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Abstract 
Context Dispersal of individuals contributes to 
long-term population persistence, yet requires a suf-
ficient degree of landscape connectivity. To date, 
connectivity has mainly been investigated using 
least-cost analysis and circuit theory, two methods 
that make assumptions that are hardly applicable to 
dispersal. While these assumptions can be relaxed by 
explicitly simulating dispersal trajectories across the 
landscape, a unified approach for such simulations is 
lacking.
Objectives Here, we propose and apply a sim-
ple three-step approach to simulate dispersal and to 
assess connectivity using empirical GPS movement 
data and a set of habitat covariates.
Methods In step one of the proposed approach, 
we use integrated step-selection functions to fit a 
mechanistic movement model describing habitat and 

movement preferences of dispersing individuals. In 
step two, we apply the parameterized model to sim-
ulate dispersal across the study area. In step three, 
we derive three complementary connectivity maps; 
a heatmap highlighting frequently traversed areas, a 
betweenness map pinpointing dispersal corridors, and 
a map of inter-patch connectivity indicating the pres-
ence and intensity of functional links between habi-
tat patches. We demonstrate the applicability of the 
proposed three-step approach in a case study in which 
we use GPS data collected on dispersing African wild 
dogs (Lycaon pictus) inhabiting northern Botswana.
Results Using step-selection functions we success-
fully parametrized a detailed dispersal model that 
described dispersing individuals’ habitat and move-
ment preferences, as well as potential interactions 
among the two. The model substantially outper-
formed a model that omitted such interactions and 
enabled us to simulate 80,000 dispersal trajectories 
across the study area.
Conclusion By explicitly simulating dispersal tra-
jectories, our approach not only requires fewer unre-
alistic assumptions about dispersal, but also permits 
the calculation of multiple connectivity metrics that 
together provide a comprehensive view of landscape 
connectivity. In our case study, the three derived con-
nectivity maps revealed several wild dog dispersal 
hotspots and corridors across the extent of our study 
area. Each map highlighted a different aspect of land-
scape connectivity, thus emphasizing their comple-
mentary nature. Overall, our case study demonstrates 
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that a simulation-based approach offers a simple yet powerful alternative to traditional connectivity modeling 
techniques. It is therefore useful for a variety of applications in ecological, evolutionary, and conservation 
research.

Graphical abstract 

Keywords Dispersal · Simulation · Movement · Integrated step-selection function · Kavango-Zambezi 
Transfrontier Conservation Area · Landscape connectivity · Lycaon pictus

Introduction

Dispersal of individuals is a vital process that allows 
species to maintain genetic diversity (Perrin and 
Mazalov 2000; Frankham et  al. 2002; Leigh et  al. 
2012; Baguette et  al. 2013; LaPoint et  al. 2013), 
rescue non-viable populations (Brown and Kodric-
Brown 1977), and to colonize unoccupied habitats 
(Hanski 1999; MacArthur and Wilson 2001). How-
ever, the ability to disperse depends on a sufficient 
degree of landscape connectivity (Fahrig 2003; 
Clobert et  al. 2012), making the identification and 
protection of dispersal corridors that promote con-
nectivity a task of fundamental importance (Doerr 
et al. 2011; Rudnick et al. 2012). Identifying disper-
sal corridors not only necessitates a comprehensive 
understanding of the factors that limit dispersal, but 
also an appropriate model to estimate connectivity 
(Baguette et al. 2013; Vasudev et al. 2015; Hofmann 
et al. 2021a). To date, the most commonly used con-
nectivity models are least-cost path analysis (LCPA; 
Adriaensen et  al. 2003) and circuit theory (CT; 
McRae 2006; McRae et  al. 2008). Unfortunately, 
both models rest on assumptions that appear unsuit-
able for dispersers, thus calling for the development 

of alternative approaches. One promising alternative 
is to assess landscape connectivity via simulated dis-
persal trajectories generated from individual-based 
movement models (IBMMs, Diniz et al. 2019). How-
ever, IBMMs require a large number of subjective 
modeling decisions, thus making among-system com-
parisons difficult.

Traditional connectivity models make assump-
tions that are rarely met for dispersers. LCPA, for 
instance, assumes that individuals move towards a 
preconceived endpoint and choose a cost-minimizing 
route accordingly (Sawyer et al. 2011; Abrahms et al. 
2017). While this assumption may be justifiable for 
migrating animals, it is unlikely to hold for dispers-
ers, as dispersers typically move across unfamiliar 
territory towards an unknown endpoint (Koen et  al. 
2014; Cozzi et  al. 2020). CT, on the contrary, pos-
its that animals move according to a random walk, 
entailing that autocorrelation between subsequent 
movements cannot be rendered (Diniz et  al. 2019). 
For dispersers, however, autocorrelated movements 
are regularly observed (Cozzi et  al. 2020; Hofmann 
et  al. 2021a), meaning that dispersal trajectories are 
usually strongly directional. An interesting gener-
alization that bridges the continuum between LCPA 
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and CT has been proposed by Panzacchi et al. (2016) 
and enables to capitalize on the merits of both 
approaches. Despite these and several other generali-
zations of LCPA and CT (e.g. Pinto and Keitt 2009; 
Landguth et al. 2012; Panzacchi et al. 2016; Brennan 
et  al. 2020), some shortcomings remain. Most nota-
bly, all of these methods rely on static permeability 
or resistance surfaces that can’t reflect the temporal 
dimension of dispersal. This permits statements about 
the expected duration for moving between habitat 
patches (Martensen et al. 2017; Diniz et al. 2019).

The shortcomings inherent to LCPA and CT can 
be overcome by simulating dispersal using IBMMs 
and by converting simulated trajectories into mean-
ingful measures of connectivity (Diniz et  al. 2019). 
In contrast to LCPA and CT, IBMMs allow to explic-
itly simulate how individuals move across and inter-
act with the encountered landscape (Kanagaraj et al. 
2013; Clark et al. 2015; Allen et al. 2016; Hauenstein 
et  al. 2019; Zeller et  al. 2020), as well as to render 
potential interactions between movement behavior 
and habitat conditions (Avgar et al. 2016). This shifts 
the focus towards a more functional view on con-
nectivity (Tischendorf and Fahrig 2000). Further-
more, IBMMs generate movement sequentially, i.e. 
they generate a series of steps, so that the temporal 
dimension of dispersal becomes explicit and allows 

modeling autocorrelation between successive steps 
(Diniz et al. 2019). Finally, simulations from IBMMs 
do not enforce movement or connections towards pre-
conceived endpoints but allow individuals to adjust 
their route “on the go”, thereby preventing biases 
arising from misplaced endpoints. Despite these 
advantages, a unifying approach to simulate disper-
sal and assess connectivity using IBMMs is lacking. 
Considering the large number of subjective decisions 
entailed by IBMMs, an approach that streamlines and 
standardizes the application of dispersal simulations 
to assess connectivity will, however, be critical to 
safeguard comparability among studies.

