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requires more timely habitat monitoring and a more 
responsive adaptive management cycle.
Objectives We introduce a framework to automati-
cally monitor and assess species habitats over a range 
of spatial and temporal scales. We then apply this 
framework by developing an automated habitat moni-
toring system for the Mexican spotted owl (MSO) in 
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Context Recent increases in ecological disturbances 
driven by climate change and our expanding human 
footprint make it challenging for natural resource 
managers to keep apprised of current conditions 
and adjust management plans accordingly. To effec-
tively conserve species in highly dynamic landscapes 
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Arizona and New Mexico, USA, that will be linked to 
federal agency adaptive management plans.
Methods We automated the process of monitoring 
and assessing trends in MSO habitat on an annual 
schedule using the Google Earth Engine cloud-based 
spatial analysis platform and dynamic data repository. 
We ran this system retrospectively on historical data 
to monitor MSO habitat from 1986 to 2020.
Results The automated habitat monitoring system 
provided a 35-year MSO habitat time series with high 
accuracy. Widespread habitat gains and losses occurred 
every year, underscoring the need for continuous moni-
toring and the benefits of an automated workflow.
Conclusions Automated habitat monitoring linked 
to adaptive management holds great promise in 
helping managers track the impacts of recent distur-
bances and adjust plans to meet goals even in increas-
ingly dynamic landscapes. In a companion paper, 
Jones et  al. (2023) demonstrate the utility of this 
approach by analyzing our MSO habitat time series 
to assess trends, drivers of change, and management 
implications.

Keywords Adaptive management · Big data · 
Climate change · Google Earth Engine · Habitat · 
Mexican spotted owl · Monitoring · Random forest · 
Species distribution model

Introduction

Over the past few centuries, rapidly increasing 
anthropogenic impacts such as habitat degradation 
and fragmentation, overexploitation, and invasive 
species have driven widespread changes across many 
of the earth’s terrestrial habitats (Dirzo et  al. 2014; 
Steffen et  al. 2015). This transformation continues, 
as currently 95% of terrestrial ecoregions are expe-
riencing increasing human pressures in recent years 
(Theobald et al. 2020). Our climate is also changing 
more rapidly relative to any other period during the 
Holocene (Marcott et al. 2013), leading to pervasive 
shifts in disturbance regimes, vegetation, and spe-
cies distributions (Halofsky et  al. 2020; Kelly et  al. 
2020; Weiskopf et  al. 2020). Together, our expand-
ing human footprint and rapidly changing climate are 
driving rates of environmental change that is glob-
ally unprecedented over the past 18,000 years in both 

magnitude and extent (McDowell et  al. 2020; Mottl 
et al. 2021).

Though some species may quickly adapt to rap-
idly changing environments or benefit from future 
climates and disturbance regimes, others lack the 
necessary plasticity, adaptive potential, or migra-
tory ability to keep up (Parmesan 2006; Sergio et al. 
2018). When rates of change reach levels projected by 
the end of this century, the typical observed rates of 
niche evolution may be several orders of magnitude 
to slow for many vertebrate species to adapt, favor-
ing extinction (Quintero and Wiens 2013). Accord-
ingly, over the past 450 million years, the five eras 
with rates and magnitudes of climate change similar 
to that projected to occur by the end of this century 
have resulted in mass extinctions that led to 75% or 
greater declines in earth’s biodiversity (Song et  al. 
2021). The recent rapid loss of biodiversity globally 
and local declines in species richness and abundance 
in many terrestrial ecosystems underscore these risks 
(Ceballos et al. 2015; Newbold et al. 2015). Contin-
ued expansion of our human footprint coupled with 
accelerating rates of climate change thus pose grave 
challenges to many species, leading to the prediction 
of widespread biodiversity losses over the next cen-
tury (Urban 2015; Weiskopf et al. 2020).

These global scale trends and threats manifest at 
regional scales in complex ways. For example, across 
the forests and rangelands of western North America 
the ecosystem dynamics and disturbance regimes of 
the Holocene have been perturbed by rapid growth 
in urban areas, transportation networks, industry, 
timber harvest, energy development, mining, inva-
sive species, agriculture, and grazing. Recently, ris-
ing temperatures, drought, and a legacy of past for-
est management practices (e.g., fire suppression) have 
led to increased frequency and severity of wildfire 
and bark beetle outbreaks, altering vast areas of for-
ests (Dale and Rauscher 1994; Meddens et al. 2012). 
In the southern Sierra Nevada in California, USA 
between 2014 and 2017, nearly half (48.9%) of all 
trees died due to drought and beetle kill; much of this 
area has subsequently burned (Fettig et al. 2019). In 
the rangelands of the western US between 1984 and 
2017, wildfire burned nearly 68,000  km2 (Li et  al. 
2021). Post-fire colonization by invasive species and 
subsequent spread from burned areas has degraded 
over 210,000  km2 of native grasslands and shrub-
lands (Balch et al. 2013, 2017; Bradley et al. 2018). 
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Natural and anthropogenic disturbances such as these 
are occurring at rates that are unprecedented in mod-
ern times (Allen et al. 2010; Jolly et al. 2015), and are 
expected to increase with further climatic warming 
(Littell et al. 2018; Wan et al. 2019).

