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Abstract

Context Habitat specialists residing in human-mod-

ified landscapes are likely to be more vulnerable to

disturbance because of a functional reliance on very

particular habitat features. However, there have been

few studies designed to specifically address that issue.

Objectives This study aimed to explore how the red

panda, an iconic endangered habitat specialist,

behaves when faced with disturbances and habitat

fragmentation. In particular, we attempted to examine

the effect of anthropogenic disturbances and fragmen-

tation on home-range size, activity patterns, and

recursion.

Methods Using GPS telemetry we monitored 10 red

pandas and documented disturbances using camera

trapping for one year in eastern Nepal. We performed

spatial analysis, analysed activity patterns and evalu-

ated the effect of habitat fragmentation and distur-

bances on home-range size and residence time using

Linear Mixed Models.

Results Home-range size increased in areas with low

availability of forest cover whilst home ranges were

smaller in areas with a high road density. Red pandas

spent more time in large habitat patches away from

roads and cattle stations. Crossing rates suggested that

roads acted as a barrier for movement across their

habitat. Red pandas also partitioned their activity to

minimize interactions with disturbances.

Conclusions Red pandas seem to make a trade-off to

co-exist in human-dominated landscapes which may

have adverse long-term effects on their survival. This

indicates that current patterns of habitat fragmentation

and forest exploitation may be adversely affecting red

panda conservation efforts and that landscape-scale

effects should be considered when planning conser-

vation actions.

Keywords Home range � Habitat fragmentation �
Barrier effect � Activity pattern � Residence time �
Anthropogenic disturbances

Introduction

Human activities are increasingly modifying forests

making them less suitable for wild animals (Haddad
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et al. 2015). Habitat fragmentation is the most obvious

effect influencing the survival of forest inhabitants by

converting the landscape into a mosaic of suit-

able habitat within a matrix of habitat that has been

altered to some degree (Fahrig 2003; Fletcher et al.

2018). Animals living in such a landscape may have to

compromise with limited food, resting, hiding and

nesting resources, even to the point the species living

in such habitat may become less resilient during

natural disasters (Malhi et al. 2008; Schwitzer et al.

2011). Predator pressure is also higher in degraded

habitat (Schneider 2001), and wildlife perceive such

areas as more risky (Mendes et al. 2020). Nonetheless,

wildlife must compromise between occupying such

degraded habitat and avoiding predation risk and/or

human-induced disturbances (Gill et al. 2001) where

living in the degraded habitat is always associated with

increased risk of mortality (Frid and Dill 2002). But

the response towards disturbances and habitat frag-

mentation varies across species (Haddad et al. 2015;

Tucker et al. 2018). Wildlife managers should know

how a particular species responds to such threats so

that they can devise and prioritize conservation

measures to fit the target species in specific habitats.

Disturbances may obstruct movement or limit

access to suitable habitat and thereby result in habitat

avoidance, limited habitat use, reduced time spent on

feeding and physiological changes (Frid and Dill

2002). Roads may hinder migration and dispersal,

impede animal movement, reduce connectivity and

constrain species interactions (Forman and Alexander,

1998; Angelsen and Kaimowitz 1999). Many species

purposefully avoid fragmented habitat, human pres-

ence and disturbances (Haddad et al. 2015). For

instance some animals occupy less or more space in

human-dominated landscapes (Martin et al. 2010;

Jerina 2012), avoid low-quality patches and occupy

better habitat (Martin et al. 2010), stay away from

areas close to disturbance sources (Hebblewhite and

Merrill 2008; Graham et al. 2009), and adapt to be less

active when human activity is greatest (Hebblewhite

and Merrill 2008; De Oliveira et al. 2014; Wevers

et al. 2020).

Adaptation to disturbances is an attribute to survive

in human-dominated landscapes (Johann et al. 2020).

Wild animals have the capacity to tolerate distur-

bances to certain levels (Lowrey and Longshore 2017;

New et al. 2020), but animals with low plasticity are

under high risk of extirpation and extinction (Ciuti

et al. 2012a). Prolonged exposure to disturbances may

habituate some animals (Higham and Shelton 2011;

Geffroy et al. 2015), and makes themmore susceptible

to poaching (Bejder et al. 2009) and predation risk

(Geffroy et al. 2015). Furthermore, the magnitude of

effects vary over time resulting in long-term cumula-

tive effects (Berthinussen and Altringham 2012), and

affect individual’s fitness and lead to reduced survival

and reproductive success at a population level (Frid

and Dill 2002).