Here, we propose and exemplify a simple three-
step approach for simulating dispersal and assessing 
landscape connectivity (Fig. 1). In step one, we com-
bine GPS movement data of dispersing individuals 
with habitat covariates to fit a mechanistic movement 
model via integrated step-selection functions (ISSFs, 
Avgar et  al. 2016). We chose to use ISSFs because 
the framework not only allows inference on the study 
species’ habitat kernel (i.e. its habitat preferences), 
but also its movement kernel (i.e. its movement pref-
erences/capabilities) and potential interactions among 
the two (Avgar et  al. 2016; Fieberg et  al. 2021). In 
step two, we use the parametrized movement model to 
simulate dispersal across the study area. Comparable 

Fig. 1  Flowchart of the simulation-based connectivity analy-
sis. First, GPS data and habitat covariates must be collected. 
The combined data is then analyzed using an integrated step-
selection model (step 1). The parametrized model is then 
treated as an individual-based movement model and used to 
simulate dispersal trajectories (step 2). Ultimately, simulated 
trajectories are translated into a set of maps that are pertinent 

to landscape connectivity (step 3). This includes a heatmap, 
indicating the traversal frequency across each spatial unit of 
the study area, a betweenness map, highlighting movement 
corridors and bottlenecks, and, finally, an inter-patch connec-
tivity map, where the frequency of connections and their aver-
age duration can be depicted
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simulations have already been applied to estimate 
steady-state utilization distributions of resident indi-
viduals (Potts et al. 2013; Signer et al. 2017) and to 
model landscape connectivity, yet disregarding inter-
dependencies between habitat and movement kernels 
(Clark et al. 2015; Zeller et al. 2020). Finally, in step 
three, we convert the simulated trajectories into three 
complementary connectivity maps; (i) a heatmap 
revealing frequently traversed areas (e.g. Hauenstein 
et  al. 2019; Zeller et  al. 2020), (ii) a betweenness-
map delineating dispersal corridors and bottlenecks 
(e.g. Bastille-Rousseau et al. 2018), (iii) and a map of 
inter-patch connectivity, depicting the presence and 
intensity of functional links between habitat patches, 
as well as the average dispersal duration required to 
realize those connections (e.g. Gustafson and Gardner 
1996; Kanagaraj et al. 2013).

We showcase the application of the proposed 
approach using GPS movement data collected on 
dispersing African wild dogs (Lycaon pictus). The 
African wild dog is a highly mobile species whose 
population persistence heavily relies on the availabil-
ity of large, natural or semi-natural landscapes and 
a sufficient degree of connectivity among remaining 
subpopulations. Once common throughout sub-Saha-
ran Africa, this species has disappeared from much 
of its historic range, largely due to human persecu-
tion, habitat fragmentation, and disease outbreaks 
(Woodroffe and Sillero-Zubiri 2012). Wild dogs typi-
cally disperse in single-sex coalitions (McNutt 1996; 
Behr et  al. 2020) and are capable of dispersing sev-
eral hundred kilometers (Davies-Mostert et al. 2012; 
Masenga et  al. 2016; Cozzi et  al. 2020). Although 
previous studies have investigated connectivity for 
this species using LCPA (Hofmann et al. 2021a) and 
CT (Brennan et al. 2020), a more comprehensive and 
mechanistic understanding of dispersal and connec-
tivity is missing [but see Creel et  al. (2020)]. Nev-
ertheless, with about 6,000 free-ranging wild dogs 
remaining in fragmented subpopulations (Woodroffe 
and Sillero-Zubiri 2012), reliable information on dis-
persal behavior and landscape connectivity is essen-
tial for the conservation of this endangered carnivore. 
We anticipated that a connectivity assessment based 
upon our three-step approach would overcome several 
of the conceptual shortcomings of traditional connec-
tivity models, while providing a more detailed view 
on movement behavior during dispersal its implica-
tions for landscape connectivity.

Methods

Case study

GPS data

We applied the three step approach presented in 
Fig.  1 to GPS movement data from 16 dispersing 
African wild dog coalitions (7 female and 9 male 
coalitions). This data has been collected between 
2011 and 2019 from a free-ranging wild dog popu-
lation in northern Botswana. During dispersal, GPS 
collars recorded a fix every 4  h and regularly trans-
mitted data over the Iridium satellite system. To 
ensure comparable time intervals between GPS 
fixes, we removed any fixes that were not success-
fully obtained at the desired 4-hour schedule (allow-
ing for a tolerance of ± 15 min). To prepare the data 
for step-selection analysis, we converted the fixes 
(n = 4’169) into steps, where each step represented 
the straight-line movement between two consecutive 
GPS fixes (Turchin 1998). We only considered steps 
with equal step-durations (i.e. 4 h) for further analy-
sis. We will refer to these steps as “realized steps”. 
We did not differentiate between sexes, for previous 
research found little differences between sexes during 
dispersal (Woodroffe et al. 2020; Cozzi et al. 2020). 
Additional details on the data collection and prepara-
tion can be found in Cozzi et al. (2020) and Hofmann 
et al. (2021a).

Study area

Our simulation of dispersal trajectories and assess-
ment of connectivity spanned across the entire 
Kavango-Zambezi Transfrontier Conservation Area 
(KAZA-TFCA, Fig. 2a, b) and encompassed a rectan-
gular extent of roughly 1.3 Mio. km2 . With an area of 
520’000 km2 , the KAZA-TFCA is the world’s largest 
transboundary conservation area and comprises parts 
of Angola, Botswana, Namibia, Zimbabwe, and Zam-
bia, thus hosting a rich diversity of landscapes, rang-
ing from savannah to grassland and from dry to moist 
woodland habitats. In its center lies the Okavango 
Delta, a dominant hydro-geographical feature and 
the world’s largest flood-pulsing inland delta. Large 
portions of the KAZA-TFCA are formally protected 
in the form of national parks (NPs) or other protected 
areas, yet a considerable portion of the landscape 
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remains human-dominated (e.g. roads, agricultural 
sites, and settlements).

