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Objectives  We applied a novel combination of field 
surveys and remote sensing data to create maps of C3 
and C4 abundance in Australia, and a vegetation δ13C 
isoscape for the continent.
Methods  We used vegetation and land-use ras-
ters to categorize grid-cells (1 ha) into woody (C3), 
native herbaceous, and herbaceous cropland (C3 and 
C4) cover. Field surveys and environmental factors 
were regressed to predict native C4 herbaceous cover. 
These layers were combined and a δ13C mixing model 
was used to calculate site-averaged δ13C values.
Results  Seasonal rainfall, maximum summer tem-
perature, and soil pH were the best predictors of C4 
herbaceous cover. Comparisons between predicted 
and observed values at field sites indicated our 
approach reliably predicted generalised C3:C4 abun-
dance. Southern Australia, which has cooler tem-
peratures and winter rainfall, was dominated by C3 
vegetation and low δ13C values. C4-dominated areas 
included northern savannahs and grasslands.
Conclusions  Our isoscape approach is distinct 
because it incorporates remote sensing products that 
calculate cover beneath the canopy, the influence of 
local factors, and extensive validation, all of which 
are critical to accurate predictions. Our models can 
be used to predict C3:C4 abundance under climate 
change, which is expected to substantially alter cur-
rent C3:C4 abundance patterns.

Keywords  Photosynthesis · C4 · C3 · Isoscape · 
Carbon

Abstract 
Context  Maps of C3 and C4 plant abundance and 
stable carbon isotope values (δ13C) across terrestrial 
landscapes are valuable tools in ecology to investi-
gate species distribution and carbon exchange. Aus-
tralia has a predominance of C4-plants, thus moni-
toring change in C3:C4 cover and δ13C is essential to 
national management priorities.
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Introduction

The spatial patterns of stable carbon isotope ratios 
(δ13C) across terrestrial landscapes, also known as 
δ13C ‘isoscapes’, are used in a wide range of research 
applications (West et  al. 2009). Most commonly, 
δ13C isoscapes are used to study food web dynam-
ics and animal migration (Hobson et  al. 2010; Hob-
son and Wassenaar 2018; Vander Zanden et al. 2018). 
Animals tissues reflect the δ13C value of their diet 
(Tieszen et al. 1983; Kelly 2000; Ben-David and Fla-
herty 2012). By comparing the carbon isotope ratios 
of an organism to its environment, we can deduce its 
likely place of origin (Hobson and Kardynal 2015; 
Flockhart et  al. 2017; López-Calderón et  al. 2017). 
Terrestrial δ13C ratios can also be used to unravel 
carbon biogeochemical fluxes (i.e. carbon exchange 
between the biosphere and atmosphere; Still and Ras-
togi 2017), fractional plant productivity (Powell et al. 
2012) and water use efficiency (Frank et  al. 2015; 
Cernusak 2020). Given their vast utility, creating 
isoscapes has become a high priority in environmen-
tal research.

The primary determinant of average vegetation 
δ13C values across terrestrial landscapes is the rela-
tive abundance of C3 and C4 plants (Still et al. 2003). 
C3 plants include cool season grasses, most shrubs, 
and nearly all trees (Kellogg 2001; Sage 2016), 
whereas C4 plants include warm-season grasses, 
many sedges, and some forbs and shrubs (Sage et al. 
2012). The distribution of C3 and C4 plants reflects 
their divergent responses to climate. In hot and dry 
environments, C3 plants experience increased rates of 
oxygen fixation by rubisco (photorespiration), a toxic 
and energetically expensive process, and diminishing 
returns in the trade-off between carbon uptake and 
water loss (Andrews and Lorimer 1987; Sage et  al. 
2012). In contrast, C4 plants possess a unique set of 
adaptations that separate and concentrate CO2 with 
rubisco, eliminating photorespiration and increasing 
productivity in hot and dry conditions (Kanai and 
Edwards 1999; Sage 2004). As a result, C3 plants are 
typically less competitive in warm, arid climates. C3 
and C4 plants also have a unique range of δ13C values. 
Due to their distinct carbon fractionation processes 
during photosynthesis, the values of C3 plants range 

from − 37‰ to − 20‰ δ13C (mean =  ~  − 27‰), and 
the values of C4 plants range from − 12‰ to −16‰ 
δ13C (mean =  ~ − 13‰; O’Leary 1988; Kohn 2010). 
Therefore, knowledge of C3 and C4 cover can be used 
to estimate average plant δ13C across terrestrial envi-
ronments (Still and Powell 2010; Powell et al. 2012).

Remote sensing capabilities can be used to approx-
imate C3 and C4 cover at a continental scale (Still 
and Powell 2010; Powell et  al. 2012; Griffith et  al. 
2019). Satellite imagery enables the separation of 
woody (predominantly C3) and herbaceous (mixed 
C3 and C4) plant cover. Climate masks or models can 
be used to predict the relative abundance of C4 and 
C3 cover in the herbaceous layer, and the δ13C val-
ues of C3 and C4 plants can be applied to extrapolate 
the mean δ13C value of vegetation in a given area. 
Cropland cover must also be considered because the 
photosynthetic pathway of cropland is dictated by 
humans, not climate. This technique has been applied 
to create terrestrial δ13C isoscapes at the continental 
scale in Africa and America (Still and Powell 2010; 
Powell et al. 2012; Firmin 2016), although other con-
tinents undergoing profound land-use changes remain 
unassessed.

Field surveys can greatly enhance the accuracy 
of δ13C isoscapes. Vegetation cover data from field 
surveys can be used to compare different C4 cover-
climate models and determine what approach should 
be used to predict the relative abundance of C4 and 
C3 herbaceous cover. Numerous models have been 
proposed to predict relative C4 herbaceous cover, 
such as summer maximum temperatures (von Fischer 
et  al. 2008) and seasonal rainfall patterns (Winslow 
et  al. 2003; Murphy and Bowman 2007). The most 
commonly employed approach is the physiologi-
cal temperature crossover model (Ehleringer 1978; 
Collatz et  al. 1998), which predicts C4 plants will 
be more abundant in areas where the mean monthly 
temperature is greater than 22 °C. The best approach 
may vary between regions, therefore selecting the 
most appropriate model for a specific area is essen-
tial for accurate isoscape predictions. Field surveys 
can also be used to model the modifying effects of 
local edaphic factors on C4 cover (Nippert and Knapp 
2007; Griffith et  al. 2015), which is generally over-
looked in large-scale analysis. They can be used to 
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quantify the herbaceous cover under trees, which is 
often obscured, and thus excluded, from isoscapes 
built using standard remote sensing tools. Finally, 
but perhaps most crucially, field surveys can vali-
date remote sensing predictions. Yet, systematic and 
comparable field surveys that span an entire continent 
are rare, and existing large-scale isoscapes have been 
largely constructed without the benefits of ground 
observations or extensive validation.