GPS telemetry has been rarely used in studying the

effect of disturbances and habitat fragmentation on

arboreal mammals (Rus et al. 2020). Most of the

available studies on responses of arboreal mammals to

habitat fragmentation and disturbances are based on

sign surveys, e.g. marsupials (Youngentob et al. 2013;

Lindenmayer et al. 2021), primates (Almeida-Rocha

et al. 2017; Kaisin et al. 2021) and tropical mammals

(Whitworth et al. 2019). Further, GPS telemetry

coupled with camera trapping has not yet been applied

in studying how arboreal mammals are adapting in

human-dominated landscapes. Arboreal mammals are

more susceptible to fragmentation and disturbances

than any other mammalian community (Whitworth

et al. 2019), but studying their ecology is difficult due

to their special habitat use (Moore et al. 2021). For that

reason, use of cutting-edge technology could provide

more authentic evidence to improve our understanding

on how arboreal mammals are coping with distur-

bances. We therefore aimed to study the effects of

disturbances using GPS telemetry and camera trapping

on an arboreal mammal, the red panda Ailurus fulgens.

The red panda is an endangered species inhabiting

the temperate forests in the eastern Himalaya (Glat-

ston et al. 2015; Hu et al. 2020). This medium-sized

species is a diet specialist feeding almost exclusively

on bamboo (Pradhan et al. 2001). Being a solitary,

cryptic and territorial arboreal mammal, it is difficult

to study in the wild (Yonzon 1989; Bista et al. 2021b).

Habitat loss and fragmentation are the major threats to

red panda conservation (Acharya et al. 2018; Dalui

et al. 2020; Hu et al. 2020). Increasing pressure on red

panda habitat due to roads, livestock herding and over-

extraction of forest resources are likely to threaten red

panda survival (Fox et al. 1996; Acharya et al. 2018;

Panthi et al. 2019). Similarly, herders’ dogs can

present a direct threat to red pandas (Yonzon and

Hunter 1991). There have been examples of abandon-

ment of habitat and local extirpation of red pandas in
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some areas in China (Zhang et al. 2017) and Nepal

(Bista et al. 2017). These reports suggest the need of

robust quantitative and systematic analysis of the

ecological effects disturbances and habitat fragmen-

tation on this threatened species.

The general objective of this study was to evaluate

the effects of disturbances on space use and interaction

patterns of red panda. We hypothesized that reduction

in suitable habitat patches would lead to an increase in

home range size in disturbed and fragmented habitats

(Van Beest et al. 2011; Wall et al. 2021). Second, that

roads and human tracks would act as a barrier of

movement because such features have reduced cover

(He et al. 2019), possess high predation risk (Bennet

1991), and threat from people and dogs (Frid and Dill

2002). Further, the possibility of roadkill due to

collision with vehicles is high along roads (Grilo et al.

2012; De Oliveira et al. 2014). We also hypothesized

that red pandas would partition their activity patterns

and stay away from disturbances to avoid risk as the

cost of living in proximity to disturbances is high

(Hebblewhite and Merrill 2008; Wu et al. 2018;

Wevers et al. 2020).

Methods

Data collection

We conducted this study in eastern Nepal which

borders to India in the east (27.10244N, 87.98157E,

Fig. 1). The elevation of the study area ranged

between 1500 and 3636 m with a sub-tropical to

temperate climate with a mean temperature of

13.1 ± 6.78 �C. Human settlements, roads, walking

trails, and livestock herding activities were present

throughout the year. This makes it an ideal site for

studying the effect of disturbances and habitat frag-

mentation on red panda. There were more than 15

human-habitation sites with a population of nearly 700

people living in the vicinity of the study area (CBS

2012). We visited each cattle station and recorded

their GPS locations. We captured and equipped 10 red

pandas including six females and four males with GPS

collars (LiteTrack Iridium 150 TRD) following a

standard operating procedure (Bista et al. 2021b). Of

these, we collared seven individuals in site 1, and rest

of the three animals in site 2 (Table 1). These sub-

adults were 6–7 months old when collared. Both sites

have been highly altered by human activities, but site 1

had higher density of road (5.7 vs 0.2 km/km2) and

walking tracks than in site 2 (6.5 vs 1.4 km/km2) while

site 2 was experiencing more herding activities than in

site 1.