Habitat covariates

We represented the physical landscape in our study 
area by the habitat covariates water-cover, distance-
to-water, woodland-cover, shrub/grassland-cover, and 
human-influence. To render the seasonal dynamics of 
water-cover for the extent of the Okavango Delta, we 
applied an algorithm that enabled us to obtain weekly 
updated raster-layers for water-cover and distance-
to-water from MODIS satellite imagery (Wolski 
et al. 2017; Hofmann et al. 2021a). This algorithm is 
now implemented in the floodmapr package (avail-
able on GitHub; https:// github. com/ David DHofm ann/ 
flood mapr). To ensure a consistent resolution across 
habitat covariates, we coarsened or interpolated all 
layers to a resolution of 250 m x 250 m. A detailed 
description of how we prepared each habitat covariate 
is provided in Hofmann et al. (2021a).

We performed all data preparations, spatial com-
putations, and statistical analysis in R, version 4.2.2 
(Core Team 2022). Some helper functions were writ-
ten in C++ and imported into R using the Rcpp pack-
age (Eddelbuettel and François 2011; Eddelbuettel 
2013; Eddelbuettel and Balamuta 2018).

Step 1—movement model

We combined the collected GPS data with habitat 
covariates and used ISSFs (Avgar et al. 2016) to para-
metrize a mechanistic movement model. More spe-
cifically, we paired each realized step with a set of 24 
randomly generated alternative steps. A realized and 
its 24 random steps together formed a stratum that 
received a unique identifier. As suggested by Avgar 
et al. (2016), we generated random steps by sampling 
random turning angles from a uniform distribution 
( −�,+� ) and step lengths from a gamma distribu-
tion that was fitted to realized steps (scale � = 6’308 
and shape k = 0.37). Note that our approach of sam-
pling turning angles from a uniform distribution does 
not imply that we assume uniform turning angles, as 
we will account for directionality later in the model 
(Avgar et al. 2016; Fieberg et al. 2021).

Along each realized and random step, we extracted 
values from underlying habitat covariate layers and 
we computed averages of each covariate along the 
steps. Besides extracting habitat covariates, we also 
computed movement metrics that we used as move‑
ment covariates in the ISSF models (Avgar et  al. 
2016; Fieberg et al. 2021). Specifically, we computed 
the step length (sl), its natural logarithm (log(sl)), 
and the cosine of the relative turning angle (cos(ta)), 

Fig. 2  Illustration of the study area in southern Africa. a The 
study area was confined by a bounding box spanning the entire 
KAZA-TFCA which comprises parts of Angola, Namibia, 
Botswana, Zimbabwe, and Zambia. Data on remaining wild 
dog populations (orange) has been sourced from Woodroffe 

and Sillero-Zubiri (2012). b The KAZA-TFCA represents the 
world’s largest terrestrial transfrontier conservation area and 
covers a total area of 520’000 km2 . Its main purpose is to re-
establish connectivity between already-existing NPs (dark 
green) and other protected areas (light green)

https://github.com/DavidDHofmann/floodmapr
https://github.com/DavidDHofmann/floodmapr
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which is a measure of directionality (Turchin 1998), 
for each step. Because wild dog activity is low dur-
ing the hot midday hours (Cozzi et al. 2012), we addi-
tionally created the variable LowActivity, indicating 
whether a step was realized during periods of low 
wild dog activity (09:00 to 17:00 local time) or high 
wild dog activity (17:00 to 09:00 local time). To facil-
itate model convergence, we standardized all continu-
ous covariates to a mean of zero and a standard devia-
tion of one. Correlations among covariates were low 
[ |r| < 0.6 ; Latham et al. (2011)], so we retained all of 
them for modeling.

To contrast realized steps (scored 1) and random 
steps (scored 0), we assumed that animals assigned a 
selection score w(x) to each step [Eq. 1; Fortin et al. 
(2005)], where w(x) depended on the step’s associated 
covariates ( x1, x2, ..., xn ) and on the animal’s relative 
selection strengths (Avgar et al. 2017) towards these 
covariates ( �1, �2, ..., �n):

The probability of a step i being realized was then 
contingent on the step’s selection score, as well as 
on the selection scores of all other step in the same 
stratum:

To estimate relative selection strenghts (i.e. the �
-coefficients), we used mixed effects conditional 
logistic regression analysis, implemented through the 
r-package glmmTMB (Brooks et al. 2017). The imple-
mentation of conditional logistic regression has been 
proposed by Muff et  al. (2020) and allows to model 
random slopes. The method requires to fix the vari-
ance of the stratum specific intercept to a large value, 
so we fixed it to an arbitrary high value of 106 and 
used disperser identity to model random slopes for all 
covariates.

Our movement model was based on a habitat selec-
tion model that was previously developed for dispers-
ing wild dogs [hereafter referred to as base model, 
Hofmann et al. (2021a)]. In the base model, no inter-
actions among habitat covariates and movement 
covariates were considered, so we here expanded the 
model and allowed for such interactions, acknowl-
edging that movement preferences during dispersal 

(1)w(x) = exp(�1x1 + �2x2 +⋯ + �nxn)

(2)
P(Yi = 1|Y1 + Y2 +⋯ + Yi = 1)

=
w(xi)

w(x1) + w(x2) +⋯ + w(xi)

could depend on habitat conditions (details in Online 
Appendix A1). To determine the most parsimonious 
movement model among model candidates, we ran 
stepwise forward model selection based on Akaike’s 
Information Criterion (AIC, Burnham and Anderson 
2002)]. More specifically, we started with the base 
model and iteratively increased model complexity 
by adding all possible interactions between move-
ment and habitat covariates. Given that the focus 
of our analysis lied on predicting dispersal patterns 
and all model candidates were biologically intui-
tive, we deemed the use of model selection appropri-
ate. However, caution should be employed if causal 
relationships are of interest, as model selection may 
lead to biased parameter estimate (Whittingham et al. 
2006). We validated the predictive power of the most 
parsimonious model using k-fold cross-validation 
for case–control studies as described in Fortin et  al. 
(2009). This validation attests significant prediction 
ability to the movement model if the model outper-
forms a random guess and systematically assigns 
low ranks (high selection scores) to observed steps 
(details in Online Appendix A2).

