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Abstract

Context Effective planning for protected areas and

wildlife population management requires a firm

understanding of the location of the species’ core

habitat patches, the dispersal corridors connecting

them, and the risk they face from key threats, notably

deforestation.

Objectives To quantify and map core habitat patches

and dispersal corridors for Sunda clouded leopard

(Neofelis diardi diardi), Asiatic golden cat (Catopuma

temminckii) and marbled cat (Pardofelis marmorata)

across the 16,000 km2 tropical rainforest Kerinci

Seblat landscape, Sumatra. Also, to model future

forest loss and fragmentation and its effect on

landscape connectivity for populations of these threat-

ened species.

Methods Using data from camera trap (671 sites/

55,856 trap nights), and occupancy modelling, we

developed habitat use maps and converted these into

species-specific landscape resistance layers. We

applied cumulative resistant kernels to map core areas

and we used factorial least-cost paths to define

dispersal corridors. A 17-year deforestation dataset

was used to predict deforestation risk towards the

integrity of corridors and core areas.

Results The occupancy estimates of the three cats

were similar (0.18–0.29), with preference shown for

habitats with dense tree cover, medium elevation and

low human disturbance. The overlap between core

areas and corridors across the three species was

moderate, 7–11% and 10%, respectively. We pre-

dicted future loss of 1052 km2 of forest in the

landscape, of which 2–4% and 5% in highly impor-

tance core areas and corridors.

Conclusions This study provides a valuable guid-

ance for identifying priority areas in need of urgent

protection within and outside the protected area

network, and where infrastructure development plan-

ning can incorporate wildlife conservation goals.
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Introduction

At a global scale, increasing deforestation rates and

other anthropogenic drivers of landscape transforma-

tion cause habitat loss and fragmentation (Laurance

et al. 2014). This imposes immense pressure on

wildlife populations, especially for highly specialized

species (Frank and Amarasekare 1998) or those with

large home ranges and dispersal abilities, such as

medium- or large-bodied felids (Sunquist and Sun-

quist 2019). Species adaptability to these changes, and

populations’ survival, often depends on how easily

individuals can move through the landscape in search

of food, better quality habitat and mates (Zeller et al.

2012). Small and isolated wildlife populations, with-

out the possibility to disperse and increase their gene

pool, are those most threatened by extinction risk

(Smith 1993; Wikramanayake et al. 2011; Goossens

et al. 2016). Therefore, it is crucial to identify and

protect highly utilized habitats, as well as dispersal

corridors linking population strongholds. Only well-

connected landscapes with large enough core habitat

can facilitate frequent gene flow, leading to geneti-

cally diverse and stable populations (Manel et al.

2003; Storfer et al. 2007; Thapa et al. 2018). Under-

standing and mapping population connectivity and

species dispersal routes are further important in the

current context of globally increasing human-wildlife

conflict (Cushman et al. 2018). Habitat fragmentation

and increased poaching pressure may push individuals

to the periphery of protected areas or even to move out

into human-dominated lands, elevating the likelihood

of conflict (Nyhus and Tilson 2004; Macdonald et al.

2012).

When assessing local or regional landscape con-

nectivity, either for human-conflict mitigation or

conservation planning, it is crucial to base assessments

on rigorous empirical data and reliable modelling

methods. This is particularly important for Southeast

Asia, which has one of the highest rates of biodiversity

loss worldwide, primarily caused by forest conversion

to smallholder farmland and large industrial mono-

culture plantations (Miettinen et al. 2011; Gaveau

et al. 2016).

Due to challenging landscapes characteristics and

thick canopy cover, movement data for target species

are limited (Grassman et al. 2005; Mohamad et al.

2015; Hearn et al. 2019). Therefore, we need robust

data for creating landscape resistance layers for

defining corridors and core areas. Mateo-Sánchez

et al. (2015) and Keeley et al. (2016) found that, in the

absence of data on movement behaviour or population

genetic structure, which is the case for our three study

species in Sumatra, spatial information on habitat use

can be a useful surrogate for deriving a resistance to

movement layer. Mateo-Sánchez et al. (2015) and

Keeley et al. (2016) showed that a negative exponen-

tial function best describes the relationship between

habitat suitability and resistance values. Unlike many

other connectivity modelling approaches, both cumu-

lative resistant kernels and factorial least-cost paths, as

implemented in UNICOR (Landguth et al. 2012),

account for species dispersal abilities, which is crucial

for accurately predicting landscape-scale connectivity

patterns (Cushman et al. 2013a, b). Dispersal abilities

are not well known for our focal species; however,

some studies have defined relationships between

maximum species dispersal distances and home range

size (Bowman et al. 2002; Whitmee and Orme 2013).

