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Abstract

Context Relationships between land surface temper-

ature (LST) and spatial configuration of urban form

described by landscape metrics so far have been

investigated with coarse resolution LST imagery

within artificially superimposed land divisions. City-

wide micro-scale observations are needed to better

inform urban design and help mitigate urban heat

island effects in warming climates.

Objectives The primary objective was to sub-divide

an existing high-resolution land cover (LC) map into

groups of patches with distinct spatial and thermal

properties suitable for urban LST studies relevant to

micro-scales. The secondary objective was to provide

insights into the optimal analytical unit size to

calculate class-level landscape metrics strongly cor-

related with LST at 2 m spatial resolution.

Methods A two-tiered unsupervised k-means clus-

tering analysis was deployed to derive spatially

distinct groups of patches of each major LC class

followed by further subdivisions into hottest, coldest

and intermediary sub-classes, making use of high

resolution class-level landscape metrics strongly cor-

related with LST.

Results Aggregation class-level landscape metrics

were consistently correlated with LST for green and

grey LC classes and the optimal search window size

for their calculations was 100 m for LST at 2 m

resolution. ANOVA indicated that all Tier 1 and most

of Tier 2 subdivisions were thermally and spatially

different.

Conclusions The two-tiered k-means clustering

approach was successful at depicting subdivisions of

major LC classes with distinct spatial configuration

and thermal properties, especially at a broader Tier 1

level. Further research into spatial configuration of LC

patches with similar spatial but different thermal

properties is required.

Keywords Land surface temperature � Urban land

cover classification � Fragstats � Class-level landscape
metrics � K-means clustering

Introduction

Recent decades have seen a rise in research (Wu and

Ren 2019) regarding spatial configuration of urban

form and its relationship to urban heat island (UHI)

(Oke 1976) or surface urban heat island (SUHI)

(Bärring et al. 1985) effects, deriving from concerns
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over climate change impacts on increased incidence of

heatwaves (Perkins et al. 2012; Wouters et al. 2017)

and related negative impacts on human health (Lin

et al. 2009; Basara et al. 2010; Milojevic et al. 2011;

Heaviside et al. 2016, 2017), among others, addition-

ally aggravated by urban growth (Chapman et al.

2017; United Nations 2019).

The impact of urban form on UHI is often described

through direct measurements of air temperature across

different urban gradients (Schwarz et al. 2012; Lin

et al. 2019) or through street-scale simulations

(Sodoudi et al. 2018; Ramyar et al. 2019) allowing

for micro-scale assessments. Such studies, however,

take into account only a relatively small sample of

observations and may not fully capture specific site

effects elsewhere (Romero Rodrı́guez et al. 2020). On

the contrary, the relationship of urban form and the

SUHI effect is typically investigated from remotely

sensed land surface temperature (LST) imagery at

medium (30 m) to very coarse (1 km) spatial resolu-

tions, offering an opportunity for city-wide assess-

ments, however, compromising applicability of the

results to micro-scales by summarising the results over

larger subdivisions of land (Zhou et al. 2011, 2020;

Kong et al. 2014; Liu et al. 2016; Simwanda et al.

2019; Masoudi et al. 2019). These studies commonly

use landscape metrics (McGarigal 2015), pertaining to

the field of landscape ecology, to elucidate the

relationships between urban form and LST, and

recommend deriving them from fine resolution land

cover (LC) maps when the relationships are the

strongest (Li et al. 2013). Use of medium to coarse

resolution LST imagery within artificially superim-

posed land divisions allows for neighbourhood to

district-scale assessments whose aggregated character

may lack in detail specific to urban design conducive

to thermal comfort outdoors (Perini et al. 2017; Li

et al. 2020) or within building interiors (Futcher et al.

2013; Garshasbi et al. 2020).

We present a methodology that utilises very fine

spatial resolution LC maps and selected class-level

landscape metrics to generate a LC patch typology

suitable for accurately depicting LST at a fine spatial

resolution in three British towns. The LC patch

typology is intended at facilitating urban design

process by determining likely thermal responses of

individual LC patches with specific spatial properties

as well as support studies of urban thermal patterns

associated with urban form. We verify the

distinctiveness of the obtained LC patch typology by

comparison to fine and medium resolution LST maps

representative of two summer days a month apart as

well as independent spatial configuration descriptors.

