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aspects of animal movement, and thus greatly reduces 
the effectiveness and relevance of connectivity mod-
els for conservation theory and practice. In this paper, 
we first provide an overview of the development of 
connectivity modelling and resistance surfaces. We 
then discuss several key drivers of animal move-
ment which are absent in resistance-based models, 
with a focus on spatiotemporal variation, human and 
interspecies interactions, and other context-depend-
ent effects. We look at a range of empirical studies 
which highlight the strong impact these effects have 
on movement and connectivity predictions. But we 
also provide promising avenues of future research to 
address this: we discuss newly emerging technolo-
gies and interdisciplinary work, and look to develop-
ing methodologies, models and conversations which 
move beyond the limiting framework of landscape 
resistance, so that connectivity models can bet-
ter reflect the complexities and richness of animal 
movement.

Keywords Connectivity · Landscape resistance · 
Spatiotemporal nonstationarity · Context 
dependence · Modelling · Interdisciplinary

Introduction

Green mist red clouds a trail through bamboo - 
and a hut where quiet lasts  -  just let go and 

Abstract Landscape connectivity, the extent to 
which a landscape facilitates the flow of ecological 
processes such as organism movement, has emerged 
as a central focus of landscape ecology and conser-
vation science. Connectivity modelling now encom-
passes an enormous body of work across ecological 
theory and application. The dominant connectivity 
models in use today are based on the framework of 
‘landscape resistance’,  which is a way of measuring 
how landscape structure influences movement pat-
terns. However, the simplistic assumptions and high 
degree of reductionism inherent to the landscape 
resistance paradigm severely limits the ability of con-
nectivity algorithms to account for many fundamental 
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worries end  -  stop to think and the mind reap-
pears  -  an unpolished mirror holds millions of 
shapes - a bell doesn’t ring until it is rung - our 
original nature is the real Buddha  -  nothing 
solid or empty nothing old or new.
-Stonehouse, translated by Red Pine (2009)

 Movement is fundamental to all life processes, and 
is studied by diverse ecological disciplines. In the 
context of landscape ecology and conservation sci-
ence, it is central to gene flow and organism dispersal, 
and plays a key role in population dynamics (Fahrig 
2003; Cushman 2006; Moller et  al. 2004). Animal 
movement behaviour is influenced by multiple biotic 
and abiotic factors, constituting a complex relation-
ship between individuals and the landscape which is 
fluid in space and time, and which manifests at dif-
ferent scales (Wiens 1989; Abram 1996; Gibbs 1998; 
Lorimer 2015). Understanding and predicting animal 
movement thus forms a cornerstone of ecological 
science and its application to conservation practice. 
Yet it is often complex and challenging to accurately 
model due to the many ways movement occurs in dif-
ferent contexts.

The notion of ‘landscape connectivity’ concerns 
the extent to which a landscape facilitates the flow of 
various ecological processes, and is typically studied 
in the context of animal movement (Tischendorf and 
Fahrig 2000). It is an emergent and dynamic phe-
nomenon based on the cumulative behavioural and 
movement choices of individuals across time and 
space (Cushman et  al. 2013a). Conceptually, it pro-
vides a tractable and powerful methodology for ana-
lysing and mapping animal movement patterns, and 
its widespread utility has been established across an 
enormous body of ecological work (Hilty et al. 2012; 
Rudnick et al. 2012; Kaszta et al. 2020). As such, the 
theory, modelling and prediction of connectivity has 
grown to become a central focus of landscape ecol-
ogy and conservation science.

The dominant paradigm for connectivity model-
ling uses ‘resistance surfaces’ to reflect the influence 
of landscape features on organism movement (Zeller 
et al. 2012). The major appeal of resistance surfaces 
is their ability to provide a spatially-explicit frame-
work for connectivity models requiring relatively few 
parameters (Cushman et  al. 2013a). However, as we 
argue in this paper, the simplistic assumptions and 
high degree of reductionism inherent to the landscape 

resistance paradigm severely limits the ability of con-
nectivity algorithms to account for many fundamental 
aspects of animal movement, to the extent that they 
greatly reduce the effectiveness and relevance of con-
nectivity models for conservation theory and practice. 
But unlike previous critiques of resistance-based con-
nectivity models (such as Moilanen 2011), this paper 
is also upbeat and offers promising avenues for future 
research, emphasising how currently existing models 
can be expanded and enriched with newly available 
techniques and methods. It adds to a nascent body of 
work looking at future developments for connectivity 
modelling (e.g. Bolliger and Silbernagel 2020).

We begin by providing a technical and histori-
cal overview of the development of connectivity 
modelling and resistance surfaces. We then discuss 
several important drivers of movement behaviour 
which are absent in resistance-based models, with a 
focus on the context-dependent and spatiotemporally 
dynamic nature of animal movement, and we exam-
ine a range of recent empirical studies which dem-
onstrate the substantial effects these have on connec-
tivity predictions. This opens us to a huge and rich 
area of research, full of unexplored hypotheses which 
we believe to be central to the future of connectivity 
modelling. We conclude with a discussion of how we 
may look to newly emerging technologies and inter-
disciplinary work to develop methodologies, models 
and conversations which move beyond the limitations 
of landscape resistance, so that connectivity models 
can better reflect the complexities and richness of ani-
mal movement.

