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ecosystem drives population structure and genetic diversity
of a habitat-specialist bird
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Abstract

Context Amazonian white-sand ecosystems (camp-

inas) are open vegetation patches which form a natural

island-like system in a matrix of tropical rainforest.

Due to a clear distinction from the surrounding matrix,

the spatial characteristics of campina patches may

affect the genetic diversity and composition of their

specialized organisms, such as the small and endemic

passerine Elaenia ruficeps.

Objectives To estimate the relative contribution of

the current extension, configuration and geographical

context of campina patches to the patterns of genetic

diversity and population structure of E. ruficeps.

Methods We sampled individuals of E. ruficeps from

three landscapes in central Amazonia with contrasting

campina spatial distribution, from landscapes with

large and connected patches to landscapes with small

and isolated patches. We estimated population struc-

ture, genetic diversity, and contemporary and histor-

ical migration within and among the three landscapes

and used landscape metrics as predictor variables.
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Furthermore, we estimated genetic isolation by dis-

tance and resistance within landscapes.

Results We identified three genetically distinct pop-

ulations with asymmetrical gene flow among land-

scapes and a decreasing migration rate with distance.

Within each landscape, we found low differentiation

without genetic isolation by distance nor by resistance.

In contrast, we found differentiation and spatial

correlation between landscapes.

Conclusions Together with previous studies, the

population dynamics of E. ruficeps suggests that both

regional context and landscape structure shape the

connectivity among populations of campina specialist

birds. Also, the spatial distribution of Amazonian

landscapes, together with their associated biota, has

changed in response to climatic changes in the Late

Pleistocene.

Keywords Campinas � Elaenia ruficeps � Landscape
genetics � Migration � Spatial isolation

Introduction

Landscapes are mosaics of environments with distinct

structure and biotic composition. Natural island-like

systems such as habitat patches, caves, and mountain-

tops provide important contributions to landscape

structure and diversity (Itescu 2019). Due to their well-

defined borders and distinction from the surrounding

habitats, the spatial characteristics of island-like

systems may influence biological assemblages and

their attributes including the genetic diversity and

differentiation. These island-like systems can vary in

the extent of insularity they impose on the taxa they

harbor, affecting the extent to which organisms can

disperse and colonize new patches (Itescu 2019).

Furthermore, island-like systems contribute for a

higher beta-diversity in several natural ecosystems

such as tropical forests (Draper et al. 2018).

Amazonia has the highest biodiversity among all

tropical rainforests and is a global biodiversity hotspot

(Hansen et al. 2013). The predominant view of

Amazonia as a homogeneous, humid tropical forest

does not match the heterogeneity of landscapes it

harbors (Myster 2016; Tuomisto et al. 2019). Indeed,

Amazonia comprises diverse vegetation formations

from humid tropical forests (terra-firme) to non-

forested formations, such as white-sand grasslands and

shrubby habitats occurring as an island-like system

(Anderson 1981; Adeney et al. 2016; Capurucho et al.

2020a).

White-sand shrub and grassland patches, hereafter

campinas, are naturally patchy and resemble islands in

a ‘‘sea’’ of forests, growing on nutrient-poor soils

(Prance 1996; Fine et al. 2010; Ritter et al. 2018;

Capurucho et al. 2020a; Costa et al. 2020). Campina

patches cover approximately 1.6% of the Amazon

basin (Adeney et al. 2016), yet are an important

Amazonian island-like system, harboring a unique

biota (Borges et al. 2016a; Capurucho et al. 2020a;

Costa et al. 2020). Landscapes with campina patches

have different spatial configurations throughout Ama-

zonia, composed of large and connected patches in the

north and small and isolated patches in the south

(Borges et al. 2016a).

Moreover, properties of campina landscapes, such

as amount of habitat, patch isolation and matrix

properties, vary across space and time. As such, it is

expected that gene flow among populations and hence

genetic diversity of populations inhabiting campina

patches will depend on the structure of these land-

scapes. Thus, landscapes with more campina habitat

cover and with connected patches should harbor a

higher genetic diversity than landscapes with reduced

habitat and isolated patches. However, the effects of

landscape configuration on the organisms that thrive in

naturally patchy campinas remain poorly understood

(but see Capurucho et al. 2013; Borges et al. 2016a).

Several factors may restrict the movement of

individuals in island-like systems, such as campinas.

In naturally heterogeneous landscapes, restrictions of

movement and gene flow can be due, for instance, to

geographic distance (isolation by distance; Wright

1943), or to non-suitable habitat (isolation by resis-

tance; e.g. McRae 2006; DiLeo and Wagner 2016).

Dispersal may promote gene flow and connect

geographically isolated populations, increases genetic

diversity, and reduces inbreeding (Ronce 2007).

However, dispersal through non-suitable habitats also

represents high energetic costs and mortality risks

(Fahrig 1998; Gruber and Henle 2008).
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The geographic distance between patches, within

and among landscapes, and the type and configuration

of environments in the matrix may affect the ability of

a species to disperse (Bates 2002). Different matrices

create variable resistance to individuals’ movement

(Itescu 2019). In Amazonia, white water rivers, such

as the Amazon River, and the associated floodplains

appear to impose large resistance for white-sand

vegetation specialist birds (Capurucho et al. 2013;

Matos et al. 2016; Ritter et al. 2021). However, little is

known about how composition and configuration of

campina landscapes shape movements of specialist

species. Also, there is a long debate in the literature

about how dynamic the spatial distribution of open and

forested Amazonian landscapes have been during the

Quaternary (Cheng et al. 2013; Wang et al. 2017;

Rocha and Kaefer 2019). This historical dynamic may

have affected movement patterns of individuals within

and among landscapes over time (Manicacci et al.

1992), thus understanding these movements can

potentially provide information on landscape config-

uration changes in the past.