Managing wildlands to simultaneously con-
serve biodiversity and produce goods and services 
is particularly challenging given these rapid rates of 
change. It is difficult to determine what the current 
status of species and natural resources are, let alone 
describe their trajectories over time (Cushman and 
McGarigal 2007). Data describing the distribution of 
habitat or other resources that are only a few years old 
may become obsolete for use in decision-making in 
such highly dynamic landscapes. Field-based moni-
toring (e.g., remote camera surveys) has proven inval-
uable in tracking change over time for many species, 
however, it often does not provide the spatial and 
temporal scales of inference needed to guide regional-
scale planning; species distribution models (SDM’s; 
Guisan and Thuiller 2005) are needed to generalize 
patterns in field data and extend them to management 
scales. The challenges of species conservation in an 
era of rapid environmental change, therefore, are two-
fold. The first is to maintain a current understanding 
of species habitat status and trends given the impacts 
of recent disturbances and post-disturbance regenera-
tion and the second is to link that understanding to 
adaptive management, at scale, so that plans can keep 
pace with the changing landscape (Cushman et  al. 
2010; Chambers et al. 2019).

Effectively linking SDMs and inferences derived 
from them to adaptive management in an era of 
rapid environmental change presents technological 
and operational challenges. Adaptive management 
requires stipulation of management goals, assessment 
of current conditions relative to those goals, selection 
of an optimal management plan, implementation of 
that plan, monitoring plan effectiveness relative to the 
goals, and iterative adaptation to ultimately achieve 
the goals (Williams 2011). In our experience, the 
status quo in monitoring a species habitat at regional 
scales involves a multi-year effort to manually pro-
duce an SDM that is infrequently, if ever, updated 
over time to reflect current conditions. Once the SDM 
is developed, it takes additional time to manually ana-
lyze it, interpret the results, and adapt management 
plans accordingly. The result of this type of monitor-
ing is, at best, a sparse time-series of models, with the 

most recent SDM lagging current conditions by five 
or more years. In the past this slow-moving cycle may 
have been sufficient to achieve management goals, 
but in rapidly changing landscapes, the status quo is 
no longer keeping up with change. New technologies 
are needed to speed up the rate at which monitoring 
and assessment of species habitat is conducted, and 
new management frameworks are required that make 
management plans more nimble and responsive to 
rapid change.

Recently, “big data” and the computational abil-
ity to analyze it have become widely available. For 
example, the entire NASA Landsat archive is now 
freely available and updated daily in Google Earth 
Engine (GEE; Gorelick et al. 2017), a massively par-
allelized cloud computing platform for remote sens-
ing and spatial analysis coupled to a massive dynamic 
data repository housing over 30 petabytes of remote 
sensing, climate, topography, soils, and other data-
sets, many of which are relevant to SDMs. The com-
bination of sophisticated analysis platform supported 
by vast computational and storage capacity ena-
bles analyses at up to global scales (e.g., models of 
global forest cover and annual loss and gain; Hansen 
et  al. 2013). These capabilities, applied to species 
distribution modeling, provide a means to dynami-
cally monitor changing habitat conditions over time, 
automatically assess risks and opportunities for spe-
cies conservation, and facilitate a revolution in data-
driven, science-based adaptive management of spe-
cies habitats and other natural resources.

In this study, we describe a framework that takes 
advantage of these recent advances in cloud comput-
ing and open access to remote sensing data to auto-
matically monitor and assess species habitat annually 
over a range of spatial and temporal scales. We then 
demonstrate the application of this framework by 
developing an automated habitat monitoring system 
for a threatened forest-associated species, the Mexi-
can spotted owl (Strix occidentalis lucida; hereafter 
“MSO”), across Arizona and New Mexica, USA. 
Federal agencies have identified the need for such 
a system to enable adaptive management plans for 
MSO that are responsive to increasing rates of for-
est disturbance in the region. We ran this monitoring 
system retrospectively on historical data, produc-
ing a 35-year time series of MSO SDMs. Finally, we 
describe how automated monitoring systems like this 
can be embedded within adaptive management cycles 
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to make them more responsive to rapidly changing 
conditions and increase the likelihood of management 
plan relevancy and efficacy as landscapes evolve. In 
a companion paper in this issue, Jones et  al. (2023) 
demonstrate the conservation utility of this approach 
by analyzing the 35-year (1986–2020) time series 
of MSO SDMs to assess trends, link habitat loss to 
drivers, and identify management implications of the 
spatial and temporal dynamics of MSO habitat in the 
southwestern US.

Methods

Study area

Our study area encompasses Arizona and New 
Mexico, USA (Fig.  1), which represents the north-
central portion of the MSO range and a significant 
portion of its range in the US. Within Arizona and 
New Mexico, the study area included five US Fish 

and Wildlife Service Ecological Management Units 
(EMUs; Fig.  1), which are geographical subdivi-
sions of the MSO range that differ in physiography, 
biotic regimes, threats to MSO, and administrative 
boundaries.

Occurrence data and habitat covariates

Jones et  al. (2023) developed a spatially extensive 
database of Mexican spotted owl nest/roost loca-
tions occurring primarily on US Forest Service 
lands in Arizona and New Mexico and spanning the 
years 1989–2020. After quality control measures and 
accounting for pseudoreplication, the final dataset 
consisted of 2913 unique nest/roost locations distrib-
uted across our study area (Fig. 1).

