patterns can affect processes, the impacts of pat-
terns on overall function can now be explicitly tested 
and quantified. Our methods can relate almost any 
spatially distributed source or driver to an integrated 
response at a point or along a boundary; and alternate 
hypotheses about the effects of pattern or proximity 
on processes can be tested with alternative weight-
ing functions. As new applications are implemented, 
additional weighting functions will likely emerge and 
enhance our general approach. The evolving frame-
work can be applied to inform understanding in a 
wide range of scientific investigations and applied 
contexts.
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