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Abstract 
Context  Land-cover class definitions are scale-
dependent. Up-scaling categorical data must account 
for that dependence, but most decision rules aggre-
gating categorical data do not produce scale-specific 
class definitions. However, non-hierarchical, empiri-
cally derived classification systems common in phy-
tosociology define scale-specific classes using species 
co-occurrence patterns.
Objectives  Evaluate tradeoffs in class precision and 
representativeness when up-scaling categorical data 
across natural landscapes using the multi-dimensional 
grid-point (MDGP)-scaling algorithm, which gen-
erates scale-specific class definitions; and compare 
spectral detection accuracy of MDGP-scaled classes 
to ‘majority-rule’ aggregated classes.
Methods  Vegetation maps created from 2-m resolu-
tion WorldView-2 data for two Everglades wetland 
areas were scaled to the 30-m Landsat grid with the 
MDGP-scaling algorithm. A full-factorial analy-
sis evaluated the effects of scaled class-label preci-
sion and class representativeness on compositional 

information loss and detection accuracy of scaled 
classes from multispectral Landsat data.
Results  MDGP‐scaling retained between 3.8 and 
27.9% more compositional information than the 
majority rule as class-label precision increased. 
Increasing class-label precision and information 
retention also increased spectral class detection 
accuracy from Landsat data between 1 and 8.6%. 
Rare class removal and increase in class-label simi-
larity were controlled by the class representative-
ness threshold, leading to higher detection accuracy 
than the majority rule as class representativeness 
increased.
Conclusions  When up-scaling categorical data 
across natural landscapes, negotiating trade-offs in 
thematic precision, landscape-scale class representa-
tiveness and increased information retention in the 
scaled map results in greater class-detection accuracy 
from lower-resolution, multispectral, remotely sensed 
data. MDGP-scaling provides a framework to weigh 
tradeoffs and to make informed decisions on param-
eter selection.
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Introduction

Classification systems represent generalized human 
perceptions of the world that group objects with 
similar properties. The properties and degree of gen-
eralization in a classification system are often deter-
mined by discipline and are scale specific. To model 
and understand physical and biological processes 
that operate at different spatial scales, ecologists fre-
quently use categorical land-cover information that 
standardizes and categorizes land units (pixels or grid 
cells) across large spatial regions (e.g., landscape to 
continental or global scale). For classification sys-
tems to be useful when modeling a specific process 
in a spatially explicit fashion, the classes in a classi-
fication system need to be (1) recognizable and iden-
tifiable on the ground at the scale of analysis and (2) 
detectable from remotely sensed data across the entire 
(spatially exhaustive) landscape of interest. How-
ever, since data are often acquired and interpreted 
at different spatial scales, information from different 
sources often needs to be scaled up to become com-
patible among sources. Hence, up-scaling, the pro-
cess of information aggregation also referred to as 
coarse-graining, has received much attention in the 
geographic branches of many scientific disciplines 
(Wu and Hobbs 2002; Lischke et al. 2007; Teng et al. 
2020). Newman et  al. (2019) identified the problem 
of up-scaling in a statistically unbiased manner as 
one of three intrinsic limitations to progress in land-
scape ecology. In the context of understanding land-
cover dynamics and their effects on organisms, three 
aspects of information aggregation that are not suffi-
ciently addressed are (1) scale-dependency of classi-
fication schemes, (2) effects of up-scaling on compo-
sitional information loss, and (3) how that reduction 
in information affects the accuracy of land-cover 
detection from remotely sensed data. These aspects 
are important to consider when modeling interactions 
of landscape patterns and ecological processes at the 
landscape scale.

Interdisciplinary approaches to problem-solving 
often lead to new methods in science. This study 
integrates concepts from three disciplines—land-
scape ecology, phytosociology, and remote sens-
ing—to establish a new method to scale categorical 
information across spatial scales. The theory of scal-
ing in landscape ecology is combined with concepts 
from phytosociology that construct scale-specific, 

representative vegetation classifications. Further cou-
pling the process of defining a scaled classification 
system with the principles of accurate delineation of 
classes from remotely sensed data provides a feed-
back process for refining landscape-specific, cross-
scale classification systems. The main objective of 
this study is to demonstrate the efficacy of the multi-
dimensional grid-point (MDGP)-scaling algorithm 
(Gann 2019) in generating scale-specific and non-
hierarchical classification schemes that can be effec-
tively detected from multi-spectral remotely sensed 
data.

Up‑scaling categorical data in landscape ecology.

Despite the ever-increasing spatial resolution of satel-
lite data and aerial photography, in order to detect and 
quantify changes in land cover and land use across 
long temporal scales, up-scaling of more recent very 
high-resolution categorical maps to the courser reso-
lution of older maps is required. Up-scaling categori-
cal information aggregates information from multiple 
original map objects (e.g., pixels, grid cells) at the 
initial resolution, and information is generalized and 
lost in the process. Up-scaling categorical informa-
tion is more problematic than up-scaling continuous 
data because of limited mathematical or statistical 
methods. The most frequently used decision rules to 
aggregate compositional information are the majority, 
random, and nearest-neighbor rules. Studies that eval-
uated the effect of these rules on class abundance and 
landscape metrics (Turner et  al. 1989; O’Neill et  al. 
1996) showed that common and clumped classes 
were overrepresented, while rare and dispersed 
classes disappeared or were underrepresented (Turner 
et al. 1989; He et al. 2002; Wu et al. 2002; Raj et al. 
2013; Coulston et  al. 2014). Even more complex 
spatial aggregation methods that attempt to preserve 
rare classes (Coulston et  al. 2014) only consider the 
original classes when class labels are assigned to the 
larger spatial units. When simply replacing mixes 
of multi-class landscape units at a lower resolution 
with a single non-mixed class label, the classification 
scheme of the original scale by default is assumed 
to be valid at the aggregated scale. However, even if 
this assumption is justifiable when scale change is 
small, for large scale factors and especially in hetero-
geneous landscapes, this assumption leads to a huge, 
often unquantified, loss of compositional information. 
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When aggregating a landscape, we can quantify the 
compositional information that is retained in the 
scaled landscape units with the Czekanowski Index 
(Czekanowski 1909), which we define here as the 
local compositional information retention (IRc) as

where PCi is the proportion of class i cells within the 
scaled grid cell and PCiS is the proportion of class i 
retained in the scaled class label. Quantifying infor-
mation loss using Eq. (1) when scaling a small land-
scape with the majority and nearest-neighbor rules 
is illustrated in Fig.  1. Aggregating at a small-scale 
factor of three leads to large compositional infor-
mation loss (Fig.  1). Information loss increases as 
the scale factor increases to nine, where the appli-
cation of these rules leads to a single class at the 
lower scale, although which class is retained differs 
between the rules (Fig.  1). Gann (2019) has dem-
onstrated the impact on information loss that apply-
ing these decision rules has when scaling simulated 
landscapes with varying known characteristics. This 
over-simplification of land-cover information at the 
aggregated scale ultimately propagates to ecological 
models, where frequently co-occurring class mixtures 
that might be ecologically meaningful cannot be con-
sidered because they are lost in the scaling process. 
Ecological models that rely on scaled data then suf-
fer from this oversimplification, when relationships 
between processes operating at the aggregated scale 
of landscape patterns are obscured or erroneously 
rendered significant.