Current understanding of wild cat ecology in the

Kerinci Seblat (KS) landscape, and in Sumatra in

general, is mostly limited to the critically endangered

Sumatran tiger (Panthera tigris sumatrae). Several

studies inform on the population status of mesopreda-

tors in Sumatra - clouded leopard (Neofelis diardi

diardi) (Haidir et al. 2018, 2020), Asiatic golden cat

(Catopuma temminckii) and marbled cat (Pardofelis

marmorata) (McCarthy 2013; Pusparini et al. 2014;

Sunarto et al. 2015). However, a recent study by

Struebig et al. (2018), although focused on the

Sumatran tiger, suggested that small-medium sized

felids moving through the Kerinci Seblat landscape

may encounter more interactions with humans than do

tigers, again highlighting the knowledge gap on

species dispersal patterns and meta-population con-

nectivity. Therefore, applying a multi species

approach focused especially on mesopredator species

with diverse body sizes, ranges and habitat require-

ments (Schuette et al. 2013; Lesmeister et al. 2015;

Moreira-Arce et al. 2016) can provide protected area

managers with crucial information to prioritize man-

agement scenarios, leading to better assessments of

particular interventions (Sauer et al. 2013).

Within Southeast Asia, Indonesia is reported to

have lost six million hectares of primary lowland

forest from 2000 to 2012, equivalent to 470,000 ha per

year (Margono et al. 2014). The most recent report on

national deforestation by the Indonesian Ministry of
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Environment and Forestry recorded a loss of

223,000 ha in 2018 (KLHK 2019), with Sumatra

accounting for 25% (59,000 ha) of this loss. In

Sumatra, the Kerinci Seblat (KS) landscape is a

biodiversity stronghold. Within the landscape, an

intact area covering 1.39 million hectares, the Kerinci

Seblat National Park (KSNP) is one of the largest

protected areas in Southeast Asia, but its elongated

shape makes it susceptible to deforestation pressures.

These include complete forest clearance resulting

from smallholder land conversion to agriculture,

which is precipitated by the creation of logging roads

and presence of a large-scale road network that

increases access to remoter forest areas (Linkie et al.

2006; Gaveau et al. 2009; Margono et al. 2014). Thus,

empirically-based detection of important core habitats

and ecological corridors for felid species of conserva-

tion priority in tropical landscapes is urgent (Linkie

et al. 2006).

This study surveyed the main forest habitat types in

the Kerinci Seblat landscape aiming to: (1) spatially

predict habitat use patterns of clouded leopard, Asiatic

golden cat and marbled cat using single-species

occupancy models; (2) model, map and quantify

high-density movement and dispersal corridors for the

three focal species; and, (3) model deforestation risk, a

main driver of habitat loss and fragmentation in KS

landscape, to determine its potential effects on pop-

ulation connectivity of the studied felids.

Methods

Study area

The study area encompasses 16,000 km2 Kerinci

Seblat landscape, which stretches across the west-

central Sumatran section of the Bukit Barisan moun-

tain range that runs the length of the island (Fig. 1).

The landscape consists of 15 districts that are

predominantly covered by Kerinci Seblat National

Park (KSNP) and Batanghari Protection Forest, and

other land-use types: dry agricultures, rubber, coffee,

palm oil, and cocoa plantations, and paddy field across

four provinces: Jambi, West Sumatra, South Sumatra

and Bengkulu. The Kerinci Seblat landscape is listed

as a National Strategic Area under Indonesian

Government Act No. 26/2008 on National Spatial

Planning because of its high environmental and

biodiversity values (MoPWH 2017). The three

national parks of Kerinci Seblat, Bukit Barisan Selatan

and Gunung Leuser form the Tropical Rainforest

Heritage Site, a natural UNESCOWorld Heritage Site

(IUCN) (IUCN 2004).

Camera trap surveys

The camera trap surveys sampled seven study sites

inside and adjacent to KSNP, spanning from the north

to the southern-most extent of the KS landscape:

Kambang (KM), Bungo (BG), Muara Hemat (MH),

Sipurak (SP), Renah Kayu Embun (RKE), Ipuh (IP)

and Karang Panggung (KP) - inside and adjacent to

KSNP (Fig. 1 and Table S1). The four surveys in BG,

SP, RKE and IP aimed at repeating camera trapping

previously undertaken in 2004 and 2010 (see Linkie

et al. 2008; and Wong et al. 2013). These sites cover

the main forest and land-use types of the landscape.

However, camera trap deployments in MH (n = 143

single camera placements), KM (130) and KP (106)

aimed at sampling the forest-farmland interface, using

a strip-shaped camera trap polygon (15–18 km long,

3–5 km wide and spanning 27–32 km2). The distance

between camera trap stations ranged from 0.4 to

0.7 km.

Surveys in BG, SP, RKE and IP covered the same

areas studied by Haidir et al. (2018). A total of 292

camera trap stations, using a combination of Cudde-

back Ambush IR (Non Typical Inc., WI, USA) and

Panthera IV camera trap units (Panthera Foundation,

NY, USA), were set with gaps ranging from 0.8 to

1.4 km, covering a roughly circular area of

60–70 km2. At each trap station, paired cameras were

set except for RKE where only * 75% were in pairs.

Each camera was placed on a pole/tree next to forest

trails at a height of 40–60 cm above the ground, c.a.