To understand how MSO nest and roost site selec-
tion was affected by variability in forest vegetation, 
climate, and topography, we used 40 covariates to 
produce an MSO SDM (Table 1), including 22 covar-
iates derived from Landsat multispectral satellite 

Fig. 1  Study area and training data. The study area from 
which the training data were collected and the model was pro-
jected included Arizona and New Mexico, USA. The dashed 
lines delineate five Mexican spotted owl (MSO) Ecological 
Management Units. The locations where MSO were observed 

nesting or roosting by Jones et  al. (2023) between 1989 and 
2020 (i.e., ‘use’ locations) are shown as red triangles. The 
orange triangles represent ‘available’ locations where MSO 
could have nested or roosted in other forested areas within the 
EMUs
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imagery as well as 9 climatic and 9 topographic indi-
ces. The Landsat-based and climatic covariates varied 
temporally across years, but we considered the topo-
graphic covariates to be static over the timescale of 
interest. We chose all covariates after careful review 
of previous MSO habitat selection studies (e.g., 
Ganey and Balda 1994; Timm et al. 2016; Wan et al. 
2017) and our team’s expert knowledge of the species 
and the study area.

We produced multispectral imagery-based covari-
ates by applying the Continuous Change Detection 
and Classification algorithm (CCDC; Zhu and Wood-
cock 2014), implemented in GEE to a 35-year Land-
sat 4/5/7/8 Tier 1 surface reflectance time series from 
1986 to 2020 (housed in the GEE cloud data reposi-
tory). The CCDC algorithm fits a harmonic regres-
sion model to a time series of Landsat observations 
for each pixel and performs a temporal segmentation 
after identifying breakpoints representing distur-
bances. The coefficients from the harmonic regression 

can be used to create synthetic images (i.e., an image 
produced from the fitted harmonic model rather than 
the actual Landsat observations) for any date along 
the time series. In this study, we created annual syn-
thetic images for two dates, May 1 and August 1 (gen-
erally coinciding with the seasonal phenology of the 
start of green-up and peak vegetation, respectively) 
each year from 1986 to 2020. Each image contained 
the six Landsat bands from the visible, near infra-red, 
and short wave infra-red portions of the spectrum.

We derived 22 reflectance-based covariates from 
the synthetic Landsat images for each year from 1986 
to 2020. These included the six bands at the two dates 
(May 1 and August 1) as well as five spectral indices 
derived from these bands, also at the same two dates. 
The indices were related to vegetation amount (nor-
malized difference vegetation index, NDVI; Tucker 
1979), moisture content of leafy vegetation (normal-
ized difference wetness index, NDWI; Gao 1996), 
vegetation disturbance from fire, timber harvest, tree 

Table 1  Mexican spotted owl species distribution model covariates

The covariate description and abbreviation (units in parentheses where relevant) are shown. Covariates are grouped into categories 
based on their association with Landsat reflectance, climate, and topography

Covariate Abbreviation (units)

Reflectance May 1/Aug 1 normalized difference vegetation index NDVI_[MAY1 or AUG1]
May 1/Aug 1 normalized difference water index NDWI_[MAY1 or AUG1]
May 1/Aug 1 normalized difference snow index NDSI_[MAY1 or AUG1]
May 1/Aug 1 normalized burn ratio NBR_[MAY1 or AUG1]
May 1/Aug 1 normalized burn ratio 2 NBR2_[MAY1 or AUG1]
May 1/Aug 1 Landsat bands BLUE, GREEN, RED, NIR, 

SWIR1, SWIR2_[MAY1 or 
AUG1]

Climate July–September precipitation (30 year normal) PRECIP_SUMMER (mm)
July–September max temperature (30 year normal) MAXTEMP_SUMMER (℃)
July–September mean temperature (30 year normal) MEANTEMP_SUMMER (℃)
Jan–March precipitation (30 year normal) PRECIP_WINTER (mm)
Jan–March min temperature (30 year normal) MINTEMP_WINTER (℃)
Jan–March mean temperature (30 year normal) MEANTEMP_WINTER (℃)
April–June precipitation (30 year normal) PRECIP_SPRING (mm)
Annual snow water equivalent (30 year normal) SWE (mm)
Growing degree days (30 year normal) GDD (℃)

Topography Slope SLP (°)
Heat load index HLI
Topographic wetness index TWI
Topographic ruggedness index TRI
Topographic position index (radius 90 m, 180 m, 360 m, 720 m, or 

1440 m)
TPI_[radius] (m)
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pathogens, and other agents of forest loss (normalized 
burn ratio, NBR and NBR2; Key and Benson 1999), 
and snow (normalized difference snow index, NDSI; 
Riggs et al. 1994).