Materials and methods

Study area

The study area comprises three towns located in

relatively close proximity in England: Milton Keynes

(52� 00 N, 0� 470 W, appr. 122 km2), Bedford (52� 80 N,
0� 270 W, appr. 60 km2), and Luton/Dunstable (51� 520
N, 0� 250 W, appr. 86 km2) (Fig. 1) with population of

229,941, 106,940, and 258,018 (Office for National

Statistics (2013) respectively and a temperate oceanic

climate according to the Köppen–Geiger climate

classification system. The three towns are charac-

terised with contrasting histories: modern-day garden-

city, medieval, and industrial, respectively, collec-

tively representing a wide range of urban form patterns

(Grafius et al. 2016; Zawadzka et al. 2019).

Data

This study required the use of land surface temperature

(LST), land cover (LC) and feature height data for the

three study areas. LST images were derived from

Landsat 8 TIR bands using the split window algorithm

as described in Jimenez-Munoz et al. (2014) for two

summer dates: 6 June and 8 July 2013. Availability of

cloudless images captured a month apart allowed for

the assessment of the relationship between urban form

patterns and LST over the course of warming summer.

A LC map was derived from NDVI generated from

Colour-Infrared aerial imagery obtained from Land-

Map Spatial Discovery (http://landmap.mimas.ac.uk/)

and British Ordnance SurveyMasterMap, originally at

0.5 m spatial resolution (Grafius et al. 2016) and

resampled with the nearest neighbour method to 2 m

spatial resolution to reduce the data volume as well as

match spatial resolution with available elevation and

LST datasets. Five types of land cover are shown:

grass, trees, paved, buildings and water (Fig. 1).

Importantly, the use of a detailed topographic map

during LC map production process allowed for accu-

rate depiction of the building footprints and road lay-

outs, which are oftentimes obscured by overhanging
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tree canopies in cases where maps are generated solely

form NDVI.

Finally, feature heights were available at 2 m

resolution. These were created based on a NERC-

ARSF Leica ALS50-II LiDAR survey conducted over

the three towns (Grafius et al. 2016).

Methods

The primary goal of this study was to develop a simple

method for generation of sub-divisions of LC patches

suitable for studies of urban thermal environments at

very local scales, comparable to individual or small

Fig. 1 Land cover in A—Milton Keynes, B—Bedford, C—Luton/Dunstable. The insert depicts location of the towns within Great

Britain. Analyses were carried out for areas within the ‘Built-up Area Extent’ boundary
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groups of patches, with the use of the k-means

clustering approach. This section describes the steps

required to develop and verify the refined LC maps,

which are summarised in Fig. 2.

LST downscaling

Landsat 8 LST maps for the three towns at original

30(100)m spatial resolution were downscaled to 2(4)m

resolution using Multiresolution Adaptive Regression

Splines method and ancillary data including spectral

indices and green-grey infrastructure footprints,

described in detail in Zawadzka et al. (2019). The

mixed spatial resolution of the coarse LST imagery

stems from the fact that Landsat 8 TIR bands are

captured at 100 m and are subsequently resampled,

using the bilinear convolution method, by data

provider (USGS—United States Geological Survey).

The spectral indices used in LST downscaling were

derived from visible and near-infrared bands at 2 m

and short-wave infrared bands at 4 m resolution,

resulting in an intermediate information footprint.

Spatial configuration metrics

Spatial configuration metrics used in this study

included class-level landscape metrics and distances

of LC patches to other patches of different type. A

range of class-level patch aggregation and shape

metrics (Table S1, Supplementary Materials A) was

derived with the use of the Fragstats 4.2 software

(McGarigal et al. 2012) from 2 m spatial resolution

LC maps available for Bedford, Luton and Milton

Keynes. The choice to use class-level landscape

metrics, which describe spatial properties of all

patches belonging to a given LC type within a

particular landscape, was justified by a couple of

considerations. Firstly, patch-level metrics were dis-

carded due to one of the fundamental reasons for

conducting this study, i.e. the tendency of individual

patches derived from raster maps of LC to comprise

LC fragments of contrasting spatial properties, espe-

cially when LC classes are well or appear to be well

connected across the landscape. Examples of such LC

types within urban areas include roads and other paved

areas, water, and to certain extent—trees or grass.