2–2.5 m from the centre of the trails. No bait or lure

was applied at trap sites. Two field teams of five to six

personnel, checked the units fortnightly to clean the

cameras and replace memory cards and batteries. In

total, camera polygons covered 18 villages and

represented a mosaic of forest-farmland-forest or

forest-farmland-settlement. All surveys took place

between June 2014 and April 2016 (Table S1).
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Fig. 1 Study areas in Kerinci Seblat landscape, black dots indicate camera trap locations with study area names and district capitals
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Species habitat use

In order to estimate species occupancy (habitat use), a

single species single season occupancy model was

used, based on four main assumptions: (i) occupancy

state is closed, where species occupancy and detection

probability at all sites (camera trap locations)

remained constant over a survey period but may

change between surveys; (ii) sites and replicates are

spatially and temporally independent, where detecting

species of interest at a site is independent of detecting

the species at other sites or during other time intervals,

(iii) site and survey covariates that influence occu-

pancy are quantified and incorporated in the model

calculation, and (iv) factors that influence detection

probability are explained through incorporating site

covariates and survey covariates within the analyses

(MacKenzie et al. 2002), although in this study the (iv)

assumption is considered constant across sites (Linkie

et al. 2007).

Our large-scale spatial study did not consider

certain finer-scale temporal covariates. Camera traps

were active for 24 h/day over several months and all

data were used, so we did not consider either daily

activity budget or date as a covariate. It is possible that

our study animals adjusted their daily activity based on

weather, which for our study area would be rainy or

dry, as the temperature is fairly constant throughout

the year being an equatorial rainforest. However,

reviewing the scientific literature for similar studies,

we decided to follow an occupancy modelling

approach that is typically used studies covering large

spatial scales (Brodie et al. 2015a; Espinosa et al.

2018; Penjor et al. 2019). Therefore, during model

development, we tested eight landscape covariates that

were considered likely to influence the spatial

behaviour of the marbled cat, golden cat and clouded

leopard (McCarthy 2013; Haidir et al. 2018). We

included elevation (elev) and slope (slope) using data

obtained at 30 m resolution from the Shuttle Radar

Topographic Mission (SRTM) (Rabus et al. 2003).We

obtained NDVI (Normalized Difference Vegetation

Index) (vegcov) data using Global Forest Change data

version 1.6 for year 2018. Combination of cloud free

Landsat 8 OLI composite images over the year 2018

was used to generate NDVI as a ratio between the red

and near infrared values. This dataset was first

published in 2013 (version 1.0, see Hansen

et al. 2013) and then updated each year (currently

version 1.7 which provides data from 2000 to 2019).

During the study period, there might have been some

changes in vegetation cover, but these would have

been minor. This dataset was first published in 2013

(version 1.0, see Hansen et al. 2013) and then updated

each year (currently version 1.7 which provides data

from 2000 to 2019). Euclidean distance to forest edge

(fordist) was calculated based on official forest cover

data from BAPLAN (Indonesia Ministry of Environ-

ment and Forestry’s Planning and Mapping Centre),

data obtained from year 2014. Euclidean distances to

villages (vildist), distance to major roads (national and

provincial roads; roadist) and distance to rivers

(rivdist) were calculated based on spatial layers from

BAKOSURTANAL (Indonesia Land Survey and

Mapping Agency) for the year 2018. All layers were

projected to UTM 47 Mercator Southern Hemisphere

Projection and re-sampled to 250 m resolution fol-

lowing Macdonald et al. (2018b) study on clouded

leopard in Borneo.

We used photographic evidence from camera trap

surveys, sorted into two-week sampling occasions

adopting the approach of previous studies by ( Linkie

et al. 2007; Haidir et al. 2018), these detection data

were then converted into detection matrices for four

species: clouded leopard, golden cat, marbled cat and

leopard cat. Detection matrices were developed

through ‘camtrapR’ package in R (Niedballa et al.

2016). However, due to low detection of the leopard

cat (\ 5 photographs), that species was excluded from

the analysis.

For the three focal species: clouded leopard, golden

cat and marbled cat, we applied a single-species,

single-season occupancy approach, psi (ŵ), which

incorporates a function of detection probability

(Mackenzie 2006; Kéry et al. 2013). All variables

were extracted at the camera trap station location and,

before the analysis, these were inspected for collinear-

ity by calculating Pearson’s correlation (Dormann

et al. 2013). From the pair of highly correlated

variables (|r|[0.7; Booth et al. 1994), we excluded

the one with higher AICc value (Akaike’s Information

Criterion corrected for small sample sizes; Burnham

et al. 2002) in a univariate model.

We assembled and tested a set of 10 candidate and

biologically realistic models per species (Table S2).