We produced the climate covariates using Climat-
eNA version 6.21 (Wang et  al. 2016). ClimateNA 
statistically downscales 4 km gridded PRISM climate 
models (Daly et al. 2008) to a user-specified resolu-
tion using interpolation and application of a locally 
varying lapse rate that relates changes in elevation 
to changes in climate. For this study, we provided a 
250  m resolution digital elevation model (DEM) to 
the ClimateNA algorithm, producing a gridded 250 m 
dataset of 30-year normal monthly minimum tem-
perature, mean temperature, maximum temperature, 
precipitation, and growing degree days for the his-
torical periods 1951–1980, 1961–1990, 1971–2000, 
and 1981–2010. We also produced the same 30-year 
normal monthly variables for 2010–2039 projected 
based on an ensemble of 15 global climate models 
(see Wang et al. 2016 for details).

From these monthly climate variables, we calcu-
lated nine derived climate covariates including sum-
mer monsoon season precipitation (July–September 
total precipitation), summer monsoon season mean 
maximum temperature (July–September average of 
the daily maximum temperature), summer monsoon 
season mean temperature (July–September average 
of the daily mean temperature), winter precipitation 
(January–March total precipitation), winter mean 
minimum temperature (January–March average of the 
daily minimum temperature), winter mean tempera-
ture (January–March average of the daily mean tem-
perature), spring precipitation (April–June total pre-
cipitation), and annual growing degree days (degree 
days above 5 ℃). Lastly, we linearly interpolated the 
time series (i.e., the 5 gridded datasets for 4 historical 
and 1 future 30-year normal periods) for each of the 9 
climate covariates to produce annual climate normals 
for the 30-year period preceding each year from 1986 
to 2020.

We produced the topographic covariates from the 
30  m Shuttle Radar Topography Mission DEM pri-
marily using algorithms implemented in GEE. They 
included slope, heat load index (a measure of inci-
dent radiation), and five alternative parameteriza-
tions of a topographic position index (TPI; quanti-
fies the elevation of the focal pixel relative to the 
mean of its neighbors within a moving window of a 

user-specified radius). The five TPI indices differed 
by the radius over which the index was calculated 
(90 m, 180 m, 360 m, 720 m, and 1440 m). We also 
produced a topographic wetness index (TPI; a meas-
ure of the area upslope from the focal pixel) and topo-
graphic ruggedness index (TRI; a measure of topo-
graphic heterogeneity) from the same DEM using 
algorithms implemented in the SAGA GIS software 
(Conrad et al. 2015).

Species distribution modeling

We employed a use-availability study design (John-
son et  al. 2004) to model the distribution of MSO 
within the study area using the covariates as predic-
tors of the relative probability of nest/roost site occur-
rence. With this approach, we distributed ‘available’ 
locations across the study area and trained the model 
based on the relationship between covariate values 
at locations that were ‘used’ by the species (i.e., the 
2913 nest/roost site locations described above) and at 
available locations. The choice of the number and dis-
tribution of available locations has considerable effect 
on the model outcome (Barve et  al. 2011; Liu et  al. 
2019). Here, we defined the area available to MSO for 
nesting and roosting to be the entire forested domain 
of the study area because MSO has high mobility and 
was historically observed throughout the study area. 
We defined forested areas based on two models of 
forest cover—National Land Cover Database (Yang 
et al. 2018) and the Global Forest Watch forest cover 
model (Hansen et al. 2013). For a pixel to be consid-
ered ‘available’ it had to be classified as forest in at 
least 1  year by both forest cover models. This con-
servative definition of forest largely avoided commis-
sion errors in the classifications that included shrub-
lands, grasslands, agricultural lands, urban areas, and 
other habitats that are already known to be unsuitable 
for MSO nesting and roosting. Importantly, a pixel 
that was once forested but transitioned to non-forest 
during the MSO survey years (generally due to wild-
fire, timber harvest, or tree pathogens) was still con-
sidered ‘available’. Thus, disturbed sites and regen-
erating forests were included in the training data, 
allowing disturbance agents and forest succession to 
influence the model fit.

We trained five MSO SDMs corresponding to 
each of five MSO EMUs. For each survey year with 
MSO detections within an EMU, we generated 10 
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‘available’ locations for every MSO nest or roost site 
detected, randomly located within the forested ‘avail-
able area’ of the EMU described above (n = 29,130 
across all EMUs). We then extracted the covariate 
values for each ‘use’ location (i.e., the MSO nest or 
roost sites) and ‘available’ location corresponding 
to the survey year. In future runs of this monitoring 
system, new field data that has been added to the 
project’s cloud data repository will be automatically 
incorporated into new SDMs, thus providing an adap-
tive method for incorporating shifting species-envi-
ronmental relationships into the models.

To model the relative probability of MSO nest/
roost site occurrence based on the training data, we 
used a random forest classifier (Breiman 2001) imple-
mented in GEE. Random forest is a machine learning 
algorithm that has particularly high performance in 
part because of its ability to flexibly predict ecologi-
cal relationships in complex, interacting and nonlin-
ear systems (Evans et  al. 2011). The optimal (after 
tuning to minimize out-of-bag error) random for-
est hyperparameters included 50 “trees”, 6 variables 
per split, and a bag fraction of 0.5. We used a k-fold 
cross validation approach (k = 10) to train 10 random 
forest classifiers for each EMU, each one using 90% 
of the training data from the EMU and withholding 
10%. For each year from 1986 to 2020, we projected 
each of the 10 models for each of the 5 EMUs onto 
covariates corresponding to the year. For each year, 
we then produced images quantifying the mean and 
standard deviation of the relative probability of MSO 
occurrence across the 10 model runs. To validate the 
SDMs, we assessed the mean and standard devia-
tion of the out-of-bag error, area under the receiver 
operator curve (AUC; Hanley and McNeil 1982), sen-
sitivity, and specificity across the 10 model runs per 
EMU.