Australia is a continent with abundant C4 veg-
etation due to the large expanses of C4 grasslands, 
shrublands and savannahs (Hattersley 1983; Murphy 
and Bowman 2007; Sage 2016). Therefore, moni-
toring and predicting trends in C4 abundance and 
δ13C is important to national management priorities, 
such as fire modelling (Prober et  al. 2007) and pro-
jecting changes in C3 and C4 abundance due to cli-
mate change (Corlett and Westcott 2013; Hasegawa 
et al. 2018). Despite this, no large-scale estimates of 
C3 or C4 vegetation cover or δ13C values are avail-
able. This represents a significant gap in national 
research capacity. The Australian Terrestrial Ecosys-
tem Research Network (TERN) is an environmental 
monitoring program funded through the Australian 
Government National Collaborative Research Infra-
structure Strategy (NCRIS) that observes, records, 
and measures terrestrial ecosystem parameters and 
conditions for Australia over time. TERN has devel-
oped numerous remote sensing layers that estimate 
the relative distribution of vegetation cover across 
the country (see www.​tern.​org). TERN has also con-
ducted over 700, one ha plot-based vegetation surveys 
across all major biomes and dryland habitats. These 
combined resources provide a novel opportunity to 
advance and validate remote sensing strategies for 
building large terrestrial isoscapes, and for the first 
time develop a δ13C isoscape for Australia.

The goals of this paper were to create mapping 
products that represent the distribution of C3 and C4 
vegetation in Australia, and construct a site-averaged 
vegetation δ13C isoscape for the continent (including 
Tasmania) using a unique combination of field sur-
veys and remote sensing tools. To create a terrestrial 
vegetation δ13C isoscape, we adapted the methodol-
ogy pioneered by Still and Powell (2010) and Powell 
et al. (2012), with key modifications that benefit from 

Australian ground survey data and advancements in 
remote sensing. To predict the relative cover of C3 
and C4 vegetation, we used vegetation and climate 
rasters to (1) categorize grid-cells (100 m2) into 
woody (C3) and herbaceous (C3 and C4) components, 
(2) determine the extent of Australian cropland and 
assign each crop a photosynthetic type (i.e. C3 or C4), 
and (3) apply a % herbaceous C4 cover ~ climate and 
edaphic model to predict proportional (%) C3 and 
C4 herbaceous cover. In contrast to other large-scale 
isoscapes, TERN remote sensing data and field sur-
veys were used to account for the ground cover frac-
tion beneath the vegetation canopy, and the influence 
of local-scale factors on C4 abundance. Once relative 
C3 and C4 vegetation cover layers were generated, we 
used a δ13C mixing model to determine the average 
vegetation δ13C value in each grid-cell. We also con-
ducted novel accuracy assessments of our final pre-
dictions across major vegetation groups and demon-
strate the research potential of these data layers with 
an example of C4-landscape analysis across all biore-
gions in Australia. Our results provide an alternative 
approach to constructing terrestrial δ13C isoscapes 
that may better incorporate local-scale controls on 
C3:C4 abundance and enables the prediction of future 
changes in C3 and C4 distribution under various cli-
mate change scenarios. This is a critical feature of our 
methodology, as climate change is anticipated to dras-
tically shift the competitive advantage of C3 and C4 
plants across the continent.

Methods

Step 1: Estimate % woody and % herbaceous cover

Our Australian δ13C vegetation isoscape was con-
structed using remote sensing vegetation data primar-
ily sourced for the year 2015. Climate conditions in 
2015 for Australia were considered average (i.e. not 
dry or wet), and fire occurrence and intensity were 
relatively low. This was also one of the most recent 
years for which exhaustive vegetation data were avail-
able. Thus, a 2015 isoscape should be a good repre-
sentation of modern average conditions in Australia.

To create the isoscape, we adapted the method-
ology of Still and Powell (2010) and Powell et  al. 

http://www.tern.org
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(2012) and partitioned Australian vegetation cover 
into C3 and C4 cover layers (Fig.  1). The % woody 
cover layer was generated from the Seasonal Persis-
tent Green Cover product for Australia (Gill et  al. 
2015, 2017). This product is derived from Landsat 
5 TM, Landsat 7 ETM+ and Landsat 8 OLI images 
acquired from the United States Geological Survey 
(USGS) and estimates the proportion (%) of green 
fractional cover (i.e. the fraction of ground covered 
by green vegetation) that does not entirely deteriorate 
within a year (see Supplemental Methods Table 1 for 
synopsis of all datasets). This primarily consists of 
woody vegetation (i.e. trees and shrubs). Estimates 
for Seasonal Persistent Green Cover and projected 
woody foliage cover (2000–2010) have been vali-
dated with field-measurements, providing an R2  of 
0.918 and a root mean square error (RMSE) of 0.070. 
The overall classification accuracy of the woody veg-
etation extent is 81.9%. Based on these results, we 
treated % woody cover as the most accurate estimate 
for any cover product in our analysis.

The % herbaceous cover layer was generated from 
the Seasonal Fractional Ground Cover product for 
Australia (Trevithick et al. 2014). The Seasonal Frac-
tional Ground Cover product is derived from the Sea-
sonal Fractional Cover time series and the Seasonal 
Persistent Green Cover product. It consists of three 
components, (1) % vegetated green (photosyntheti-
cally active) ground cover, (2) % vegetated non-green 
(i.e. non-photosynthetic) ground cover (primarily 
dead vegetation), and (3) % bare ground. These three 

components sum to 100%. The Seasonal Fractional 
Ground Cover is distinct from other remote sens-
ing measures of fractional ground cover because it 
accounts for vegetation layering. The Seasonal Frac-
tional Ground Cover includes the ground cover frac-
tion that is visible to the satellite (i.e. viewed from 
above), but also applies a model to account for the 
ground cover fraction that may grow beneath the veg-
etation canopy. Essentially, the Seasonal Fractional 
Ground Cover predicts the ground cover under the 
canopy that is normally obscured from the view of 
the satellite. This provides a potentially more accurate 
representation of ‘true’ ground cover compared to 
other remote sensing data. Vegetated green and veg-
etated non-green ground cover were combined to esti-
mate the total % herbaceous cover in each grid-cell. 
Vegetated non-green ground cover was included in 
% herbaceous cover to account for Australia’s highly 
arid climate and ensure that wide spread senescent 
vegetation was incorporated into our calculations. 
Both % woody and % herbaceous cover predicts vege-
tation cover at medium resolution (30 m) for each cal-
endar season (3 months) and are freely available from 
the TERN Landscape Monitoring’s Remote Sensing 
Data Facility. To bring cover data to a scale consistent 
with the other data products, we resampled all vegeta-
tion raster layers to a resolution of 100 m × 100 m per 
pixel (1 ha). Values from each season were combined 
to calculate the annual mean % woody and % herba-
ceous cover (Fig. 2).