Step 2—dispersal simulation

We used the most parsimonious movement model to 
simulate individual dispersal trajectories across the 
study area. The simulation of a dispersal trajectory 
resembled an “inverted” ISSF and was set up as fol-
lows. (1) We defined a source point and assumed a 
random initial orientation of the simulated animal. (2) 
Starting from the source point, we generated 25 ran-
dom steps by sampling turning angles from a uniform 
distribution ( −�,+� ) and step lengths from our fitted 
gamma distribution. (3) Along each random step, we 
extracted and averaged values from the habitat covari-
ate layers and we computed the movement metrics sl, 
log(sl), and cos(ta). To ensure compatible scales with 
the fitted movement model, we standardized covari-
ate values using means and standard deviations from 
the empirical data. (4) We applied the parametrized 
movement model to predict the selection score w(x) 
for each step using Eq. 1 and we converted predicted 
scores into probabilities using Eq. 2. (5) We randomly 
sampled one of the generated random steps based on 
assigned probabilities and determined the animal’s 
new position. We repeated steps (2) to (5) until 2’000 
steps were realized and we repeated the simulation 



987Landsc Ecol (2023) 38:981–998 

1 3
Vol.: (0123456789)

until a total of 80’000 dispersal trajectories was 
reached.

As source points for the simulations, we distrib-
uted 50’000 points at random locations inside pro-
tected areas that were large enough to host an average 
size wild dog home range [i.e. > 700  km2 ; Pomilia 
et al. (2015)]. We placed another 30’000 points ran-
domly inside the buffer zone, mimicking potential 
immigration into the study area (Fig. S1). To mitigate 
edge effects and to deal with random steps leaving the 
study area, we followed Koen et al. (2010) and artifi-
cially expanded all covariate layers by a 100 km wide 
buffer zone. Within the buffer zone, we randomized 
covariate values by resampling values from the origi-
nal covariate layers. Through this buffer zone, simu-
lated dispersers were able to leave and re-enter the 
main study area. In cases where random steps crossed 
the outer border of this buffer zone, we resampled 
steps until they fully lied within the buffer zone, 
essentially forcing simulated individuals to remain 
within the expanded study area.

To ensure reliable connectivity estimates, we 
determined the number of simulated dispersal trajec-
tories required to reach a “steady state”. For this pur-
pose, we distributed 1’000 rectangular “checkpoints”, 
each with an arbitrary extent of 5 km × 5 km, at ran-
dom coordinates within the study area (excluding the 
buffer). We then determined the relative frequency 
at which each checkpoint was traversed by simulated 
dispersal trajectories (hereafter referred to as relative 
traversal frequency) as we gradually increased the 
number of simulated trajectories from 1 to 50’000. 
To assess variability in the relative traversal fre-
quency, we repeatedly subsampled 100 times from 
all 50’000 trajectories and computed the mean tra-
versal frequency across replicates, as well as its 95% 
prediction-interval for each checkpoint. We consid-
ered connectivity to have reached a steady state once 
the width of the prediction-interval dropped below a 
value of 0.01 for all checkpoints.

Step 3—connectivity maps

Heatmap

To identify dispersal hotspots within the study area, 
we created a heatmap indicating the absolute fre-
quency at which different areas were traversed by 
simulated dispersal trajectories (e.g. Hauenstein et al. 

2019; Zeller et  al. 2020). Specifically, we rasterized 
all simulated trajectories onto a raster with 1  km 
× 1  km resolution and tallied resulting layers into a 
single map. This procedure ensured that every trajec-
tory was only counted once, even if it traversed the 
same raster-cell multiple times, thus reducing poten-
tial biases caused by individuals that were surrounded 
by unfavorable habitat and “moved in circles”. To 
achieve high performance rasterization, we used the 
R-package terra (Hijmans 2021). For a subset of 
the study area, we also generated heatmaps at 250 m 
× 250 m, yet found little qualitative differences to the 
coarser resolution, thus suggesting the choice of 1 km 
× 1 km to be appropriate.

Betweenness map

To pinpoint movement corridors and bottlenecks, we 
converted simulated trajectories into a network and 
calculated betweenness scores for all raster-cells in 
the study area (Bastille-Rousseau et  al. 2018). 
Betweenness is a pertinent metric for connectivity as 
it measures how often a specific network-node (in our 
case a raster-cell) lies on a shortest path between any 
other pair of nodes (Bastille-Rousseau et  al. 2018). 
To convert simulated trajectories into a network, we 
followed Bastille-Rousseau et al. (2018) and overlaid 
the study area (including the buffer) with a raster con-
taining 2.5 km × 2.5 km raster-cells, where the center 
of each raster-cell served as node in the final network. 
To identify edges (i.e. connections) between the 
nodes, we used the simulated trajectories and deter-
mined all transitions occurring from one cell to 
another, as well as the frequency at which those tran-
sitions occurred (see also Online Appendix A4). This 
resulted in an edge-list that we translated into a 
weighted network using the r-package igraph 
(Csardi and Nepusz 2006). The final weight of each 
edge was determined by the frequency of transitions, 
yet because igraph handles edge weights ( � ) as 
costs, we inverted the traversal-frequency through 
each raster-cell by applying � =

mean (Traversal Frequency)

Traversal Frequencyi
 . 

Consequently, regularly used edges received small 
weights (i.e. low costs) and vice versa. We used the 
weighted network to calculate betweenness scores for 
all network nodes.
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Inter‑patch connectivity map

To examine the presence and intensity of functional 
links (i.e. connections) between patches within the 
study area, we calculated inter-patch connectivity 
(e.g. Gustafson and Gardner 1996; Kanagaraj et  al. 
2013). For this, we computed the relative frequency 
at which dispersers originating from one patch suc-
cessfully moved into another patch. We considered 
movements between patches as successful if an indi-
vidual’s dispersal trajectory originating from the 
source patch intersected with the target patch at least 
once. For each trajectory we also recorded the num-
ber of steps required to reach the first intersection 
with the respective patch, allowing us to compute the 
average dispersal durations from one patch to another. 
In summary, we determined if and how often dispers-
ers moved between certain patches, as well as how 
long individuals had to move to make these connec-
tions. In our case study, we used NPs as patches to 
determine inter-patch connectivity, hence we’ll use 
the terms interchangeably from here on. The deci-
sion to focus on NPs was purely out of simplicity and 
should not imply that dispersal between other areas is 
impossible.