Expecting a parabolic relationship between occupancy

and elevation, this covariate was tested in its quadratic
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term, while for the others, non-correlated covariates,

we used normal (non-quadratic) relationships (Penjor

et al. 2019). The 10 candidate models were then

compared using the AICc and all models with

DAICc B 4 were averaged using model weights

(Burnham et al. 2002) in the ‘wiqid’ package

(Meredith 2018). We used DAICc B 4 so that we

could consider the influence of a greater number of

models and their covariates for the final species

’model averaging’(see Richards 2005; and Symonds

and Moussalli 2011). To generate predictive maps of

habitat use for each species, we applied the averaged

model coefficients to the raster representing each of

the final model covariates (Rhodes et al. 2009; Banner

and Higgs 2017).

To test the performance of the predicted habitat use

models based on occupancy following Gould et al.

(2019), higher quality data are required, which would

substantially increase the cost of the surveys. Due to

lack of sufficient data, instead we validated the final

models using a Bayesian five-fold cross-validation

with 80% of the data used for training and 20% used

for validation (Petracca et al. 2018; Penjor et al. 2019).

We decided to use Bayesian fivefold, over 10-fold

which has high computational demands. To assess

model accuracy, we calculated the proportion of

expected detection ŷi to observed detection yi. (pro-

portion of true positive and negative observations),

sensitivity (proportion of true positive observations

correctly identified) and specificity (proportion of true

negatives correctly identified).

Landscape connectivity models

Species occupancy modelling generated predicted

probabilities for habitat use that reflect the likelihood

of each cell being used by a focal species (Gould et al.

2019; Penjor et al. 2019). To model landscape

connectivity for each species, we transformed the

habitat use layers into ‘resistance to movement’

values. Mateo-Sánchez et al. (2015) and Zeller et al.

(2012) found that, in the absence of data on movement

behaviour or population genetic structure, which is the

case for our three species in Sumatra, spatial infor-

mation on habitat use can be a useful surrogate for

deriving a resistance to movement layer. Mateo-

Sánchez et al. (2015) and Keeley et al. (2016) showed

that a negative exponential function best describes the

relationship between habitat suitability and resistance

values. Therefore, we transformed habitat use (H) into

resistance (R) ranging from 1 (low landscape resis-

tance to movement) to 100 (high resistance to

movement) using the following equation:

R ¼ ðexp �1� H

C

� �
� 100þ Y ð1Þ

Equation 1 transformation of habitat use layer

(predictive habitat use) into resistance layer, where

R is the resistance (cost) value, H is habitat use

(occupancy, w), C is the factor used to determine the

shape of the curve (0.15), and Y is the value used to

convert minimum resistance to 1 (Y for clouded

leopard = ? 0.67, golden cat = ? 0.42 and marbled

cat - 0.07).

Landscape features such as settlements, water

bodies and roads, likely constituting a barrier to the

movement and dispersal of the three felid species,

were not included in the habitat use model. Therefore,

we ‘burnt in’ these features to the final resistance

layers (reclassifying the pixels). For this, we consid-

ered large water bodies, settlements and major roads to

be impermeable to felid movement and, therefore,

assigned them a resistance of 100. Field observations

have shown that these species can occasionally cross

rivers (Haidir 2016) and, so, major rivers were given a

medium resistance value of 50, unless the base

resistance value was higher, in which case the higher

value was retained.

Landscape connectivity models, which predict

patterns of population connectivity, require animal

source locations, reflecting the actual distribution and

density of the target population (Cushman et al. 2018).

The number of source points corresponding to the

number of individuals in our study area was informed

by the most recent published literature on density

estimates of the three focal species in Southeast Asian

countries. In summary, we generated a total of 206

source locations for clouded leopard (Haidir et al.

2020), 260 for golden cat and 346 for the marbled cat

(Hearn et al. 2016; Rustam et al. 2016; Naing et al.

2017). We then distributed these sets of source points

in the landscape, retaining 2 km minimum distance

between the points, probabilistically to the habitat use

of each species. This was done in three steps: (i) we

first created a uniform random raster with values

between 0 and 1 with identical extent and cell size to

the area of interest; (ii) the random raster was then
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subtracted by the predicted occupancy layer, so that

the positive values of the resulting layers reflect areas

with higher than the random probability of species

occurrence; and lastly; and, (iii) from the positive

values of the resulting layer we randomly selected a set

of cells with minimum gap between the pixels of 3 km

for clouded leopard and 2 km for both golden cat and

marbled cat. The number of the selected cells repre-

senting individuals source locations followed the

estimated number of individuals (see Fig. S1 for

illustration).

To map and quantify core movement areas and

dispersal corridors for each of the focal species we

applied cumulative resistant kernel (Compton et al.

2007) and factorial least-cost path approaches to the

source points and resistance surface layers described

above (Cushman et al. 2009). For both methods, we

used the UNICOR program (Landguth et al. 2012).

The cumulative resistant kernel identifies the main

pattern of synoptic connectivity and core habitat areas

(Kaszta et al. 2018) by predicting the total movement

density across the landscape. This is calculated by

summing all individual least-cost kernels from all

dispersal source points (Compton et al. 2007). The

factorial least-cost path approach complements the

cumulative resistant kernels by defining narrow link-

ages in the landscape where the movement pattern is

constrained. Therefore, the least-cost paths set up with

larger dispersal thresholds can be applied to define

dispersal corridors. The final network of paths is

computed by summing the least-cost paths between all

possible pairs of points (Cushman et al. 2013b).