Fig. 1   Conceptual diagram of the procedures used to cre-
ate each C3 and C4 vegetation cover layer. Grey boxes specify 
generic vegetation layers, blue boxes specify steps in the meth-
odology, orange ovals are the resulting C3 vegetation cover lay-

ers, purple ovals are C4 vegetation cover layers. All C3 and C4 
layers were summed to create a total ‘% C4 cover’ and ‘% C3 
cover’ layer
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Estimates of Seasonal Fractional Ground Cover 
were restricted to areas of < 60% woody cover 
because the model used to estimate the herbaceous 
cover under trees is not effective in dense forests. 
TERN plot data indicated in areas where tree cover 
was > 60%, herbaceous cover was limited and ranged 
from 0 to 25% (Supplemental Methods Fig. 1). This 
is consistent with other work demonstrating increased 
canopy cover can reduce herbaceous cover due to 
reduced light availability in the understory (Cole 
and Weltzin 2005; Dormann et al. 2020). Therefore, 
in grid cells with > 60% woody cover, % herbaceous 
cover was presumed to be minimal and set to zero 
(see Supplemental Methods for full justification).

The % woody cover layer was designated 100% C3 
vegetation. This introduces a potential source of error 
because some groups of shrubs, in particular chenop-
ods, may use either C3 or C4 photosynthesis (Akhani 
et al. 1997; Munroe et al. 2020b). However, chenop-
ods are mostly evergreen and are likely largely incor-
porated into the % woody cover fraction (Scarth, per-
sonal communication). We were unable to identify an 
accurate way to distinguish and model C4 chenopod 
shrub cover from other woody cover across Australia. 
Remote sensing does not relate well to chenopod veg-
etation (O’Neill 1996; Sparrow et al. 1997), and sta-
tistical analysis of TERN field plot data found propor-
tional C4 chenopod distribution (relative to C3) is not 
closely associated with climate in Australia (Munroe 
et al. 2022). Consequently, we made the simplifying 
assumption that all woody cover is C3.

Step 2: Incorporate agro‑ecosystems

The photosynthetic pathway of cropland is deter-
mined by what type of crop is planted in each area. 
Therefore, the photosynthetic pathway of crops must 
be evaluated separately to natural vegetation. To 
accomplish this, we partitioned % herbaceous cover 
into % natural herbaceous cover and % herbaceous 
crop cover layers. This was achieved using the Catch-
ment Scale Land Use of Australia (CLUM) dataset. 
The CLUM dataset is the most current, nationally 
consistent compilation of catchment scale land use 
data for Australia (current as of December 2018). It 
is a seamless raster dataset that combines land use 
data for all state and territory jurisdictions at a resolu-
tion of 50  m. The CLUM dataset indicates a single 

Fig. 2   Mean Australian a % woody cover (tree and shrub) and b % herbaceous cover in 2015

Fig. 3   Australian % herbaceous crop cover as of December 
2018
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dominant land use type for each grid-cell. Land use 
is classified according to the  Australian Land Use 
and Management (ALUM) Classification version 8 
(ABARES 2016). This dataset identifies cropping 
land across the country, and includes information on 
specific commodities (e.g. sugar, rice, cereals). Using 
CLUM, we determined the geographical extent of 
herbaceous cropland areas. We assumed that in crop-
land grid-cells, 100% of the % herbaceous cover was 
crops. Based on this assumption, % herbaceous cover 
was divided into % natural herbaceous cover and 
% herbaceous crop cover layers (Fig.  3). Using the 
CLUM dataset, we then determined the likely com-
modity and photosynthetic type planted at each grid-
cell in the % herbaceous crop cover layer.

Most identified crops in Australia were C3 (e.g. 
wheat, barley, rice). The only specifically identified 
C4 commodity was sugarcane. However, the generic 
ALUM classifications ‘cereal crops’ and ‘crops’, 
which were the most common and extensive crop 
designations in the CLUM dataset, may be C3 or C4 
grain. To assess the likelihood of ‘cereal crops’ and 
‘crops’ being C3 or C4, we consulted the Australian 
Bureau of Statistics (ABS), which conducts detailed 
agricultural censuses that quantify crop area, com-
modity type, production, and yield data for Australia, 
each state/territory, and sub-state regions. The most 
recent relevant agriculture census was for 2015/16 
(ABS 2016). According to ABS (2016), the most 
common C4 grain crops in Australia are sorghum and 
maize. Together, sorghum and maize only equalled 
approximately 2% of the total cropping area (ha) in 
Australia in 2015. Most sorghum and maize were 
grown in the so-called ‘sorghum belt’, which stretches 
across the southern cropping regions of Queensland 
and the northern cropping areas of New South Wales. 
Within this area, sorghum and maize represent less 
than 15% of the cropping area. In addition, sorghum 
is often seasonally rotated with wheat. Without more 
specific information on the cropping locations for 
sorghum and maize, and given its likely limited land 
cover in 2015, we determined that unspecified crop-
land should be assigned 100% C3. Using these final-
ised C3 and C4 cropland assignments, % herbaceous 
crop cover was subdivided into % herbaceous C3 
crop cover and % herbaceous C4 crop cover layers.

Step 3: Assign % natural herbaceaous cover layer 
proprotional C3 and C4 values

% natural herbaceous cover includes a mix of C3 and 
C4 plants whose relative abundance is dictated by cli-
mate and local environmental conditions. Therefore, 
to estimate the relative cover of C3 and C4 plants in 
each grid-cell of the % natural herbaceous cover 
layer, we applied a statistical model that accounts for 
their divergent responses to climate and edaphic fac-
tors. We used TERN vegetation survey data to com-
pare various environmental models to identify the 
most accurate method for predicting proportional (%) 
herbaceous C4 vegetation across Australia.