Secondly, landscape-level metrics were inadequate for

the purpose of this study looking at the refinement of

existing LC patches, as they return results pertaining

to the entire landscape that cannot be attributed to an

individual LC type.

Each metric was calculated over landscape repre-

sented by moving windows of varied sizes (10 m to

100 m every 10 m and 100 m to 200 m every 20 m)

using a 4-cell neighbourhood rule indicating that, as

opposed to the 8-cell neighbourhood rule, two adja-

cent grid cells in the raster map are treated as

connected when they share a side but not a corner

(Fig. 3). Excluding grid cell corners from the connec-

tivity rule allowed for discernment between small

patches, such as individual trees, or other patches

separated by very narrow strips of land not depicted at

2 m resolution of the LC map. Window-based anal-

ysis, by focusing on a small portion of the study area at

a time, allowed for calculation of metrics for individ-

ual sections of LC features, making the analysis

relevant to microscales presumed in this study. Given

considerable computation times at very fine spatial

resolution used in this study, the entire set of metrics

listed was derived for Bedford, characterised with

smallest extent and somewhat intermediary spatial

properties of urban form patterns when compared to

Milton Keynes or Luton, and only the metrics with the

strongest relationships to LST at both 2 m and 100 m

spatial resolutions were generated for the remaining

towns.

Distances of a given LC patch to other LC patch

types were derived in ArcGIS 10.5 using the Euclidean

distance tool, and were stored as raster layers covering

the extents of the three towns.

Metrics selection

Shape or aggregation class-level landscape metrics for

each LC type calculated within moving windows of

varied sizes in Bedford were compared to LST at

2(4)m and 30(100)m resolutions on a pixel-by-pixel

basis using the Spearman rank correlation coefficient

(Spearman 1904) rho. Rho compares data ranks rather

than actual values of two continuous variables and is

therefore less sensitive to outliers or non-normal

distributions in either of the variables (Puth et al.

2015), as was the case for class-level metrics com-

puted within small moving windows. Due to pixel-by-

pixel comparisons between values of the landscape

metrics, assigned to each 2 m grid cell of LC map, and

LST we did not deem it necessary to average LST over

equivalent window sizes under an assumption of
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Table 1 Properties of Tier 1 clusters

LC Tier 1

cluster

Aggregation

level

Description—spatial properties including use Thermal

properties

Buildings T1CL1 MA Typically in industrial, commercial and other non-residential use. Largest size,

most aggregated, located farthest away from grass or trees. Located primarily

in city centres and on industrial estates

Warmest

T1CL2 RLA Intermediary in size and other descriptors, representative of terraced housing,

flats or smaller non-residential use. Due to height and proximity to vegetation

more similar to CL3 than CL1. Typically located closer to city centres than

buildings in CL3

Medium-

cold

T1CL3 LA Smallest, most fragmented and lowest buildings typically in residential use

(detached and semi-detached housing associated with gardens). Located in

close proximity to vegetation, typically farthest away from city centres

Coldest

Paved T1CL1 MA Most aggregated, typical of squares, paved areas in commercial or industrial

estates or wider roads with low amounts of scattered greenspaces or housing.

Located distinctly farthest away from buildings, but not from grass or trees

Warmest

T1CL3 RMA Wider roads as well as crossroads in areas where roads are relatively narrow Warmest

T1CL4 RLA Mostly residential or narrower parts of main roads, less aggregated than CL3 Medium-

cold

T1CL2 LA Distinctly least aggregated and located in close proximity to grass or trees.