Methods of molecular analyses have been success-

fully used to investigate patterns and to infer processes

related to the origin and maintenance of biodiversity

(e.g. Antonelli et al. 2018; Silva et al. 2019). The use

of gene sequencing can reveal historical patterns

through phylogeographic studies (Avise 2009). On the

other hand, the genotyping of microsatellite markers

can reveal contemporary patterns, because they are

highly polymorphic due to their high mutational rate

(Tautz 1989), and are therefore ideal for studies of

contemporary population structure (Frankham et al.

2002). In this context, the use of molecular markers

with distinct evolutionary rates may uncover how the

interaction between landscape features and micro-

evolutionary processes shapes patterns of genetic

structure and diversity in time and space (Capurucho

et al. 2013).

In this study we investigate the effects of landscape

configuration on population genetic structure and

diversity in a white-sand vegetation specialist bird

species restricted to Amazonian campina patches,

Elaenia ruficeps (Aves: Tyrannidae; Rheindt et al.

2008; Borges et al. 2016b), employing mitochondrial

gene sequences and microsatellite markers. We

address the following questions: (1) How do genetic

diversity, population structure, and migration rates

differ within and among three campina landscapes

with contrasting configuration? We expect differences

between genetic metrics measured through markers

with faster (microsatellites) and slower (DNA mito-

chondrial sequences) evolutionary rates that

responded to processes at different time scales, with

microsatellite markers reflecting current and mtDNA

historical landscape structure. (2) How do the amount

and isolation of habitat patches within and among

landscapes affect population genetic diversity in E.

ruficeps? We expect that both metrics will be impor-

tant but habitat amount will be the strongest factor

explaining genetic diversity. (3) What is the relative

importance of geographical distance and matrix resis-

tance in limiting gene flow in E. ruficeps? We expect

that habitat matrix resistance will better explain

genetic differentiation among populations when com-

pared to geographic distance. We explicitly tested if

terra-firme forest and rivers limited the movement of

E. ruficeps individuals more than other landscape

matrix types, such as seasonally flooded forests.

Materials and methods

Study area

We sampled birds in three landscapes (each ca

50 9 50 km) north of the Amazon River (Fig. 1A):

Aracá (0�2807.7600N, 63�28032.2000W; Fig. 1B), Viruá

(1�360N, 61�130W; Fig. 1C), and Uatumã

(2�1709.1900S, 58�51053.9200W; Fig. 1D). The Aracá

landscape lies on the eastern side of the middle part of

the Negro River basin on the western margin of the

Branco River (i.e. in the Branco-Negro interfluve) and

has the highest campina vegetation coverage (45.33%

of its area in 50 9 50 km2) distributed as large and

connected patches. The Viruá landscape is located on

the eastern margin of the Branco River, and has

intermediate campina vegetation coverage (28.2% of

its area) distributed as both large and small intercon-

nected patches. This is the only site with some

anthropogenic disturbance due to an interstate road

and a few secondary non-paved roads among the

sampling sites. The third and southernmost landscape,

Uatumã, is located on the banks of the Uatumã River,

inside the limits of the Uatumã Sustainable Develop-

ment Reserve. The Uatumã landscape has less camp-

inas coverage (0.8% of its area) with small and

isolated campina patches (Fig. 1B–D).We established
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six sampling sites within the Aracá landscape, six

sampling sites within the Uatumã landscapes, and four

sampling sites within the Viruá landscape, with a total

of 16 sampling sites. These sites were distributed

across landscapes in campinas vegetation with dis-

tances ranging from 5 to 44 km among them within

landscapes, as described in Capurucho et al. (2013)

and Borges et al. (2016a).

Landscape metrics

We used categorical maps with six pre-defined

classes: terra-firme forest, campinas, campinarana

(white-sand patches with taller vegetation coverage

than campinas), flooded forest, water, and anthro-

pogenic areas (see Capurucho et al. 2013 for details on

the classification method). We used ArcGIS v.9.1

(Press 2005) and Fragstas v.3.4 (McGarigal et al.

2002) to calculate two landscape metrics. The first was

a habitat amount metric calculated as the area of

campina vegetation in a radius of 5 km around each

sampling site. As a configuration metric, we used the

proximity index, an isolation measure of each patch in

which sampling sites were located, that was based on

the sum of the area of neighboring patches within a

5 km search radius, weighted by the distance to

neighboring patches (Gustafson and Parker 1994). The

5 km radius was selected based on dispersal kernels

described for several Neotropical bird species; most

Amazonian birds disperse less than 5 km (Van Houtan

et al. 2007). The minimum distance among sites was

5 km, but most sites ([ 85%) were more than 10 km

apart (with only two pairs of sites 5 km apart, one pair

in Aracá and one in Virua, with other 3 pairs of sites

close to 10 km apart). Therefore, overlap was mini-

mal. Habitat amount and proximity index were not

correlated (Pearson correlation = 0.3, p = 0.24).

Fig. 1 A Map of the distribution of Elaenia ruficeps. Points in
yellow are from the Global Biodiversity Information Facility

(GBIF 2017) public database (general and potentially biased by

mis-identification); points in bright orange are from museum

collections (highly curated locality information). Points in dark

orange are areas with available tissue samples. Points in green,

blue, and red are the landscapes sampled in this study (Aracá,

Viruá, and Uatumã respectively), with the respective haplotype

network below the map. The main rivers of the Amazon basin

are shown according to their water color; rivers with high

sediment concentration are brown, with low sediment concen-

tration are blue. We highlight the Negro River in black and the

Branco River in brown both with tick lines.B shows in detail the

sites sampled in Aracá with the respective haplotype network;

C shows the sites sampled in Viruá with the respective

haplotype network and; and D shows the sites sampled in

Uatumã and the respective haplotype network. Map produced in

QGIS v.3.6.2
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Sampling

We defined sampling area as a 500 m radius circle

centered at each sampling site, in which 20 mist-nets

(12 m long, 36 mm mesh size) were equally dis-

tributed into four lines. In order to reduce the

probability of sampling only one family group, at

least two mist-net lines were moved each day to cover

other parts of the sampling sites. Sampling was

conducted during the dry season of 2010 and 2011,

and each site was sampled as many days as needed to

capture at least 10 individuals per site, ranging from 2

to 5 days per site, but in four sites the intended number

of individuals was not attained (see Table S1). A blood

sample (* 50 ll) was taken from each captured

individual, stored in ethanol, and deposited in the

Genetic Resources Collection of the National Institute

for Amazonian Research (INPA, Manaus, Brazil).