Step 3a. Create a model to predict proportional (%) 
herbaceous C4 vegetation cover

We calculated proportional (%) herbaceous C4 veg-
etation cover (relative to herbaceous C3 and C4 cover) 
at 700 one-hectare plots systemically surveyed using 
a point-intercept method by TERN between 2011 
and 2019. A full description of TERN plot survey 
protocols is detailed in the TERN AusPlots Range-
land manual (White et al. 2012; Sparrow et al. 2020). 
The protocols most relevant to our analysis are docu-
mented in the Supplemental methods. TERN plot 
data were analysed in the R statistical environment (R 
Core Team 2019) and imported using the ‘ausplotsR’ 
package (Guerin et al. 2020; Munroe et al. 2020a), a 
package which enables the import and analysis TERN 
plot survey data. Herbaceous species cover (%) was 
calculated at each TERN plot using the species_table 
function. Species were assigned a photosynthetic 

Fig. 4   Proportional (%) herbaceous C4 cover (relative to her-
baceous C3 and C4 cover) at TERN plots



1993Landsc Ecol (2022) 37:1987–2006	

1 3
Vol.: (0123456789)

pathway using Munroe et  al. (2020b). Herbaceous 
species included the growth forms ’Forb’, ’Hummock 
grass’, ’Rush’, ’Sedge’, and ’Tussock grass’. Propor-
tional herbaceous C4 cover at TERN plots (Fig.  4) 
was then calculated as a proportion of C3 and C4 her-
baceous species cover by:

 
We then compiled a dataset of climatic and 

edaphic variables (Supplemental Methods Table  3) 
that are considered potential drivers of C4 plant dis-
tribution (Sage 2004; Pau et  al. 2013; Griffith et  al. 
2015). Climate data layers were sourced from Wil-
liams et  al. (2010) and edaphic data from Gallant 
et  al. (2018). We also considered the Collatz et  al. 
(1998) crossover temperature model for comparison 
(Ehleringer 1978; Collatz et  al. 1998). Using this 
approach, a particular month is determined to favour 
C4 growth when the mean daytime temperature was 
> 22  °C and precipitation is ≥ 25  mm, while a par-
ticular month is determined to favour C3 growth when 
the mean daytime temperature was ≤ 22 °C and pre-
cipitation is ≥ 25 mm. However, because large areas 
of Australia receive < 25  mm of precipitation per 
month, a traditional crossover approach may not be 
accurate (Murphy and Bowman 2007). Therefore, to 
apply the crossover temperature model consistently 
across the country, we regressed proportional C4 her-
baceous cover against the mean annual proportion 
of C4 favoured months (> 22  °C and ≥ 25 mm rain-
fall), instead of the absolute number of C4 favoured 
months (Munroe et  al. 2022). Climate data for the 
crossover approach were calculated using 1970–2018 
records from the Australian Gridded Climate Data set 
(Bureau of Meteorology). Australian Gridded Cli-
mate Data were required to calculate monthly values 
for the crossover temperature model because unlike 
Williams et al. (2010), it provides daily data.

To relate proportional herbaceous C4 cover at each 
plot to climate and soil data, we used a generalised 
additive model (GAM) approach. GAMs were cho-
sen because they can accommodate non-linear effects 
(Wood 2006, 2017) and can be specified to account 

(1)

Proportional herbaceous C4 cover = C4 herbaceous species cover

∕
(

C4 herbaceous species cover + C3 herbaceous species cover
)

for high spatial autocorrelation (see discussion below; 
Zuur et  al. 2009). Because C4 plot cover data was 
proportional with ‘true’ values of 0 and 1, we used 
a logistic error structure (Douma and Weedon 2019). 
The smooth functions of each variable were limited 
to five degrees of freedom. This allowed for nonlin-
earity in the data while avoiding overfitting. Models 
were limited to variables that had Pearson pairwise 
correlations < 0.8 and interaction terms were not 
included. Models were compared using a step-wise, 
forward-selection procedure and Akaike information 
criterion (AIC). Model fit was measured using R2. 
Models were constructed using the gamm function in 
the mgcv package (Wood 2021).

Moran’s I tests confirmed the presence of spatial 
autocorrelation in preliminary GAM residuals (Mat-
thews et al. 2019). Spatial autocorrelation can reduce 
model precision and predictive power (Mets et  al. 
2017; Guélat and Kéry 2018). Spatial autocorrela-
tion can be alleviated by either (a) including spatial 
coordinates (i.e. longitude, latitude) in the model as 
covariates, or by (b) accounting for spatial autocor-
relation in model residuals. The former can be prob-
lematic because spatial coordinates typically co-vary 
with environmental variables. Therefore, we incorpo-
rated a correlation structure in the model residuals.

Step 3b. Extrapolate proportional herbaceous C4 
and C3 cover

Model AIC comparisons indicated the best model to 
predict proportional herbaceous C4 cover included 
the ratio (log) of summer (Dec–Jan–Feb) to win-
ter (Jun–Jul–Aug) rainfall (slrain1), the maximum 
temperature of the hottest month (maxtx), and soil 
pH-CaCl2 (PHC), sand content (%; SND), and avail-
able water capacity (%; AWC) as variables (R2 = 0.7; 
Supplemental Results Table  4). As maxtx, slrain1 
and PHC increased (i.e. pH becomes more alka-
line), proportional herbaceous C4 cover generally 
increased (Fig. 5a–c). The effects of sand content and 
AWC were nonlinear (Fig. 5e, f), where proportional 
herbaceous C4 cover was predicted to be higher in 
plots where both soil sand content and AWC exhib-
ited more extreme values. However, these nonlinear 
trends may have been driven by the relative paucity 



1994	 Landsc Ecol (2022) 37:1987–2006

1 3
Vol:. (1234567890)

Fig. 5   Predicted proportional herbaceous C4 Cover (relative to 
herbaceous C3 and C4 herbaceous cover) against the explana-
tory variables a slrain1 (The ratio (log) of summer (Dec–Jan–
Feb) to winter (Jun–Jul–Aug) rainfall totals) b maxtx (Maxi-
mum temperature hottest month (°C), c PHC (Soil pH-CaCl2) 
d AWC (soil available water capacity %), and e SND (soil 

sand content %) derived from a GAM model constructed using 
TERN vegetation survey plot data. Blue lines are predicted 
outcomes of the model. Rugs were drawn to indicate observa-
tions with positive residuals (top of the plot) or negative resid-
uals (bottom of the plot). Independent variables not depicted 
on the x-axis are held constant at their median value
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of data in areas with low sand content (< 40%) and 
AWC (< 12%). The resulting GAM was extrapolated 
across the Australian continent (Fig.  6) and used to 
predict proportional herbaceous C4 cover in each 
grid-cell of the % natural herbaceous cover layer and 

generate a % natural herbaceous C4 cover layer. A % 
natural herbaceous C3 cover layer was calculated by 
subtracting the % natural herbaceous C4 cover layer 
from the original % natural herbaceous cover layer.