Post-analysis of species distribution models

To illustrate the potential impacts of basing adap-
tive management on habitat maps that substantially 
lag current conditions, we created a binary classifi-
cation of suitable/non-suitable habitat for each mod-
eled year (1986–2020) based on a threshold probabil-
ity where errors of omission and commission were 
balanced (i.e., a threshold where model sensitivity 
equaled specificity) and then calculated the per-
cent gain and loss of habitat between pairs of annual 

SDMs separated by a time lag of 5 years, per EMU. 
Additional post-analyses were performed, described, 
and interpreted in the companion paper (Jones et al. 
2023).

Automated habitat monitoring system linked to 
adaptive management

We programmatically automated all the steps in the 
model fitting, projection, and assessment described 
above in the GEE cloud computing environment and 
linked the model to dynamic data sources for the 
model covariates, which are also hosted in the GEE 
cloud data repository. This automated process runs 
on an annual schedule, queued by a scheduling app 
running on Google Compute Engine that triggers 
the process to run on a user-specified calendar date. 
Each year, the application obtains the latest Landsat 
imagery for the study area from the GEE repository, 
adds the latest observational data on MSO occur-
rence from a Google Cloud Storage bucket, projects 
the 30-year climate normals for the current year, pro-
cesses the Landsat and climate data to produce cur-
rent year covariates for the model, projects the fitted 
model across the study area, and writes the raster 
images as assets in GEE, where they are accessible 
to a GEE App that allows users to interact with the 
monitoring products during the monitoring phase of 
the adaptive management cycle (Fig. 5). In addition, 
the automated process performs post-analyses of the 
time series in GEE to quantify annual habitat gain, 
loss, and trends summarized for the entire study area 
and per EMU. These evaluation products are written 
as tables and plots to a bucket in Google Cloud Stor-
age where they can be downloaded and visualized by 
users in the evaluation phase of the adaptive manage-
ment cycle (Fig. 5).

Results

Locally-trained SDMs using the random forest algo-
rithm with temporally matched covariates produced 
remarkably accurate predictions of MSO habitat 
(Table  2). The SDMs for all EMUs exhibited low 
out-of-bag error during the random forest model fit-
ting, ranging from a low of 3.2% in the upper Gila 
Mountains to 6.8% in the southern Rocky Mountains 
(Table 2). Model fit was very high in all EMUs, with 
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AUC values above 0.99 in all cases. Model specific-
ity and sensitivity were also high in all EMUs, with 
values above 0.96 in all cases. Projecting an SDM 
from one EMU onto environmental data for any other 
EMU resulted in a large reduction in accuracy, as 
assessed by predicting MSO occurrence in both ‘use’ 
and ‘available’ locations in the target EMU (see Jones 
et al. 2023 for detailed results and discussion).

Projecting the locally trained SDMs for all 
EMUs across the study area revealed a spatially and 

temporally complex pattern of MSO occurrence prob-
ability (Fig. 2), with widespread losses and gains over 
the 35-year study period (Fig. 3). On average, within 
any 5-year interval over the 35-year study period, all 
EMUs experienced significant losses in MSO habitat 
in some areas and significant gains in others (Fig. 4), 
underscoring the need for frequent monitoring to 
assess current conditions. The EMUs with the high-
est average 5-year rate of loss were the Basin and 
Range—East EMU and the Upper Gila Mountains 

Table 2  Model evaluation

For each Mexican spotted owl (MSO) Ecological Management Unit (EMU), the mean and standard deviation (across the 10 model 
runs) of the out of bag (OOB) error during the random forest model fitting, the area under the receiver operator curve (AUC), and 
model sensitivity and specificity (the same value applies to both because the threshold probability for predicting MSO occurrence 
was defined by the model prediction value at which sensitivity = specificity) are shown

EMU OOB error Test AUC Sensitivity and specificity

Basin and Range: East 5.6% (0.3%) 0.996 (0.002) 0.974 (0.007)
Basin and Range: West 3.7% (0.2%) 0.998 (0.002) 0.985 (0.005)
Upper Gila Mountains 3.2% (0.1%) 0.998 (0.000) 0.986 (0.001)
Colorado Plateau 6.5% (1.4%) 0.993 (0.011) 0.965 (0.040)
Southern Rocky Mountains 6.8% (0.7%) 0.993 (0.008) 0.968 (0.027)

Fig. 2  Mexican spotted owl (MSO) nest/roost site relative 
probability of occurrence. The relative probability of Mexican 
spotted owl nest/roost site occurrence across the Arizona and 
New Mexico, USA study area is shown for 2020, with warmer 

colors (red and orange) denoting higher probability relative 
to cool colors (green and blue). Areas without color have no 
predicted suitability. The dashed lines delineate five MSO Eco-
logical Management Units which are also named in the figure
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Fig. 3  Change in relative probability of Mexican spotted owl 
(MSO) nest/roost site suitability. The difference in relative 
probability of Mexican spotted owl nest/roost site suitability 
between 1986 and 2020 across the Arizona and New Mexico, 
USA study area is shown. Orange and red denote increasingly 

larger losses in habitat over the 35-year period, while light blue 
and dark blue denote increasingly large gains in habitat over 
the same period. The dashed lines delineate 5 MSO Ecological 
Management Units, which area also named in the figure