Landscape connectivity and resistance surfaces: 
a brief history

The emergence of landscape resistance

Early models for predicting connectivity were devel-
oped in the 1990s and 2000s, based on simple adap-
tations of random walk theory (Codling et al. 2008). 
Although these individual- (or agent-) based models 
did incorporate some basic aspects of movement—
such as autocorrelation and differential mortality 
risks (Kareiva and Shigesada 1983; Bergman et  al. 
2000)—they paid little account to the heterogeneity 
of the landscape. Where this did appear, it involved no 
more than simple barriers or homogeneous landscape 



2467Landsc Ecol (2022) 37:2465–2480 

1 3
Vol.: (0123456789)

patches (Dunning et  al. 1995; Schumaker 1996). 
Soon afterwards, the concept of the resistance sur-
face (explained below) was introduced from the field 
of transport geography as an attempt to quantify how 
landscape features differentially affect movement, 
and to provide a greater degree of spatial complex-
ity in connectivity modelling. This was made possible 
by the availability of increasingly high-quality and 
fine-scale GIS data, which allowed for more detailed 
parameterisation of the landscape than the simple 
habitat patches used in earlier models (Cushman and 
Huettmann 2010). Since its introduction, the para-
digm of landscape resistance has swelled to become 
the dominant framework with which to model and 
predict connectivity (Zeller et al. 2012).

Estimating landscape resistance

A resistance surface is a pixelated map of the land-
scape; each pixel is assigned a numerical value which 
reflects the estimated ‘cost of movement’ through the 
region of the landscape corresponding to that pixel. 
These were originally developed according to ‘expert 
opinion’ (Adriaensen et  al. 2003; Beier et  al. 2008), 
but this approach had major disadvantages due to the 
lack of empirical evidence for its predictions (Cush-
man 2006). Hence in the last decade, ecologists have 
sought to craft methods for creating resistance sur-
faces which are explicitly informed by empirical data. 
The first such efforts began by assuming landscape 

resistance to be directly proportional to the inverse of 
habitat suitability data (Beier et  al. 2009). However, 
habitat suitability reflects the ability of the landscape 
to support the needs of an organism dwelling there, 
whereas connectivity is centrally concerned with 
movement through the landscape. Habitat suitabil-
ity has thus been established as an insufficient proxy 
for estimating resistance to movement in many cases 
(Wasserman et al. 2010; Keeley et al. 2017).

The most recent attempts to create resistance sur-
faces have focused on developing methods which 
optimise a functional relationship between the land-
scape—represented by a collection of chosen GIS 
layers—and data on animal movement patterns, 
for which telemetry or genetic data is often used 
(Cushman and Lewis 2010; Shirk et  al. 2010). This 
approach typically employs a resource selection func-
tion (Boyce et  al. 2002). In more detail, this means 
that a regression model is used with the empirical 
movement data to estimate the coefficients of a par-
ticular linear relationship: it expresses resistance to 
movement as a function of the different chosen envi-
ronmental variables, where the coefficients reflect the 
degree to which each variable is predicted to assist or 
impede movement (Thurfjell et al. 2014). The result-
ing linear combination of these GIS layers produces 
a new layer, which is the resistance surface. Figure 1 
illustrates a resistance surface used in Elliot et  al. 
(2014a), created using a path-selection function with 

Fig. 1  Example of a resistance surface used in Elliot et al. (2014a). The surface was created using a path-selection function with 
telemetry data gathered from dispersing lions



2468 Landsc Ecol (2022) 37:2465–2480

1 3
Vol:. (1234567890)

telemetry data gathered from the Hwange National 
Park locale in Zimbabwe.

Several studies have since shown this functional 
relationship approach to perform stronger than the 
earlier methods of expert opinion and habitat suitabil-
ity (Shirk et al. 2015; Mateo-Sánchez et al. 2015a, b 
). Yet there are limitations to the rigour and utility of 
the telemetry- and genetics-based methods too. Cen-
trally—as for all applications of resource selection 
function theory—the practitioner must decide a priori 
which environmental factors are considered influ-
ential for movement, and thus which variables are 
included in predicting landscape resistance (Burnham 
and Anderson 2004; Manly et al. 2007).

Resistance-based connectivity modelling

Landscape resistance is point-specific: each pixel 
reflects the estimated difficulty of moving through 
that specific location in the landscape. It inherently 
does not account for the emergent routes through the 
landscape as a whole, which is the central focus of 
landscape connectivity. Resistance-based connectiv-
ity models thus typically work by applying a move-
ment algorithm to a resistance surface in order to 
obtain predictions of landscape connectivity (Cush-
man et al. 2013a).

The first resistance-based models of landscape 
connectivity calculated the ‘least-cost path’ between 
two points on the resistance surface, as an approxi-
mation to the most favourable movement paths in a 
landscape (Adriaensen et  al. 2003). In other words, 
they computed the route which minimises the accu-
mulated cost of movement between two points. This 
was later extended by Cushman et al. (2009) to pro-
duce a network of least-cost paths between all combi-
nations of any number of source points; similar mul-
tiple-path approaches are presented in Rayfield et al. 
(2010) and Pinto and Keitt (2009). However, there are 
severe limitations to these least-cost path approaches 
in practice. Centrally, there is little reason to assume 
that an animal knows (or even thinks in terms of) the 
route of the least-cost path. Moreover, the destina-
tion point may not be known to the animal prior to or 
during movement—and even if this were so, obtain-
ing the knowledge of their precise destination can be 
very difficult in practice, especially with dispersing 
animals.