The few aggregation methods that acknowledge 
mixed classes at coarser spatial scales often use hier-
archical class systems that ignore non-hierarchical 
compositions of natural systems (Wu and David 
2002a; Ju et  al. 2005). Ju et  al. (2005) developed a 
multi-scale, multi-granular framework that allows 
for scaling in the spatial domain using quad-tree data 
structures to increase flexibility for aggregation in 
the spatial and categorical domains. The categorical 
domain, however, was limited to hierarchical class 
labels that aggregated the finer scale class labels to 
coarser, predetermined class labels at the next hier-
archical level (Ju et  al. 2005). Hierarchical classifi-
cation systems aggregate linearly, and groups from a 
lower level belong to only a single group at the higher 
level. However, class or species associations result 

(1)IRc = Σ
N
i= 1

min
(

PCi,PCiS
)

from processes that operate at different spatial and 
temporal scales and do not necessarily lead to hier-
archical class systems. For instance, individual pixels 
labeled trees at a high spatial resolution (i.e., class: 
tree) can, at lower resolutions, become members of 
forests, woodlands, swamps, or savannas; the tree 
density, environmental conditions, and floristic char-
acteristics of the co-occurrence with other species 
determine the coarser resolution class membership 
of individual trees. Thus, hierarchical classification 
systems can over-simplify complex patterns of spatial 
heterogeneity and obscure community assembly rules 
that determine species and class co-occurrences.

Class detection at varying spatial scales in remote 
sensing

Similarly, classification systems applied in land-
cover mapping from remotely sensed data are often 
structured hierarchically, presenting over-generalized 
classes that were detected from remotely sensed data 
at medium to coarse resolutions. Classification accu-
racy, the label correctly representing the ground con-
dition, depends on the spatial resolution of the sensor 
in relation to the local heterogeneity of the landscape 
and the thematic resolution (detail) of the classifica-
tion system. Like the scaling of categorical maps, 
evaluation of class accuracy and quantification of 
class abundance across sensors with different spatial 
resolutions is generally restricted to coarse classifica-
tion systems that do not vary with spatial scales, even 
when scales vary by magnitudes (Raptis et al. 2003; 
Knight et al. 2013; Xu et al. 2019, 2021). In remote 
sensing, the class that is dominant is often accepted 
as the correct class for mixed pixels (Ozdogan and 
Woodcock 2006), even when in cases of high local 
diversity, that dominance can be much smaller than 
50%. Using sub-pixel fractions of the correct classes 
has been proposed to adjust accuracy estimates and 
to better estimate actual land-cover abundances (Lati-
fovic and Olthof 2004; Pontius and Connors 2009), 
but they are still not the norm because of statistical 
challenges (Stehman and Foody 2019). The use of a 
single classification system across multiple scales and 
the practice of accepting the dominant class as cor-
rect at the coarser scale not only leads to gross over- 
or under-representation of land cover classes (Fig. 1) 
but also makes precise quantification of change in 



662	 Landsc Ecol (2023) 38:659–687

1 3
Vol:. (1234567890)

Fig. 1   Effects of majority and nearest-neighbor decision rules 
on compositional information retention (IRc) in a spatially 
heterogeneous and dispersed landscape with three classes. 
Top: The original landscape with 81 grid cells (left) and class 
abundances as counts and percentages (right). Bottom: original 

landscape upscaled with the majority rule (left) and nearest-
neighbor rule (right) with scale factors of 3 (top) and 9 (bot-
tom). Percentage within each scaled grid cell is the composi-
tional information retention (IRc) for the scaled cell
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very heterogeneous landscapes with mixed pixels 
impossible.

Generating classification systems in phytosociology

Solutions to the disconnect between thematic resolu-
tion of classification schemes and spatial resolution 
are provided by phytosociology, which has a long 
history of generating representative classification 
systems at different spatial scales from quantitative 
measures of species co-occurrence in relevés (Braun-
Blanquet 1964; Van Der Maarel 1979). In phytoso-
ciology, association patterns of species sampled at a 
1-m2 scale differ from those at 900-m2 (e.g., a Land-
sat pixel), resulting in classification schemes that 
recognize this scale-dependence of co-occurrence as 
analytical scales vary. Further, vegetation classifica-
tion systems that are driven by quantitative analysis 
need to be robust to sampling error and to consist-
ently assign class labels to random samples within the 
spatial domain they represent (De Cáceres et al. 2009; 
Wildi 2010; Tichý et al. 2011; De Cáceres and Wiser 
2012). Samples drawn from a categorical raster map 
within a window of a specific size (e.g., 3 × 3 aggre-
gation kernel) resemble relevé data of species abun-
dance for quadrats or plots, where each sampled grid 
cell represents a plot of a relevé set with a relative 
abundance of each class. Hence, the principles and 
methods applied in phytosociology can be extended 
to classification systems when scaling categorical 
data and detecting mixed land-cover classes from 
remotely sensed data.

Unifying scaling framework

The multi-dimensional grid-point (MDGP)-scaling 
algorithm (Gann 2019) is, to our knowledge, the only 
published algorithm that generates scale-specific and 
non-hierarchical classification schemes that recog-
nize non-hierarchical co-occurrence patterns or class/
species associations across scales. The algorithm is 
founded on principles of compositional data analysis 
and phytosociology. Using local class abundances at 
the higher resolution, this algorithm generates a new 
classification system that reflects common class co-
occurrence frequencies from the higher resolution 
data and assigns new class labels to the lower resolu-
tion grid cells. The two user-determined parameters 
that control information loss and class definitions at 

the lower resolution are class-label precision (parts) 
and a representativeness threshold. Class-label pre-
cision determines how much detail of the original, 
location-specific compositional information (i.e., IRc) 
is retained in a scaled grid cell. Because we are deal-
ing with categorical raster data, the number of cells 
within a scaled grid cell is finite, and the relative 
abundance data are compositional count data or fre-
quencies that fill the space of a polytope where class 
count (richness) determines the number of polytope 
axes (Gann 2019). Class-label precision, expressed 
as parts, proportions, or percentage cover, determines 
the number and location of grid points in the multi-
dimensional polytopes that represent the potential 
class labels (Fig. 2, black dots in ternary plots).

The effects of the class-label precision parameter 
on information retention are demonstrated in Fig.  2, 
where the MDGP-scaling algorithm was applied to 
the original landscape in Fig. 1. In what follows, we 
use parts and the corresponding precision of per-
centage cover interchangeably (e.g., 1-part = 100%, 
2-part = 50%, 3-part = 33%, 4-part = 25% and 
5-part = 20%). Information retention increases rapidly 
from 45.7% for the 100% precision (majority rule) to 
78.4%, 87.6% and 95.7% for the 50%, 33%, and 25% 
precision of class labels, respectively (Fig. 2). How-
ever, with increasing label precision, the number of 
potential scaled classes increases exponentially. In 
the three-class example with a scale factor of nine, 
increasing label precision from 1-part (100%) to 
4-part (25%), the class number increased from three 
to 15 classes (Fig. 2). Increasing the number of origi-
nal classes to 5, a 25% label precision produces 70 
potential classes. To control the number of classes as 
class count and label precision increase, rare mixed 
classes are eliminated by the MDGP-scaling algo-
rithm by applying a representativeness threshold, 
which sets the lowest acceptable proportion across 
the landscape for a scaled class to be retained in the 
scaled classification scheme (Gann 2019).

Further, to address sampling error related to the 
generation of a classification system from one ran-
domly selected and arbitrary origin for the lower 
resolution grid (i.e., remote sensor grid), and to be 
able to consistently assign class labels to random 
samples within the spatial domain the labels repre-
sent, the MDGP-scaling algorithm evaluates class-
label fidelity (CLF). Class-label fidelity is represented 
by the mean probability of a class to occur across 
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Fig. 2   MDGP solutions (left), ternary plots (center) and 
scaled grid cells (right) for majority rule (1-part, 100% preci-
sion) and MDGP 50% to 25% class label precisions. Left: Pos-
sible scaled class labels (Label List) for MDGP 100% through 
25% label precisions with maximum compositional informa-
tion retention (IRc) in bold; the numbers in each label are the 

MDGP-percentages for the associated class. Center: Ternary 
plots for MDGP; black dots are the possible MDGP labels 
for each label precision (Label List), and the colored point is 
the MDGP that maximizes IRc for the scaled grid cell. Right: 
Scaled solution for each precision; IRc increases greatly with 
mixed classes
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random-origin scaling results (CLFm) or the propor-
tion of classes that had a recurrence probability of 
one (CLFp). To generate representative classification 
schemes, class-label precisions and representative-
ness thresholds that do not produce high fidelity (i.e., 
that have high sampling error for a specific landscape) 
can be easily identified and avoided (Gann 2019).