Fig. 4  Average 5-year change in MSO habitat area across Ari-
zona and New Mexico, USA. The percent gain (white bars) 
and loss (black bars) in nesting/roosting habitat area is shown 
per Ecological Management Unit relative to habitat 5  years 
prior, averaged over all years of the study (1986–2020). The 

error bars represent the standard deviation of gain and loss for 
the 5-year lagged comparisons over the same time period. The 
magnitude of gains and losses over even a short 5-year window 
underscores the need for continuous monitoring to help man-
agers track disturbances and adjust planning accordingly
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EMU, both with habitat loss averaging over 25%. 
The Southern Rocky Mountains experienced the low-
est rate of change, with loss averaging about 8% over 
a 5-year window. The differences between EMUs 
in average habitat gain over a 5-year window were 
smaller, with total habitat gain ranging from about 7 
to 11%.

Additional analysis of the MSO SDM time series 
produced here is provided in the companion manu-
script in this issue (Jones et al. 2023). This includes 
quantifying trends in MSO habitat over the 35-year 
study period, exploring covariate contributions to 
model fit, assessing non-stationarity among models 

across EMUs, and interpreting model results in light 
of MSO ecology and management.

Discussion

As our expanding human footprint and changing cli-
mate increase the frequency and magnitude of eco-
logical disturbances, many landscapes are changing 
rapidly and often dramatically (e.g., Serra-Diaz et al. 
2018; Halofsky et al. 2020). Increasingly, the pace of 
change is exceeding the ability of managers to effec-
tively monitor, assess, and adapt their plans to current 

Fig. 5  Conceptual diagram of a dynamic habitat monitoring 
system linked to an adaptive management cycle. A cloud-based 
dynamic habitat monitoring system (right) requires a dynamic 
cloud-based data repository (such as Google Earth Engine) 
that continuously ingests and stores remote sensing data. This 
system also requires that the workflow to train and project a 
species distribution model for the target species is automated 
in a cloud platform-based analysis platform (such as Google 
Earth Engine), using georeferenced field observations (e.g., 
telemetry data or remote camera data) as training data. Link-
ing the automated modeling workflow to the dynamic data 
repository and running it on a schedule (e.g., annually after 
the required multi-temporal remote sensing data is collected 
for the year) produces a time series of projected models when 
run over multiple years. The system can be run retrospectively, 
producing a long historical time series from data inputs with 

a large existing archive (e.g., Landsat imagery has been con-
tinuously collected since the 1980s). From this time series, 
post-analysis can be performed (a process which can also be 
automated), including evaluating trends in habitat area, config-
uration, connectivity, and other management-relevant metrics. 
The automated annual monitoring of habitat and assessment 
of trends can link directly to an adaptive management cycle 
(left). The automated and dynamic workflow provides annually 
updated information to address the monitoring and evaluation 
tasks within the cycle. This puts timely and current informa-
tion in the hands of managers, keeping them apprised of the 
impacts of recent disturbances and the impacts of climate 
change on species habitats, while also making the adaptive 
management cycle more responsive to changing conditions and 
more effective in achieving conservation goals
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conditions using traditional approaches. The tech-
nologies and processes applied in the past to adapt to 
change operate on a cycle that is often too slow and 
cumbersome to keep up with increasingly dynamic 
landscapes, resulting in less effective management 
of habitat for at-risk species and contributing to the 
global biodiversity crisis (Pecl et al. 2017; Weiskopf 
et al. 2020). Here we describe and implement a more 
timely and modern approach that takes advantage of 
recent advances in remote sensing, cloud computing, 
and access to satellite imagery to automatically moni-
tor and assess species habitat conditions at scale and 
link those insights directly to adaptive management 
cycles (Fig. 5).

Our approach, demonstrated here through applica-
tion to MSO habitat monitoring in the southwestern 
US, involves several key innovations. First, we pro-
grammatically automate (i.e., all steps are performed 
without any human intervention) the entire pro-
cess of training, projecting, and evaluating a species 
habitat model in a cloud-based computing environ-
ment that is linked to required dynamic data sources. 
The coupling of an automated habitat model linked 
dynamically to required model inputs in a power-
ful cloud-based computing environment like GEE 
allows mapping products to be provided at regular 
intervals (e.g., annually) over broad spatial and tem-
poral extents at high resolution, yielding regional-
scale insights that match the scale of population-level 
responses to natural and anthropogenic disturbances. 
Second, our analysis framework provides locally 
trained, adaptive predictions and evaluations which 
can both retrospectively quantify recent trends in 
habitat and provide ongoing annual monitoring of 
habitat. Third, the monitoring and evaluation capabil-
ities of the system can be linked directly to an adap-
tive management process. The result of these inno-
vations is an automated habitat monitoring system 
(Fig.  5) that will enable managers to keep apprised 
of trends and current conditions given recent anthro-
pogenic and natural disturbances, evaluate impacts of 
those disturbances on species of interest (in this case 
MSO), and adjust planning accordingly so that man-
agement goals can be more effectively attained even 
in rapidly changing environments.