Typically narrow patches of footpaths, rarely roads, scattered in residential

areas or crossing larger greenspaces

Coldest

Grass T1CL4 MA Very large stretches of grass typical of parks and recreation areas, and

occasionally larger strips of grass at roadsides. Located farthest away from

buildings

Coldest

T1CL2 RMA Wider strips of grass located next to roads or in parkland in between rows of

trees, relatively far from buildings

Medium-

cold

T1CL3 RLA Patches of grass that were larger than in CL 1 and located either next to

residential housing or on industrial estates. Also includes elongated, narrow

strips of grass next to roads

Medium-

warm

T1CL1 LA Small patches of grass located in residential areas and typically immediately

adjacent to trees, paved areas and buildings

Warmest

Trees T1CL2 MA Largest, highly aggregated stretches of urban forest located away from buildings

and paved areas

Coldest

T1CL4 RMA Well-aggregated patches of trees that could be scattered across large patches of

grass or form elongated but relatively wide tree patches at roadsides; also

patches of trees located in larger gardens in-between wider-spaced housing

Medium-

cold

T1CL1 RLA Relatively small but bigger and more aggregated patches typical of terraced

housing

Medium-

warm

T1CL3 LA Very small and fragmented patches typically located near detached or semi-

detached housing

Warmest

Water T1CL3 MA Large and most aggregated water bodies such as lakes Coldest

T1CL1 RMA Wider rivers, canals or ponds, high aggregation metrics values Coldest

T1CL2 RLA Narrow stream and ditches Medium-

warm

T1CL4 LA Narrow stream and ditches, very close proximity to trees Warmest

LC land cover, T1CL Tier one cluster number. Thermal properties based on LST means in June and July at 2 m and 100 m resolution

sorted according to decreasing aggregation level: MA most aggregated, RMA relatively more aggregated, RLA relatively less

aggregated, LA least aggregated
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spatial autocorrelation of LST values (Yin et al. 2018)

that would capture any effects of spatial configuration

of LC on LST. Despite the expectation that the

associations between landscape metrics calculated

within smaller window sizes (10 to 100 m) and LST at

2(4)m resolution would be more appropriate than with

the coarser LST data, the inclusion of the latter in the

correlation analysis allowed for the verification of the

observed relationship patterns obtained for the down-

scaled LST images in different LC classes, especially

in search windows over 100 m in size, indirectly

assuring validity of the results at the finer resolution.

Determination of two-tiered urban fabric patterns

Patterns of urban form were determined separately for

each major LC class (buildings, paved, grass, trees,

and water) based on a two-tiered unsupervised

k-means clustering analysis. This approach ensured

(a) independent from LST depiction of LC sub-

divisions and (b) unbiased determination of fragments

of each urban form type with specific thermal prop-

erties. The unsupervised, data-driven approach not

only helped avoid bias in the estimation of spatial and

thermal properties of the new LC patches, but also had

practical connotations by minimising the chance for

potential omission of important or overestimation of

unimportant LC sub-divisions when a supervised

method is used.

In Tier 1, class-level landscape metrics with the

strongest association to LST in each LC class were

clustered with the k-means method implemented in R

statistical software and scree plots representing the

within-groups sum of squares (WSS) were used to

determine the optimal number of clusters for each LC

class, resulting in maximally homogenous patches in

terms of their spatial properties.

In Tier 2, another k-means run was carried out to

determine LC patches located within each of Tier 1

clusters with distinct LST. This required that individ-

ual LC patches belonging to each Tier 1 cluster were

attributed with the mean value of LST in June at 2 m

resolution using the Zonal Statistics as Table tool in

ArcGIS 10.5. Again, the optimal number of clusters

was determined from inspection of scree plots ofWSS.

The use of the mean LST rather than a range of values

within each Tier 1 patch prevented splitting of

Fig. 3 Demonstration of the a moving window and b cell

neighbourhood concepts used in generation of landscape

metrics from input LC maps. In moving window analysis, each

cell of the output raster is assigned a result of a function

calculated from all cells located within amovingwindow sliding

across the input raster. The cell neighbourhood rule determines

whether LC patches sharing a corner will be viewed as two

separate patches (4-cell rule) or as a single patch (8-cell rule) by

the Fragstats software
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individual Tier 1 patches into two or more Tier 2

clusters.