The GPS collars were set to record one fix every

two hours. In the montane habitat, telemetry error can

be high due to terrain obstruction and high canopy

(Lewis et al. 2007). To minimize this error, we

excluded GPS fixes with B 2 satellites and omitted

imprecise locations with the dilution of precision[ 5

(Lewis et al. 2007; Bjorneraas et al. 2010). Further, we

retained locations only within the elevation range of

our study site between 1500 and 3606 m.

To document disturbance volume, human activity

patterns, cattle movement, dog presence and vehicles

we deployed 34 passive infrared motion detection trail

cameras with LED no-glow flash (Bushnell 24MP

Trophy Cam HD No-Glow, Bushnell 20MP Trophy

Cam HD No-Glow) from 22 November 2019 through

25 November 2020. We placed cameras randomly

along the human-walking tracks, roads and forest

areas within known red panda home ranges. Each

camera was fastened to a tree trunk at 40 cm above

ground. We considered image captures of an individ-

ual separated by C 30 min as an independent event.

We recorded 55,506 independent images including red

pandas in only eight independent events in six trail

cameras. Such a small sampling size was insufficient

to draw any inference, but telemetry-based data can

also be used in temporal interaction studies (Meredith

and Ridout 2014; Lashley et al. 2018; Edwards et al.

2021). So we considered telemetry data falling within

a 45 m radius of each camera, including 25 m

telemetry error and 20 m detection range, as an

independent event of a red panda visiting camera

locations which resulted in an additional 77 indepen-

dent events. This distance threshold was based on our

camera’s detection range (* 25 m), but the camera’s

detection range reduces by one fourth during dark

hours (Rowcliffe et al. 2011). So, we reduced the range

to 20 m.
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Data analyses

Effect of disturbance and fragmentation on space use

Initially we estimated home range size using

weighted Autocorrelated Kernel Density estimation

with 95% isopleth in the ctmm package (Calabrese

et al. 2016). We accessed three Sentinal-2A satellite

images of the study area taken between 15 October

2019 and 13 January 2020 at 10 m spatial resolution.

Then we processed and analysed these images and

classified land cover into forest and non-forest areas

using the supervised classification method in ArcGIS

following Sekertekin et al. (2017). This method of

land use and land cover processing is commonly

applied elsewhere for sentinel images (Phiri et al.

2020). Then we extracted the land cover area with

annual and seasonal home ranges of each animal.

Patch level information barely provides clues for

habitat fragmentation effects (Fahrig 2017). We

therefore considered patch as well as class level

metrics within home range. Patch area (AREA) and

proportion of land cover availability (PLAND) were

used to quantify the habitat configuration and land

cover type in each animal’s home range. We classified

the land cover type into forest and non-forest areas.

Our study area was in human-dominated landscape

with roads, walking trails, cattle stations and human

habitation areas. Therefore, we used Connectance

index (CONNECT), Clumpiness index (CLUMPY),

Euclidean Nearest Neighbour Distance (ENN) and

Patch Density (PD) metrics to measure the patch

aggregation (Neel et al. 2004). The CONNECT refers

to the proportion of functional joining of same class

patches while the CLUMPY measures the degree to

which patches are spatially aggregated (McGarigal

2015). We considered an average step length of red

pandas (60 m) as a threshold distance to consider

connectivity between neighbouring patches. The ENN

measures the shortest straight-line distance between

two same class patches. Likewise, PD facilitates the

comparison of home ranges on severity of fragmen-

tation level (McGarigal 2015). We also estimated road

and human-walking track density within each ani-

mal’s home range at annual and seasonal scales. We

accessed these road and trail data from Open Street

Map and visited the study sites to verify and improve

the missing data. We performed the spatial analysis in

Fragstat v4.2.1 (McGarigal et al. 2012) and ArcMap

10.8 (ESRI 2020).