Further algorithms for predicting connectivity 
have since been developed, with the great major-
ity still using the framework of landscape resistance. 
Presently, two major connectivity models in use are 
’resistant kernels’ and ’Circuitscape’ (Compton 
et al. 2007; McRae et al. 2008). Resistant kernels is 
a cost-distance approach based on Dijkstra’s algo-
rithm, which estimates connectivity as a function of 
landscape resistance and dispersal thresholds; it pro-
duces a map of connectivity by summing together 
the expected dispersal density in the pixels around 
each source point. Circuitscape uses electrical circuit 
theory, in which the resistance surface is treated as a 
circuit and animals are modelled as electrons ’flowing 
through this circuit’, with mortality and connectivity 
quantified by the mathematical relationships of circuit 
theory. This algorithm produces a map in which the 
current flowing through each pixel of the resistance 
surface is assumed to reflect the degree of connectiv-
ity. In both cases, animals are modelled as automatons 
moving according to simple rules from graph theory 
or  random walk theory. See Cushman et  al. (2013a) 
for a summary of resistance-based connectivity mod-
elling. A comparative evaluation of performance and 
predictive abilities of these connectivity models can 
be found in Unnithan Kumar and Cushman (2022).

Combining individual- and resistance-based 
approaches to connectivity

These connectivity models use resistance surfaces to 
parameterise the energetic ’cost’ of moving through 
the landscape, but this is only one of many factors 
influencing movement. For example, resistance-
based connectivity models do not account for the 
autocorrelated nature of animal movement (Cush-
man 2010a)—as acknowledged with Circuitscape 
in McRae et  al. (2008)—despite the present state of 
an animal’s movement being strongly influenced by 
their immediate past direction of travel (Dray et  al. 
2010). In contrast, the earlier agent-based algorithms 
(such as Kareiva and Shigesada 1983) did incorporate 
greater detail into simulating individual animal move-
ment, and the mechanisms for individual movement 
parameters have been developed theoretically since 
then (DeAngelis and Mooij 2005; Lewis et al. 2013). 
However, the spatially homogeneous nature of these 
early individual-based algorithms greatly limited their 
effective use in landscape ecology and conservation 
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science, in which spatial complexity plays a central 
role (McGarigal and Cushman 2005).

In light of this, research in connectivity modelling 
has sought to craft detailed individual-based models 
which also attend to variations in landscape composi-
tion. For example, Schumaker (1996) simulated indi-
vidual movement using geospatial data on old-growth 
forest distribution in the Pacific Northwest, in order 
to assess the effects of habitat fragmentation on dis-
persal; Hargrove et al. (2005) developed an algorithm 
to detect dispersal corridors, using geospatial data to 
provide the locations of habitat patches. Although 
these models did weave a degree of spatial heteroge-
neity into their studies of connectivity, they worked 
with only binary values of landscape structure—
namely, whether a location could be considered as 
habitat or not.

Thus, subsequent work has combined the detail 
of the individual-based approach with the more con-
tinuous measure of spatial patterns given by resist-
ance surfaces. For example, Pathwalker (Unnithan 
Kumar et  al. 2022a) simulates organism movement 
and predicts connectivity on a resistance surface as 
a function of several parameters other than energetic 
cost, including: mortality risk, autocorrelation, and 
bias towards chosen locations, all at multiple spa-
tial scales. The algorithms HexSim (Schumaker and 
Brookes 2018) and RangeShifter (Bocedi et al. 2021) 
model movement based on the interplay of population 
dynamics and individual characteristics in a spatially-
explicit framework. For example, HexSim allows for 
the use of multiple resistance-like surfaces which 
approximate landscape features such as food and nest-
ing resources, in addition to a measure of the ener-
getic cost of movement from a traditional resistance 
surface. These spatially heterogeneous individual-
based models thus address some key drivers of move-
ment which are missing in the simplistic assumptions 
used by the currently dominant resistance-based con-
nectivity algorithms.

The trouble with landscape resistance

As discussed above, certain important aspects of ani-
mal movement which are absent in popular resist-
ance-based algorithms like Circuitscape and other 
least-cost path approaches are addressed to some 
degree by recent spatially-explicit individual-based 

models such as Pathwalker. Yet it will be manifestly 
apparent that several fundamental drivers of move-
ment and connectivity are not accounted for in cur-
rently available models which use the framework of 
landscape resistance. Centrally, there is a conspicuous 
lack of spatiotemporal variation and contextual detail 
in the animal’s movement behaviour and their rela-
tionship with the landscape.

All scientific models ostensibly require a simpli-
fication of ecological complexity and dynamics. But 
does the extent of the reductionism involved in cur-
rent resistance-based connectivity models, and their 
simplistic assumptions about animal behaviour, ren-
der them ineffective for application to the realities of 
conservation practice and landscape ecology?

The influence of spatiotemporal nonstationarity 
and context dependence on the actual patterns of ani-
mal movement has been largely unexplored in the sci-
entific literature. Recent works, described below, are 
only just beginning to scratch the surface of this ques-
tion, but already they point towards the enormous 
effect these factors can have on movement and con-
nectivity predictions. In this section, we discuss con-
ceptual arguments and look at a range of empirical 
studies, in order to establish the importance of spa-
tiotemporal and context-dependent effects in under-
standing and modelling landscape connectivity.

Spatiotemporal effects

Temporal variability

The landscape resistance paradigm assumes that an 
animal’s movement decisions do not change over 
time, and thus is unable to account for the migratory, 
diurnal, seasonal and life-history cycles which greatly 
influence the way animals move through the land-
scape. Of these temporal changes, it is most obvious 
that connectivity for migratory species is inherently 
variable over time (Webster et al. 2002). What about 
the broader effects of seasonal cycles of animal and 
landscape on connectivity predictions?