Voucher specimens (maximum of five per landscape)

were also collected and deposited at INPA Bird

Collection.

DNA sequencing

DNAwas extracted from blood or tissue samples using

Promega DNA Purification Kit (A1125). The com-

plete sequence of the mitochondrial NADH Dehydro-

genase 2 (ND2) gene was amplified using the external

primers L5204 and H6313 (Sorenson et al. 1999). For

this study, we also designed a primer for reverse gene

sequencing (H6242; 5’-TAGGATTGTAGGGGA-

TAAAGGTA-3 ’) that is internal for ND2 gene,

because some samples did not amplify well with

H6313. Amplification and sequencing details are

described in Capurucho et al. (2013). Contiguous

sequences were assembled and aligned in Geneious v.

5.6.5 (Biomatters 2012).

Microsatellite genotyping

All individuals of E. ruficeps were genotyped at 15

microsatellite loci described in Ritter et al. (2014),

using protocols and PCR conditions therein

(Table S2). We did not use the Eru7 and Eru8 loci

because they failed for several samples in our geno-

typing. PCR products were run on an ABI PRISM

3730 DNA Analyzer; size scoring was performed with

GeneMarker� v2.2.0 (Hulce et al. 2011). We calcu-

lated the number of alleles per locus, deviations from

Hardy–Weinberg equilibrium (HWE), and linkage

disequilibrium between pairs of loci for the three

landscapes using Genepop Web v.4.2 (Raymond and

Rousset 1995; Rousset 2008; Table S2). We also

calculated the observed and expected heterozygosity

(Ho and Hs) and allelic richness per loci for the three

landscapes using the hierfstat v.0.4.22 R package

(Goudet and Jombart 2015) in R v.3.2.5 (R Core Team

2015).

Genetic diversity, population structure,

and migration rates

To investigate if genetic diversity varies within and

among landscapes, we calculated four genetic diver-

sity metrics (two based on mitochondrial and two on

microsatellite data). For each locality (both landscapes

and sites within each landscape), we estimated the

individuals nucleotide diversity (Pi) and haplotype

diversity (HD) based on ND2 mitochondrial sequences

using DnaSP v.5.10.01 (Librado and Rozas 2009). For

the microsatellite data, we estimated allelic richness

per site and per landscape using the rarefaction method

implemented in the PopGenReport v.2.2.2 R package

(Adamack and Gruber 2014) in R, and calculated the

microsatellite genetic diversity (Theta) using Arlequin

v.3.11 (Excoffier et al. 2005).

To describe historical population structure within

and among landscapes, we constructed haplotype

networks with ND2 sequences, with all individuals

together and for individuals from each landscape

separately, using a minimum spanning network (Cle-

ment et al. 2002) with Popart v.1.7 (Leigh and Bryant

2015). We used BAPS v.6.0 (Bayesian Analysis of

Population Structure; (Corander et al. 2013) to infer

the number of clusters (K) based on the mitochondrial

data using all individuals. Likelihood values of the

mixture analysis were calculated three times for each

number K of subpopulations, ranging from 1 to 20

(since the number of sites was 16 and we expected no

more than 20 population), accepting the partition with

K value with higher likelihood, which were run until

achieving convergence.

To describe current population structure within and

among landscapes, we used microsatellite data. We

used Structure v.2.3.4 (Pritchard et al. 2000) to infer

the number of genetically distinct populations (K). We

assumed an admixture model with correlated allele

frequencies and the LOCPRIOR model (Hubisz et al.
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2009). We used two LOCPRIOR options, first, we

made analyses at the landscape level, with Aracá,

Viruá and Uatumã as localities. Secondly, we ana-

lyzed the data using each sampling site as unique

localities (16 in total). To identify the best estimate of

K from 1 to 20 (both sampling sites as populations and

landscapes as populations), we set a burn-in period of

100,000 followed by additional 1,000,000 iterations,

and 20 replicates were run at each K. We determined

K based on the log posterior probability of the data for

a given K (Pritchard et al. 2000), and on the rate of

change in the log probability of the data between

successive clusters—the DK statistic (Evanno et al.

2005). These analyses were performed in Structure

Harvester v.0.6.94 (Earl 2012). All runs were averaged

at the best K with Clumpp v.1.1.2 (Jakobsson and

Rosenberg 2007) and results were visualized with

Distruct v.1.1 (Rosenberg 2004).

We inferred historical migration rates using mito-

chondrial sequences in Migrate-N v.3.6 (Beerli 2009).

Under a coalescent framework and the infinite allele

model, Migrate-N estimates migration rates (mea-

sured as a mutation-scaled immigration rate, M) up to

* 4 effective population size (Ne) generations (thou-

sands of years). We used slice sampling to run four

statistically heated parallel chains (heated at 1.0, 1.5,

3.0, and 1,000,000) for 1,000,000 iterations, and

excluded 100,000 iterations as burn-in. MCMC esti-

mates of M were modeled with prior boundaries of 0

and 100,000. We used a full migration model and

considered parameter estimates accurate when an

effective sample size (ESS)[ 1000 was observed

(Converse et al. 2015). We multiplied M by the

mutation rate, 0.0105*10-4 for the mitochondrial data

(Lovette 2004; Weir and Schluter 2008). To test for

spatial auto-correlation of migration rate, we per-

formed aMantel test with pairwise migration rates and

geographic distances (Euclidean) using the vegan v.