We investigated recursion by computing residence

time (total time spent in a location) and revisit (total

number of visits to a previously visited location) using

recurse package (Bracis et al. 2018). We considered

average step length as a radius of an area (60 m), and

2 h as the time threshold to account for an independent

visit between two successive visits.

Initially we examined the data for multicollinearity

and omitted variables with the variation of inflation

factor greater than 5 (Zuur et al. 2010). Then we

evaluated the effect of habitat fragmentation and road

density on home range size using a Linear Mixed

Model (LMM) in lme4 package (Bates et al. 2005).

We included fragmentation metrics and road density

as fixed factors. Using the LMMwe also examined the

effect of disturbances on residence time with distance

to disturbance sources and fragmentation metrics as

fixed factors. We included individual animals with a

random intercept in the LMM. Then we run the model

with all possible combinations and selected the

candidate model based on the least corrected Akaike’s

Information Criterion (AICc) value (Burnham and

Anderson 2002) usingMuMIn package (Barton 2020).

All these analyses were carried out in R (R Core Team

2020). We reported the marginal and conditional R2

values to show the variation represented by the fixed

and random effects (Nakagawa and Schielzeth 2013).

bFig. 1 Location of the study area. We carried out the study in

Ilam and Panchthar districts, eastern Nepal which border India

in the east. The inset shows the landscape features of the study

area. Black and grey lines connote linear features: road and

walking trails respectively. Human habitations are highlighted

with orange dots. We captured and collared 10 red pandas in two

sites: seven animals in Site 1 and three animals in Site 2

Table 1 Animals included in the study

Animals Site 1 Site 2

Adult # 2 1

Adult $ 3 1

Sub-adult # 1

Subadult $ 1 1

We collared seven individuals (two adult males, one sub-adult

male, three adult female, one sub-adult female) in site 1, and

three animals (one adult male, one adult female, one sub-adult

female) in site 2
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Barrier effect

For each red panda we investigated the barrier effect of

roads and tracks. To do this we created each animal’s

movement trajectories between their successive GPS

coordinates. Then we estimated crossing frequencies

of these trajectories across roads and tracks in

ArcMap. We categorised the crossing time into four

unequal time categories: dawn, day, dusk and night

following (Thieurmel and Elmarhraoui 2019).

We adopted one-way ANOVA to examine the

mean difference in road and track densities and

crossing rates for the animals with road and track

presence in their home ranges. But we used a Kruskal–

Wallis chi-squared test if the data was non-parametric.

When examining whether these linear features

affected animal movements we excluded data from

animals that did not have those features in their home

ranges (n = 2 for roads; n = 2 for pedestrian tracks).

Using two-sample t-tests (hereafter t-test, for para-

metric data) and Wilcoxon rank-sum tests (for non-

parametric data) we examined the differences between

males and females. Due to insufficient location records

we excluded one sub-adult from this analysis. We

examined the difference in hourly road and track

crossing rates for the animals with road and track

presence in their home ranges using the Kruakal-

Wallis test. We performed post-hoc analyses using

Dunn tests to examine pair-wise differences (Dunn

1964). We also estimated the spearman’s correlation

between road density and road crossing, and track

density and track crossing.

Temporal interaction with disturbances

We sorted the camera images using Camera base 1.7

(Tobler 2007), and analysed the data in overlap

(Ridout and Linkie 2009) and activity (Rowcliffe

2019) packages. We estimated the coefficient of

overlap (D) to examine whether red pandas shifted

their activity pattern to avoid disturbances due to dogs,

vehicles, livestock and humans. We converted time

into radians and selected 1 as smoothing parameter

(Meredith and Ridout 2014). This overlap coefficient

measures the degree of similarity between two kernel

density distributions which ranges between 0 (no

overlap) and 1 (complete overlap) (Ridout and Linkie

2009). We further tested difference in overall activity

level of red pandas with disturbance sources using the

Wald test statistic (W) with 1 degree of freedom

(Rowcliffe et al. 2014). We examined temporal

interactions on annual and seasonal scales. We also

tested the activity patterns along the human pedestrian

tracks and forest areas.