Therefore, combinations of the factorial least-cost

path and cumulative resistant kernel has the advantage

over other methods, such as circuit theory, by explic-

itly including dispersal thresholds that enable the

method to realistically reflect the limited distances that

can be traversed by real organisms and to explore scale

dependent relationships with varying dispersal ability

(Cushman and Landguth 2012; Cushman et al. 2013b;

Kaszta et al. 2020).

Empirical dispersal abilities of the three felids are

unknown. Therefore, to estimate the dispersal thresh-

olds for connectivity analyses we applied Bowman

equation where dispersal is calculated as 40 9 (home

range size0.5) in highly suitable habitat (Bowman et al.

2002). With the average home range of clouded

leopard varying from 23 to 45 km2, the golden cat

from 33 to 48 km2 and marbled cat from 2 to 29 km2

(Grassman 2004), such estimated dispersal thresholds

vary between 57 and 277 km. Based on these

estimates, and for the purpose of this study, we chose

a lower threshold for cumulative resistant kernels of

125,000 cost units (CU) and an upper threshold of

250,000, reflecting distances of 125 km and 250 km

respectively, in a uniform landscape of resistance

equal to 1 (Hearn et al. 2019; Kaszta et al. 2020). To

model long-distance movement and dispersal, beyond

the extent of locally connected populations, we

defined the threshold to 1,250,000 CU, which is five

times higher than the upper threshold defined for the

cumulative resistance kernels (Kaszta et al. 2019;

Kaszta et al. 2020). This allows prioritization of

linkage areas beyond the dispersal ability of most

individuals, which are important for long-term con-

nectivity of meta-populations (Elliot et al. 2014;

Cushman et al. 2018; Kaszta et al. in press). To better

reflect local gradients of movement density, the final

three least-cost paths density layers (further referred to

as LCP) were smoothed by calculating the focal mean

of a 5 km radius.

To compare the landscape connectivity of the three

felids we calculated Pearson’s correlation and the

averaged absolute difference between the cumulative

resistance kernels layers (across both dispersal thresh-

olds for sensitivity analysis) and between the three

least-cost paths layers.

To identify the areas of high conservation priority

defined by zones of high core areas overlap between

the three felids, we followed three different

approaches. First, we used a threshold to define core

areas of high-density movement for all three felid

species (Cushman et al. 2018; Kaszta et al. 2019;

Kaszta et al. 2020). For that, we selected the value of

the 55th percentile of the cumulative resistant kernel

raster with the lowest maximum value across all three

species (i.e. the golden cat at a dispersal threshold of

250,000 CU and threshold value of 1.64). We reclas-

sified the cumulative resistant kernel rasters into

binary layers (‘0’/‘1’), with areas equal or above the

threshold were reclassified as 1, and below that value

as 0. We then summed up all the binary layers (‘0’/’1’)

representing core areas of each felid to delineate the

inter-species core areas overlap. Second, to avoid the

arbitrary selection of a threshold for defining core

areas, we normalized the values of cumulative resis-

tant kernel surfaces across all species by rescaling the

original cumulative resistance layers to continuous
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values ranging between 0 and 1. We then summed up

the three rescaled layers. The third approach of

calculating core areas overlap across species was

through to multiplying the three rescaled cumulative

resistance kernels layers from the previous steps.

We also identified the most important corridors

predicted to be jointly used by all three species. To

maintain only significant connections, we used the

20th percentile value of the species with the lowest

maximum LCP (i.e. 0.24 for marbled cat) (Cushman

et al. 2018; Kaszta et al. 2020) and converted the LCP

layers into binary layers with 1 assigned to the values

equal or above the threshold. These binary LCPs were

then summed up and overlapped with a layer of the

protected area network to calculate the proportion of

the most important corridors that is legally protected.

To assess how much of the core areas and corridors

are contained within the protected area network in the

study area, we calculated for each species the propor-

tion of the resistant kernels for each species being

officially protected. Lastly, we further calculated for

all three species the proportion of the joined connec-

tivity for all three species (sum and multiplication of

the rescaled resistant kernels layers) that lie within the

protected area network.

Deforestation risk

To estimate rates of deforestation and model forest

loss, we performed a time-series forest cover analysis

using ArcGIS 10.1. The forest cover maps were

obtained from BAPLAN (Indonesia Ministry of

Environment and Forestry’s Planning and Mapping

Centre) between the years 2000 and 2017. We

calculated the extent of forest cover in 2000 as the

landscape baseline and mapped the amount of forest

cleared for the years 2003, 2006, 2009, 2011, 2014 and

2017, to determine the rates and locations of loss.