Validation

To validate our predictions of connectivity, we uti-
lized additional dispersal data that was collected on 
eight dispersing coalitions between 2019 and 2022 
(totalling to 2’668 GPS locations). We used a path 
selection function [PSF, Cushman and Lewis (2010)] 
to assess if observed dispersal trajectories followed 
areas of high predicted connectivity. Similar to SSF, 
PSF enables to detect selection for certain features 
by comparing observed paths to randomly generated 
paths. Here, we paired each observed path with 50 
random paths that we generated by randomly rotat-
ing and shifting observed paths by a random angle 
� ∼ U(−�,+�) and a random distance d ∼ U(0 km, 
50 km). Along each path, we then extracted con-
nectivity values from the heatmap (see above) gen-
erated after 68, 125, 250, 500, and 2’000 simulated 
steps, respectively. Finally, we ran conditional logis-
tic regression to contrast observed and random 
paths. In case of systematic selection for high-con-
nectivity areas, the regression coefficients from the 

corresponding conditional logistic regression model 
should be positive.

Results

The most parsimonious movement model con-
sisted of movement covariates, habitat covariates, as 
well as several of their interactions, thus suggesting 
that movement behavior during dispersal depended 
on habitat conditions (Fig.  3a, Tables S1 and S2). 
Although multiple models received an AIC weight 
> 0 (Table S1), we only considered results from the 
most parsimonious model for simplicity. This deci-
sion only marginally influenced subsequent steps as 
all models with positive AIC weights retained simi-
lar covariates (Table S1). The k-fold cross-validation 
showed that the final model substantially outper-
formed a random guess and provided reliable pre-
dictions (i.e. confidence intervals of r̄s,realized and 
r̄s,random did not overlap). Moreover, the model cor-
rectly assigned high selection scores to realized steps 
(Fig.  3b), indicating a good fit between predictions 
and observations. As can be taken from the Spear-
man rank correlation coefficient, the inclusion of 
several interactions between movement and habitat 
covariates significantly improved model performance 
(r̄s,realized = −0.65;95% − CI = [−0.67,−0.64])  ) , 
compared to the base model 
[ ̄rs,realized = −0.55;95% − CI = [−0.57,−0.52] ; Hof-
mann et al. (2021a)]. Our validation of the resulting 
connectivity maps using independent dispersal data 
showed that dispersers preferentially followed areas 
of high predicted connectivity, as coefficients from 
the PSF models were all significantly greater than 
zero (Fig.  3c). The movement model thus success-
fully predicted functional connectivity.

Plots that aid with the interpretation of the most 
parsimonious movement model are provided in Fig. 
S3 and suggest that, under average conditions, dis-
persing wild dogs avoided moving through water, 
woodlands, and areas dominated by humans, but 
preferred moving across shrublands or grasslands 
(Fig.  3a). Dispersers realized shorter steps (indicat-
ing slower movements) in areas covered by water 
or woodland, while realizing larger steps in areas 
dominated by shrubs or grass (Fig.  3a). We found 
a particularly large effect for the variable LowAc-
tivity, suggesting that dispersing wild dogs moved 
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substantially faster during twilight and at night (i.e. 
between 17:00 and 09:00 o’clock; Fig. 3a). Although 
dispersers revealed a preference for directional move-
ments (i.e. low turning angles), especially when mov-
ing quickly, they did less so in proximity to humans 
or water, resulting in more tortuous movements in 
such areas (Fig. 3a).

Dispersal simulation

Dispersal simulations based on the most parsimoni-
ous movement model proved useful for assessing 
landscape connectivity. Of the 50’000 simulated dis-
persal trajectories that originated from the main study 
area, only 4.5% reached a map boundary, suggesting 
that we successfully mitigated biases from boundary 

effects. Moreover, our examination of the relative tra-
versal frequency across all checkpoints showed that 
the relative traversal frequency reached a steady state 
after 10’500 simulated dispersal trajectories (Fig. 
S4). Although variability in the relative traversal fre-
quency kept decreasing as we increased the number 
of simulated dispersers, the marginal benefit of simu-
lating additional trajectories diminished quickly (Fig. 
S4).

Heatmap

The heatmap (Fig. 4), which resulted from the sum-
mation of all simulated dispersal trajectories, allowed 
us to pinpoint areas that were frequently visited and 
enabled us to compare areas inside and outside the 
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Fig. 3  a Most parsimonious movement model for dispers-
ing wild dogs. The model comprises a habitat kernel, a move-
ment kernel, as well as their interactions. The horizontal line 
segments delineate the 90%, 95%, and 99% confidence-inter-
vals for the respective �-coefficients. Significance codes: * 
p < 0.10 , ** p < 0.05 , *** p < 0.01 . b Results from the k-fold 
cross-validation procedure. Subfigure b1 shows rank frequen-
cies of realized steps according to model predictions with 
known preferences, whereas subfigure b2 shows rank frequen-
cies of realized steps when assuming random preferences. 
The blue ribbon shows the prediction interval around a loess 

smoothing regression that we fitted to ease the interpretation 
of the plots. The significant correlation between rank and asso-
ciated frequency in b1 highlights that the most parsimonious 
model successfully outperformed a random guess b2 and fre-
quently assigned low ranks (i.e. high selection scores) to real-
ized steps but only rarely high ranks (i.e. low selection scores). 
c Results from the PSF analysis using independent dispersal 
data show that dispersers preferrably moved through areas 
where our heatmaps predicted high connectivity. Results are 
shown for heatmaps realized after 68, 125, 250, 500, and 2’000 
simulated steps, respectively
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KAZA-TFCA borders with respect to the intensity at 
which they were used for dispersal. For instance, we 
could deduct that areas inside the KAZA-TFCA were 
frequently traversed by dispersers (median traversal 
frequency inside KAZA-TFCA = 166, IQR = 274, 
Fig. S7a), whereas areas beyond the KAZA-TFCA 
boundary were comparatively rarely visited (median 
traversal frequency outside KAZA-TFCA = 61, IQR 
= 133, Fig. S7a). Most notably, the region in northern 
Botswana south of the Linyanti swamp appeared to 
serve as highly frequented dispersal hotspot (median 
traversal frequency = 987, IQR = 558). Aside from 
revealing movement hotspots, the heatmap also pro-
vided information on areas that appeared to hinder 
movement. For example, extensive water bodies, such 
as the Okavango Delta, the Makgadikgadi Pan, and 
the Linyanti swamp, substantially restricted dispersal 
movements and limited realized connectivity inside 
the KAZA-TFCA. Similarly, the landscapes of Zam-
bia and Zimbabwe were only rarely used for disper-
sal, even within the KAZA-TFCA boundaries (Fig. 