The MDGP-scaling algorithm was developed and 
tested in simulated landscapes (Gann 2019). Here, 
we evaluate its performance when up-scaling vegeta-
tion cover in real landscapes and detecting the scaled 
land-cover classes from remotely sensed, multispec-
tral data. In this study, because of the repercussions 
that map precision (Meentemeyer and Box 1987; 
Quattrochi 1991; Buyantuyev and Wu 2007; Wick-
ham and Riitters 2019; Halstead et al. 2022) and map 
accuracy (Langford et  al. 2006; Kleindl et  al. 2015) 
have on modeling landscape-scale patterns and pro-
cesses, our main objectives were to quantify the 
effects of MDGP-scaling parameters on (1) informa-
tion retention and class representativeness when up-
scaling categorical data across natural, heterogeneous 
landscapes and (2) the accuracy of detecting scaled 
classes from remotely sensed data from lower resolu-
tion multispectral satellite data.

Methods

Effects of the MDGP-scaling parameters on land-
scape-level information retention and class detectabil-
ity using remotely sensed data were evaluated for two 
natural landscape types within the greater Everglades 
ecosystem (FL, USA) (Fig. 3). Plant communities for 
these two landscapes had been mapped from bi-sea-
son WorldView-2 (WV-2; Maxar Technologies, West-
minster, CO) multispectral data (eight spectral bands 
ranging from 0.4 to 1.04  µm) at a spatial resolution 
of 2  m (Richards et  al. 2015; Gann 2018). For this 
study, both mapped landscapes were scaled to 30 m 
using the MDGP-scaling algorithm (Fig. 4), and class 
detection accuracy of the scaled community classes 
was evaluated for Landsat Thematic Mapper multi-
spectral data (six spectral bands ranging from 0.45 
to 2.35 µm) that had been acquired for the same time 
(Fig. 4). 

The integrated testing framework for scaling and 
spectral-detection analysis was coded in R (R Core 
Team 2016), making extensive use of packages 

“raster” (Hijmans and van Etten 2010), “rgdal” 
(Bivand et  al. 2013), “compositions” (van den Boo-
gaart and Tolosana-Delgado 2008), “caret” (Kuhn 
et  al. 2016), “ggplot2” (Wickham 2016) for all 
graphs, and the “MDGP-scaling” algorithm which 
was scripted in R (Gann, 2019) and is available as an 
R package at https://​github.​com/​gannd/​lands​capeS​
caling. Maps were made in ArcGIS Pro 2.9.

Study areas

The two natural landscapes we studied were (1) a 
healthy, ridge-and-slough patterned landscape within 
southern Water Conservation Area 3A (WCA3A) and 
(2) a degraded, sawgrass-dominated, wet prairie in 
northeast Shark River Slough (NESRS) (Fig. 3), both 
within the larger Everglades wetland system in south-
ern Florida, USA. The ridge-and-slough landscape 
dominated the undeveloped Everglades, while the 
degraded slough is disturbed habitat currently under-
going restoration (McVoy et al. 2011).

Water Conservation Area 3A—ridge and slough

The ridge-and-slough landscape of WCA3A is 
characterized by alternating sawgrass (Cladium 
jamaicense) ridges and deeper sloughs that are 
dominated by submerged aquatic, floating broad-
leaved, and emergent graminoid freshwater species; 
higher elevations can have woody shrubs and vari-
ous tree species. The most common slough species 
is Nymphaea odorata, which forms dense, floating-
leaved carpets and is often accompanied by species 
of Utricularia and floating mats of periphyton. The 
2-m-scale community classification scheme for the 
ridge-and-slough landscape was composed of eight 
classes, including two each in aquatic-submerged, 
broadleaved-floating, graminoid- and broadleaved-
emergent vegetation, a mixed shrub-marsh class, and 
a shrub-tree class (Fig. 5, Table 1).

Northeast Shark River Slough—human‑influenced 
wet prairie

The second landscape, a 4.19 km2, sawgrass-domi-
nated wet prairie in NESRS (Fig.  3), is a degraded, 
former ridge-and-slough landscape that experi-
enced decades of altered hydrology with decreased 
water depth and hydroperiod, causing a reduction in 

https://github.com/gannd/landscapeScaling
https://github.com/gannd/landscapeScaling
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topographic relief (McVoy et  al. 2011). As a conse-
quence, the slough communities transitioned into 
remnant shallow depressions dominated by sedges 
and other graminoids that form distinct patches 
within a matrix of sawgrass-dominated communi-
ties. The classification scheme for NESRS consisted 
of 14 community classes: two included broadleaved 
species; six, graminoid-dominated vegetation; four, 
shrub or tree components; and two were non-vegeta-
tion classes (Fig. 6, Table 2). 

High‑resolution plant community maps

The high-resolution plant communities that served as 
the basis for the scaling evaluation had been mapped 
from bi-season WV-2 data at a 2-m spatial resolution 
using the random forest classifier (Breiman 1984). 
The vegetation map for WCA3A used wet-season 
data acquired on October 20, 2012, and dry-season 
data from May 5, 2011, and had a design-based esti-
mated 95% confidence accuracy of 91.2% (Fig.  5) 
(Gann 2018). WV-2 satellite data for the NESRS map 
had been acquired on November 6 and 9, 2010 (wet 
season) and on May 6, 2013 (dry season), and the 

design-based overall accuracy for the map was 89.2% 
(Fig. 6) (Richards et al. 2015).

Scaling parameter evaluation for information 
retention and class‑label fidelity

The three parameters of MDGP-scaling that con-
trol information retention in the scaled classification 
scheme are (1) scale factor, (2) class-label precision, 
and (3) class representativeness, where

(1)	 Scale factor is the ratio of the lower resolution to 
that of the higher resolution.

(2)	 Class-label precision is the minimum propor-
tion of a class that is retained in aggregated class 
labels.

(3)	 Representativeness of a scaled class is the mini-
mum proportion of the larger landscape that 
a newly generated class must occupy to not get 
dropped from the scaled classification scheme.

The scale factor for this study was 15 for scal-
ing from WV-2 2-m resolution to a 30-m Landsat 
grid-cell. Relative abundances of classes for the 225 
WV-2 grid cells in each coarse-resolution grid cell 

Fig. 3   Study areas (white outline) in the Everglades of South 
Florida, USA.  Two 1.21 km2 areas within  Water Conserva-
tion Area 3A (WCA3A) and one 4.19 km2 polygon in North-

east Shark River Slough within the boundaries of Everglades 
National Park. Background imagery provided by Earthstar 
Geographics (Esri 2021, ArcGIS PRO 2.9.3)
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were determined, and MDGP scaled class labels were 
generated. The algorithm was applied in a full facto-
rial design of five options each for class-label preci-
sion and landscape representativeness. The options 
considered were class-label precisions of 1, 2, 3, 4, 

and 5 parts, which translate to 100% (equivalent to 
the majority rule), 50%, 33%, 25% and 20% label 
precisions. For landscape representativeness, thresh-
olds of 1%, 5%, 10%, 15% and 20% were evaluated. 
Monotypic classes that were below the landscape 