Results

Effects of disturbances on space use

Home range and core area were positively correlated

(r = 0.96, p\ 0.001) so we considered only the home

range to analyse the effect of fragmentation. The best-

fit model comprised PLAND and road density as the

influential predictors (Marginal R2 = 0.42, Condi-

tional R2 = 0.76, Table S1). These predictors affected

home range size negatively, but PLAND (b = - 0.22,

SE = 0.05, p\ 0.001, Fig. 2a) had a stronger effect

than road density (b = - 0.08, SE = 0.03, p\ 0.001,

Fig. 2b).

The best-fit model for the residence time included

four predictors (Marginal R2 = 0.08, Conditional

R2 = 0.23, Table 2). The residence time increased in

large habitat patches (b = 269.98, p\ 0.001, Fig. 3a),

away from roads (b = 247.13, p\ 0.001, Fig. 3b) and

cattle stations (b = 120.41, p\ 0.001, Fig. 3c). It was

high in areas close to human-walking tracks (b =

- 75.73, p\ 0.001, Fig. 3d). The residence time and

revisitations were positively correlated (r = 0.78,

p\ 0.0001). So, the above trends also apply for the

number of revisits.

Barrier effect

The mean daily traffic volume on roads was 8.3

individual/day (4.4 vehicles, 3.1 people, 0.7 livestock,

and 0.1 dog) while that on walking trails was 2.7

individuals/day (2.3 people, 0.4 livestock, and 0.05

dog). The mean road and track densities within the

home range of each animal was 3.84 ± 3.7/km2

(range 0–10) and 4.16 ± 4 (range 0–13) respectively.

There was no significant variation between these

densities (F1,8 = 2.86, p = 0.129, one-way ANOVA)

in different home ranges where those features

occurred. Neither was there a significant difference

between red panda sexes and road (t8 = - 1.03,

p = 0.33, t-test) and track densities (t8 = 0.22,

p = 0.8, t-test) within the home ranges. Red pandas
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crossed roads and tracks 121 and 412 times respec-

tively, and the crossing rate was significantly higher

across tracks (median = 10, X2
15 = 31.23, p = 0.008,

Kruskal–Wallis test).

The crossing rates varied across the diel cycle in

roads (X2
13= 13.4, p\ 0.004, Kruskal–Wallis test) and

tracks (X2
3= 16.07, p\ 0.002, Kruskal–Wallis test,

Fig. 4). The post-hoc test showed a significantly

higher road crossing rate during the day than in dawn

(z = - 2.7, p = 0.03) and dusk (z = - 3.22,

p\ 0.008). Similarly, the track crossing rate by red

panda was significantly higher in the day than at dawn

(z = - 2.95, p\ 0.02) and dusk (z = - 2.93,

p\ 0.02). We also observed the track crossing rate

significantly higher in the night than at dawn

(z = - 2.72, p\ 0.03) and dusk (z = - 2.7,

Fig. 2 The available forest cover (PLAND) and road density

affected home range size. The blue line represents the trend line

with grey ribbon as 95% CI while red cross denotes each data

point. a The home range increased with decrease in forest cover

availability. b The home range decreased with increase in road

density

Table 2 Candidate models describing residence time as a function of fragmentation indices and distance to disturbance sources

Models* df logLik AICc delta Weight

AREA ? Catt_dist ? Road_dist ? Trac_dist 7 - 36,591 73,196 0 1

Catt_dist ? Road_dist ? Trac_dist 6 - 36,600.6 73,213.1 17.1 0

AREA ? Catt_dist ? Road_dist 6 - 36,604.8 73,221.7 25.6 0

Catt_dist ? Road_dist 5 - 36,614.3 73,238.7 42.7 0

AREA ? Catt_dist ? Trac_dist 6 - 36,667.9 73,347.7 151.7 0

*AREA Patch area, Catt_dist Distance to cattle station, Road_dist Distance to road, Trac_dist Distance to walking track

123

Landsc Ecol (2022) 37:795–809 801



p\ 0.02). We observed no significant variation in

road and track crossing rates by red panda between day

and night, nor did the crossing rates differ across the

sex class in road (W = 206, p = 0.65, Wilcoxon rank

sum test) and human pedestrian tracks (W = 172,

p = 0.57, Wilcoxon rank sum test). But the track

crossing frequency was significantly positively corre-

lated with track density (r = 0.71, p\ 0.02, Fig. S1b)

while no significant correlation existed between road

crossing and road density (Fig. S1a). We observed no

correlation between the frequencies of road and track

crossings and their densities between males and

females (Fig. S1c-f).