From a year-long study of African elephant move-
ment, Kaszta et  al. (2021) found dramatic variation 
in landscape resistance and connectivity predictions 
in different months, highlighting a ‘potentially seri-
ous problem in using movement models from a par-
ticular temporal snapshot to infer general landscape 
effects on movement’. In a different study of African 
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elephants, Osipova et al. (2019) conclude that ‘mod-
els disregarding seasonal resource fluctuations under-
estimate connectivity for the wet and transitional 
seasons, and overestimate connectivity for the dry 
season’. The temporally static nature of a resistance 
surface ignores the dynamism of the landscape itself, 
which is a process always in flux rather than a fixed 
entity (Ingold 1993; Lorimer 2015; Nhat Hanh 1993). 
Temporal landscape variation, such as seasonal rain-
fall and vegetation change, often greatly alters animal 
movement pathways, as demonstrated in Cushman 
et al. (2005).

Additionally, the broader temporal scale of an ani-
mal’s life history is not incorporated into the widely-
used connectivity models, despite its established 
importance on patterns of movement and connectiv-
ity. For example, in a decade-long study of African 
lions, Elliot et  al. (2014a) found connectivity pre-
dictions for young males to be vastly different than 
for adults, concluding that ignoring demographic 
variation when ‘parameterizing resistance surfaces 
intended for connectivity modelling may lead to erro-
neous conclusions about connectivity and potentially 
unsound management strategies’. Particularly with 
intra- and interspecific relationships, these disper-
sal and home range movement patterns interact with 
diurnal variation (Hearn et al. 2018; Broekhuis et al. 
2019), and the temporality of the landscape itself 
(Schwartz et al. 2009).

Spatial variability

The question of spatial nonstationarity refers to 
whether the relationship between animal and land-
scape varies across space; and if so, to what extent 
does this variability affect resistance-based con-
nectivity models? In other words, does the spatially 
unchanging functional relationship used to build a 
resistance surface from empirical data result in mod-
els whose predictions do not accurately reflect the 
actual pathways of movement and connectivity in dif-
ferent landscapes?

In ecological science, the biotic or abiotic variables 
which ostensibly have the greatest impact on the via-
bility of animal movement or dwelling in a particular 
region are known as ‘limiting factors’ (Cushman et al. 
2013b). Vergara et al. (2017) found that the limiting 
factors which most strongly influenced stone marten 
genetic connectivity varied vastly across Iberia. Their 

results highlight the importance for landscape models 
to be developed specific to the region of interest as a 
precursor to conservation management decisions, and 
for the effects of spatial nonstationarity to be care-
fully considered and evaluated in any application of 
connectivity modelling. In a study through both cen-
tral and western India, Reddy et al. (2019) found tiger 
movements to be primarily related to topographic 
roughness and secondarily to diffuse disturbance. 
However, the relationship between the tiger and these 
two limiting factors was inverted between the west 
and central India, suggesting that a resistance surface 
built from a spatially constant functional relationship 
would at best be appropriate for only one of these two 
regions.

In some cases, such as the study of the American 
black bear in Cushman et  al. (2014), resistance sur-
faces may provide adequate information to explain 
observed movement patterns. Yet the above recent 
works, and many others (e.g. Cushman et  al. 2011; 
Reding et  al. 2013; Shirk et  al. 2015), give strong 
evidence that the movement choices made by ani-
mals in relation to different landscape features will 
vary through space, and that these variations substan-
tially impact connectivity predictions. This spatially 
dynamic relationship between animal and landscape 
also interacts with human presence: for example, the 
sparse cover of hedgerows may be preferred in arable 
landscapes without forest, but not when more con-
tinuous forest is present (Tree 2018). Certain dense 
forest patches may be entirely avoided (Hearn et  al. 
2018), or highly desirable (Mathur 2021), dependent 
on the many possible effects of human presence on 
nonhuman movement. We discuss this further in the 
section on human-nonhuman interactions below.

Noise or fundamental driver?

Cushman (2010b) asked whether spatiotemporal 
complexity in ecological systems is merely noise 
around a stable, equilibrium state; or instead, is this 
variability in space and time a core driver of such sys-
tems, so that ‘ideal’ models which are spatiotempo-
rally homogeneous do not represent the fundamental 
dynamics of ecological processes?

As described earlier, resistance surfaces are cre-
ated from a functional relationship with a chosen 
set of environmental factors, and this relationship 
(which is typically linear or logistic) is modelled 



2471Landsc Ecol (2022) 37:2465–2480 

1 3
Vol.: (0123456789)

as stationary in both time and space. The above 
studies on spatiotemporal variation are mostly 
very recent; thorough investigations into these 
effects are only just beginning in ecological sci-
ence research. In some cases, such as the afore-
mentioned empirical study of the American black 
bear, landscape resistance may provide a sufficient 
explanation of observed movement patterns. Yet 
in the majority of studies published to date which 
analyse landscape effects on movement and con-
nectivity predictions, spatial and temporal change 
is seen to have dramatic impact, to the degree that 
the equilibrium and stationary assumptions in the 
landscape resistance paradigm result in connectiv-
ity models which are often inadequate for conser-
vation practice and management.

This growing body of work points towards 
embracing that an animal’s relationship with a 
region of the landscape is not composed by a uni-
versal and unchanging set of separate factors, as 
chosen by the modeller (such as elevation, ter-
rain slope, forest cover, and so on). Instead, it is 
dynamic on multiple scales, thoroughly place-
based, and experienced in relation to the compo-
sition of the landscape as a whole (Abram 1996; 
Ingold 2000, 2011; Powell and Mitchell 2012). 
In other words, this inherent spatiotemporal com-
plexity is central to understanding the relation-
ship between an animal and the landscape which 
it is part of, to the extent that much of animal 
movement through a changing landscape cannot 
be understood using only a pixelated map created 
from a weighted sum of static geospatial image 
layers.