2.4-3 (Oksanen et al. 2010) R package. We performed

these analyses between landscapes.

To estimate current migration rates, we used the

microsatellite data in BayesAss v.3.0 (Wilson and

Rannala 2003), which applies a Bayesian approach

and MCMC sampling to estimate migration (m) over

the last few generations. This analysis was run with 10

million iterations, a sampling frequency of 2000, a

burn-in of 10%, and default settings. We estimated the

migration rate between the three landscapes.

To identify if past demographic changes explain

genetic diversity and migration rates, we inferred

historical population demography using a Bayesian

coalescent skyline plot (Drummond et al. 2005) as

implemented in Beast v.1.8.2 (Drummond et al. 2012).

We chose the most suitable substitution model for the

mitochondrial data based on Bayesian information

criterion (BIC) with jModelTest2 v.2.1.10 (Darriba

et al. 2012). We set the substitution model chosen by

jModelTest2 (HKY? invariable sites) under a strict-

clock model and the general avian substitution rate of

mitochondrial evolution of 2.1% sequence divergence

per million years (Lovette 2004; Weir and Schluter

2008). Runs of 100 million steps were performed,

sampling every 10,000 steps under default settings.

Skyline plots were constructed using Tracer v.1.6

(Rambaut and Drummond 2007). We reconstructed

historical population size considering all populations

together and then separately for Aracá and for

Viruá ? Uatumã following the populations identified

with BAPS.

Landscape metrics and genetic diversity

To investigate if landscape metrics predict genetic

diversity metrics, we calculated genetic metrics

through nucleotide diversity (Pi) and haplotype diver-

sity (HD) from mitochondrial sequences and allelic

richness (AR) and genetic diversity (Theta) from

microsatellite data.We calculated these metrics within

each site and analyzed them as a function of the two

landscape metrics (habitat amount and proximity

index) and of the landscape of origin of each site

(Aracá, Viruá or Uatumã).

For each dependent variable (Pi, HD, Theta, and

AR), we defined a set of models to explain variation in

genetic diversity. The final model set included models

for each single landscape metric, and additional

models with additive and interaction terms of the

landscape origin to determine whether landscape

context was also an important factor (i.e. to which

landscape each group of sampling sites belongs to).

The final model set also included a constant, intercept-

only model, comprising a total of seven models for

each dependent variable (Table S3).

Models were selected using an information theory

approach based on AIC (Akaike 1974) and using the

corrected AIC (AICc) for small sample sizes (Burn-

ham and Anderson 2002). Models with DAIC B 2
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were considered equally plausible and we used the

normalized model weight (AICw) to contrast the best

model to the constant (no-effect) model. We used

generalized linear models (Crawley 2013) with Gaus-

sian error distribution after checking for the distribu-

tion of residuals. Before running the analysis

landscape metrics were standardized to mean = 0

and variance = 1 to make different metrics compara-

ble. The GLM analyses were performed using the

vegan v. 2.4-3 (Oksanen et al. 2010) package and the

model selection was made using the bbmle v.1.0.20

(Bolker and Bolker 2017) package, both in R.

Geographic isolation by distance and by resistance

To determine if genetic differentiation is better

predicted by geographic distance or resistance we

calculated the pairwise genetic differentiation FST
(Weir and Cockerham 1984) for both mitochondrial

and microsatellite data between landscapes and among

sites within landscapes separately using the fstat

function in the hierfstat, with 1000 permutations to

obtain significance (Goudet 2001). To investigate

patterns of isolation by geographical distance, we

performed Mantel tests also in vegan. We used a

pairwise geographic (Euclidean) and a pairwise

genetic distance (FST values). We performed these

analyses both between landscapes and between sam-

pling sites within each landscape separately.

To investigate the patterns of isolation by resistance

we assigned resistance values to vegetation cover

within each landscape based on a questionnaire given

to four expert Amazonian ornithologists for each

landscape category for E. ruficeps (Table S3). Values

ranged from 0.01 (less resistance) to 0.99 (more

resistance). We took the average resistance value of

each landscape category to calculate the isolation by

resistance (Table S3). We used the gdistance v. 1.2-2

(Etten 2017) R package to create the transition layer

using the inverse of the sum of each pixel to create the

conductance layer (Fig. S1) and the commuteDistance

function that calculates the expected random-walk

commute resistance between nodes in a graph, to

create the pairwise resistance matrix for each land-

scape. We then performed a Mantel test using the

pairwise genetic distance (FST values) against the

resistance distance. Additionally, we calculated the

minimum resistance distance (i.e., least cost path) for

each pair of sites and a Mantel test with the pairwise

genetic distances (FST values).

Results

Genetic diversity, structure, and migration

We obtained 978 bp of the ND2 gene for 178

individuals, with 62 variable sites. Haplotype diversity

from mitochondrial data of all samples was 0.79

(± 0.08 standard deviation [sd]) and nucleotide

diversity was 0.002 (± 0.001 sd). For microsatellite

data, we scored the same 178 individuals at 15 loci. No

departure of Hardy–Weinberg Equilibrium was

detected at any locus and no pair of loci was in

linkage disequilibrium (see Table S2 for number of

alleles per locus). Aracá landscape had the highest

haplotype (0.84 ± 0.07 sd) and nucleotide diversity

(0.003 ± 0.0006 sd) for mitochondrial data. For

microsatellite data Aracá also had the highest allelic

richness (19.49 ± 15.65 sd) but Viruá had the highest

genetic diversity (1.69 ± 0.04 sd, Table S4).