S8a). Despite the fact that the heatmap improved our 
understanding of the frequency at which areas were 
traversed by simulated dispersers, it seemed impracti-
cal to pinpoint dispersal corridors.

Betweenness

The betweenness map (Fig.  5) revealed several dis-
tinct dispersal corridors that run across the study 
area. In comparison to the heatmap, the betweenness 
map was less biased towards areas with many dispers-
ers and pronounced narrower, more linear routes that 
were used by simulated individuals to move between 
regions. Again, northern Botswana emerged as a wild 
dog dispersal corridor that connected more remote 
regions in the study area. Towards east, the extension 
of this corridor ran through Chobe NP into Hwange 
NP. From there, a further extension connected to 
Matusadona NP in Zimbabwe. Northwest of the 
Linyanti ecosystem, a major corridor expanded into 
Angola, where it split and finally traversed over a 

Fig. 4  Heatmap showing 
traversal frequencies of 
80’000 simulated dispers-
ers moving 2’000 steps 
across the KAZA-TFCA. 
Simulations were based on 
an integrated step-selection 
model that we fitted to the 
movement data of dispers-
ing African wild dogs. 
To generate the heatmap, 
we rasterized and tallied 
all simulated trajectories. 
Consequently, the map 
highlights areas that are 
frequently traversed. For 
spatial reference we plotted 
a few selected NPs (dark 
gray). Additional heatmaps 
showing the traversal 
frequency when individu-
als move fewer than 2’000 
steps are provided in Fig. 
S5
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long stretch of unprotected area into Zambia’s Kafue 
NP. Several additional corridors with lower between-
ness scores emerged, yet most of them ran within 
the KAZA-TFCA boundaries (median betweenness 
inside KAZA-TFCA = 6.947 × 106 , IQR = 54.311 
× 106 , Fig. S7b). Consequently, only few corridors 
directly linked the peripheral regions of the KAZA-
TFCA and passed through unprotected areas outside 
its borders (mean betweenness outside KAZA-TFCA 
= 2.685 × 106 , IQR = 9.891 × 106 , Fig. S7b).

Inter-patch connectivity

The inter-patch connectivity map showed that the 
relative frequency at which simulated dispersal tra-
jectories moved from one patch to another varied, as 
did the average dispersal duration between patches 
(Fig. 6). The map thereby completed the picture on 
connectivity and provided valuable insights into 
the frequency and duration of connections between 

patches. For some patches, we also detected imbal-
ances between the number of incoming and outgo-
ing links, hinting at possible source-sink dynam-
ics. From Chobe NP, for instance, 510 individuals 
reached the Moremi NP, yet the opposite route was 
only realized by 340 individuals. Relative to the 
number of simulated individuals, however, these 
numbers correspond to fractions of 50% and 68%, 
respectively. Overall, inter-patch connectivity 
between patches in Angola, Namibia, Botswana, 
and Zimbabwe appeared to be high; between 54% 
and 87% of individuals originating from a patch in 
these countries successfully moved into at least on 
other patch (Fig. S9a). Conversely, only 19% of the 
dispersers leaving from a patch in Zambia managed 
to find their way into some other patch (Fig. S9b). 
Prior to reaching another patch, individuals from 
Angola, Namibia, Botswana, Zimbabwe, and Zam-
bia had to move for an average of 630, 640, 940, 
1’045, and 890 steps, respectively. Furthermore, it 

Fig. 5  Map of betweenness 
scores, highlighting distinct 
dispersal corridors and 
potential bottlenecks across 
the extent of the KAZA-
TFCA. Betweenness meas-
ures the number of shortest 
paths traversing through 
each node (raster-cell). 
Hence, a high betweenness 
score indicates that the 
respective area is exception-
ally important for connect-
ing different regions in the 
study area. The metric is 
therefore useful to pinpoint 
discrete movement cor-
ridors (Bastille-Rousseau 
et al. 2018). Note that we 
square-rooted betweenness 
scores to improve visibility 
of corridors with compara-
bly low scores. Additional 
betweenness maps showing 
betweenness scores when 
individuals move fewer than 
2’000 steps are provided in 
Fig. S6
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appeared that the corridor previously identified on 
Fig. 6 between Angola’s NPs and the Kafue NP in 
Zambia is only rarely realized.

Discussion

Here, we presented a simple three-step approach to 
assess landscape connectivity via simulated disper-
sal trajectories and we demonstrated its application 
using empirical data from a free-ranging population 
of African wild dogs. In step one, we used ISSFs to 
parametrize a fully mechanistic movement model 
describing how individuals move through the land-
scape. Aside from rendering habitat preferences, the 
model also encapsulated movement preferences and 
potential interactions between movement and habitat 
preferences. In step two, we employed the movement 
model and simulated dispersal trajectories across the 
landscape. In comparison to more traditional connec-
tivity modeling techniques, such simulations require 

fewer unrealistic assumptions about dispersal and 
enable the derivation of multiple connectivity met-
rics. Hence, in step three, we translated the simulated 
trajectories into three complementary connectivity 
maps, each emphasizing a different aspect of land-
scape connectivity (e.g. frequently traversed areas, 
critical dispersal corridors and bottlenecks, and the 
presence and intensity of functional links between 
suitable patches).

Results on the habitat kernel from our model 
showed that dispersers avoided areas dominated 
by humans and covered by water, but selected for 
regions with open grassland in the vicinity to water 
bodies. This largely complied with previous stud-
ies that investigated habitat selection by dispersing 
wild dogs (Davies-Mostert et al. 2012; Masenga et al. 
2016; Woodroffe et al. 2020; O’Neill et al. 2020; Hof-
mann et al. 2021a). However, instead of merely gen-
erating insights on dispersers’ habitat preferences, the 
ISSF framework also permitted us to model several 
additional complexities common to dispersal. For 