Recent ecological work has looked at incor-
porating spatiotemporal variability into a resist-
ance-based framework: for example, by adapting 
connectivity models so that the coefficients of the 
geospatial layers used to create the resistance sur-
face vary with time, or with the location of the 
animal (Schumaker and Brookes 2018; Jennings 
et al. 2020; Zeller et al. 2020; Bocedi et al. 2021). 
However, the topic of nonstationarity in space and 
time is part of a broader issue of the many ways in 
which movement is thoroughly context-dependent. 
We now turn to examples of the effects of context 
dependence on connectivity modelling, and exam-
ine how they fundamentally call into question the 
paradigmatic assumptions of resistance surfaces, 

and the simplistic cost–benefit approach to quanti-
fying animal movement.

Context dependence

Intraspecific and interspecific interactions

The pathways travelled by an animal are shaped by, 
and often centered around, their relationships with the 
changing presence and movements of other animals. 
Intimacy, territoriality, hunger, love, competition, 
curiosity, dialogue, a web of social dynamics, and 
countless other relational bonds, can be fundamental 
drivers of movement patterns. What effect do these 
interactions have on connectivity predictions?

The decade-long study of African lions in Elliot 
et  al. (2014b) provides ‘the first investigation of 
seasonal movement patterns during dispersal in 
conjunction with territorial adults and how this var-
ies depending on group size’, in which they found 
intraspecific group size to have a substantial impact 
on the pathways travelled by the lions. Social rela-
tions between demographic categories were seen to 
explain radically different predictions of connectiv-
ity (Elliot et al. 2014a). Broekhuis et al. (2019) ana-
lyse the relational movement of male cheetahs, and 
its link with territoriality and mortality, ’giving a 
first detailed insight into intraspecific interactions in 
cheetah[s].’ As mentioned earlier, these effects on 
movement will vary with the spatiotemporal hetero-
geneity of the landscape (Gorini et al. 2012).

A similar argument applies to interspecific interac-
tions, in which the details of a predatory or coexistive 
relationship play a key role in movement behaviour, 
as demonstrated in Broekhuis et al. (2013). Studying 
the relationships between cheetahs, lions and spot-
ted hyaenas, they found cheetah movement routes 
to be highly influenced by the changing presence of 
lions; in conclusion, they encourage ‘a more dynamic 
approach to investigate interactions between species’. 
In a seven-year study using ’the largest Bornean felid 
detection dataset to date’, Hearn et al. (2018) investi-
gate the spatiotemporally dynamic coexistence of five 
felids, and analyse the intra- and interspecific influ-
ences on their spatial distribution.

Perhaps due to the complexity of such empirical 
investigation, few field-based analyses have emerged 
in the ecological science literature which look at the 
impact of creaturely interactions on connectivity 
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predictions. Moreover, these relational drivers of spa-
tial distribution also mix with the effects of human 
presence (discussed in the next section). For some 
species, these interactions may not be crucial to 
understanding their movement patterns. However, 
because connectivity pathways result from the cumu-
lative movement choices made by individual animals, 
these above studies, among others, suggest connectiv-
ity predictions to be highly sensitive to many intra- 
and interspecific relationships (as explicitly shown in 
Elliot et al. 2014a).

This gives rise to many interesting hypotheses, 
which could be tested and explored using simula-
tion techniques. For example, flexible existing indi-
vidual-based models like Pathwalker and HexSim 
could be used—or straightforwardly adapted—to 
include parameters for simulating particular interac-
tive effects, and assessing their impacts on connectiv-
ity. More broadly however, the degree of theoretical 
reductionism inherent to the landscape resistance 
paradigm does make it a rigid framework in which 
to perform such investigations (Moilanen 2011): due 
to the many different ways in which creatures relate 
and interact with each other, resistance-based mod-
els appear to be greatly limited by the cost–benefit, 
‘animal economicus’ approach to modelling move-
ment choice (Unnithan Kumar et  al. 2022b). Can 
we develop ways to measure and quantify ecologi-
cal processes that are not forced into this simplistic 
assumption of animal behaviour, which does lit-
tle to reflect the complex and rich reality of  these 
lively relationships?

Human-nonhuman interactions

Humans have long been, and still are, part of the 
interconnected ecological flows of this living and 
breathing world. However, the earth’s ecosystems are 
now increasingly shaped by anthropogenic presence. 
Conservation science thus inherently requires atten-
tion to be given to human-nonhuman relationships; 
for the effective modelling and application of land-
scape connectivity, it is obvious that these effects on 
movement patterns must be adequately accounted for. 
Traditional, ideal movement models which ignore the 
complexities of human influence on animal behaviour 
for the sake of theoretical and algorithmic simplicity 
are thus growing increasingly unreliable (Pooley et al. 
2017; Berkes et  al. 2008; Benson 2014). Ecological 

processes in reality do not follow a neat distinc-
tion between ’nature’ and ’society’ (Lorimer 2015; 
Cronon 1996; Ingold 2000). Indeed, Boettiger et  al. 
(2011) show in a study with African elephants that 
predictions with existing movement models ’were 
most frequently inaccurate outside protected area 
boundaries near human settlements, suggesting that 
human activity disrupts typical elephant movement 
behavior.’