Verification

Distinctiveness of clusters obtained in both tiers of the

analysis was verified with pairwise Wilcoxon

ANOVA analysis (R software) based on LST, selected

class-level landscape metrics, elevations, feature

heights (buildings and trees only) and distances to

other LC classes.

Results

Associations between LST and class-level

landscape metrics

Inspection of Spearman correlation values (p\ 0.05)

for selected class shape and aggregation metrics with

LST within different LC classes revealed that aggre-

gation (Fig. 4) and not shape metrics were consistently

and more strongly correlated with LST, depending on

LC and search window size used to calculate the

metrics.

Class aggregation metrics with strongest correla-

tions to LST included COHESION and PLADJ for all

LC classes, except for water, and LSI for grass and

trees. The correlations were stronger in June than July

and comparable in magnitude between respective

months at both spatial resolutions—2 and 100 m.

Correlations tended to rise with increasing search

window size, achieving the strongest constant value at

approximately 100 m for 2 m and continuing to rise

slowly beyond that size for 100 m resolution LST

data.

At 100 m window size for 2 m LST in June, the

strongest correlations were observed for greenspaces,

with grass and trees being positively correlated with

LSI (0.57 and 0.53) and negatively correlated with

COHESION (- 0.59 and - 0.60) and PLADJ

(- 0.62 and - 0.66). Correlations between COHE-

SION and PLADJ and LST for built-up spaces and

water were weaker: 0.42 and 0.36 for buildings, 0.36

and 0.31 for paved, and 0.17 and 0.1 for water,

respectively.

The strongest correlations within class shape met-

rics were observed for CONTIG_MN, PARA_MN

and SHAPE_MN (Fig. S1 in Supplementary

Materials), however, here the window size with the

strongest relationship was relatively small (* 40 m)

for greenspaces and large for built-up areas

(* 100 m). This inconsistency coupled with strong

search window artefacts visible in the raster layers for

shape metrics lead to their rejection as candidates in

this study.

Spatial and thermal patterns of urban form

K-means clustering of three class aggregation metrics

(COHESION, PLADJ, LSI) for grass and trees, and

two class aggregation metrics (COHESION and

PLADJ) for paved, buildings and water yielded

spatially distinct patterns of urban form within each

LC type (Figs. S1 and S2 in Supplementary Materials

A). Each Tier 1 cluster could be attributed with distinct

values of the class aggregation metrics, average

distance to other LC classes, elevation, feature heights,

and LST (Table 1, also Tables S2–S4, and Supple-

mentary Materials A). ANOVA has shown that means

of COHESION, LSI, PLADJ, and LST (except for one

pair of T1 clusters in water) were significantly

different (p\ 0.001) for each pair of T1 cluster within

each LC class. A great majority of cluster pairs had

also significantly different distances to other LC types,

with well-justified exemptions of distances of resi-

dential patches of trees to grass, and few others for

water.

Tier 2 clustering sub-divided each Tier 1 cluster

into four thermal categories—coldest, hottest, and two

intermediary classes: medium-cold and medium-hot,

with statistically different June and July (2 m) LST

means (Fig. S3 in Supplementary Materials A and

Supplementary Materials B). ANOVA carried out on

all other diagnostic variables implied that resulting

Tier 2 clusters have largely been distinct not only

thermally but also spatially, with exceptions that were

most common in water and also occurring in buildings,

and very rarely in the remaining LC types. Overall, the

two-tiered unsupervised k-means clustering procedure

was capable of generating a representation of urban

fabric composed of five major LC types subdivided

into clusters with distinct spatial and thermal proper-

ties (Fig. 5).
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Fig. 5 Examples of Tier 1 Clusters in a Buildings—B, b Paved—P, c Grass—G, d Trees—T, eWater—W. Arrows point to the Tier 1

Cluster intended for representation in each image tile. Legend is ordered according to decreasing patch aggregation levels
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Discussion

The urban LC patch typology developed in this study

was intended at differentiating sub-divisions of main

LC types relevant for urban thermal studies at micro-

scales, i.e. areas 1–104 m2 in size, that are required for

studies contributing to climate sustainability of urban

design (Georgescu et al. 2015). Whilst micro-scale

studies using simulation models of urban thermal

environments exist (Perini et al. 2017; Sodoudi et al.