Step 4: Create final C3 and C4 vegetation layers

To finalise the C3 and C4 cover vegetation layers, all 
C3 vegetation layers were summed to create a single 
% C3 cover layer (Fig. 7a).

Similarly, C4 vegetation layers were summed to 
create a single % C4 cover layer (Fig. 7b).

(2)
% C3 cover = % C3 crop cover + % natural herbaceous C3 cover

+ % woody vegetation

(3)
% C4 cover = % C4 crop cover

+ % natural herbaceous C4 cover

Fig. 6   Predicted proportional (%) herbaceous C4 cover (rela-
tive to herbaceous C3 and C4 herbaceous cover) extrapolated 
across Australia

Fig. 7    % a C4 and b C3 cover, and proportional c C4 and d C3 vegetation cover (proportional to total vegetation) in 2015
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Finally, both % C3 and C4 cover layers were 
converted from % cover to % vegetation. This is 
because many areas will have a high percentage of 
bare ground that is irrelevant to calculating the final 
isoscape. The % vegetation was calculated as:

This resulted in the final two layers, % C3 vegeta-
tion and % C4 vegetation (Fig. 7c, d).

Step 5: Calculate site‑averaged vegetation δ13C using 
a two end‑member mixing model

The average vegetation δ13C value for each grid-
cell was calculated based on the final % C3 vegeta-
tion and % C4 vegetation layers and a δ13C mixing 
model. End-members were derived from the litera-
ture. Previous work has indicated that understory 
plants in closed canopy environments have lower 
δ13C values than open forests (Powell et  al. 2012; 
Cheesman et  al. 2020); however, the bulk of leaf 
mass resides in the upper canopy. Moreover, this 
effect is typically most exagerated in dense rain-
forest habitats, which represent a minute porpor-
tion of the total land area in Australia. Therefore, 
we opted not to apply a canopy cover correction to 
average vegetation δ13C values because (a) there 
wasn’t enough data to calculate a reliable cor-
rection value, and (b) such a correction was not 
deemed useful at this resolution. Previous work 

(4)
% vegetation = % cover of vegetation type

∕% total vegetation cover

has also applied different end-member δ13C values 
for herbacous and woody C3 vegetation (Firmin 
2016). However work by Pate et al. (1998) and data 
from Munroe et  al. (2020b) did not indentify sig-
nificant differences in δ13C between C3 herbaceous 
and C3 woody species. Thus, for simplicity, using 
values from Munroe et  al. (2020b), we calculated 
the mean ± sd δ13C values for C4 and C3 (herbacous 
and woody) endmembers. The mean ± sd of δ13C 
values for C4 herbaceous plants was − 13.8 ± 1.1‰ 
(n = 119), and for C3 herbaceous/woody plants was 
− 27.7 ± 2.3‰ (n = 420).

The site-averaged vegetation δ13C isoscape was 
then calculated using a Monte Carlo method and a 
simple mixing model:

Different possible values of δ13CC4veg and 
δ13CC3veg from the range of possible δ13C values 
(mean ± 2 * sd) determined from Munroe et  al. 
(2020b) were randomly substituted into Eq.  5 for 
1000 iterations. The results were averaged to pro-
duce the final vegetation δ13C isoscape. A stand-
ard deviation raster was created by calculating the 
standard deviation of the 1000 iterations of each 
grid cell (Fig. 8).

(5)

�
13Cleaf = fC4veg ∗

(

�
13CC4veg

)

+ f C3veg ∗ (�13CC3veg)

f C3veg = %C3 vegetation

fC4veg = %C4 vegetation

Fig. 8   a Vegetation δ13C isoscape of Australia corresponding to the year 2015 and b weighted mean standard deviation of site-
averaged δ13C values
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Step 6. Validation

To validate model outcomes and the final vegetation 
δ13C isoscape, we calculated the root mean squared 
error (RMSE) of competing % herbaceous C4 cover 
~ climate models (Bataille et al. 2018). The RMSE of 
each model was calculated using tenfold cross-valida-
tion where the original dataset was randomly split ten 
times between a training data set (90% of plots) and a 
testing dataset (10% of plots). To assess the accuracy 
of the final % C4 vegetation layer, we compared the 
predicted % C4 vegetation layer outputs to the propor-
tional % C4 vegetation cover observed at all TERN 
plots. We used a linear regression to quantify rela-
tionships between predicted and observed % C4 veg-
etation values. We also compared the residual values 
of predicted and observed % C4 vegetation in different 
major vegetation groups (MVG), as determined by 
onsite evaluations by TERN survey teams.

Finally, we compared predicted leaf-δ13C values 
to soil organic matter (SOM) δ13C values determined 
from  samples collected at TERN plots. SOM δ13C 
values were provided from two separate projects. Soil 
samples were collected at 19 TERN plots between 
2011 and 2013 and analysed in 2019 as part of a pro-
ject testing different isotopic tools to predict % C4 
abundance (Atkins 2020). These plots are located 
along a North to South transect through central Aus-
tralia (Supplemental Methods Fig.  4). For this pro-
ject, a single soil sample was collected from the top 
3 cm of the soil profile at the same location in each 
plot. Additional SOM δ13C values were provided 
from 32 TERN plots located along the Adelaide Geo-
syncline in South Australia as part of a project exam-
ining the relationship between soil isotopic composi-
tion and aridity (Farrell, unpublished data). In April 
and May 2016, 20 soil samples were taken at random 
within each plot from the 0–10 cm layer; the 20 sam-
ples were composited and homogenised in the field 
to yield a single representative 0–10 cm soil sample 
for each plot. Atkins (2020) 0–3 cm depth SOM δ13C 
values were adjusted by 0.5‰ and Farrell 0–10  cm 
depth SOM δ13C values by 1‰ to account for 13C 
enrichment during decomposition in SOM (Krull and 
Bray 2005). Like % C4 vegetation comparisons, we 
calculated the residuals for SOM-adjusted and pre-
dicted leaf δ13C values and used a linear regression to 
compare predicted and measured results.

Applications

To demonstrate the analytical potential for landscape 
research with these vegetation data layers, we used 
the % C4 and C3 vegetation cover layers and leaf-
δ13C isoscape to calculate the mean C4 and C3 cover 
and leaf-δ13C values of 86 different continental Aus-
tralian bioregions, as described by the interim Bio-
geographic Regionalisation for Australia version 7 
(IBRA 7.0; Department of Agriculture, Water and the 
Environment, 2020). Bioregions are large, geographi-
cally distinct areas that share common characteris-
tics such as climate, landform patterns, and plant and 
animal communities. These regions are used to help 
identify unique ecosystems within Australia. Thus, 
understanding differences in C3 and C4 cover between 
these regions is critical to identifying their unique 
attributes and vulnerabilities. Here we compared 
mean proportional C3 and C4 cover and leaf-δ13C in 
each bioregion to trends in slrain1 and % woody and 
herbaceous cover.