We detected low but significant genetic differenti-

ation among landscapes for both mitochondrial and

microsatellite data (Table 1). For mitochondrial data,

Viruá and Aracá had the largest differentiation (FST-
= 0.1, p\ 0.05), while the largest differentiation for

microsatellite data was inferred between Viruá and the

Uatumã landscapes (FST = 0.02, p\ 0.05, Table 1).

Comparing among all sampling sites, within and

among landscapes, mitochondrial results revealed low

but significant differentiation among almost all sites

within each landscape. Only seven comparisons with

mtDNA are not significant, all of which are within

landscapes (six in Aracá and one in Uatumã;

Table S5), none are between landscapes. Values of

Table 1 FST among landscapes

Arcacá Uatumã Viruá

Aracá – 0.0194 0.0102

Uatumã 0.09732 – 0.0201

Viruá 0.10579 0.00507 –

Values above the diagonal are microsatellite FST and below the

diagonal are ND2 sequence FST. All values are significant at

P\ 0.05
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FST are lower between Viruá and Uatumã. Genetic

differentiation among sites from different landscapes

was higher than among sites within landscapes and in

most cases significant, except between some Uatumã

and Viruá sites (Table S5). Microsatellite results

revealed several cases of non-significant differentia-

tion among sites, within and among landscapes

(Table S5). For sites in different landscapes, the sites

from Uatumã were more differentiated than sites of

both Aracá and Viruá (Table S5).

We found 56 mitochondrial haplotypes that

grouped into three main clusters. Most haplotypes

from the Aracá landscape were not shared with the

Viruá and Uatumã landscapes, and within Aracá the

haplotypes were grouped in two main clusters. Only

one Aracá haplotype (from two individuals) was

shared with the other two landscapes, and two

additional Aracá haplotypes cluster with the Viruá

and Uatumã samples (Fig. 1A). Despite clear differ-

entiation between Aracá and the other two landscapes,

the haplotype networks inside each landscape had

little or no small-scale geographic structuring. Within

each landscape, sampled haplotypes occurred in

almost all sampled sites (Fig. 1B–D). BAPS results

agree with the haplotype networks and inferred K = 3

populations, with two groups within Aracá and one

with all haplotypes from Viruá and Uatumã, including

three Aracá haplotypes found in five individuals

(Fig. 2A), log (marginal likelihood) of optimal parti-

tion = - 920.3443, 1.00 probability of K = 3. For

microsatellites, the highest log posterior probability of

the data and the highest value for DK obtained via

Structure analysis also inferred K = 3 (Fig. 2B),

however the populations recovered by the microsatel-

lite data corresponded to the three sampled landscapes.

Estimates of historical migration obtained from

Migrate-N with mitochondrial data indicated low and

asymmetrical gene flow from Uatumã to Viruá

(0.0009) and from Viruá to Uatumã (0.0003), with

even lower but symmetrical rates between Viruá and

Aracá (0.0001 in both directions), and very low rates

between Uatumã and Aracá (\ 0.00006 in both

directions; Fig. 3A). Estimates of contemporary

migration obtained from BayesAss with microsatellite

data resulted in high self-recruitment rates for all three

landscapes (Aracá = 0.99 [± 0.006], Uatumã = 0.67

[± 0.005] and Viruá = 0.67 [± 0.006]). Contempo-

rary migration was also asymmetrical, with individ-

uals moving mainly from Uatumã and Viruá towards

Aracá, 0.32 (± 0.008) and 0.32 (± 0.009), respec-

tively (Fig. 3B). Among all sites, historical (r = 0,

p = 0.5) and contemporary (r = - 0.08, p = 0.84)

migration rates were not related with geographic

distance (Fig. S2A). Also, among landscapes, con-

temporary (r = - 0.03, p = 0.67) and historical

(r = 0.16, p = 0.67) migration rates were not signif-

icantly related to geographical distance (Fig S2B).

Finally, based on the Bayesian skyline plot we

could infer the historical processes for the later

Pleistocene (around 0.1 mya), with specifically more

accuracy around 0.05 mya (Fig. S3). Analyses based

on the mitochondrial data showed demographic

expansion for E. ruficeps population as a whole.

Bayesian skyline plot estimates showed general pop-

ulation expansion over the last 50,000 years

(Fig. S3A). When we estimated demography sepa-

rately, following BAPS clusters, the Aracá population

showed demographic expansion over the last

50,000 years (Fig. S3B), but the Viruá and Uatumã

populations maintained their population size constant

over time (Fig. S3C).

Landscape metrics and genetic diversity

For the nucleotide diversity metric (Pi), a single best

model was selected that contained landscape of origin

as the single predictor variable (AICw = 0.7686),

while for haplotype diversity (HD) the single best

model was the constant intercept-only model (AICw =

0.5573). For microsatellite genetic diversity (Theta),

Fig. 2 Population structure of Elaenia ruficeps based on

A mtDNA (BAPS) with individuals ordered by cluster

membership and colored by landscape of origin (landscapes in

decreasing order of campina habitat coverage: Aracá = green,

Viruá = blue, Uatumã = red), and B Microsatelites (Structure),

for which clusters match the different landscapes. In both

analyses recorded K = 3 genetic clusters, which are delimited

by thick black lines
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a single best model was selected that contained just

landscape of origin as predictor variable (AICw =

0.732) and for allelic richness (AR) the single best

model contained de proximity index as the single best

predictor variable (AICw = 0.9376, Fig. 4A–D). See

respective DAICc and AIC weights in Table 2 and best

models estimated parameters in Table S6.

Geographical distance, resistance and gene flow

Genetic distance (FST), for both microsatellite

(r = 0.41, p = 0.01) and mitochondrial (r = 0.48,

p = 0.001) data, was positively correlated with geo-

graphic distance among landscapes (Fig. 5A, B).