Temporal pattern of activity level in response

to disturbances

In general human activities, livestock presence, dog

and vehicle movements peaked at noon throughout the

year while red pandas appeared more active during the

first half of the day (Fig. 5). Red pandas overlapped

more than half of their overall activity level with

Fig. 3 Estimates of the effect of disturbances and habitat

fragmentation on residence time. The blue line represents the

trend line with grey ribbon as 95% CI. Red pandas appeared to

spend long hours in a large habitat patches; b away from roads;

c away from cattle stations; and d close to walking trails
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livestock (D = 0.57, CI 0.48–0.68), humans

(D = 0.77, CI 0.68–0.84), vehicles (D = 0.75, CI

0.62–0.87), and dogs (D = 0.74, CI 0.65–0.83) on a

diel cycle. Despite such high overlap their annual

activity patterns varied with all these four disturbance

sources (Fig. S2). The seasonal activity level of red

pandas varied in response to disturbance sources

(Fig. S2). Their activity level differed with livestock in

the premating (W = 7.91, p\ 0.005) and birthing

(W = 9.32, p\ 0.001) seasons, human presence in

mating (W = 7.87, p\ 0.005) and birthing (W = 8.19,

p\ 0.005) seasons, and dog presence in mating

(W = 4.08, p\ 0.05) and birthing (W = 9.62,

p\ 0.001) seasons. Red panda’s activity level did

not vary with livestock (W = 0.5, p = 0.48) and

human presence (W = 1.03, p = 0.31) in the cub-

rearing season. But their activity overlapped with

livestock and human presence ranged up to 0.71 (CI

0.43–0.99) and 0.78 (CI 0.51–1) respectively in this

season, while activity overlap in the other three

seasons fluctuated between 0.48 and 0.83.

Activity level of red pandas varied in presence of

livestock (W = 4.41, p\ 0.04), humans (W = 4.94,

p\ 0.03), and dogs (W = 7.19, p\ 0.008) along

trails (Fig. 6a–c), and they followed a similar trend in

response to livestock (W = 5.98, p\ 0.02) and dogs

(W = 7.1, p\ 0.008) only in forest areas (Fig. 6d–f).

Discussion

Our findings suggest that disturbances and habitat

fragmentation influence space use and activity pat-

terns of red pandas, but that habitat quality and

disturbances determined their home range size. Red

pandas partitioned their activity patterns and occupied

less risky areas to minimize interaction with distur-

bance sources. They also avoided disturbed areas and

spent long hours in locations away from disturbance

Fig. 4 Scatterplot showing the crossing rate (per hour) of road

and tracks by all 10 animals across different times of a diel cycle

(day, dawn, dusk and night). Each color represents a specific

time of the diel cycle. The plot shows the road and track crossing

rates along the x and y axes respectively. Each point represents

the crossing rate of an individual animal at a particular time.

Box plots are added on right and top of the scatter plot to show

the marginal distribution of road and walking track crossing

rates respectively. Points outside the scatter plot depict outliers

of the respective box plot
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sources except in areas close to pedestrian trails where

they partitioned their activity pattern to avoid

disturbances.

Our findings partially support the hypothesis that

red pandas have larger home ranges in disturbed and

fragmented habitat. Red pandas occupied larger

ranges in habitat with low forest cover. Their home

range size was smaller while living in areas with high

road density. Low forest cover is an indicator of poor

habitat quality (Coote et al. 2013). Therefore a larger

area is necessary to meet their requirements and

maintain social interaction. We also observed some

animals having a large home range even when the road

density within their range was low. In those cases

Fig. 5 The annual diel activity density curve of red panda (red line), and potential disturbances: humans (black), livestock (orange),

dogs (purple), and vehicles (green). Each curve corresponds to the fitted circular kernel distributions of each animal’s activity level

Fig. 6 Temporal overlap activity patterns of red panda (red)

and potential disturbances (orange line) along the human-

walking trails and forest areas. The Wald test examines the

difference in activity patterns between red panda and other

groups at p B 0.05. The shaded area represents the overlap

coefficients (D) between each pair. The temporal overlap along

the trails (a–C), and forest areas (d–f)

123

804 Landsc Ecol (2022) 37:795–809



forest cover appeared to be more influential in

determining home range size. These observations

indicate that an intact forest without fragmentation

would be ideal habitat for red panda.