Results

Geographic distribution of vegetation δ13C in 
Australia

Our stepwise procedures produced 9 data layers rep-
resenting C4 and C3 distribution in both agricultural 
and native environments. Predicted % C3 and C4 
vegetation maps and the δ13C leaf isoscape followed 
expected trends in C3 and C4 vegetation (Figs. 7 and 
8). Southern areas of the country, which are charac-
terised by cooler temperatures and high winter rain-
fall, were dominated by large areas of C3 cropland 
and woody vegetation, and thus had the most nega-
tive δ13C values. Mid-western and eastern coastal 
regions also have a large proportion of C3 vegetation, 
including a mix of forests, cropland, and herbaceous 
vegetation, and have correspondingly low δ13C val-
ues. C4-dominated and isotopically 13C-enriched 
areas predominately included northern savannahs and 
grasslands.

The south to north transition from C3 to C4 domi-
nated areas, and more negative to less negative δ13C 
values, was abrupt. The clear demarcation between C3 
and C4 habitats is consistent with the relatively rapid 
transition from winter to summer dominated rainfall 
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patterns across the country. Central areas of Australia 
are arid and receive sporadic rainfall with high inter-
annual variability. As a result, there is relatively low 
and sparse woody cover and conditions do not sup-
port most C3 herbaceous plants. The apparent excep-
tion to this is the Simpson Desert, located in central 
Australia across South Australia and the Northern 
Territory. Although C3 cover in the Simpson Desert 
was low and consistent with surrounding areas, this 
region has notably lower C4 herbaceous cover com-
pared to other nearby environments, leading to lower 
proportional C4 vegetation cover and δ13C values. 
This is due to the extremely dry conditions (< 50 mm 
rainfall/year) in the desert which make it difficult for 
any herbaceous plants to grow.

Validation

As previously described, the best model to predict 
proportional herbaceous C4 cover included slrain1, 
maxtx, PHC, SND, and AWC as variables. The pro-
portional herbaceous C4 ~ climate GAM used to 
predict C4 cover had a mean RMSE of 27.8% ± 2.0. 
Linear regression analysis comparing predicted and 
observed proportional herbaceous C4 vegetation 
cover resulted in an adjusted-R2 of 0.54 (Fig.  9a). 
Comparisons between predicted and observed % 
C4 vegetation (including woody cover) at TERN 
plots returned residuals ranging from -63.4 to 73.4% 
(mean ± sd = 9.1 ± 24.5) and a RMSE of 26.1%. This 

Fig. 9   a Scatter plot of observed versus predicted relative 
% herbaceous C4 Cover (relative to herbaceous C3 cover) at 
TERN plots from tenfold cross validation testing dataset, b 
predicted and observed relative C4 vegetation cover (includ-
ing woody cover) at all TERN plots, c predicted leaf-δ13C and 
measured Soil Organic Matter δ13C at select TERN plots

Fig. 10   Residuals of predicted and observed % C4 vegetation 
cover (relative to total cover and including woody cover) at all 
TERN plots in major vegetation group (MVG) classifications. 
The box defines the second and third quartiles (likely range of 

variation), the vertical lines are the upper and lower quartiles. 
The black bands are the median residual values, the black X is 
the mean residual value for each classification
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suggests that, on average, our approach overestimates 
relative C4 cover. Linear regression analysis compar-
ing predicted and observed proportional C4 vegeta-
tion cover resulted in an adjusted-R2 of 0.44 (Fig. 9b).

Most TERN plots were located in Eucalypt wood-
lands, followed by Tussock grasslands, Chenopod 
shrublands, and Acacia woodlands. Comparisons of 
residuals between major vegetation group classifica-
tions revealed that residuals were smallest in heath-
lands, Eucalypt woodlands and forests, and tussock 
grasses, but were largest in Acacia- and Melaleuca- 
dominated habitats (Supplemental Results Table  2; 
Fig.  10). The spread in the residuals for each MVG 

indicated that C4 cover was generally overestimated in 
most habitats but was underestimated in grasslands.

Comparisons between predicted leaf and soil δ13C 
isotope values returned a RMSE of 2.1‰. Residuals 
ranged from − 5.40‰ to 5.44‰ with a mean value 
of 0.26‰ (± 2.12). The line of best fit between these 
variables had a slope of 0.74, an intercept of − 6.0, 
and an adjusted-R2 of 0.71 (Fig.  9c). These results 
indicate that on average the isoscape overestimated 
mean leaf δ13C values (i.e. were less negative), which 
is consistent with comparisons between predicted and 
observed % C4 vegetation.

Fig. 11   a Scatterplot of predicted mean proportional C3 Cover 
versus mean % woody cover (tree and shrub) across 86 dif-
ferent continental Australian bioregions, as described by the 
interim Biogeographic Regionalisation for Australia version 7 
(IBRA 7.0; Department of Agriculture, Water and the Environ-

ment, 2020); b Scatterplot of predicted mean proportional C4 
Cover versus mean % herbaceous cover in different IBRA 7.0; 
c Scatterplot of predicted mean proportional C3 cover versus 
mean slrain1 (The ratio (log) of summer (Dec–Jan–Feb) to 
winter (Jun–Jul–Aug) rainfall totals) across IBRA 7.0
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IBRA analysis

Bioregions with the greatest proportional C3 cover 
were located Tasmania, southern Australia, and 
the Australian Alps (100% C3 cover; Supplemen-
tal Results, IBRA Analysis). Bioregions with the 
greatest C4 cover included the Central Kimberly, 
Mitchell Grass Downs, and Gulf Plains (> 75% C4 
cover). Across all bioregions, we found an increas-
ing trend of proportional C3 cover with increased 
% woody cover (Fig.  11a), but no relationship 
between increased herbaceous cover and propor-
tional C4 cover (Fig.  11b). There was also a clear 
non-linear relationship between slrain1 and mean 
proportional C3 cover; where slrain1 increased, 
there was a rapid decline in % C3 cover (Fig. 11c). 
This is mirrored by an increase in mean predicted 
leaf-δ13C with increased slrainl.