To model forest loss risk, we created two layers that

depict the historical record of deforestation in the

study area. The first layer was the deforestation data

(binary, deforested = 1; forest = 0) for 2003–2014

that was used to train the deforestation model. The

second layer contained information on deforestation

(also binary) occurring from 2014 to 2017 and was

used to validate the predicted deforestation model. To

sample the landscape, we created 10,000 random

points with a minimum distance of 3 km between each

point to avoid spatial autocorrelation. We used

Moran’s I test in ’spdep’ (Bivand and Wong 2018)

package in R to test for spatial autocorrelation in the

best model’s residuals’. To maintain the proportion

between forested and deforested regions in the study

area (Kaszta et al. 2017), a total of 89 points were

selected from deforested areas and another 717 points

from forested areas (from 2003 to 2014). For consis-

tency, we selected 30 points from deforested areas in

2017 and 688 points from forested areas, in 2017, to

validate the predictive model. All calculations were

performed in R (R Core Team 2017).

To investigate the landscape factors driving defor-

estation, and to predict future forest loss and frag-

mentation patterns, we developed 10 candidate

generalized linear models (GLMs) with a binary

response variable (1: deforested, 0: forest). We used

the same GIS covariate layers as for the small felid

species’ habitat use analysis, testing for collinearity

prior to model inclusion. We, therefore, used the

following non-correlated variables: elevation, slope,

distance from roads, and distance from villages (see

Table 2).

Model parsimony was assessed using AIC cor-

rected for small sample size (AICc). Beta coefficient

values of the final model with the lowest AICc were

used to predict future deforestation risk. Based on the

deforestation model coefficients we generated a pre-

dictive map of probability of deforestation for the

period between 2015 and 2026 by using a percentage

tree cover layer updated by the deforestation from

2003 to 2014.

To assess the predictive strength of the models, we

calculated the area under the ROC curve (AUC),

sensitivity and specificity by comparing the observed

values (deforested areas in 2017) with predicted

deforestation values (generated from the best defor-

estation model using data from 2003 to 2014).

To assess which core habitats of the three focal

felids might be most affected by future deforestation

risk, we summed the probability of deforestation

within core habitats of each species and in the areas of

high core areas and corridors overlap amongst the

three cats. We then compared these values to the

deforestation probability predicted for the entire study

area. The same procedure was applied to calculate the

percentage of deforestation predicted to occur in the

protected area network.
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The whole processes and workflow that indicate

steps taken in this study starting from field data

collection to final results are visually shown in Fig. 2.

Results

Focal species habitat use

From the 55,856 combined camera trap nights

recorded, there were 211 clouded leopard detections,

137 golden cat detections and 50 marbled cat detec-

tions. The model-averaged (ŵ) estimate with the

highest density interval (HDI) was 0.18 (0.12–0.27)

for clouded leopard, 0.29 (0.19–0.42) for golden cat

and 0.21 (0.06–0.36) for marbled cat with top

candidate models of respective species presented in

Table 1. The southwest quadrant (Ipuh) had the

highest predicted habitat use for all species at ŵ [
0.50, followed by BG, SP, RKE and MH at ŵ* 0.40,

and BG and KM (ŵ * 0.30), with Batanghari (north-

eastern) at ŵ * 0.57.

Clouded leopard habitat-use was found to be

explained by two top models within DAICc B 4

(Table S2) that included elevation, slope, distance to

villages, vegetation cover, tree cover and distance to

forest edge (Table 1). Our results showed that the

species responded negatively to higher elevation and

positively to the increased tree cover and vegetation

cover. Higher distances to both forest edge and

villages were also found to have a strong positive

impact on clouded leopard habitat use.

Golden cat habitat use was explained by seven

plausible models (DAICc B 4, Table S2) and the

averaged model showed a significant negative rela-

tionship with elevation (Table 1). This species was

found to prefer areas closer to the forest edge and with

gentler slopes.

Marbled cat habitat use was explained by six

plausible models (Table S2) and the averaged model

(DAICc B 4, Table 1) revealed a negative species

response to higher elevation and a positive response to

slope, distance to villages and forest edge, vegetation

cover and tree cover.

Model validation indicated that model accuracy for

each species was above 0.75 (95%CRI 0.73–0.91) and

the AUC above 0.66. The specificity values varied

from 0.86–0.94 and sensitivity from 0.10 to 0.28

(Table S3).

Populations connectivity: core areas and dispersal

corridors

The overlap for all three species is shown in Fig. 3,

while the cumulative resistant kernels layers for the

tested dispersal threshold of 125 kCU and 250 kCU,

as well as LCP (corridors) layers for clouded leopard,

golden cat and marbled cat, are presented in Fig. S1.

The total value of connectivity (sum of kernel

density pixels) for both dispersal thresholds was

higher for golden cat and double that of clouded

leopard, with the marbled cat having the lowest total

predicted density of movement (Table 2). The mean

value of kernel density was also highest for the golden

cat (2.8 and 1.8 for dispersal thresholds 125 kCU and

250 kCU, respectively) and lowest for the marbled cat

(1.4 and 0.7; Table S4).