However, no correlation with geographic distance

was found among sites within each landscape

(Table S8; Fig. 5C, D). No significant relationship

was found between genetic differentiation (FST) and

resistance between sites within each landscape, in

either dataset (mitochondrial or microsatellite) using

the random-walk commute resistance (Table S8;

Fig. 5E, F) or the pairwise minimal resistance between

the sites.

Discussion

We used molecular markers with different evolution-

ary rates to determine patterns of genetic diversity and

population structure of Elaenia ruficeps, a white-sand

specialist bird, by sampling three landscapes with

different amount of habitat and configuration of

campina patches in central Amazonia. We found that:

(1) landscapes harbor genetically distinct populations,

with asymmetrical gene flow among them; (2) histor-

ical and contemporary estimates of genetic structure

and migration rates differ, implying dynamic connec-

tions among landscapes through time; (3) overall

genetic structure (diversity and differentiation) is best

explained by a regional effect (i.e. landscape of

origin), than by habitat configuration, except for

allelic richness which increases with patch proximity

(more connectivity), supporting some evidence for

local movement restriction between isolated patches;

and (4) genetic differentiation increases with geo-

graphical distance among landscapes, whereas within

landscapes no isolation by distance or by resistance is

detected although low genetic differentiation is

detected among patches. Taken together, our results

suggest that although dispersal of E. ruficeps between

campina patches is restricted to some degree locally,

dispersal limitation is strong at regional scales

(between landscapes), hampering gene flow. Thus,

our results stress the high complexity in E. ruficeps

population dynamics in habitats with insular nature.

A caveat of our analysis within landscapes may be

the limited number of samples per site. To avoid biases

of sample size, ideally we should have more than 25

individuals per site (Hale et al. 2012). This limitation

could explain, in part, our lack of structure within

landscapes since the FST showed low, but significant

difference between most of the sites (Table S5). Also,

Fig. 3 Pairwise migration rates. A Historical migration rate

calculated for mtDNA ND2 sequences in Migrate-N. B Con-

temporary migration rate calculated in BayesAss using

microsatellite data. The size of the arrows is proportional to

the migration estimates. Black line represents Negro River and

brown line the Branco River. Brown coloration in the bottom of

the figure represents the Amazon River. Historical migration

shows the highest migration rate between Uatumã and Viruá,

while contemporary migration shows higher self-recruitment

with migration from Uatumã and Viruá to Aracá
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the different patterns for mitochondrial versus

microsatellite results at this scale could be due to

incomplete lineage sorting between populations from

Viruá and Uatumã, preventing detection of structure

with mtDNA sequence data. Furthermore, mitochon-

drial data are limited for landscape scale genetic

analysis because they lack enough signal for estimat-

ing local and recent demographic parameters, such as

migration rate, and recent environmentally mediated

divergence among populations (Pease et al. 2009).

However, the combination of mitochondrial

sequences and microsatellites provides

complementarity and this approach has proved pow-

erful in many applications (Wang 2011).

Genetic diversity and population structure:

historical influences

The landscape with largest amount of habitat, Aracá,

had the highest mitochondrial nucleotide (Pi) and

haplotype (HD) diversity, and twomtDNA populations

recovered in population structure analyses (Figs. 1A,

2A). A similar pattern of high genetic diversity and

population structure was found for another white-sand

Fig. 4 Best models on the source of variation of mitochondrial

A and B and microsatellite C and D genetic diversity among

sites within landscapes (Aracá = green, Viruá = blue,

Uatumã = red). A nucleotide diversity (Pi) based on ND2 is

best explained by landscape; B haplotype diversity based on

ND2 sequences and habitat amount in m2 (but none of the

predictor variables explained haplotype diversity; the constant

model was selected as the best model). C Theta from

microsatellite data is best explained by landscape, and D the

microsatellite allelic diversity (AR) is best explained by the

Proximity index

123

2574 Landscape Ecol (2021) 36:2565–2582



specialist bird, Xenopipo atronitens, in the same

region (Capurucho et al. 2013). Thus, it is likely that

historical landscape alterations, such as glacial cycles,

may have caused past population isolation within the

Aracá landscape.

The mtDNA data analysis suggests that population

expansion of E. ruficeps started around 50,000 years

before present (Fig. S2), in agreement with other

Amazonian bird species from campinas (Capurucho

et al. 2013; Matos et al. 2016), but contrasting with

results obtained for E. ruficeps using both nuclear and

mtDNA sequences (Ritter et al. 2021). This difference

may be due to the lower mutation rates of nuclear

markers (Allio et al. 2017), and increased sampling per

locality used here. These historical demographic

changes indicate that the populations of E. ruficeps

may have started expanding in the last inter glacial,

before the Last Glacial Maximum (LGM; Clark et al.

2009). When demography was estimated separately

for each population cluster found in BAPS, the Aracá

clusters, showed demographic expansion over the last

50,000 years (Fig. S3B), whereas the Viruá ? Ua-

tumã cluster showed constant population size

(Fig. S3C), although the haplotype network showed

a starburst pattern that is consistent with recent and

rapid expansions (Slatkin and Hudson 1991). These

results suggest that glacial cycles incurred variable

impact in different regions of Amazonia and may

explain the highest Pi, due to population expansion, in

Aracá.

Studies on both northern (Carneiro Filho et al.

2002; Horbe et al. 2004; Teeuw and Rhodes 2004;

Zular et al. 2019) and southern (Latrubesse 2002)

Amazonian campinas indicate that this habitat

responded to historical changes in climate, with the

strongest signal detected in the north. An increase in

sediment deposition, primarily from the Tepuis, and

aeolian activity, on northern campinas (Teeuw and

Rhodes 2004; Zular et al. 2019), could have increased

connectivity among populations of white-sand spe-

cialist species by increasing the area and connectivity

of campinas, and consequently increasing population

size and genetic diversity, during drier climatic

periods in the Aracá region. Contrastingly, the Viruá

landscape currently has the highest Theta diversity.