Fig. 4   Flowchart for evaluating effects of MDGP-scaling 
parameters for class precision (parts) and representativeness 
thresholds (rprThr) on mean IRc, CLFm, CLFp, CLFpRO and 
on scaled-class detection accuracy (Aow) from low-resolution 
multispectral data. Algorithm inputs in black boxes; algorithm 
outputs in darker gray boxes. lrOrg low-resolution grid origin; 
mean IRc the mean of compositional information retention 
across all cells of the scaled map of the realized grid of the 
low-resolution multispectral data, CLFm mean probability of a 

class to occur across random origin scaling results; CLFp class-
label fidelity as a proportion of classes recurring across all ran-
dom map origin (RO) samples; CLFpRO proportion of classes 
generated for the realized Landsat grid that occur across all 
classes generated for 10 random origin solutions; Aow weighted 
overall accuracy; OSI optimal scaling index; OSIa optimal scal-
ing solution considering weighted class-detection accuracy, 
mean IRc, and CLFpRO
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Fig. 5   High-resolution vegetation map for WCA3A study area (Fig. 3) derived from WV-2 2-m satellite data. Coordinates in Meters 
WGS84 UTM 17 N

Table 1   Classification scheme and mapped class proportions for high-resolution plant community map for WCA3A

Class Code Class Name Class Proportion (%)

aS Aquatic Submerged 1.8
aSpblF Aquatic Submerged—Periphyton—Broadleaved Floating 28.2
blF Broadleaved Floating—Aquatic Submerged 10.8
blFNy Broadleaved Floating Nymphaea 10.3
gMblE Graminoid Marsh—Broadleaved Emergent 18.9
gMCl Graminoid Marsh Cladium 24.7
s_gMblE Shrub—Graminoid Marsh—Broadleaved Emergent 4.5
s Shrub—Tree 0.8
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Fig. 6   High-resolution 
vegetation map for NESRS 
study area (Fig. 3) derived 
from WV-2 2-m satellite 
data; class labels as in 
Table 2. Coordinates in 
Meters WGS84 UTM 17 N

Table 2   Classification scheme and mapped class proportions for high-resolution plant community map for NESRS

Class Code Class Name Class Proportion (%)

blF Broadleaved Floating (Brdlv. Float.) <0.1
gMblE Graminoid Marsh—Broadleaved Emergent (Grm. Mrsh. Brdlv. Emgr.) 2.9
gMS Graminoid Marsh Sparse (Grm. Mrsh. Sprs.) 8.0
gMD Graminoid Marsh Dense (Grm. Mrsh. Dns.) 2.3
gMCl Graminoid Marsh Cladium (Grm. Mrsh. Cladium) 29.3
gMClD Graminoid Marsh Cladium Dense (Grm. Mrsh. Cladium Dns.) 13.7
gMClS Graminoid Marsh Cladium Sparse (Grm. Mrsh. Cladium Sprs.) 35.5
gMTy Graminoid Marsh Typha (Grm. Mrsh. Typha) 2.7
sB Shrub Bayhead 2.0
sSa Shrub Salix 3.0
tB Tree Bayhead 0.3
tH Tree Hammock 0.1
wtr Water 0.1
pt Peat 0.3
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representativeness threshold were retained in the 
scaled classification scheme, since they have high 
information retention and are expected to generate 
pure spectral signatures with high detection probabil-
ity and accuracy. The algorithm thus generated class 
labels that reflected the constrained relative abun-
dances of classes from the fine-scale map, and each 
scaled class had a defined minimum relative abun-
dance across the landscape. This process resulted in 
25 scaled maps (Fig.  4) and their associated scale-
specific classification schemes for each study area 
(Fig. 4).

To account for sampling error related to the arbi-
trary grid origin of Landsat, effects of class-precision 
and landscape representativeness thresholds on class-
label fidelity, the recurrence of class labels across 
scaling solutions, were evaluated for 10 random ori-
gins of each of the 25 landscapes (Fig. 4). This ran-
dom origin sampling also provides a mean and con-
fidence interval for the landscape-scale information 
retention.

Significance of differences in label precision by 
representativeness thresholds was tested with a pair-
wise-paired Wilcoxon signed-rank test, where data 
were paired by random origin iteration. Optimal 
scaling parameter solutions for each landscape were 
identified with an optimal scaling index (OSI) that 
weighted per-class information retention IRcmin above 
a user-defined, minimum-expected threshold mul-
tiplied by the two class label fidelity metrics CLFm 
and CLFp (Fig. 4, Eq. 2). Information retention above 
the expected minimum was normalized to per-class 
IRc gain (Eq.  2) above the minimum to only credit 
models that reached the minimum expected infor-
mation retention. The optimal-solution model was 
determined by the maximum OSI across all compared 
models.

Scaling parameter evaluation for spectral detection 
accuracy

Accuracy of detecting scaled classes from Landsat 
Thematic Mapper (TM) multispectral reflectance data 
(Fig.  4) was evaluated for cloud-free Landsat 5 TM 
images acquired close to the acquisition dates of the 

(2)OSI = CLFm ∗ CLFp ∗

(

IRc − IRcmin

class count

)

WV-2 images used for the high-resolution maps. A 
November 11, 2011, scene was used for the WCA3A 
map and a December 25, 2010, scene for the NESRS 
map. Landsat data were atmospherically corrected 
using the FLAASH module in ENVI. For each study 
area, high-resolution maps were scaled for the real-
ized 30-m grid specific to the Landsat scene path 015 
row 042 (World Reference System 2). The MDGP-
scaling algorithm generated relative class abundances 
from the high-resolution map for each Landsat grid 
cell, using the same class precision and representa-
tiveness threshold combinations as for the random-
origin evaluation, and assigned up-scaled class labels. 
Scaled class labels for each of the 25 models were 
joined with Landsat spectral reflectance data of the 
corresponding pixel in the processed Landsat reflec-
tance data (Fig. 4). Overall and class-specific spectral 
detection accuracy for each scaled map were esti-
mated for each study area using a model-based, ten-
fold cross-validation when applying the random forest 
classification algorithm (Breiman 1984) as imple-
mented in the “caret” package (Kuhn et  al. 2016). 
The number of trees was set to 200. To determine the 
optimal number of randomly selected features at each 
node, the “mtry” parameter was evaluated for a range 
of two to six features, the number of features (spec-
tral bands) in the TM dataset. Overall accuracy was 
used to evaluate spectral detectability and separability 
between classes for each of the 25 models.

As class-label precision and class count increase, 
misclassifications are more likely, purely by chance. 
Hence, a tradeoff exists between class-label preci-
sion and accuracy. To account for less severe misclas-
sifications and to more accurately present the actual 
class proportions on the ground (Latifovic and Olthof 
2004; Pontius and Connors 2009), partial credit for 
accurate proportions of class labels was given by 
weighting label errors with a weighted Kappa statistic 
(Cohen 1968). The portions of the partially match-
ing class labels were used to calculate the weights 
of the weight matrix. The weight matrix was then 
applied to the confusion matrix, generating partial-
credit class accuracies and weighted overall accuracy 
(Aow) and their 95% confidence intervals (Rossiter 
2014). Class-label fidelity for the realized Landsat 
grid was calculated as the proportion of classes iden-
tified for the Landsat grid over the classes generated 
from the 10 random origin solutions (CLFpRO). As 
CLFpRO increases, it is more likely that the scaled 
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classes for Landsat are representative classes for 
random locations across the landscape at that scale. 
For all 25 scaled landscapes per study area, Aow, IRc, 
and CLFpRO were used to evaluate and select optimal 
class-label precision and representativeness threshold 
(Fig. 4).

The trade-offs that must be negotiated in the case 
of spectral detection from a realized grid are class-
detection accuracy, information retention, and repre-
sentativeness of the scaled classes of a realized grid. 
An index was developed to select the optimal scaling 
solution (OSIa), defined as

The optimal model solution was defined as the 
maximum of OSIa across all evaluated models. Final 
maps were generated for solutions that maximized 
OSIa.