The sensitivity analysis between the two tested

dispersal thresholds showed a high correlation

between cumulative resistant kernels (r � 0.94) and

the averaged absolute difference was low (AAD \
0.75), indicating that the resistant kernels correspond

to each other well in the two thresholds (Table S5).

The individual population connectivity patterns of

the three species showed that generally clouded

leopard and golden cat had substantially larger core

areas in comparison to marbled cat, despite the

dispersal threshold (Fig. S1). A binary core areas

map, based on 55th percentile threshold applied over

the resistant kernels at lower dispersal threshold of

125 k CU, showed that clouded leopard had one

predominant core area (4000 km2) and several smaller

core habitats (\ 1000 km2; Fig. 3). Golden cat core

areas were substantially larger with two main cores

(8500 km2 and 3400 km2) and several smaller core

habitats (\ 1500 km2). Marbled cat, with the smallest

and most fragmented core areas amongst the three

cats, was predicted to have one larger core area

(1500 km2), with several much smaller cores

(50–300 km2) all distributed far ([ 20 km) from each

other. LCPs of the three felids revealed that all these

core areas are potentially still connected by long-

distance dispersal corridors, but some of those link-

ages are weak, especially for the marbled cat (Fig. 3

and Fig. S1). Clouded leopard corridors were the

strongest of those predicted amongst the three species.
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Patterns of connectivity and species overlap

The AAD between kernel density surfaces (Table S5)

was generally small across all species and both

dispersal thresholds (AAD\ 2). However, the largest

difference between kernel densities reflect by high

AAD and low correlation was found between kernel

densities of marbled cat and golden cat (AAD = 1.92

and 1.33, r = 0.29 and 0.37 for dispersal thresholds

125 kCU and 250 kCU, respectively; Table S5). The

lowest difference in connectivity patterns, as shown by

the lowest AAD and highest correlation between

kernel densities, was found between the clouded

leopard and marbled cat (AAD = 0.69 and 0.45,

r = 0.72 and 0.76 for dispersal thresholds 125 kCU

and 250 kCU, respectively). Dispersal corridors

(LCPs) showed much lower correlation (\ 0.03) and

higher AAD (6.6–17.7) than kernel density layers

(Table S6). However, similarly to kernel density

surfaces the highest correlation and smallest AADwas

reported between the clouded leopard and marbled cat

(AAD = 6.64, r = 0.03) and the highest difference

was found between golden cat and marbled cat

(AAD = 17.75, r = 0.03).

bFig. 2 Workflow of the whole process in defining core areas

and corridors from occupancy approach

Table 1 Standardized

coefficient (b) for predicted
habitat use of clouded

leopard, golden cat, and

marbled cat based on the

top ranked and averaged

occupancy models

b coefficient SE Low CI Upp CI

Clouded leopard

Intercept - 3.357 0.503 - 4.343 - 2.371

Elevation 1.497 0.241 1.025 1.969

Elevation2 - 0.200 0.087 - 0.371 - 0.030

Slope 0.485 0.149 0.194 0.777

Distance to villages 0.127 0.093 - 0.055 0.309

Distance to forest 0.036 0.048 - 0.058 0.129

NDVI 0.465 0.201 0.071 0.859

Percent tree cover 4.106 0.968 2.209 6.003

p intercept - 1.975 0.081 - 2.133 - 1.817

Golden cat

Intercept - 0.577 0.218 - 1.004 - 0.149

Elevation 1.267 0.225 0.827 1.708

Elevation2 - 0.507 0.127 - 0.757 - 0.257

Slope - 0.046 0.050 - 0.144 0.053

Distance to villages 0.088 0.083 - 0.075 0.251

Distance to forest - 0.002 0.040 - 0.080 0.077

NDVI 0.220 0.121 - 0.017 0.457

Tree cover 0.004 0.018 - 0.032 0.039

p Intercept - 2.798 0.134 - 3.062 - 2.535

Marbled cat

Intercept - 1.659 0.441 - 2.523 - 0.794

Elevation 0.383 0.184 0.023 0.743

Elevation2 - 0.112 0.106 - 0.320 0.097

Slope 0.143 0.098 - 0.050 0.336

Distance to villages 0.429 0.146 0.142 0.716

Distance to forest 0.302 0.161 - 0.013 0.617

NDVI 0.196 0.117 - 0.034 0.426

Percent tree cover 0.216 0.157 - 0.091 0.523

p Intercept - 3.490 0.348 - 4.173 - 2.807
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The analysis of spatial overlap between the core

areas defined by the threshold of 55th percentile

revealed that 7–11% (approximately 1250–1650 km2,

depending on the tested dispersal thresholds) of the

total core areas were potentially utilized by all three

species (Fig. 3). These habitats were mostly (88%)

located inside the protected area network. Core habitat

overlap of two species only was much larger and

Fig. 3 Predicted species occupancy (top), resistance layer

(middle), and core areas and corridors (bottom). First row

indicates species-wise occupancy values from low (blue) to high

(red) for clouded leopard (a), golden cat (b) and marbled cat (c).
Second row is landscape resistance, same respective species,

with darker colour indicating lower resistance. The third row is

predicted core areas and corridors from low density (blue) to

high (red), both core areas and corridors are based on a lower

dispersal threshold of 125 k cost units for the three species
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represents 18–22% of all core areas. However, only