Discussion

We leveraged a novel combination of field surveys 
and remote sensing data to create national C3 and 
C4 vegetation maps and a δ13C vegetation isoscape 
for Australia. The good agreement between our pre-
dictions and observed values indicates our approach 
can provide valuable generalized depictions of C4 
and δ13C-leaf variation across diverse landscapes 
at large scales. Our approach benefits from recent 
advancements in remote sensing by being the first 
to incorporate vegetation layering, which is criti-
cal to accurate representations of C3:C4 trends. Our 
work also demonstrates the value of extensive field 
surveys when constructing and validating isoscape 
projections in different regions. This is particularly 
impressive considering the ground survey vegetation 
data used to construct the final outputs were collected 
by TERN over a period of 9  years, both before and 
after the 2015 remote sensing time-slice used to cre-
ate the isoscape. Most of these plots have only been 
surveyed once and thus describe a snap-shot in time 
from a single season. Therefore, an average error rate 
of ~ 25% represents a significant level of overall accu-
racy. Comparisons between predicted leaf-δ13C val-
ues to measured δ13C soil values achieved a stronger 
correlation than comparisons to ground surveys. The 
stronger correlation may be because soil δ13C rep-
resents long-term averages in relative C4 vegetation 

cover. Our δ13C validation results are consistent with 
the level of accuracy achieved by other δ13C isoscapes 
developed using remote sensing techniques in North 
and South America (Powell et al. 2012; Firmin 2016). 
Overall, the relatively high level of accuracy in our 
C4 and δ13C predictions demonstrates remote sensing 
combined with field surveys can provide useful, gen-
eralized C4 maps and δ13C isoscapes, and informative 
estimations on C3:C4 vegetation cover over diverse 
landscapes in areas where data is limited.

Modelling herbaceous C4 and C3 distribution

The best model for predicting proportional C4 her-
baceous cover included maximum summer tempera-
ture and seasonal rainfall ratios as climate variables. 
This is consistent with previous work indicating 
both C4 grass and sedge cover is predominantly cor-
related with January temperatures and proportional 
summer rainfall (Murphy and Bowman 2007; von 
Fischer et al. 2008). Interestingly, the crossover tem-
perature model was one of the least accurate climate 
models and was difficult to apply consistently across 
Australia. These findings are consistent with Mun-
roe et al (2022) and Xie et al. (2022), who also found 
that seasonal rainfall ratios and summer tempera-
tures were better predictors of C4 grass abundance 
than the crossover temperature model. Although we 
acknowledge that the crossover approach was never 
intended to delineate fine-scale distribution patterns, 
our results demonstrate this approach is not the best 
method to determine C4 distribution in Australia.

Local edaphic factors were also selected in the 
best fit model. Previous work has demonstrated local 
environmental factors can significantly modify herba-
ceous C4 distribution (Nippert and Knapp 2007; Grif-
fith et al. 2015; Wang et al. 2020). Our work suggests 
pH has a significant positive influence on relative C4 
herbaceous cover and should be considered even in 
continental models. The influence of alkaline-stress 
on C4 versus C3 plants is not well understood, but C4 
plants are thought to be more resistant to stress and 
therefore more tolerant to alkaline soil (Sage 2004; 
Bromham et al. 2013; Saslis-Lagoudakis et al. 2014). 
However, pH is often related or correlated with other 
climate and soil conditions like salinity and rainfall, 
thus the observed effect of pH may reflect underly-
ing factors not included in our analysis (James et al. 
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2005; Saslis-Lagoudakis et  al. 2014). Isolating the 
impacts of available water capacity and sand content 
is more difficult given its apparent nonlinear relation-
ship to C4 cover, but together they may indicate a sig-
nificant impact of changes in local moisture availabil-
ity, which can affect competitive dynamics between 
C3 and C4 species (Sage 2004; Nippert and Knapp 
2007).

Limitations

The proportional herbaceous C4 cover model tended 
to underestimate C4 cover in areas with high observed 
values, and overestimate cover in areas with low or 
zero measured herbaceous C4 cover. There are sev-
eral possible explanations for this pattern. Analysis 
revealed most TERN plots were dominated by either 
C3 or C4 herbaceous cover. Because mixed C3-C4 her-
baceous environments were less common, they were 
invariably harder to predict. Lastly, most climate data 
were centred on the year 1990, which may be less 
applicable for more recent plots, leading to higher 
overall error rates. Most importantly, although we 
considered a range of local factors in our C4 cover 
models, models did not include other factors which 
may also modify C4 patterns but cannot currently be 
extrapolated at large scales, such as local disturbance, 
soil salinity, and competition between native and 
alien species (Sage et al. 1999; Griffith et al. 2015).

A critical source of potential error in our final 
vegetation maps was the % woody vegetation layer, 
generated using the Seasonal Persistent Green Cover 
product (Gill et  al. 2015, 2017). While the over-
all accuracy of the Seasonal Persistent Green Cover 
product is impressive, Gill et  al. (2017) noted that 
accuracy varied significantly between habitat types. 
This was evident when comparing C4 cover model 
accuracy between different major vegetation groups. 
We found our C4 estimates were least accurate in 
Acacia-dominated habitats. These higher error rates 
are consistent with Gill et  al. (2017), who found 
most areas identified as Acacia forests, woodlands, 
and open woodlands were not mapped as forest. 
Instead, they were incorrectly classed as having very 
low or no woody cover. Gill et  al. (2017) suggested 
several explanations for this issue; vegetation cover 
in Acacia-dominated habitats can be sparse, which 
can make woody cover more difficult to detect. At 
thresholds of < 10% woody cover it was difficult to 

distinguish woody and non-woody vegetation (Gill 
et  al. 2017). Therefore, it can be more difficult to 
accurately assess woody cover, and proportional C3 
vegetation cover, in sparse areas. Some Acacia also 
have narrow, needle-like leaves which are harder to 
detect via satellite, whereas other Acacia species are 
known to drop their leaves in very dry conditions, 
resulting in a low minimum green cover-fraction over 
the course of the year. Finally, the understory is often 
visible through the sparse Acacia canopy. When the 
understory greens-up in response to rainfall, this can 
give the appearance of a highly variable time series in 
green cover for Acacia foliage, leading to its misclas-
sification as non-woody. Unsurprisingly, the difficul-
ties associated with measuring Acacia woody cover in 
Australia using remote sensing led to a high degree of 
variation C3 and C4 cover estimates in Acacia-domi-
nated habitats.