Roads usually serve as landmarks of territory

marking (Heap et al. 2012). We observed this effect

as roads marginally demarcated the home range

boundaries of most animals. Further, individuals

moved quickly in areas close to roads indicating

avoidance behaviour. They slowed down in the

vicinity of pedestrian tracks. This result is consistent

with the hypothesis that vehicular roads may be a

barrier to red panda movement, but tracks are not.

There was also a positive correlation between track

density and track crossing rate supporting the conclu-

sion that red pandas perceived such linear features as

less risky areas. Less traffic along the human-walking

trails would have encouraged red pandas to use

walking trails more frequently than roads. Red pandas

appeared to partition their activity pattern in the

vicinity of pedestrian tracks.

The recorded traffic volumes along the road and

walking trails must be considered a minimum as

during the study period people did not travel due to the

COVID-19 restrictions. Road-affected habitats also

suffer from habitat loss and high grazing disturbances

in human-modified landscapes (Fan et al. 2011; Kang

et al. 2014). Animals try to avoid roads for a number of

reasons including poor habitat quality, traffic noise,

visual disturbance and predators (Harris and Scheck

1992; Jaeger et al. 2005; Coffin 2007). Most impor-

tantly wildlife perceives human related features as

risky (Frid and Dill 2002) and this may have discour-

aged red pandas from visiting roadsides. A similar

effect of road and habitat quality on home range has

been reported in other species (Jerina 2012; Tucker

et al. 2018). The study area was experiencing travel

restrictions due to COVID-19 during the study period.

Therefore, the effect of traffic volume on red panda is

likely to be more pronounced during normal times.

Acquiring the habitat that meets animal’s needs for

food, rest, and avoidance of predators and human

disturbance is challenging (Martin et al. 2010).

Therefore wildlife avoids disturbances and human-

proximity by partitioning their activity pattern (Heb-

blewhite and Merrill 2008) and occupying less risky

areas (Rode et al. 2006; Martin et al. 2010). Our

findings are in line with predation risk hypothesis (Frid

and Dill 2002) and there is evidence consistent with

red pandas perceiving humans, dogs, livestock and

vehicles as disturbances; they adapted to these distur-

bances by partitioning activity patterns and occupying

less disturbed habitat patches.

The variation in road and track crossing rate across

the diel cycle shows that red pandas avoid crossing

such features during dawn and dusk. This could be

explained by time allocation behaviour for different

activities to minimize risk (Brown 1999). Red pandas

actively forage at dawn and dusk while they travel

long distances during the day and night to access

ecologically key areas located apart. We also observed

predators being more active during dawn and dusk

(Fig. S3), and roads and trails can serve as ecological

trapping sites for these predators (Forman and

Alexander 1998). Prey has to cross such features with

the trade-off of energetic cost between the time spent

to become vigilant and foraging (Brown 1999; Ciuti

et al. 2012b). For this reason, red pandas may have

opted to avoid risky areas and stay in a feeding patch

during dawn and dusk.

Red panda’s response level varied across distur-

bance sources and their volume. In general, the

disturbance sources were primarily active during the

day while red pandas remained highly active in the

early morning hours with minor peaks at dawn and

dusk. They were flexible and exhibited seasonal

variation to cope with some disturbances, but they

seemed to be more sensitive in the birthing season.

This observation also supports the hypothesis of risk

avoidance by activity partitioning (Creel et al. 2008).

The threat level was high in the mating season

because red pandas spend more time on the ground.