Campina patches in Viruá also have higher diversity

of white-sand specialist bird species, possibly due to

its proximity to other open habitat types such as the

northern South America savannas (Fig. 1; Borges

et al. 2016a; Capurucho et al. 2020a).

Estimated migration rates were asymmetrical, as

found for other Amazonian birds (Capurucho et al.

2013; Menger et al. 2017), and we also found distinct

values for historical and contemporary migration.

Historical migration was higher between Uatumã and

Viruá, with rates from Uatumã to Viruá three-fold

higher than from Viruá to Uatumã. The Aracá

landscape appears to be historically isolated from the

other two landscapes. The historical isolation of Aracá

may be explained by alterations to its overall size and/

Table 2 Variables used in model selection with their respective delta D AICc and weight values (AICw)

Model Variables Pi HD Theta AR

DAICc AICw DAICc AICw DAICc AICw DAICc AICw

M0 Constant 21 \ 0.001 0 0.5573 5.4 0.049 2.5 0.1836

M1 Landscape 0 0.7686 3.6 0.093 0 0.732 4.3 0.0743

M2 Habitat amount 23.7 \ 0.001 2.1 0.1981 7.7 0.016 5.2 0.0489

M3 Proximity 23.3 \ 0.001 3 0.1226 6.7 0.025 0 0.6499

M4 Landscape ? habitat amount 4.1 0.0986 7.1 0.0157 4.1 0.093 8.5 0.0092

M5 Landscape * habitat amount 13.2 0.001 12.5 0.0011 15.6 \ 0.001 18.9 \ 0.001

M6 Landscape ? Proximity 3.5 0.1307 7.7 0.012 4.3 0.084 6.1 0.0315

M7 Landscape * Proximity 13.2 0.0011 16 \ 0.001 13.7 \ 0.001 11.1 0.0025

The best model (DAICc = 0) and the alternative plausible models (DAICc B 2) are presented in bold. The genetic diversity variables

for mitochondrial data are nucleotide diversity (Pi) and haplotype diversity and for the microsatellite data are Theta and NG. The

independent variables are Habitat amount and Proximity index. The model used landscape as a fixed factor or as interacting variable
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or connectivity during the Pleistocene glacial cycles

(Teeuw and Rhodes 2004) and by the establishment of

the Branco River (Cremon et al. 2016). The Branco

River is a white-water river that separates Aracá from

Uatumã and Viruá and, together with its floodplains

covered by seasonally flooded várzea vegetation,

appear to impose a stronger resistance for camp-

ina’s specialist birds (Capurucho et al. 2013; Matos

et al. 2016). Furthermore, as suggested by haplotype

network and migration rates, both previously (Ritter

Fig. 5 Pairwise genetic distance (FST) and geographical

distance relationship calculated with Mantel test. A FST from

ND2 sequence data and B microsatellite data both plotted

against the geographical distance between landscapes. C FST
from ND2 sequence data and D microsatellite data both plotted

against the geographical distance between sites inside each

landscape. E FST from ND2 sequence data and F microsatellite

data both plotted against the resistance distance between sites

inside each landscape. The geographical distance is only

significant between landscapes. A and B pairwise matrix for

all sites andC toF the data from each landscape: green = Aracá;

blue = Viruá and; red = Uatumã
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et al. 2021) and in this study, this river is also a barrier

for E. ruficeps, which may have limited historical

migration for Aracá populations. Analyses of sedi-

mentary deposits and regional geomorphology sug-

gested that a long segment of the Branco River was

established in the Late Pleistocene (Cremon et al.

2016). The initial establishment of the Branco River at

about 30 kya (Cremon et al. 2016) may have increased

isolation of the Aracá population, but with gradual

development of floodplain vegetation the barrier effect

may be less pronounced since then. It is also possible

that with the terra-firme canopy cover becoming less

dense during past drier periods (Cowling et al. 2001),

as hypothesized for northern Amazonia during the

LGM (Häggi et al. 2017), the forested matrix

surrounding campinasmay have been more permeable

than flooded forests along the Branco River, allowing

for larger migration between Viruá and Uatumã, while

Aracá remained isolated.

In summary, Pleistocene glacial cycles are a likely

driver of population dynamics in of E. ruficeps through

the increase of individual mobility across terra-firme

forests in dry periods, while in the more isolated Aracá

landscape, the continuous availability of the white-

sand areas, even in wetter periods, may explain the

higher genetic diversity. Genetic diversity patterns

found for E. ruficeps are congruent with findings from

other white-sand specialist birds (Capurucho et al.

2013; Matos et al. 2016), corroborating the idea that

Pleistocene glacial cycles shaped current inter and

intra-specific diversity (Rangel et al. 2018). This

combined evidence from white-sand specialist birds

suggests a dynamic interaction between closed canopy

forests, open forests and non-forest/open vegetation

areas (Cowling et al. 2001; Arruda et al. 2018),

indicating that past climatic change deeply influenced

Amazonian biogeographic history, and contradicting

previous suggestions of a stable landscape in Amazo-

nia during the Quaternary (Smith et al. 2014). This

underscores the complex dynamics of campina’s

habitats and highlights the potential impact of future

climatic changes on campinas’ biota. Many current

models predict a drier future climate for Amazonia

(Parsons 2020) with an increase of fires (Brando et al.

2020) leading to savannization. These future condi-

tions would threaten species specialized in campinas

due to both habitat degradation and increased compe-

tition with savannas’ species, which are usually more

tolerant to such conditions (Ritter et al. 2021).