2018; Ramyar et al. 2019), they often utilise unreal-

istic models of urban form, resulting in crude

estimates, (Li et al. 2020) that could be substituted

by excerpts from the typology developed here. In fact,

urban climatology is known for attempts to stratify

urban form into morphological areas contributing to

homogenous thermal responses, an example of which

is given by the urban climate zones (UCZs) developed

by Stewart and Oke (2012) and pertaining to neigh-

bourhood scales. Our typology, which combines

patch-level detail with city-scale thermal zoning, can

support research aiming derivation of UCZs (Lee and

Oh 2018; Xu et al. 2019) in an automated manner by

extracting individual LC patches with spatial proper-

ties related to their LST, especially when additionally

attributed with heights of buildings being one of the

differentiating factors in the UCZ classification.

Further practical implications include the opportunity

created by this typology to carry out studies of the

relationship between LST and urban form at scales

relevant to outdoor comfort of pedestrians or in the

interiors of buildings, taking into account interactions

with neighbouring LC patches (Zawadzka et al., In

Preparation).

During development of the urban LC typology

presented here a number of shape and aggregation

landscape metrics that had previously been used in

studies pertaining to finding relationships between

LST and urban form (Zhou et al. 2011; Li et al. 2011;

Wu et al. 2014; Chen et al. 2014; Gage and Cooper

2017; Sodoudi et al. 2018) were tested for strong

correlations with LST. Technical considerations of

working with LC map in a raster format and the

intention to automatically determine individual LC

patches of each main LC type with unique spatial

properties enforced a moving window analysis for

calculation of the landscape metrics at LC class-level.

The use of moving widows caused the possibility of

inclusion of spatial properties of grid cells belonging

to adjacent LC patches into the calculations related to

the focal patch, which could lead to erroneous

assignment of their spatial properties, exacerbated

only in cases when adjacent LC patches had very

contrasting properties and the search window was

excessively large. This effect could be regarded as

largely negligible given a certain level of spatial

homogeneity of urban form due to planning of

neighbourhoods (Cortie 1997).

Nevertheless, the LC typology was intended at

stratification of urban form for use in studies of urban

thermal environment at micro-scales, motivating the

selection of both the type of metrics and window size

most strongly correlated to LST at 2 m resolution. The

correlation values pointed to highest suitability of the

moving window 100 9 100 m in size for each LC

class, which assured consistency of any subsequent

analyses, however, could potentially be an artefact of

the 100 m spatial resolution of the thermal infrared

sensor mounted on the Landsat 8 satellite. The strength

of correlation depended not only on search window size

used in Fragstats calculations but also on LC and metric

type. The correlations for aggregation metrics within

LC classes with LST exhibiting a relationship with LST

where strongest at 100 m search window size both for

green and grey spaces, and at 40 to 80 m for selected

shapemetrics within greenspaces with varied effects for

buildings and paved. Weaker correlations with water,

especially with LST at 2 m resolution, could be

attributed to the downscaling procedure applied to

coarse resolution LST data not depicting the thermal

response of water bodies correctly, especially for

narrow elongated features easily affected by the

mixed-pixel effect (Yow 2007). Effects of search

window size on correlations with LST have not

previously been investigated citywide and separately

for each LC class within one study, potentially due to

high computational demand of these calculations.

Nevertheless, correlations for aggregation metrics with

100 m resolution LST still showing an increasing trend

for windows 200 m in size indicated that larger window

sizes are appropriate for coarser resolution LST data.

Weakening of the correlations for LST in July when

LST was on average 3.7 K higher is in concordance

with Li et al. (2011) who observed significant correla-

tions between landscape metrics and LST in spring

rather than in summer, and suggests changes in LST

regulatory capacity of urban form patterns as the

temperatures rise.
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The use of three types of class aggregation

descriptors in the LC typology, COHESION, LSI,

and PLADJ, allowed for sub-division of each LC type

according to different perspectives, ensuring compre-

hensiveness of the approach (McGarigal 2015).