In producing a resistance surface, human pres-
ence is typically reduced to a static geospatial image 
layer, with each pixel given a positive or negative 
value according to the estimated push–pull effect of 
that region on animal movement. Many of the con-
nectivity studies mentioned above point towards the 
impacts of human settlements on movement patterns 
and connectivity predictions, and the complex yet 
key effects these have on how animals move in rela-
tion to other animals. Can the reality of these effects 
be adequately captured by the spatiotemporally fixed, 
push–pull quantification of human presence used in 
resistance surfaces?

Penjor et al. (2022) show in their empirical analy-
sis of carnivore groups in Bhutan that human settle-
ments strongly shape movement patterns and spatial 
distribution, but that the effects are contrasting and 
varied. Integrating several methods from landscape 
ecology and landscape genetics in studying the 
anthropogenic impact on Sunda clouded leopards, 
Kaszta et  al. (2019) find that management decisions 
using resistance-based connectivity models ‘might be 
misleading and may in some cases lead to decrease in 
population size’, if other factors like mortality risk are 
not accounted for. Rostro-García et  al. (2016), in an 
empirical study showing how the relative movements 
of tigers, humans and leopards are varied and com-
plex, conclude: ’it should be realized that all maps are 
partial truths, and their ability to approach reality can 
only be judged when ground-truthed.’ Maps are rep-
resentations built with particular methodologies; they 
are not the landscape itself (Patel and Moore 2017; 
Ingold 1993).

Many other studies reach similar conclusions, 
showing that resistance surfaces alone account for 
little of the complexities of how human presence—
which itself is often dynamic—influences nonhuman 
movement patterns. Some, such as Elliot et al. (2014a 
, b), demonstrate how certain animals, which may 
generally avoid human settlements, are found to move 
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in close proximity with humans due to intraspecific 
social dynamics. Others, such as Ash et  al. (2020), 
highlight the importance of temporally varying mor-
tality risk on species movement.

Rigorous and detailed analyses of how human-
nonhuman interactions affect animal movement can 
be found in the overlapping disciplines of the con-
servation and environmental social sciences (Bennett 
et  al. 2017). For example, in a study of Asian ele-
phants, Barua (2014a) uses telemetry measurements 
and GIS data, together with data on land use change 
and interviews with local farmers, to obtain a more 
complete understanding of elephant movement pat-
terns. In doing so, the multifaceted nature of human-
elephant interactions is found to influence movement 
patterns in unexpected ways (Barua 2014b).

The utility of more interdisciplinary approaches 
to understanding animal movement and connectiv-
ity, and their compatibility with the diverse scientific 
analyses mentioned above, is being widely estab-
lished in conservation science and landscape ecology, 
and we discuss this further in the conclusion. Inter-
actions—with humans or other animals—are often 
fundamental drivers of movement patterns, and these 
fluid encounters are rarely captured by the binary 
cost–benefit framework of resistance surfaces, which 
collapses these dynamics into a single, static num-
ber (Abram 2010; Peterson et al. 2010; Pooley et al. 
2017; Frank et al. 2019).

Dynamic individuation: internal states and movement 
behaviour

We now address one final aspect of context depend-
ence, which has been a key focus in the growing field 
of movement ecology: the central importance of an 
animal’s internal states—physiological, emotional, 
physical—for shaping their movement patterns. 
Resistance surfaces, and the widely-used connectiv-
ity models based upon them (such as Circuitscape 
and resistant kernels), inherently assume an unchang-
ing and universally applicable caricature of animal 
behaviour, in which animals are typically modelled 
as automatons following simple random walk rules. 
However, the internal state of an individual crea-
ture, varying through space and time—which we call 
dynamic individuation—has been increasingly rec-
ognised as a core component of movement ecology, 
and its application to conservation science (Nathan 

et al. 2008; Jeltsch et al. 2013). For example, in their 
study of puma movement patterns Zeller et al. (2014), 
found landscape resistance estimates to be sensitive 
to both spatial scale and movement behaviour, with 
different behavioural states inverting the puma’s rela-
tionship with several landscape features. As a result, 
they ’recommend examining a continuum of scales 
and behavioral states’ when estimating landscape 
resistance.

There is ostensibly little room in the framework of 
landscape resistance for understanding the ways an 
animal’s internal state affects predictions of move-
ment (and thus, connectivity). Though it is of central 
importance as a driver of animal movement patterns 
(Holyoak et al. 2008), incorporating such information 
into connectivity modelling appears challenging, and 
until recently may not have been plausible (as dis-
cussed in Bolliger and Silbernagel 2020). But newly 
emerging technologies, particularly in the recent field 
of conservation physiology, provide a rich and prom-
ising place from which to creatively develop methods 
to address this—see Cooke et  al. (2013), who note 
that ’[w]hen physiological knowledge is incorporated 
into ecological models, it can improve predictions of 
organism responses to environmental change and pro-
vide tools to support management decisions.’

For example, Cooke et al. (2012) link physiologi-
cal and migratory data to provide valuable insights 
into the movement and survival of Pacific salmon, 
concluding that ’the best and only way to address 
complex conservation problems is through interdisci-
plinary research, of which conservation physiology is 
certainly becoming a recognized and important con-
tributor.’ Sherub et al. (2017) survey the development 
of biologging sensors in conservation practice, and 
use these sensors with GPS telemetry data to study 
the flight paths and mortality of Himalayan vultures.