Results

When applying the MDGP-scaling algorithm across 
the two natural landscapes, interaction effects of 
class-label precision and landscape representativeness 
on information retention and class-label fidelity were 
similar but not uniform. Therefore, results for scal-
ing and classification accuracy are presented by study 
area.

WCA3A: information retention and class‑label 
fidelity

Scaling produced 250 scaled landscapes and asso-
ciated scale-specific class schemes. Evaluating the 
effects of class-label precision and representativeness 
thresholds for scaled maps for WCA3A showed that 
scaled class count and mean IRc (p < 0.05) increased 
with increasing class-label precision for a minimum 
class representativeness of 1% (Fig.  7, Table  3). 
Increase in IRc, however, diminished with increas-
ing class-label precision. As class representativeness 
threshold increased to 5 and 10%, the increase of IRc 
with increasing class-label precision diminished until 
no significant increases for class-label precisions 
greater than 4-parts (25%) were observed. As rep-
resentativeness thresholds increased to 15 and 20%, 

(3)OSIa = CLFpRO ∗

(

IRc − IRcmin

class count

)

∗ Aow.

significant IRc increase was observed only for label 
precisions below 3-parts (33%) (Fig. 7, Table 3). 

Class-label fidelity generally decreased with 
increased class-label precision and representative-
ness. However, higher CLF occurred when preci-
sion exceeded 50% and minimum representative-
ness increased above 10% (Table  3). Setting the 
minimum expected IRc threshold to 60% (Table  3), 
a class-label precision of 25% with a representative-
ness threshold of 10% (OSI = 0.73) or a 33% class-
label precision with a landscape representativeness 
of 15% (OSI = 0.66) scored high on the OSI. The 
33%-precision solution on average yielded 7.0 scaled 
classes, with an average IRcRO of 73.5% across the 
landscape and a mean probability of class-label recur-
rence of 0.78 (Fig. 7 Table 3, Mean Prob.), with 44% 
of classes recurring with a probability of 1 (Table 3, 
Prop.1). The 25% class-label precision solution pro-
duced on average 7.9 scaled classes, which on aver-
age retained 77.7% of information and had a mean 
probability of class-label recurrence of 0.72 (Table 3, 
Mean Prob.), with 45% of classes re-occurring with a 
probability of 1 (Table 3, Prop. 1). In both cases, the 
higher CLF increased the optimal scale index.

WCA3A: spectral‑detection accuracy

Scaling the WCA3A landscape to the specific Landsat 
grid, IRcRL averaged 1.1% greater than the mean IRc 
across the 10 random-origin grids (IRcRO). Overall 
accuracy ranged from 66.6% for majority rule (1-part) 
with a 1% class representativeness to 78.2% for a 20% 
class-label precision and minimum landscape repre-
sentativeness of 15% for each of the five classes the 
classification scheme produced (Fig. 8, Table 4).

All scaling solutions of the Landsat grid with 
a majority rule had a mean IRcRL of less than 63%, 
which was significantly lower than the MDGP-scaled 
solutions for the 2- to 5-part label precisions and 
produced significantly lower overall accuracies than 
the corresponding multi-part solutions (p < 0.05). 
The three 2-part class precision models above 70.4% 
overall accuracy were those with representativeness 
thresholds of 10% and greater (Fig. 8, Table 4). Com-
paring the three solutions showed that the classifica-
tion schemes were identical and that the differences in 
accuracy were minor (Table 4).

Adding the spectral detection accuracy to the opti-
mal scaling index provided the same scaling solutions 
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as those identified by the OSI. The 3-part class-label 
precision with a 15% representativeness threshold 
produced a classification scheme with 8 classes, an 
IRcRL of 74.2%, and a class ratio of realized Land-
sat grid to random origin class solutions of 0.89 
(Table  4). The overall classification accuracy was 
73.9%, with an OSIa of 1.17 (Fig.  8, Table  4). The 
second highest OSIa was 1.12 for the 4-part class-
label precision and 10% representativeness thresh-
old model (Table  4). This solution also produced 
eight scaled classes, retained a slightly higher IRcRL 
of 76.4%, and had a higher classification accuracy 
of 75.3% with a class-label fidelity of 0.73 (Fig.  8, 
Table 4).

The maps for the two optimal solutions indicate 
that only the 3-part class-label precision solution 
maintained the shrub/tree label in the scaled classes 
(Table  5). This solution was selected as the best-
scaled map for a minimum requirement of 60% infor-
mation retention when compared to the original high-
resolution input map. This solution had eight classes, 
of which five were monotypic input classes and the 
other three were mixed classes that occupied 60.1% 
of the landscape (Fig. 9, Table 5). Two of the high-
resolution community classes, “Aquatic Submerged” 

and “Shrub-Tree”, which accounted for 2.58% cover 
of the high-resolution map (Table 1), were not main-
tained in the scaled community class labels. Except 
for “trees”, all original class names were included 
in pure or mixed class names (Fig. 9, Table 5). The 
scaled map and its associated location-specific, infor-
mation-retention map are presented in Fig. 9, and the 
spectrally classified map and location-specific classi-
fier confidence in Fig. 10.

NESRS: information retention and class‑label fidelity

Results for NESRS were similar to those for WCA3A. 
The original high-resolution map of NESRS had 14 
plant community classes, six more than the WCA3A 
map. Applying MDGP-scaling for all 25 class-label 
precision and representativeness-threshold combina-
tions confirmed the expected increase in class number 
and mean IRcRO when class-label precision increased 
(Fig. 11, Table 6). With increasing class-label preci-
sion, the increase in IRcRO diminished, and the differ-
ences for consecutive pairwise comparisons became 
insignificant (p ≥ 0.05) when representativeness was 
greater than 1% (Fig.  11, Table  6). For representa-
tiveness of 5%, the 4- and 5-part label precisions had 

Fig. 7   Mean probability 
of class label recurrence 
vs. information retention 
for WCA3A. Point shape 
specifies scaled landscape 
representativeness threshold 
(Rep.), while point color 
specifies class-label preci-
sion (Parts). Point labels 
represent the mean number 
of classes generated for 
each model across the 10 
random origins. Horizontal 
bars are 95% confidence 
intervals
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insignificant differences in IRcRO. As the representa-
tiveness threshold increased above 5%, insignificant 
differences also occurred for 2- and 3-part label preci-
sions (p ≥ 0.05) (Fig. 11, Table 6).

Class-label fidelity in NESRS was significantly 
higher than for WCA3A (Tables 3, 6). With a mini-
mum expected IRc threshold of 60%, two solutions, 
the 3-part class-label precision with a representative-
ness threshold of 15% and a 2-part class-label preci-
sion with representativeness of 5% both had an OSI 
of 0.79, which was higher than the other 23 models 
(Table 6). The 3-part label-precision solution on aver-
age yielded 11.3 scaled classes, with an average IRcRO 
of 72.7% and a mean probability of class-label recur-
rence of 0.94 (Fig.  11, Table  6, Mean Prob.), with 
75% of classes recurring across all random-origin 
iterations (Table  6, Prop. 1). The 2-part class-label 
precision solution produced 13.3 scaled classes, with 
an average IRcRO of 74.2% and a mean probability of 
class-label recurrence of 0.95 (Fig. 11, Table 6, Mean 
Prob.), with 79% of classes recurring across all ran-
dom origin landscapes (Table 6, Prop. 1).