The current status quo for monitoring species 
habitat involves expensive and time-consuming 
multi-year efforts to summarize status and trends 
at intervals of five or more years. For example, the 

Northwest Forest Plan (NWFP) Effectiveness Moni-
toring Program (EMP; Mulder et al. 1999) has been 
conducting long-term monitoring of northern spot-
ted owl (S. occidentalis caurina) and marbled mur-
relet (Brachyramphus marmoratus) nesting habitat 
in California, Oregon, and Washington USA since 
1993. NWFP habitat monitoring maps and reports for 
these species have been produced on a 5-year cycle 
beginning in 2005 (e.g., see Davis et al. 2016; Falxa 
et  al. 2016). In many ways, the NWFP EMP repre-
sents the state-of-the-art in habitat monitoring and 
has successfully informed management for nearly a 
quarter-century across a vast area. However, because 
this habitat monitoring system (and virtually all other 
habitat monitoring systems as well) is not automated 
or dynamically linked to model inputs, each new 
release requires time-consuming reanalysis and pro-
cessing. By the time the habitat models are updated 
and made available to managers, the Landsat imagery 
they were based on lags current conditions by 3 to 
4  years (e.g., the 2016 release was based on 2012 
imagery, and the soon to be released 2021 update will 
be based on 2018 imagery). Thus, a manager’s under-
standing of current conditions for northern spotted 
owl and marbled murrelet habitat near the end of the 
5-year update cycle will be up to 9 years out-of-date.

To improve the responsiveness of species habitat 
monitoring systems requires much greater automa-
tion of model training, projection, and assessment as 
well as dynamic links to model inputs. This requires 
a powerful modeling platform and dynamic cloud-
based data repository storing model inputs. Many 
of these elements of a responsive habitat monitor-
ing system have been applied recently to monitor 
environmental variables like forest cover (Hansen 
et  al. 2013). However, to our knowledge, there are 
no examples of monitoring systems focused on spe-
cies habitat (rather than environmental variables like 
forest cover) that implement the level of automation 
we have achieved in the MSO monitoring system we 
developed in this study. The novelty of our approach 
is that the entire workflow of habitat model fitting, 
projection, change detection, and analysis of trends 
and other post-analyses is programmatically auto-
mated and linked to dynamic data repositories con-
taining frequently updated training data and habitat 
model covariates. This level of automation enables 
regular (e.g., annual) provisioning of information 
about status and trends of species habitat directly to 
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managers without the multi-year lag inherent in tra-
ditional monitoring programs. Linking this informa-
tion directly to managers opens up new possibilities 
for more effective adaptive management of species in 
rapidly changing environments while also reducing 
costs compared to traditional monitoring programs.

The provisioning of near-real-time monitoring 
and evaluation products is most valuable in highly 
dynamic landscapes. In the MSO study area for exam-
ple, on average over any 5-year period between 1986 
and 2020, EMUs experienced up to 30% loss of suit-
able habitat due to fire and other disturbances. Forest 
regeneration also drove significant increases in habi-
tat over 5-year intervals, with some EMU’s averaging 
gains of more than 10% over that time span. When 
habitat loss and gain reach this magnitude and fre-
quency, the spatial pattern of habitat on the landscape 
can shift dramatically, resulting in profound impacts 
on population genetic and demographic processes for 
species like MSO (Wan et al. 2018). Failure to detect 
and account for these impacts in a timely way can 
reduce the effectiveness of adaptive management and 
hinder progress towards achieving management goals. 
Even in areas that currently exhibit relative stability 
in habitat conditions, automated monitoring systems 
may become increasingly valuable if climate change 
and our expanding human footprint raise local rates 
of natural and anthropogenic disturbances.

A key aspect of the monitoring system we describe 
is the automated update to the SDM as new training 
data becomes available. This is important because 
SDMs are based on correlations between species 
occurrence and environmental covariates that may 
not be stable over time as conditions depart from his-
torical norms due to climate change or other stressors. 
These departures drive novel species-specific adapta-
tions, novel species assemblages, and altered interspe-
cific relationships (e.g., competition and mutualism), 
all of which can modify the species–environmental 
relationships to which the model is fit (Dormann et al. 
2012). Many researchers have proposed using mecha-
nistic models to predict species distributions under 
novel conditions, an approach that can potentially 
address the challenge of unstable correlations. How-
ever, a complete and quantitative understanding of the 
enormous complexity of ecological systems and their 
interactions across space and time makes it extremely 
difficult to effectively design and parameterize mech-
anistic models that accurately predict current and 

future species responses (Cushman et  al. 2010). If 
correlational models are relied upon, they need to be 
constantly updated with new observations to ensure 
species–environmental covariate relationships reflect 
current ecological dynamics. Under our proposed 
framework, SDMs are updated automatically as new 
observational data becomes available.