Intuitively, conservation practitioners may expect 
a creature in a state of fear to respond to the land-
scape very differently to one in a state of calm, joy, 
sexual arousal or hunger. The emerging availability of 
biologging sensors in conservation practice is begin-
ning to help understand how emotional and physi-
ological  states affect movement patterns (Bograd 
et al. 2010; Wilson et al. 2015). Further examples for 
integrating physiology, behaviour and conservation 
practice can be found in Cooke et al. (2014). See Ellis 
et al. (2012) for an extensive discussion of the value 
of conservation physiology for landscape ecology 
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and conservation science, and their possibility for 
integration. These newly available conservation tech-
nologies also raise other crucial questions for wildlife 
management, such as those discussed in Arts et  al. 
(2015), Parreñas (2018) and Bergman (2005).

More broadly, the assumption that animals behave 
as random walking automatons is also challenged by 
a question of vital importance for ecological practi-
tioners across all disciplines: are we concerned only 
with maintaining the numbers of a population, or do 
we also place importance on the quality of the lives 
lived by the animals we study? These two priorities 
are inseparable, and both are essential for effective 
and resilient conservation practice (Wallach et  al. 
2018; Sekar and Shiller 2020; Hooks 2001). Focus-
ing solely on population numbers to the exclusion 
of other such considerations has led to serious unin-
tended consequences and harm in conservation efforts 
(Adams and Mulligan 2012; Pooley et al. 2017; Par-
reñas 2018; Paquet and Darimont 2010). The reduc-
tion of animal liveliness to simplistic adaptations of 
graph theory or random walk theory, modelled within 
the attraction-aversion framework of landscape resist-
ance, is not only a poor methodology for reflecting 
the actual movement patterns relevant to conserva-
tion practice and landscape ecology—as historian of 
wildlife tracking technologies Etienne Benson (2016) 
explains, this ‘behavioural minimalism’ also leaves 
no scope for attending to the quality and richness of 
individual lives. Developing methods to account for 
dynamic individuation thus seems to be a promising, 
exciting and vital  aspect of the future of movement 
and connectivity modelling.

Conclusion: moving beyond landscape resistance

Landscape connectivity has become a central focus 
of theoretical and applied ecological research. The 
paradigm of landscape resistance has become the 
dominant framework with which to develop connec-
tivity models, providing a spatially-explicit founda-
tion requiring relatively few parameters. Resistance 
surfaces and resistance-based connectivity algorithms 
typically model animals as random-walking automa-
tons, moving in relation to the landscape according to 
a simplistic set of movement rules which do not vary 
in space and time.

However, connectivity is fundamentally a phe-
nomenon which emerges from cumulative animal 
movement patterns. As we have argued in this paper, 
animal movement behaviour is dynamic in space and 
time, is inherently shaped by their internal states, 
and is thoroughly influenced by their rich and com-
plex interactions with other creatures. Through both 
conceptual discussion and a survey of recent empiri-
cal studies of movement and connectivity, we have 
demonstrated that ignoring these fundamental driv-
ers of movement often greatly limits the effective-
ness and reliability of resistance-based connectivity 
algorithms. We acknowledge that all models require a 
simplification of ecological processes, and a choice of 
which biotic and abiotic effects on movement are con-
sidered significant enough to include as parameters. 
But the analyses presented and discussed in this paper 
highlight that the degree of reductionism inherent to 
the landscape resistance paradigm, and the rational-
choice, cost–benefit assumptions made on animal 
movement behaviour, provide an often inadequate 
basis for connectivity models to have appropriate and 
useful application to conservation practice and policy.

We still believe that resistance surfaces can be 
very helpful for connectivity analyses, and will likely 
continue to have widespread application in landscape 
ecology and conservation science. The focus of this 
paper has been to show that accurately understanding 
and predicting movement and connectivity requires 
methods which account for aspects of animal move-
ment other than just landscape resistance alone. Yet 
conceptually and in practice, it appears a challeng-
ing task for ecological practitioners to integrate spa-
tiotemporal variability and context dependence into 
workable and effective models. We have intended 
in this paper to stimulate and draw attention to what 
promises to be a rich field of research, and one which 
we believe will be crucial for the development of 
many ecological disciplines. We thus end by revisit-
ing the following question, which has been raised 
throughout this paper: as an ecological community, 
how are we to approach and develop techniques and 
methodologies which allow models to better reflect 
the realities of movement and connectivity?
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Hypothesis testing, validation and simulation 
experiments

The studies discussed in this paper which evalu-
ate and validate connectivity models have only 
just scratched the surface of an important set of 
hypotheses. Through decades of investigations and 
analyses, ecological science established the impor-
tance of scale as a fundamental aspect of ecosys-
tem dynamics and animal movement (Wiens 1989; 
Levin 1992; Zeller et  al. 2014). Attending to the 
temporal, spatial, and other context-dependent 
drivers of movement and is now long overdue. 
The empirical studies discussed in earlier sections 
highlight the substantial influence of these effects 
on connectivity predictions, and the inadequacy 
of current models, which are  often too simplistic 
to appropriately inform conservation  in practice. 
But empirical data alone is typically insufficient to 
thoroughly evaluate the performance and accuracy 
of  connectivity models, since the underlying rela-
tionship between landscape and movement behav-
iour remains unknown and need not be reflected by 
the empirical data, and thus can only be inferred 
inductively (Cushman and Landguth 2010).