NESRS: spectral‑detection accuracy

Information retention for the Landsat-grid scaled 
maps (IRcRL) averaged 4.6% higher than the mean 
IRc of the random-origins scaled maps (IRcRO). Over-
all accuracy ranged from ~ 69% for majority-rule 
solutions to the highest accuracy of 73.2% (Fig.  12, 
Table 7). As in WCA3A, the highest cross-validated 
overall accuracy was achieved for a 3-part class-label 
precision and minimum landscape representativeness 
of 10%. This solution had 13 scaled classes (Table 8).

All scaling solutions with a 1-part label preci-
sion had a mean IRcRL of 70.3%, which was signifi-
cantly lower than the MDGP-scaled solutions for the 
2- to 5-part label precisions (Fig. 12, Table 7). Accu-
racy was significantly higher for all multi-part solu-
tions with class representativeness greater than 5% 
(p < 0.05) (Table 7). For class-label precisions of 50% 
and less, the 15% and 20% representativeness thresh-
olds produced identical classification solutions.

Adding spectral-detection accuracy to the opti-
mal scaling index indicated that the 33% class-label 

Fig. 8   Cross-validated 
weighted overall accuracy 
vs. information retention 
for WCA3A scaled maps. 
Point shape specifies scaled 
landscape representative-
ness threshold (Rep.), 
while point color specifies 
class-label precision (Parts). 
Point labels represent the 
number of classes generated 
for the realized Landsat grid 
for each model. Vertical 
bars are 95% confidence 
intervals
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precision with a 10% class representativeness thresh-
old produced the best scaling result (OSIa = 1.10), 
generating 13 scaled classes (Table  8) that were 
detected from multispectral Landsat data with 
an accuracy of 70.7% (Table  7). The information 
retained for this solution was 80.3%, and the class-
label count ratio was 1, indicating that all classes 
derived for the Landsat grid were represented in the 
random origin solutions (Fig. 13, Table 7).

Scaled community classes for the optimal solution 
of 33% class-label precision included three mixed 
classes (47.7% of the landscape) and 10 monotypic 

input classes (Table  8). The original community 
classes that were omitted in the scaled class labels 
were “Broadleaved Floating”, “Tree Hammock”, 
“Water”, and “Peat” (Tables 2, 8). These four classes, 
however, accounted for only 0.4% cover in the original 
map (Table 2). The small class of “Tree Bayhead” was 
maintained as a monotypic class with the same cover 
percentage (0.28%) as the original map and mean 
information retention of 82.5%. The scaled map and 
its associated information retention by grid cell are 
presented in Fig. 13 and the spectrally classified map 
with location-specific classifier confidence in Fig. 14.

Table 4   Scaling effects on spectral detection accuracies for WCA3A for varying class-label precisions (Parts) and landscape repre-
sentativeness thresholds (Repr.)

The two best solutions are highlighted in italics
IRcRL  mean information retention across the landscape for the realized landscape (Landsat grid), CLFpRL the ratio of scaled classes 
for the realized landscape to the number of all classes identified across 10 random grid origins, OA-CIL and OA-CIU  lower and 
upper confidence estimates of the tenfold cross-validated overall accuracy, OSIa  Optimal Scaling Index for class-detection accuracy

Parts Repr. IRcRL (%) Total 
Classes

CLFpRL Overall 
Accuracy 
(%)

OA-CIL (%) OA-CIU (%) OSIa

1 1 62.6 7 1.00 66.6 64.8 68.5 0.25
1 5 62.3 6 0.86 67.1 65.3 68.9 0.22
1 10 61.5 5 0.71 70.0 68.2 71.8 0.15
1 15 61.5 5 0.71 69.6 67.8 71.4 0.15
1 20 61.5 5 0.71 70.4 68.6 72.2 0.15
2 1 77.1 16 0.84 68.3 66.5 70.1 0.61
2 5 75.5 12 0.80 70.4 68.6 72.2 0.73
2 10 71.3 7 0.70 72.3 70.5 74.0 0.82
2 15 71.3 7 0.70 71.8 70.1 73.6 0.81
2 20 71.3 7 0.70 72.1 70.4 73.9 0.82
3 1 82.8 29 0.85 69.2 67.4 71.0 0.46
3 5 78.6 12 0.63 71.5 69.7 73.3 0.70
3 10 76.0 9 0.64 72.1 70.3 73.8 0.82
3 15 74.2 8 0.89 73.9 72.1 75.6 1.17
3 20 69.2 6 0.67 72.9 71.2 74.6 0.75
4 1 85.9 40 0.77 69.5 67.7 71.3 0.35
4 5 80.2 14 0.70 72.5 70.8 74.3 0.73
4 10 76.4 8 0.73 75.3 73.6 77.0 1.12
4 15 75.1 7 0.64 76.1 74.4 77.7 1.04
4 20 71.0 5 0.56 74.8 73.1 76.5 0.92
5 1 87.1 47 0.60 69.8 68.0 71.6 0.24
5 5 80.5 13 0.45 73.2 71.5 75.0 0.52
5 10 75.2 8 0.57 78.0 76.4 79.7 0.85
5 15 71.4 5 0.42 78.2 76.6 79.8 0.74
5 20 68.9 4 0.50 77.5 75.8 79.1 0.86
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Discussion

We have shown that in natural landscapes the MDGP-
scaling algorithm generates thematic classes at a 
coarser resolution that retain high levels of compo-
sitional information for the mapped area that was 
represented in the higher resolution map. The scaled 
classes are quantitatively derived from the finer res-
olution data rather than being predetermined and 

reflect common vegetation associations present at 
the coarser resolution. Below, we discuss the scaling 
parameter effects on information retention and class-
label fidelity and how the scaling results influence the 
scaled-class detection from coarser resolution Land-
sat spectral reflectance data. We conclude the discus-
sion with applications that demonstrate the benefits of 
MDGP-scaling over decision rules that do not modify 

Table 5   WCA3A class schema and class proportions (Class Prop.) for two good scaling solutions of a 33% class-label precision 
with landscape representativeness of 15% (top) and a 25% class-label precision with representativeness of 15% (bottom)

Left column gives the relative abundance of original classes in the scaled class
Prop proportion, IRc  compositional information retention, SD  standard deviation
*Indicate original classes. Mixed classes make up 60.1% of the landscape for 33% precision and 74.9% for 25% precision solutions

Class name—33% Precision 15% Representativeness Class Prop. (%) Mean IRc (%) SD IRc (%)

100 Aquatic Submerged—Periphyton - Broadleaved Floating* 15.7 88.9 9.2
67 Aquatic Submerged—Periphyton - Broadleaved Floating 19.9 68.0 14.7
33 Broadleaved Floating Nymphaea
100 Broadleaved Floating—Aquatic Submerged* 9.7 65.6 19.2
33 Broadleaved Floating Nymphaea 21.8 65.1 11.8
33 Graminoid Marsh—Broadleaved Emergent
33 Graminoid Marsh Cladium
100 Graminoid Marsh—Broadleaved Emergent* 5.2 69.0 11.7
100 Graminoid Marsh Cladium* 6.6 89.5 7.2
67 Graminoid Marsh Cladium 18.4 81.2 11.0
33 Graminoid Marsh—Broadleaved Emergent
100 Shrub—Graminoid Marsh—Broadleaved Emergent* 2.6 63.2 17.6

Class name—25% Precision 10% Representativeness Class Prop. (%) Mean IRc (%) SD IRc (%)