COHESION is a measure of physical connectedness

of a patch type expressed through the ratio of its

perimeter to its area and the size of the landscape (i.e.

search window), and as such focuses on the spatial

properties of the focal patches, excluding the impact of

their neighbours of the same type. PLADJ, on the other

hand, analyses the landscape in search of adjacencies

between patches of the same type and consequently

relates their aggregation to the level of their fragmen-

tation within a specified area. Here, the 4-cell neigh-

bourhood rule used in the calculation of the metrics is

pivotal in separating small, closely located patches of

LC that should be treated as separate entities, such as

individual trees. LSI complements COHESION and

PLADJ by looking at the edge density of a LC class in

the landscape and therefore relating the outcome to the

shape of patches forming the class. Class-level

landscape metrics used in this study are affected by

sensitivities with regards to the size and aggregation of

patches in the landscape (Neel et al. 2004). Changes in

aggregation level described by PLADJ and COHE-

SION may be difficult to distinguish from the change

in patch size due to strong interactions between patch

area and aggregation level within a landscape

observed for these metrics, constituting a potential

disadvantage depending on the requirements of sub-

sequent studies. LSI has a tendency to display a

parabolic relationship between patch size and aggre-

gation level, however, not in natural landscapes, when

the relationships are linear, i.e. higher LSI associated

with lower patch area and aggregation level. This

could also explain good correspondence of LSI of

grass and trees to LST and not built and paved classes,

which can be roughly characterised with high aggre-

gation and low area or low aggregation and high area,

respectively. From the pool of remaining class aggre-

gation metrics considered in this study, AI had similar

correlation values to PLADJ, however, its use was

discarded due to a tendency to provide misleading

estimates when area of the class in the landscape

exceeds 50% and having similar meaning to PLADJ

(Neel et al. 2004). CLUMPY and IJI had relatively

high correlations with LST for LC classes representing

greenspaces, however, CLUMPY is similar to PLADJ

by considering grid cell adjacencies and IJI returns

valid values only when there are at least three different

classes in the considered landscape (McGarigal 2015).

The development of the LC typology presented in

this study involved using pixel-based clustering tech-

niques, which have rarely been used in studies relating

landscape metrics to LST, with only Gage and Cooper

(2017) having deployed hierarchical clustering to

identify LC typologies within predefined parcels of

land—5 ha hexagons—rather than subtypes of a given

LC class as is the case in our study. In fact, this is the first

known to the authors study attempting to sub-divide

existing maps of LC into groups of patches with unique

spatial configuration propertieswithin a single LC class.

The unsupervised k-means clustering approach was

capable of discerning sub-divisions of LC in a manner

convincing to the human eye that could be further

subdivided into four thermally distinct subclasses in

buildings, paved, grass and trees. Whilst hierarchical

object-oriented approaches (e.g. Chen et al. 2009;

Grippa et al. 2017) for LC classification could constitute

an alternative way for generation of similar LC typolo-

gies, K-means clustering has the advantage of easy

implementation with the use of any statistical software.

Moreover, our approach combining pixel-based and

moving window analyses allowed for consideration of

entire patches of a given LC in the formation of the

typology rather than their fragments trimmed by

superimposed artificial land parcel boundaries.

Conclusions

Two-tiered unsupervised k-means clustering approach

presented in this study was successful at depicting

both spatially and thermally distinct subdivisions of

major LC classes in medium sized towns relevant to

studies of the relationship between LST and urban

form patterns at very fine (2 m) spatial resolution.