Working instead with simulated data reverses this 
process, since we are able to compare connectivity 
predictions to the ‘known truth’ of the connectivity 
pathways generated by simulated movement data. The 
importance and utility of simulation techniques for 
addressing key ecological questions has been estab-
lished in many branches of spatial ecology: for exam-
ple, the use of CDPOP in landscape genetics (Cush-
man et  al. 2012; Shirk et  al. 2018), and HexSim in 
population dynamics (Stronen et al. 2012; Heinrichs 
et  al. 2016). Simulation tools thus provide a power-
ful and tractable framework with which to explore 
hypotheses concerning the influence of spatiotempo-
ral variability and context dependence on connectiv-
ity predictions.

In particular, flexible spatially-explicit individual-
based movement algorithms which are used for con-
nectivity modelling—like Pathwalker, HexSim and 
RangeShifter—provide an excellent place from which 
to evaluate a wide range of theoretical and methodo-
logical questions in this area (e.g. Unnithan Kumar 
and Cushman 2022). Although these models still 
make use of resistance surfaces to provide the spa-
tial input data, all three afford greater complexity to 

animal movement behaviour than models like Cir-
cuitscape and resistant kernels, and can straightfor-
wardly be adapted to include additional parameters. 
For example, by simultaneously varying spatial input 
data with mortality risk, spatial scaling and direc-
tionality bias, Pathwalker provides a highly capable 
framework for investigating the precise effects of key 
drivers of movement patterns beyond just landscape 
resistance.

Interdisciplinary collaboration: models, 
methodologies, practice

Earth’s landscapes are increasingly shaped by anthro-
pogenic presence, to the extent that ecological mod-
els which do not adequately attend for these impacts 
are likely to be ineffective and inappropriate for use 
in applied ecology. Moreover, since landscape ecol-
ogy and conservation science are inherently interdis-
ciplinary (Farina 2008; Kareiva and Marvier 2012), 
this is an excellent opportunity in which to draw upon 
the conservation social sciences. In recent years, con-
tributions from these overlapping fields have been 
recognised as crucially important for all areas of 
conservation theory, modelling and practice (Bun-
nefeld et  al. 2017). While disciplinary boundaries 
are often useful for focusing study and investigation, 
they must not become rigid categories which prevent 
the collaborations and conversations that are vital 
for the development of ecological science (Campbell 
2005; Pooley et al. 2014; Johnson et al. 2016; Para-
thian et al. 2018). Adequately attending to the human 
dimensions of conservation practice is essential for 
such efforts to be successful (Adams et al. 2004; Ntuli 
et al. 2019). See Bennett et al. (2017) for a succinct 
and helpful overview of the value and fundamental 
importance in engaging with techniques, models and 
methods from the conservation social sciences.

The context-dependent effects on animal move-
ment discussed in this paper, while demonstrated to 
often have a substantial influence on movement and 
connectivity predictions, may be difficult to address 
with existing mainstream quantitative techniques. In 
this regard, our intention is not to prematurely pre-
scribe the exact methods for expanding the current 
field of connectivity modelling; instead, we aim to 
stimulate research and exploration into the many rich 
possibilities which arise from working to address 
the issues raised in this paper. Recent analyses in 
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interrelated fields, such as ethnobiology, conserva-
tion geography, and multispecies ethnography, bring 
more  relevant and powerful complementary tech-
niques to landscape ecology and conservation sci-
ence than ever before, as discussed in Parathian et al. 
(2018). These disciplines offer valuable material 
which may enable scientists to identify new param-
eters and objectives for models to fit better with the 
realities of conservation practice.

For example, the aforementioned study in which 
Barua (2014a) tracks elephant movements using 
telemetry, ethnographic and historical data together 
produces much greater insight into elephant move-
ment patterns than with any one data type alone. 
Similarly, Parathian et al. (2018) synthesise prima-
tology science with multispecies ethnography to 
give crucial information on the spatial distribution 
and conservation of western chimpanzees. Hodg-
etts and Lorimer (2015, 2020) introduce the concept 
of animals’ mobilities, and discuss methodologies 
and studies involving tracking and genetic tech-
nologies (e.g. Cantor et  al. 2012), which may help 
to address the spatiotemporally varying effects of 
social dynamics on individual and collective move-
ment. Holistic approaches to connectivity are nec-
essary for considering the many factors required 
for effective and resilient conservation practice 
(Hodgetts 2018). Paltsyn et al. (2019) integrate tra-
ditional ecological knowledge with remote sensing 
technologies to produce more robust maps of veg-
etation dynamics for management and policy. The 
seminal work of Berkes (2017) provides a compre-
hensive account of how scientific modelling and 
traditional ecological knowledge can greatly enrich 
and complement each other, addressing several key 
contemporary issues in conservation management 
(see also Salmón 2000; Kimmerer 2013). Scientists 
and modellers who are willing to engage with this 
interdisciplinary literature may find themselves at 
the forefront of revolutionary advances in applied 
ecological research.

Conclusion

Connectivity modelling is a rich and rapidly grow-
ing subdiscipline which lies at the heart of theoreti-
cal and applied ecology. Two decades ago, ’landscape 

resistance’ emerged as the dominant paradigm for 
mapping connectivity, because it provided the best 
spatially-explicit framework available at the time. 
However, the reductionism and simplistic assump-
tions inherent to resistance surfaces do not account 
for several fundamental drivers of movement and 
connectivity, such as spatiotemporal variation, spe-
cies interactions and other context-dependent effects. 
Through conceptual discussion and a range of recent 
empirical studies, we have highlighted how resist-
ance-based connectivity models can thus be ineffec-
tive and unreliable for application to conservation 
practice. In light of this, we have drawn on emerging 
research across ecological disciplines to look at how 
to expand methodologies and techniques in conserva-
tion science, so that our models can better reflect the 
complexities of animal movement in this mysterious 
and beautiful world.
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