100 Aquatic Submerged—Periphyton—Broadleaved Floating* 13.0 89.3 16.6
25 Aquatic Submerged—Periphyton—Broadleaved Floating 12.8 62.6 17.0
25 Broadleaved Floating—Aquatic Submerged
25 Broadleaved Floating Nymphaea
25 Graminoid Marsh—Broadleaved Emergent
25 Aquatic Submerged—Periphyton—Broadleaved Floating 15.9 68.6 15.0
25 Broadleaved Floating—Aquatic Submerged
25 Graminoid Marsh—Broadleaved Emergent
25 Graminoid Marsh Cladium
75 Aquatic Submerged—Periphyton—Broadleaved Floating 14.0 78.1 12.4
25 Broadleaved Floating Nymphaea
100 Broadleaved Floating—Aquatic Submerged* 7.0 74.0 14.5
50 Graminoid Marsh—Broadleaved Emergent 16.0 72.8 9.9
25 Broadleaved Floating Nymphaea
25 Graminoid Marsh Cladium
100 Graminoid Marsh Cladium* 5.0 92.4 5.1
75 Graminoid Marsh Cladium 16.2 82.9 10.4
25 Graminoid Marsh—Broadleaved Emergent
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Fig. 9   Scaled plant communities for WCA3A (top) and loca-
tion-specific information retention (IR) for the assigned com-
munity class label when compared to the high-resolution map 

(Fig.  5) (bottom). Class codes in Table  1. Numbers in labels 
give the class-label precision percent. Coordinates in Meters 
WGS84 UTM 17 N
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Fig. 10   Scaled plant-community classes predicted from Landsat spectral data (top) and location-specific classifier probability for 
class-label assignment (bottom) for WCA3A. Classes and abbreviations as in Fig. 9. Coordinates in Meters WGS84 UTM 17 N
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the classification scheme in the data aggregation 
process.

Categorical data integration across spatial scales

Analyses that integrate categorical data from dif-
ferent spatial resolutions require scaling the high-
resolution data to a coarser resolution. Combining 
coarse-resolution categorical maps with maps gen-
erated from high spatial but low temporal resolution 
is more effective when information retention of the 
scaled product is optimized. The MDGP-scaling algo-
rithm allows the user to optimize parameter selection, 
negotiating the trade-offs between information reten-
tion and class-label fidelity in natural landscapes. 
Information retention of MDGP-scaling was consist-
ently and significantly higher for both natural land-
scapes when compared to the majority-rule solution, 
as was expected from results for artificial landscapes 
presented in Gann (2019). Class-label fidelity for 
both landscapes was high, which demonstrates that 
the algorithm can generate classification systems in 
natural landscapes that consistently assign new scaled 
labels as recognizable classes at the scaled spatial 
resolution.

Compared to majority-rule aggregation, the 
increases in information retention and class-label 
fidelity were always higher for WCA3A than for 
NESRS. On average, the pairwise mean IRc dif-
ference was 3.4 ± 1.7% and mean CLFpRO was 
0.15 ± 0.11 greater for WCA3A than for NESRS. The 
reasons for the differences were either related to a 
lower number of classes in the original classification 
system of WCA3A or the higher spatial heterogeneity 
of the WCA3A landscape, leading to larger gains in 
information retention when using mixed class labels.

Scaled class detection from remotely sensed 
multispectral data

Classification systems derived from quantitative anal-
ysis of species or class co-occurrence patterns is inte-
gral to several scientific disciplines (e.g., phytosoci-
ology, community ecology). However, as sample area 
size increases (e.g., 1 m2 to 900 m2), sampling ground 
units becomes increasingly difficult. If high-resolu-
tion categorical maps with adequate class detail exist, 
application of the MDGP-scaling algorithm can pro-
duce high precision classification systems that pro-
vide representative mixed classes for medium to low 

Fig. 11   Mean probability 
of class label recurrence 
vs. information retention 
for NESRS. Point shape 
specifies scaled landscape 
representativeness threshold 
(Rep.), while point color 
specifies class-label preci-
sion (Parts). Point labels 
represent the mean number 
of classes generated for 
each model across the 10 
random origins. Horizontal 
bars are 95% confidence 
intervals
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resolution pixel sizes. Our analysis also demonstrates 
that the detection of these more precise and repre-
sentative land-cover classes from medium resolution 
spectral data was more accurate than for classification 
schemes that did not include the mixed classes.

Class detection accuracy from spectral data 
increased with higher class-label precision and with 
higher class representativeness thresholds. There are 
trade-offs, however, among the parameters. As the 
class-representativeness threshold increased, class 
count decreased, producing a reduced chance prob-
ability for class confusion and higher classification 
accuracy. However, as class count decreased, infor-
mation retention at the grid-cell level was reduced, 
and grid cells that were further from the nominal 
class label increased the thematic heterogeneity of the 
mixed classes, and with it, spectral variability, reduc-
ing classification accuracy. In a similar fashion, class-
label precision increased information retention and, 
therefore, more clearly associated defined thematic 
classes to spectral classes, so separability among 
classes increased. Because the number of thematic 
classes also increased with class-label precision, 
the chance probability for class confusion increased 
as well, reducing classification accuracy. Our study 

indicates that no single best solution exists across 
study areas, but that the MDGP-scaling method inte-
grates the quantitative evaluation of scaling parameter 
selection and its effects on representativeness of clas-
sification systems, information retention at the local 
(pixel) and landscape level, and spectral-detection 
of the scaled classes. The optimal scaling index that 
includes the class detection accuracy in its calculation 
is a useful index to determine parameter selection for 
MDGP-scaling. Applying this index when selecting 
optimal parameters allows user-specific and prefer-
ence-optimized solutions.

Detection accuracy of the scaled classes from 
spectral data could further increase when including 
multi-season spectral data because hydrological and 
phenological cycles and the associated spectral reflec-
tance patterns vary among plant communities. We 
used single-season Landsat data to detect the scaled 
classes, which is the most likely scenario for change 
detection applications in tropical regions because it is 
difficult to acquire cloud-free wet season data.

Fig. 12   Cross-validated 
weighted overall accuracy 
vs. information retention 
for NESRS. Point shape 
specifies scaled landscape 
representativeness threshold 
(Rep.), while point color 
specifies class-label preci-
sion (Parts). Point labels 
represent the number of 
classes generated for the 
realized Landsat grid 
for each model. Vertical 
bars are 95% confidence 
intervals
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Land‑cover change and biophysical parameter 
estimation using remote sensing

Ever-increasing spatial resolution of remote sensors 
has led to land-cover maps with very high spatial 
and thematic precisions. Since thematic map clas-
sification schemes are not uniform across the spatial 
scales of sensors, mixed-pixel classes with a coarse 
class label from an earlier time can be represented by 
pure pixels of their constituent class components in 
more recent maps that have a finer spatial resolution. 
Change detection over long periods, therefore, must 
reconcile the thematic class schemes that were used 
at each spatial scale. A change detection method that 
generates a representative classification scheme from 
high resolution thematic data and that can be detected 

from the multispectral data of the coarser resolution 
(e.g., Landsat) can facilitate the detection of scaled 
classes across time.

Our application of the MDGP-scaling algorithm 
to upscaling vegetation cover in two Everglades wet-
land landscapes produced a classification scheme 
that effectively generated classes that can be detected 
from coarser resolution spectral data and can now be 
used to examine temporal change using recent vs. his-
torical Landsat data without having to forfeit the high 
compositional information content of high-resolution 
maps derived from other sensors. Our study showed 
that including the generated mixed classes not only 
retained more information in class labels, represent-
ing the ground conditions in much higher detail, but 
also led to higher detection accuracies from Landsat 

Table 7   Scaling effects on spectral detection accuracies for NESRS for varying class-label precisions (Parts) and landscape repre-
sentativeness thresholds (Rpr.)