For this reason they became more active during the

dawn to avoid interactions with human and dogs. In

the birthing season they altered their activity pattern

and became active throughout the diel cycle but

avoided humans and dogs during their peak activity

hours. They followed a similar trend in the cub-rearing

season but did not show a marked response to

disturbances. Food availability is high in the monsoon

and post-monsoon seasons which overlaps with birth-

ing and cub-rearing seasons respectively. Dense

vegetation provides high cover and makes the forest

ideal for hiding (Wevers et al. 2020). Additionally, red

pandas occupied the least disturbed habitat patches

during these seasons which minimizes their encoun-

ters with disturbances. These attributes encourage

them to remain active during the day.
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Red pandas’ partitioning of activity pattern shows

their adaptation to coexist with predators and distur-

bances. They partitioned their activity pattern along

the human-walking trails and forest areas and avoided

livestock and dogs. But their response to human

presence differed in walking trails and forest as their

activity pattern did not vary in the presence of humans

in forest areas. This could be attributed to low human

traffic in forest areas (0.04 people/day) in comparison

to higher traffic along the trails (2.27 people/day).

We acknowledge that there may be some error in

overlap estimation due to the use of data obtained from

two different sources: camera and telemetry data

(Lashley et al. 2018). However, there is probably no

other way to gather such data and if error does exist it

is likely to be small given the small proximity

thresholds we used.

We recorded six cat species (Bista et al. 2021a) and

three other predators in the study area which were

nocturnal except the yellow-throated marten Martes

flavigula and Himalayan black bear Ursus thibetanus

(Fig. S3). The variation in activity patterns between

red panda and these carnivores show that presence of

predators may have initially shaped red panda’s

diurnal activity pattern with minor peaks during the

early morning and evening hours (Wu et al. 2018;

Higdon et al. 2019). Their arboreality also helps them

avoid predation risk but we have insufficient data from

other sympatric predators to reach firm conclusions.

Therefore our findings warrant further study to

understand red panda’s response to predators.

Red pandas showed site fidelity in areas away from

disturbances which could be an adaptation to adjust in

a human-modified landscape. Areas close to roads,

cattle stations and settlements are risky and charac-

terized by poor habitat quality in terms of food

availability and resting and hiding sites (Coffin 2007;

Schieltz and Rubenstein 2016). The energetic cost to

accommodate such poor-quality habitat is high (Frid

and Dill 2002). For this reason red pandas may have

opted to occupy areas away from such disturbances.

However, the number of revisits and residence time in

areas close to human trails did not decrease. The study

area had relatively high trail density which probably

did not leave an option to stay away from such trails.

They appeared to have adapted along the pedestrian

features by partitioning their activity patterns to avoid

encounters with disturbance sources. Additionally,

trails had low traffic volume and noise, narrow open

space and less disturbed vegetation. For this reason,

red pandas may have remained in these areas with the

expenses of minimal energetic cost.

Conservation implications

This study demonstrates that GPS telemetry coupled

with camera trapping can be used for evaluating the

effect of disturbances and habitat fragmentation on

arboreal mammals. These results have implications for

the conservation of the red panda and other diet and

habitat specialist species, such as giant panda Ail-

uropoda melanoleuca (Swaisgood et al. 2016), koalas

Phascolarctos cinereus (Woinarski and Burbidge

2020), tree kangaroos Dendrolagus spp. (IUCN

2021b) and some species of bamboo lemurs (IUCN

2021a).

This study presents evidence consistent with the

barrier effect of roads on movement of red pandas. It

appears that red pandas can adapt to habitat fragmen-

tation and disturbances to some extent but they may be

susceptible to local extirpation in fragmented and

degraded habitat. Increase in road density and traffic

load can fragment the habitat, discourage movement

across such linear features, and interfere in conspecific

interactions resulting in population isolation. The

trade-off between occupying such habitat and adapta-

tion in disturbed areas can lead to increased risk of

mortality and population decline in the long run. This

fact underpins the need to minimize human-induced

disturbances in red panda habitat. Human activities

should be strictly regulated during the biologically

crucial seasons: mating and birthing seasons. Conser-

vation programs should focus on identifying ecolog-

ically sensitive areas, maintaining habitat continuity,

and minimizing disturbances due to road and livestock

herding. We suggest avoiding road construction in

most, if not all, ecologically critical sites. In unavoid-

able cases, restrictions on vehicle’s speed and noise

should be maintained, and wildlife crossings should be

built in high-risk areas.
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