Fig. 6  Map of inter-patch 
connectivity in relation 
to dispersal duration, 
highlighting connections 
between NPs (dark green). 
Yellow bubbles represent 
the center of the differ-
ent NPs and are sized in 
relation to the number 
of simulated dispersers 
originating from each park. 
Black dots represent NPs 
that were smaller than 
700 km2 and therefore were 
not used as source areas. 
Arrows between NPs illus-
trate between which NPs 
the simulated dispersers 
successfully moved and the 
color of each arrow shows 
the average number of steps 
(i.e. 4-hourly movements) 
that were necessary to 
realize those connections. 
Additionally, the line thick-
ness indicates the rela-
tive number of dispersers 
originating from a NP that 
realized those connections
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instance, by including the interactions cos(ta):sl and 
cos(ta):log(sl), we could accommodate that dispers-
ers exhibit turning angles that are correlated with 
step lengths, meaning that turning angles tend to be 
smaller when individuals move fast. Although similar 
autocorrelations could be incorporated by sampling 
step lengths and turning angles from copula prob-
ability distributions (Hodel and Fieberg 2022), the 
ISSF framework allowed us to conveniently model 
such peculiarities directly in the movement model. 
While we only considered first order autocorrela-
tion, i.e. correlation between two consecutive steps, 
higher order autocorrelation is conceivable and may 
be desirable to model (Dray et al. 2010; McClintock 
et al. 2012). However, this will require vast amounts 
of GPS data that are not interrupted by missing fixes; 
something that is rarely achieved in reality (Graves 
and Waller 2006). The power and flexibility of ISSFs 
to model additive effects between habitat and move-
ment covariates (Avgar et al. 2016; Signer et al. 2017) 
furthermore allowed us to formally capture that dis-
persing wild dogs move slower and more tortuous in 
areas covered by water. Such effects may be of limited 
interest and novelty from a biological perspective, yet 
they are important to be considered when simulating 
dispersal, in particular if one is interested in estimat-
ing dispersal durations between habitat patches. Over-
all, the inclusion of interactions between habitat and 
movement covariates in our movement model lead to 
a significant improvement in predictive performance 
compared to an earlier model that omitted such inter-
actions (Hofmann et al. 2021a).

Each of the three connectivity maps derived from 
simulated dispersal trajectories highlighted a differ-
ent aspect of landscape connectivity. The heatmap 
was most suitable for pinpointing frequently tra-
versed areas and showed that an exceptionally large 
number of dispersers moved through the regions of 
the Moremi NP and the Chobe NP in northern Bot-
swana. Hofmann et  al. (2021a) previously identified 
the same area as potential dispersal hotspot using 
LCPA, however, following their analysis it was not 
clear whether this was the consequence of the central 
location of the region and connections being enforced 
between predefined start and endpoints. Contrary to 
LCPA, a simulation-based approach as presented here 
does not require predefined endpoints, as endpoints 
emerge naturally from the simulated dispersal trajec-
tories. This is especially useful for dispersal studies, 

where known endpoints are usually an unrealistic 
assumption (Elliot et al. 2014; Abrahms et al. 2017; 
Cozzi et al. 2020). The fact that the same region was 
emphasized using vastly different methods to model 
connectivity thus reinforces our notion that the area 
is of exceptional importance to dispersing wild dogs. 
Because simulated individuals are not forced to 
move towards certain endpoints, a simulation-based 
approach not only lends itself to study landscape 
connectivity, but also to uncover potential dispersal 
traps (Van der Meer et al. 2014) or areas with a high 
susceptibility for human wildlife conflicts (Cushman 
et  al. 2018). Using independent dispersal data we 
showed that dispersers indeed followed areas of high 
predicted connectivity. Importantly, however, these 
predictions were based on a scenario of a relatively 
extended flood, which may not have accurately repre-
sented environmental conditions for dispersers mov-
ing through areas affected by the flood. Accounting 
for such differences would have improved the predic-
tive performance of our model.

In contrast to the heatmap, the betweenness map 
emphasized relatively narrow and linear movement 
routes. It thus facilitated the identification of discrete 
movement corridors. While in some cases both the 
heatmap and the betweenness map attributed a high 
importance to the same areas (e.g. northern Bot-
swana), little consensus was found for other regions. 
For instance, the stretch of unprotected land between 
Luengue-Luiana NP in Angola and the Kafue NP in 
Zambia was characterized by a high betweenness-
scores, yet it only received low scores on the heat-
map. This is due to the differential way in which the 
maps view connectivity. While the heatmap attrib-
utes a high connectivity to areas that are frequently 
traversed, it does not distinguish between areas that 
truly bring individuals into other regions of the study 
area and regions that lead into ecological traps. The 
converse is true on the betweenness map, as it strictly 
highlights regions that promote movement into other 
areas of the landscape and thus promote gene-flow. 
However, neither of the two maps provides insights 
into functional links between distinct habitat patches 
or how connections depend on the dispersal duration. 
For this reason, we also produced a map of inter-
patch connectivity. This map depicted the frequency 
at which simulated individuals moved between 
patches as well as the average dispersal duration (in 
steps) required to realize them. Calculating dispersal 
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durations was only possible because trajectories were 
simulated spatially and temporally explicitly, some-
thing that is currently unfeasible with LCPA or CT. 
An explicit representation of time enables answerings 
questions such as: “How long will it take a disperser 
to move from A to B?” or “Is it possible for a dis‑
perser to move from A to B within X days?”. Moreo-
ver, it yields opportunities to incorporate seasonality 
and to investigate whether dispersal corridors exist 
seasonally or all-year round [dynamic connectivity; 
Zeller et  al. (2020)]. With LCPA or CT, seasonality 
can currently only be incorporated through the prepa-
ration of multiple permeability surfaces on which the 
same connectivity model is repeatedly applied (e.g. 
Osipova et  al. 2019). With simulations from ISSFs, 
in contrast, the environment could change “as the dis-
persers move”, so that simulated trajectories would 
dynamically respond to seasonal fluctuations in the 
environment.

Our approach enabled us to translate a simple set 
of small-scale behavioral rules into large scale pat-
terns of connectivity, something previously deemed 
computationally unfeasible, yet critical for linking 
structural and functional connectivity (Doerr et  al. 
2011). Structural connectivity focuses purely on the 
spatial arrangement of suitable habitat in the land-
scape, whereas functional connectivity also takes 
into account a species dispersal ability and behavio-
ral response to the landscape (Tischendorf and Fahrig 
2000). Functional connectivity is of greater interest 
to conservation scientists, yet is difficult to quantify 
(Baguette et  al. 2013), which is why structural con-
nectivity often serves as surrogate (Doerr et al. 2011; 
Fattebert et  al. 2015). LCPA and CT incorporate 
functional aspects of connectivity through the perme-
ability surface, which reflects a species habitat pref-
erences and thus renders behavioral impacts of the 
lanscape on the focal species. Aside from rendering 
habitat preferences, our model also integrates peculi-
arities of the focal species movement behavior, thus 
adding further insights on functional connectivity. 
In addition, we successfully used independent dis-
persal data to prove that our predictions of connec-
tiviy aligned with observed functional connectivity 
patterns.