Column heading abbreviations as in Table 4. Best solution is highlighted in italics

Parts Repr. IRcRL (%) Total 
Classes

CLFpRL Overall 
Accuracy 
(%)

OA-CIL (%) OA-CIU (%) OSIa

1 1 70.3 11 1.00 69.4 68.9 69.8 0.65
1 5 70.3 11 1.00 69.4 69.0 69.8 0.65
1 10 70.3 11 1.00 69.5 69.1 70.0 0.65
1 15 70.3 11 1.00 69.4 68.9 69.8 0.65
1 20 70.3 11 1.00 69.3 68.9 69.8 0.65
2 1 82.5 21 0.91 70.2 69.7 70.6 0.69
2 5 80.3 13 0.93 70.8 70.4 71.2 1.03
2 10 78.7 12 0.92 71.0 70.6 71.4 1.02
2 15 76.4 11 0.92 71.1 70.7 71.5 0.97
2 20 76.4 11 0.92 71.1 70.6 71.5 0.97
3 1 86.2 26 0.87 69.7 69.3 70.1 0.61
3 5 83.3 16 0.94 70.1 69.7 70.5 0.96
3 10 80.3 13 1.00 70.7 70.3 71.1 1.10
3 15 78.3 12 1.00 70.5 70.1 70.9 1.08
3 20 78.3 12 1.00 70.5 70.1 70.9 1.08
4 1 88.2 33 0.79 69.6 69.2 70.0 0.47
4 5 85.0 18 0.90 70.6 70.2 71.0 0.88
4 10 82.5 14 0.93 70.3 69.9 70.8 1.05
4 15 77.7 11 0.79 71.4 71.0 71.8 0.90
4 20 77.7 11 0.79 71.3 70.9 71.7 0.90
5 1 89.1 37 0.61 69.4 69.0 69.8 0.33
5 5 84.0 15 0.54 72.1 71.7 72.5 0.62
5 10 78.9 10 0.63 72.6 72.1 73.0 0.86
5 15 77.1 8 0.57 73.2 72.8 73.6 0.90
5 20 77.1 8 0.57 73.1 72.7 73.5 0.90
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data. The MDGP-scaling algorithm is the first algo-
rithm that facilitates the exploration of label precision 
of mixed classes on the detectability of those classes 
from a medium or low-resolution sensor. In our case, 
the high vegetation heterogeneity of the Everglades 
landscape makes mixed Landsat pixels the norm 
rather than the exception (e.g., 60.1% mixed classes 
in WCA3A, 47.7% in NESRS for the optimally scaled 
classification systems). Applying the new Landsat-
scale classification system that was derived from the 
high-resolution co-occurrence patten of plant com-
munities to historic Landsat scenes now allows for 
change detection at higher thematic precision.

Higher information retention in more detailed clas-
sification systems is also of great interest when esti-
mating biophysical variables from remotely sensed 
data. The difficulties produced by spatial heterogene-
ity on the reliable estimation of biophysical variables 
using remotely sensed data have been identified and 
described for a suite of parameters and applications 
(Lu 2006). For example, Leaf Area Index (LAI), 
which estimates green leaf area per unit ground, 
and Fraction of Photosynthetically Active Radiation 
(FPAR) are two important biophysical variables in 
ecosystem gross primary productivity (GPP) models. 

Estimation of these variables from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), which has 
a high temporal resolution (daily) but coarse spatial 
resolution (500  m), relies on land-cover knowledge 
of each pixel (Steltzer and Welker 2006; Zhao et al. 
2016). Feagin et  al. (2020) acknowledged the dif-
ficulty of modeling GPP for wetlands that display 
high heterogeneity of land cover relative to the coarse 
resolution of MODIS. Lotsch et  al. (2003) demon-
strated the sensitivity of LAI and FPAR to land-cover 
information and how the heterogeneity of vegetation 
types within a pixel affects LAI estimates in a non-
linear fashion (Garrigues et  al. 2006). Tian et  al. 
(2002) showed that LAI errors at a coarse resolution 
are inversely related to the proportion of the dominant 
land cover in a pixel and that large errors were intro-
duced when the woody component made up only a 
small proportion of otherwise non-woody pixels.

Lack of knowledge about mixed-pixel composition 
arises from coarse classification schemes or aggre-
gation of detailed maps with algorithms that do not 
modify the classification scheme to accommodate 
mixed pixels (e.g., majority rule) at the scale of mod-
eling the biophysical variable. The MDGP-scaling 
algorithm generalizes classes but retains much higher 

Table 8   NESRS class schema and class proportions (Class Prop.) for an optimal scaling solution of a 3-part (33%) class-label preci-
sion with landscape representativeness of 10%

Left column gives the relative abundance of original classes in the scaled class. Column heading abbreviations as in Table 5
*Indicate original classes. Mixed classes make up 47.7% of the landscape

Class name—33% Precision 10% Representativeness Class Prop. 
(%)

Mean IRc 
(%)

SD IRc (%)

100 Graminoid Marsh—Broadleaved Emergent* 2.1 56.4 16.1
100 Graminoid Marsh Cladium* 8.5 89.8 7.6
67
33

Graminoid Marsh Cladium
Graminoid Marsh Cladium Dense

12.1 76.1 14.8

67
33

Graminoid Marsh Cladium
Graminoid Marsh Cladium Sparse

14.9 82.8 12.9

100 Graminoid Marsh Cladium Dense * 9.6 74.5 16.6
100 Graminoid Marsh Cladium Sparse* 18.0 90.3 8.1
67
33

Graminoid Marsh Cladium Sparse
Graminoid Marsh Cladium

20.7 54.8 16.3

100 Graminoid Marsh Dense* 1.1 70.8 17.6
100 Graminoid Marsh Sparse* 5.5 60.1 17.7
100 Graminoid Marsh Typha* 2.0 74.1 19.9
100 Shrub Bayhead* 1.9 74.1 19.9
100 Shrub Salix* 3.3 74.1 20.2
100 Tree Bayhead* 0.3 82.5 19.6
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precision in land-cover mixes, which propagates to 
more accurate calculation or modeling of biophysi-
cal variables. Especially for very heterogeneous land-
scapes such as wetlands, knowing the approximate 
relative abundance of vegetation cover types within 
each response unit (pixel) of moderate-resolution 
remotely sensed data will allow us to reduce error and 
uncertainty of biophysical variable estimates.

Conclusion

Understanding the effects of scale on process/pattern 
feedback is often the objective of landscape ecologi-
cal studies, and much attention has been drawn to 

defining and determining appropriate scales. The 
effect of the scaling process itself, however, is rarely 
considered, and the loss of information is usually 
unknown or unquantified because default methods in 
GIS software do not offer sophisticated choices for 
scaling categorical data. We demonstrated that the 
application of the MDGP‐scaling algorithm when 
up-scaling natural landscapes enables the selection 
of scaling parameters that preserve or retain more 
information and that an increase in class-label preci-
sion also leads to an increase in detection accuracy 
of scaled classes from multispectral data. Because 
the algorithm generates scale‐representative clas-
sification schemes with frequently occurring mixed 
classes, transition or expansion of ecotones is more 

Fig. 13   Scaled plant com-
munities for NESRS (top) 
and location-specific infor-
mation retention (IR) for the 
assigned community class 
label when compared to the 
high-resolution map (Fig. 6) 
(bottom). Class codes in 
Table 2. Numbers in labels 
give the class-label preci-
sion percent. Coordinates in 
Meters WGS84 UTM 17 N
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likely to be detected when comparing two categori-
cal maps that have been generated at different spatial 
resolutions.

The suite of scaling solutions that can be gener-
ated by varying scaling parameters in MDGP-scaling 
showed that information retention, class-label fidelity, 
and detection accuracy need to be evaluated together 
to negotiate trade-offs for a specific application. The 
analysis reported here demonstrated that detection of 
scaled classes from lower resolution spectral data was 
possible and that the evaluation framework facilitates 
parameter selection that optimizes scaling results. 
Quantifying class-specific and location-specific infor-
mation retention for the scaled products also enables 
estimation of spatially explicit confidence or error at 

the low-resolution grid cell level and thus of error 
propagation to model results.
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