In addition to producing more timely information, 
our automated modeling framework is also likely to 
produce more accurate models of species distribu-
tions. The utilization of the entire Landsat archive 
and historical climate projections allows the mod-
els to be trained by environmental data matched to 
the times at which the species was observed. Quite 
often, researchers collect observational data on spe-
cies occurrence from surveys conducted over several 
years. In the case of the MSO study for example, the 
data were collected over a 30-year period. Matching 
the year of the covariate data to the year of the obser-
vation when fitting SDMs is often not possible due 
to computational limitations around accessing and 
manipulating the large datasets. In highly dynamic 
landscapes, however, a mismatch between the year 
of the covariate observation and the survey observa-
tion can create substantial noise in the model leading 
to poor fit. We attribute much of the very strong fit 
in our models in part to our use of a time-series of 
covariates that match the survey data years.

Another aspect of our modeling framework is the 
avoidance of relying on classified models of land-
cover such as the National Land Cover Database (Jin 
et  al. 2019), Gradient Nearest Neighbor vegetation 
data (GNN; Ohmann and Gregory 2002; Bell et  al. 
2021) and LANDFIRE data (Rollins 2009) as covari-
ates in SDMs. These products have all been incred-
ibly valuable for modeling species distributions and 
tracking change over time, however, their use is prob-
lematic in our application because these products 
have lengthy production cycles that can create lags 
in a dynamic monitoring system. For example, as of 
mid-2021, the current publicly available GNN data 
is derived from 1986 to 2017 Landsat imagery, and 
the current NLCD and LANDFIRE data are based 
on 2016 Landsat imagery. Our SDMs were based on 
covariates derived from unclassified gradient data that 
is frequently and dynamically updated (e.g., unclassi-
fied Landsat imagery), enabling annually updated (or 
even more frequent) monitoring products without lag. 
Another benefit of directly using unclassified gradient 
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data is that it avoids the large errors of omission and 
commission associated with information loss inherent 
in classification algorithms (McGarigal and Cushman 
2005).

Our proposed monitoring framework creates the 
potential for new paradigms in policy and adap-
tive management of species habitat. Providing auto-
mated annual monitoring of habitat conditions based 
on remotely sensed data, and automatically evaluat-
ing trends and impacts of recent changes in habitat, 
offers a means to speed up the adaptive management 
cycle and allow it to keep pace with conditions on the 
ground as climate change and our expanding human 
footprint drive ecosystem changes. However, the 
rapid and automated provisioning of science-based 
information to management cycles can only be effec-
tive in helping achieve management goals if the typi-
cally slow-moving adaptive management process is 
modified to make use of these new data products and 
link them to data-driven decision making that is more 
nimble and responsive to changing conditions. This is 
the subject of a companion paper in this issue, where 
Jones et al. (2023) show how managers can use these 
data products to assess impacts to MSO and guide 
rapid responses to more effectively achieve recovery 
goals for this species.

To apply our automated modeling framework to a 
species, several conditions must be met. First, high-
quality occurrence data is needed to train habitat 
models. Historical occurrence data dating back to the 
mid-1980s (the beginning of the Landsat time series) 
can be just as useful for model training as more recent 
data because a Landsat-based automated monitor-
ing system run retrospectively can provide covariate 
values at these locations that match the year of the 
observation. Second, the primary determinants of a 
species distribution must be quantifiable using avail-
able remote sensing, climate, topographic, and other 
datasets. These model inputs must also be dynami-
cally updated and linked to the automated monitoring 
system (e.g., the MSO monitoring system was devel-
oped in GEE and linked to the GEE data catalogue, 
which provides dynamically updated input data). For 
species whose occurrence is driven by factors that are 
not well-quantified by remote sensing data provided 
at moderate resolution (e.g., 30  m Landsat imagery, 
though finer resolution imagery is possible if using 
a platform like GEE that is scalable and massively 
parallelized), this approach may not be appropriate. 

Third, the modeling algorithms and processing work-
flow required must be able to be automated within the 
cloud-computing environment that is utilized (e.g., 
the MSO monitoring system relied on random forest 
models and image processing algorithms that were 
implemented in GEE).

Fortunately for many species, these conditions can 
be met, allowing monitoring systems like the MSO 
system presented here to be applied broadly. The 
applications may also extend beyond terrestrial sys-
tems to marine species as well if the growing constel-
lation of satellites that quantify marine environments 
provide the required data. Our MSO monitoring sys-
tem is focused on habitat suitability at relatively fine 
scales (30 m) in a forest ecosystem, but other ecologi-
cal processes at multiple scales can be included in a 
species monitoring system (e.g., habitat connectivity 
or colonization) in both forested and non-forested 
systems alike.

Building automated habitat monitoring systems for 
at-risk species and linking these systems to manage-
ment has the potential to revolutionize species con-
servation and natural resource management, making 
it more responsive to rapidly changing conditions and 
more effective in achieving conservation goals, with 
less cost compared to the current status quo of manu-
ally producing and updating models infrequently at 
great expense each time. Synthesis of information 
from across multiple monitoring systems could also 
provide a basis to prioritize landscapes for multi-spe-
cies conservation and help support large landscape 
conservation initiatives.

Supplementary Material

All data products presented in this paper will be pub-
licly available through the US Forest Service (a Fed-
eral agency) and the Google Earth Engine tool pre-
sented and all data integrated into it will be posted 
online before publication.
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