Despite the many benefits and great flexibility 
offered by simulations from ISSFs, one must also 
be aware of the associated limitations. For example, 
while our approach of simulating dispersal proved 

usedful to assess landscape connectivity, it was com-
putationally costly. Simulating 80’000 dispersal tra-
jectories for 2’000 steps across the KAZA-TFCA 
required five days of computation on a regular desk-
top machine (AMD Ryzen 7 2700X octa-core proces-
sor with 3.6 GHz, 64 GB of RAM). The long simula-
tion time was primarily caused by the massive extent 
of the study area considered (ca. 1.3 Mio km2 ), the 
large number of simulated trajectories, and the fact 
that we extracted covariates along each step, rather 
than just at their start or endpoints. Most connectivity 
studies focus on smaller study areas (e.g. Kanagaraj 
et  al. 2013; Clark et  al. 2015; McClure et  al. 2016; 
Abrahms et  al. 2017; Zeller et  al. 2020) and will 
therefore require fewer simulations and achieve faster 
simulation times (given the same spatial resolution). 
We also believe that fewer simulated trajectories 
will often suffice, as the relative traversal frequency 
by simulated trajectories through randomly placed 
checkpoints across our study area converged already 
after 10’500 runs. The exact number of required sim-
ulations to achieve reliable estimates of connectivity 
will, of course, vary depending on the structure of the 
landscape and the dispersal capabilities of the focal 
species (Gustafson and Gardner 1996). For species 
that disperse short distances through homogeneous 
environments, few simulations may suffice to gauge 
connectivity, whereas for species that disperse over 
long distances through heterogeneous habitats, a large 
number of simulations will be required to sufficiently 
explore the spectrum of possible routes. Finally, it 
may often suffice to extract covariates at each step’s 
start or endpoints, thus considerably speeding up sim-
ulation times (Signer et al. 2017).

Aside from the computational requirements, simu-
lations further entail several non-trivial but important 
modeling decisions. On four such decisions we would 
like to further elaborate: (1) the number of simulated 
individuals, (2) the location of source points, (3) the 
simulated dispersal duration, and (4) the behavior at 
map boundaries.

(1) When simulating dispersal trajectories, the mod-
eler needs to decide on the number of simulated 
individuals. A higher number is always desir-
able, as each additional trajectory provides infor-
mation about landscape connectivity. However, 
each additional simulation imposes computa-
tional costs, so a trade-off needs to be managed. 
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Signer et al. (2017) proposed to handle the trade-
off by simulating additional individuals only 
until the metrics of interest converge towards a 
steady state. Here, we used the relative traversal 
frequency as target metric and found that it con-
verged already after 10’500 simulated individu-
als. The exact number of required individuals 
might, however, vary depending on the employed 
target metric and the anticipated connectivity 
map. More sophisticated target metrics than the 
relative traversal frequency, preferably tailored to 
different connectivity maps, need to be developed 
in the future.

(2) To initiate dispersers, a modeler needs to provide 
a set of source points at which the virtual dispers-
ers are released. We placed source points within 
protected areas large enough to sustain viable 
wild dog populations, implicitly assuming that 
wild dogs primarily survive in large, formally 
protected areas (Davies-Mostert et  al. 2012; 
Woodroffe and Sillero-Zubiri 2012; Van der 
Meer et  al. 2014). Moreover, we lacked precise 
knowledge about the distribution and abundance 
of wild dogs across protected areas, so we placed 
source points randomly within them. In cases 
where more detailed data about the distribution 
and abundance of the focal species are available, 
source points could be distributed accordingly. 
Alternatively, source points could be distributed 
homogeneously but later be weighted when com-
puting connectivity metrics. In any case, the chal-
lenge of selecting meaningful source points is not 
unique to individual-based simulations but also 
applies to LCPA and CT.

(3) The use of ISSFs to simulate dispersers requires 
deciding on the number of simulated steps (i.e. 
the simulated dispersal durations). If sufficient 
dispersal data of the focal species has been col-
lected, dispersal durations could be sampled 
from observed dispersal events or from para-
metric distributions fit to observed data. Due to 
the low number of observed dispersal events, 
we opted against this solution and instead simu-
lated all individuals for 2’000 steps, which was 
at the upper end of observed dispersal durations 
in African wild dogs (Davies-Mostert et al. 2012; 
Masenga et al. 2016; Cozzi et al. 2020; Hofmann 
et  al. 2021a). This approach had the advantage 

that it allowed us to systematically shorten the 
simulated trajectories after their simulation and 
thereby to investigate the sensitivity of our results 
with respect to exact dispersal durations (Figs. S5 
and S6).

(4) Unless simulated dispersal trajectories are 
strongly drawn towards a point of attraction 
inside the study area (e.g. Signer et  al. 2017), 
some trajectories will inevitably approach one 
of the map boundaries. In this case, one or more 
of the generated random steps might leave the 
study area, making it impossible to compute a 
selection score. A possible solution is to simply 
terminate the simulation of the affected trajec-
tory, assuming that the simulated individual has 
left the study area. However, this approach might 
produce ambiguous results in cases where many 
individuals are released near map borders, espe-
cially because already a single random step leav-
ing the study area will break the simulation, thus 
resulting in biased connectivity estimates along 
map borders. Rather than breaking the simula-
tion, we created a buffer zone (Koen et al. 2010) 
and resampled random steps until they fully lied 
within the study area. This proved to be an effec-
tive solution to overcome problems with bound-
ary effects.

In summary, we proposed and applied a simple 
three-step approach that relies on ISSF-analysis and 
enables the simulation of dispersal trajectories and 
the assessment of landscape connectivity. The pro-
posed approach overcomes several of the concep-
tual shortcomings inherent to LCPA and CT, such 
as the assumption of known endpoints, and provides 
a highly flexible tool for investigating connectiv-
ity. Moreover, the simulation of dispersal opens up 
new avenues for incorporating interactions between 
habitat and movement covariates and provides the 
foundation for a rich suite of complementary con-
nectivity measures. With this work, we hope to 
have sparked interest in the application, optimiza-
tion, or creation of methods to investigate dispersal 
and connectivity via individual-based simulations, 
while at the same time stressing some of the non-
trivial modeling decisions involved. We also hope 
to provide a useful framework that helps unifying 
and streamlining the application of individual-based 
simulations for assessing landscape connectivity.
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