C3:C4 estimates were also less accurate in cheno-
pod shrublands. Accurately estimating C4 cover in 
these environments may be more difficult because 
chenopod shrublands are often sparsely vegetated 
(Gill et  al. 2017). Our approach also assumed all 
shrub cover had a C3 pathway. But as previously 
discussed, C4 chenopods can be locally common in 
Australian shrublands. As a result, our approach may 
underestimate C4 cover in these habitats. However, 
our model residuals indicate C4 cover is more likely 
to be overestimated in chenopod shrublands, which 
suggests our assumption that all shrubs are C3 is not 
the main source of error in these habitats. More likely, 
it is the difficulty associated with accurately assessing 
woody cover in these sparse environments.

Other potential sources of error include the high 
degree of variation in δ13C values between differ-
ent C3 species and environmental conditions (Kohn 
2010). For example, rainfall, soil pH, and leaf nitro-
gen area are all significant drivers of variation in 
global C3 δ13C values (Cornwell et al. 2018). Varia-
tion in δ13C values within the canopy will also affect 
the overall accuracy of δ13C isoscapes (Cheesman 
et al. 2020), however it is difficult to effectively quan-
tify and model these different sources of variation 
across Australia at this time. Unsurprisingly, areas 
with the greatest standard deviation in δ13C values 
were areas dominated by C3 vegetation reflecting the 
greater variability in the carbon isotopic composition 
among C3 plants.
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Future improvements

The accuracy of the δ13C isoscape hinges on three 
main components; (1) estimates of woody and herba-
ceous cover, (2) the C3:C4 herbaceous cover model, 
and (3) the endmember values in the δ13C-leaf mix-
ing model. Gill et  al. (2017) outlines multiple ways 
to improve estimates of woody cover. The propor-
tional herbaceous C4 cover ~ climate model could be 
improved as TERN increases its plot network and 
environmental representation. For example, estab-
lishing plots in Tasmania or increasing the number 
of plots with more equal C3:C4 ratios would improve 
model outcomes by increasing the amount of data 
from cool climates and transitional habitats. TERN 
has also begun to regularly revisit existing plots to 
monitor change over time. Revisits could be used to 
calculate average C4 cover over multiple years and 
seasons, which would make the plot data a more 
appropriate validation tool for average C4 vegetation 
and isoscape projections. This would also enable the 
creation of more seasonally specific isoscapes, rather 
than a static annual average. More specific informa-
tion on crop commodities, namely the location of 
maize and sorghum, would also improve the accuracy 
of C3 and C4 vegetation layers.

The δ13C endmembers were based on δ13C values 
from Munroe et al. (2020b). These values were meas-
ured from species collected at TERN plots, making 
them a useful metric with which to calculate Aus-
tralian vegetation δ13C endmembers. However, the 
plants measured by Munroe et  al. (2020b) were not 
necessarily dominant or wide spread. Measuring the 
δ13C of the most common plants in TERN plots, and 
incorporating a wider range of herbaceous and woody 
species, may help create endmembers that are better 
representations of dominant Australian plant δ13C 
values. Testing specimens that were collected under 
different conditions (e.g. rainfall or soil pH) would 
enable expansion of the current mixing model to 
account for different climate conditions when predict-
ing δ13C values, particularly in C3 species (Cornwell 
et al. 2018).

Applications

The terrestrial carbon isoscape and C3 and C4 maps 
presented here have numerous valuable applications. 

As demonstrated in this study, C3, C4 and δ13C maps 
can be used to quantify and compare C3 and C4 dis-
tribution across different bioregions at a landscape 
scale. Such analysis would not be possible without 
these data. Isoscapes are also enormously useful in 
the study of food web dynamics and animal migration 
(Hobson et  al. 2010; Wunder 2010; Vander Zanden 
et al. 2018). These maps could also be used to calcu-
late fractional productivity of different photosynthetic 
pathways (Powell et al. 2012).

TERN’s expansive plot network provides the 
opportunity to not only identify, but also quantify dis-
crepancies between predicted and observed C4 and 
C3 cover. Indeed, our work has already demonstrated 
the importance of some edaphic factors in controlling 
C4 distribution. As more data becomes available, fur-
ther comparisons across a wider range of factors will 
be possible. Similarly, differences in predicted δ13C 
values and local vegetation can be used to examine 
the influence of local factors, such as water stress or 
drought, on δ13C values (Tieszen 1991; Ehleringer 
1993; Mårtensson et al. 2017).

Climate change is anticipated to drastically shift 
the competitive advantage of C3 and C4 plants in 
Australia and globally, leading to substantial changes 
in species distribution (Corlett and Westcott 2013; 
Hasegawa et al. 2018). This will likely drive signifi-
cant bottom-up changes to the structure and diversity 
of faunal communities (Haddad et  al. 2009; Warne 
et  al. 2010; Haveles et  al. 2019). Using our under-
lying climate models, C3 and C4 abundance can be 
extrapolated under future conditions and areas that 
are most vulnerable to extreme changes in C3 and C4 
cover can be identified. Our models identified maxi-
mum temperature and seasonal water availability as 
the two most significant climate factors driving C3 
and C4 herbaceous cover in Australia. Based on these 
findings, we would expect to see considerable expan-
sion of C4 suitable climate-zones in southern Aus-
tralia. Historically, southern Australia has a Mediter-
ranean climate, with dry summers and higher winter 
rainfall. However, the climate in southern Australia is 
expected to become increasingly dry, with hotter tem-
peratures and more frequent heatwaves (Suppiah et al. 
2006; Keywood et al. 2017), conditions that are better 
suited to C4 species. These models will also improve 
our ability to quantify potentially improved condi-
tions for invasive species, such as the invasive C4 buf-
fel grass, Cenchrus ciliaris L. (Lawson et al. 2004; de 
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Albuquerque et  al. 2019). Forecasting native C3 and 
C4 abundance can also enable proactive environmen-
tal management in Australia’s changing climate, such 
as identifying suitable locations for future C4 and C3 
crops (Cullen et  al. 2009) or important refuge areas 
for native plant communities (Graham et  al. 2019; 
Selwood and Zimmer 2020).

Conclusion

We have applied a novel combination of detailed 
ground survey, climate, and remote sensing data to 
create and evaluate the first Australian vegetation 
δ13C isoscape. These results have a wide range of 
applications, including the study of animal migra-
tion, food web patterns, spatial and temporal vari-
ation in plant productivity and habitat structure, 
carbon exchange, and the impact of water stress on 
plant communities. Our continued ability to test and 
validate these models as new TERN plots and isotope 
data become available provides a unique opportu-
nity to develop future improvements. The C3, C4 and 
isoscape maps presented here were created to support 
the study of Australian ecosystems and have enor-
mous value to broader ecological research. It is our 
intention to curate and update these outputs where 
possible as new TERN plots and isotope data become 
available.
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