Genetic diversity and population structure:

contemporary influences

In contrast to the historical scenario, microsatellite

data indicate that current migration occurs primarily

from Uatumã and Viruá towards Aracá, with lower

migration rates in all other directions. Asymmetrical

gene flow arises due to more favorable dispersal

conditions in one direction or due to source-sink

dynamics across heterogeneous environments (e.g.,

Oswald et al. 2017; Moussy et al. 2018; Hauser et al.

2019). Aracá has the largest area of campina vegeta-

tion and is the most internally connected landscape.

Furthermore, Aracá has in general the largest genetic

diversity as measured here by three of the four indices,

and in this context Aracá could function as a source

population with a higher rate of emigration fromAracá

towards the other populations. However, we found the

opposite pattern, a higher migration rate towards

Aracá, the largest and more connected population.

Considering the recent population expansion doc-

umented in Aracá over the last 50,000 years, in

contrast to stability of population sizes in Uatumã

and Viruá, it is possible that dispersal of individuals

towards Aracá may be the result of emigration from

small campina patches with little resource availability

(e.g., Uatumã) or from landscapes that have been more

affected by human impact (e.g., Viruá) with overall

lower carrying capacity, but that are still able to

maintain stable populations and thus are probably not

sinks. Therefore, the asymmetrical gene flow in our

study is most likely not consistent with a source-sink

dynamic, and other mechanisms should be investi-

gated. An increased cost for dispersing towards one

direction, as observed along elevational gradients

(Cheviron and Brumfield 2009) is unlikely in our

study system, but it is possible that environmental

fluctuations are less strong in northern Amazonia

(Jimenez and Takahashi 2019), leading to more

constant resource supply in Aracá (the northernmost

landscape).

Landscape structure and landscape features have

been shown to be important in shaping genetic

diversity at the local scale for Amazonian vertebrates

(e.g., Bates 2002; Capurucho et al. 2013; Menger et al.

2018; Silva et al. 2020). Here we show that allelic

richness (AR) decreased in more isolated campina

patches, but with no effect of habitat amount, in

contrast to other findings showing that habitat amount

123

Landscape Ecol (2021) 36:2565–2582 2577



best predicts genetic diversity and species diversity in

white-sand specialist bird communities (Capurucho

et al. 2013; Borges et al. 2016a).

This suggests that current local movements of E.

ruficeps, at least to a certain degree, are shaped by the

configuration of campina patches. However, for

Xenopipo atronitens, another white-sand specialist

bird, haplotype and nucleotide diversity increased

with the amount of habitat available, with no effect of

configuration (Capurucho et al. 2013). This difference

may be explained by different species traits and habitat

use patterns, since X. atronitens individuals also use

white-sand patches more forested than campinas (also

called campinaranas), and eventually exploit black-

water floodplain forests (Oren 1981; Ridgely and

Tudor 2009). In contrast, E. ruficeps is more restricted

to campina vegetation (Borges et al. 2016b). Addi-

tionally, E. ruficeps has a lower handwing index (a

proxy of species’ dispersal capabilities) than X.

atronitens, a trait that was found to be correlated with

overall range size in white-sand specialist birds

(Capurucho et al. 2020b). These differences in habitat

use highlight the importance of considering species

traits when addressing congruence in biogeographical

scenarios (Papadopoulou and Knowles 2016). Thus,

we conclude that white-sand specialist birds are

affected by landscape structure, but different compo-

nents of these landscapes influence movement patterns

of different species and both habitat amount (for X.

atronitens; Capurucho et al. 2013) and configuration

(for E. ruficeps; this study) appear to be important for

driving spatial patterns of genetic diversity of these

white-sand specialist birds.

Genetic distance among landscapes increased with

larger geographic distances in both mitochondrial and

microsatellite data. Although significant genetic dif-

ferentiation was found among most sampling sites

within landscapes, no pattern of isolation by distance

or resistance was observed. More refined studies on

habitat permeability for white-sand vegetation birds

are needed to develop more accurate isolation by

resistance models. Our results suggest that although

dispersal ability of E. ruficeps is at least to certain

degree restricted by intervening vegetation types

(Ritter et al. 2021), it is still greater than overall

dispersal ability for most terra-firme forest birds

(Menger et al. 2017, 2018), but dispersal ability of E.

ruficeps is lower when compared to dispersal of

savanna birds (Bates et al. 2003; Ritter et al. 2021). In

a previous study comparing the population structure of

E. ruficeps with its sister species E. cristata, it was

evident that E. cristata populations, which occur in

savannas, have less population structure, indicating

higher mobility than E. ruficeps (Ritter et al. 2021).

Furthermore, dispersal of terra-firme forest birds is

generally limited by geographic distance (e.g. Menger

et al. 2017, 2018), while typical Amazonian open area

(savannas) bird species appear to have low population

genetic structure, even at large geographic distances

and across biogeographical barriers (Bates et al. 2003;

Ritter et al. 2021).

Conclusions

Here, we infer population structure, genetic diversity

and migration within E. ruficeps, an Amazonian

white-sand specialist bird, in three landscapes, using

both, mitochondrial and microsatellite data. Distinct

population structure was found for the different

markers used, indicating differences in historical and

current patterns of connectivity among landscapes.

Migration rates were asymmetrical and also indicated

a distinct scenario in the past compared to current

rates. Patch isolation within and among landscapes

was important to explain spatial patterns of

microsatellite genetic diversity (AR). Geographical

distance limited dispersal among but not within

landscapes. These results suggest that both current

landscape structure and the history of campina patches

determine genetic diversity patterns of campina spe-

cialist birds. This study fosters our understanding of

how biotic communities associated to white-sand

patches are influenced by current and historical

processes in Amazonia, contributing to predictions

about how these communities will be affected by

future climatic changes.
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