Whilst investigation of all effects of spatial configu-

ration of urban form on the LST observed in Tier 2

clusters is still ongoing (Zawadzka et al. In Prepara-

tion), this study has revealed that relationships

between class-level landscape metrics and 2 m reso-

lution LST are strongest at smaller parcels of land than

in the case of coarser resolution LST datasets inves-

tigated in other studies, and that these relationships

weaken as the summer progresses. This study has also

shown that aggregation (LSI, COHESION, PLADJ)
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and not shape metrics frequently used in other studies

investigating relationships between urban form and

LST are important for explanation of LST at fine

spatial resolution. Correlations between the class

aggregation metrics and LST, investigated as part of

the secondary objective, were the strongest when a

search window 100 9 100 m in size was used to

derive them from raster LC maps and were stronger in

vegetated than non-vegetated LC classes. This proved

that consideration of the interactions between techni-

cal aspects of landscape metrics’ computation and

LST is important for accurate depiction of urban form

patterns with applications in urban thermal environ-

ment studies.
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tóbal J (2014) Land surface temperature retrieval methods

from landsat-8 thermal infrared sensor data. IEEE Geosci

Remote Sens Lett 11:1840–1843

Kong F, Yin H, James P, Hutyra LR, He HS (2014) Effects of

spatial pattern of greenspace on urban cooling in a large

metropolitan area of eastern China. Landsc Urban Plan

128:35–47

Lee D, Oh K (2018) Classifying urban climate zones (UCZs)

based on statistical analyses. Urban Clim 24:503–516

Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of

landscape structure on surfaceurbanheat islands: a case study

of Shanghai, China. Remote Sens Environ 115:3249–3263

Li X, Zhou W, Ouyang Z (2013) Relationship between land

surface temperature and spatial pattern of greenspace:

123

Landscape Ecol (2021) 36:1863–1876 1875

http://creativecommons.org/licenses/by/4.0/


What are the effects of spatial resolution? Landsc Urban

Plan 114:1–8

Li Z, Zhang H, Wen CY, Yang AS, Juan YH (2020) Effects of

frontal area density on outdoor thermal comfort and air

quality. Build Environ 180:107028

Lin S, LuoM,Walker RJ, Hwang SA, Chinery R (2009) Extreme

high temperatures and hospital admissions for respiratory

and cardiovascular diseases. Epidemiology 20:738–746

Lin FY, Huang KT, Lin TP, Hwang RL (2019) Generating

hourly local weather data with high spatially resolution and

the applications in bioclimatic performance. Sci Total

Environ 653:1262–1271

Liu K, Su H, Li X, Wang W, Yang L, Liang H (2016) Quanti-

fying spatial-temporal pattern of urban heat Island in Bei-

jing: an improved assessment using land surface

temperature (LST) time series observations from LAND-

SAT, MODIS, and Chinese New Satellite GaoFen-1. IEEE

J Sel Top Appl Earth Obs Remote Sens 9:2028–2042

Masoudi M, Tan PY, Liew SC (2019) Multi-city comparison of

the relationships between spatial pattern and cooling effect

of urban green spaces in four major Asian cities. Ecol Indic

98:200–213

McGarigal, K, Cushman SA, Ene E (2012) FRAGSTATS v4:

Spatial Pattern Analysis Program for Categorical and

Continuous Maps. Computer software program produced

by the authors at the University ofMassachusetts, Amherst.

Available at the following web site: http://www.umass.

edu/landeco/research/fragstats/fragstats.htm

McGarigal K (2015) Fragstats help version 4.2. 1–182

Milojevic A, Wilkinson P, Armstrong B, Davis M, Mavrogianni

A, Bohnenstengel S, Belcher S (2011) Impact of London&s
urban heat island on heat-related mortality. Epidemiology

22:S182–S183

Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-

level landscape metrics across gradients of class aggrega-

tion and area. Landsc Ecol 19:435–455

Office for National Statistics (2013) 2011 census, Key statistics

for built up areas in England and Wales. United Kingdom

Office for National Statistics, London Ordnance

Oke TR (1976) The distinction between canopy and boundary-

layer urban heat Islands. Atmosphere (Basel) 14:268–277

Perini K, Chokhachian A, Dong S, Auer T (2017) Modeling and

simulating urban outdoor comfort: coupling ENVI-Met

and TRNSYS by grasshopper. Energy Build 152:373–384

Perkins SE, Alexander LV, Nairn JR (2012) Increasing fre-

quency, intensity and duration of observed global heatwaves

and warm spells. Geophys Res Lett 39:2012GL053361
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