30–44% (depending on the dispersal threshold) of this

habitat was inside the protected area network. The

majority of the core areas (71% for both dispersal

thresholds) were inhabited by only one species and

approximately 21% of it was located in the protected

area network (Fig. 3). The core areas defined by the

binary overlap of all three species covered 4924 km2,

with the majority (54%) of all three species core areas

encompassed inside Kerinci Seblat National Park. The

remaining 46% of the three species overlapped located

outside KSNP was found to lie within Batanghari

Protection Forest (north-eastern of the landscape;

23%), along the border in the western KSNP 15%, in

south-western KSNP (further from KSNP forest,

[ 10 km) 6%, and the remaining (2%) were scattered

in forested areas in the north western of the landscape.

The sum and multiplication of rescaled resistant

kernel layers of the three felids indicated similar areas

of the highest importance for joint conservation of the

three felids, when comparing to the results of binary

core areas overlap (Fig. 3). The proportion of the total

value of the summed-up kernel density layers within

the protected area network was 41–42%, depending on

the dispersal threshold. The proportion of the multi-

plied kernel density layers, indicating the potential

presence of all three species, being located within the

protected area network, was 87–94%.

Overlap in dispersal corridors (LCPs) revealed that

only 10% of predicted corridors were used in common

by all three felid species, and 68% of all corridors,

whether shared or not, lay within the protected area

network (Fig. 3) and 46% of these two-species

corridors were within the protected area network..

The single species corridors represented the vast

majority of the corridors network (63%), with 32% of

these single-species corridors lay within the protected

area network (Fig. 3).

Deforestation risk

The most parsimonious deforestation model showed

high accuracy in its predictive power (AUC = 0.80;

Table S7) and model validation indicated that the

model had a sensitivity of 0.11 and specificity of 0.97

(using threshold of 0.5). The final deforestation model

was not affected by spatial autocorrelation (Moran’s

I = 0.17, p[ 0.06).

The top model, which ranked much higher than the

second top model (DAICc = 8.1; Table S7), included

four of the five tested variables: elevation, slope,

distance from roads and distance from villages

(Table 1). The model predicted a lower probability

of deforestation in areas that were higher elevation, of

steeper slope and greater distance to roads and villages

(Fig. 4).

The deforestation risk model predicted that

1052 km2 of the landscape was at risk of clearance

with 32% of the total deforestation probability

predicted to occur within protected areas (Fig. 5).

The layer of future deforestation risk predicted that

approximately 4% of the total deforestation will occur

within both the clouded leopard and golden cat core

habitats and, 1.6–2.8% within marbled cat core areas

(calculations were based on the binary core areas and

for two dispersal thresholds; Table S8). Furthermore,

2.7–3.7% of the total predicted deforestation will

affect the joint core areas and 4.5% was predicted to

occur within corridors jointly utilized by the three

species. Additionally, 5–6% of the deforestation was

predicted to affect core areas and 5% to occur in

corridors jointly utilized by two felids (Fig. 5;

Table S8).

Discussion

This study presents a quantitative framework to assess

landscape connectivity for populations of small- and

Table 2 Standardized

coefficients (b) for the final

deforestation model with

the lowest AICc

Variable Standardized b-coefficient Standard error p-value

Elevation - 2.6101 0.2455 \ 0.001

Slope - 1.2439 0.2528 \ 0.001

Distance to roads - 1.1001 0.2813 \ 0.001

Distance to villages - 0.6040 0.2009 \ 0.005

Elevation - 2.6101 0.2455 \ 0.001
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medium-size felid species, and the effects of future

habitat loss, in Sumatra. However, the methodology

proposed here can also be applied to other areas and

other species, and can ultimately assist efficient

management of practical, on-the-ground and multi-

species conservation efforts. Based on an extensive

camera trap surveys we identified habitat use and

landscape connectivity for populations of clouded

leopard, golden cat and marbled cat. We identified the

most important core habitats and dispersal corridors

for each of them, as well as key habitats for joint

conservation of these felids. Using six intervals (data

from year 2000 as baseline: 2003, 2006, 2009, 2012,

2015, and 2017) to sample the deforestation through-

out the 17 years’ overall (2000–2017) period of

deforestation data, we have also modelled the prob-

ability of future deforestation risk as a major threat to

these species in the landscape. Hence, we detected key

habitats, the loss of which might, in the longer-term,

affect the stability not only of populations of the three

felids but also of other species ecologically linked to

them.

Focal species habitat use

All three felids showed a significant and non-linear

relationship with increasing elevation, avoiding low-

land areas but also disfavouring high altitude areas.

Similar findings were reported by McCarthy et al.

(2015) on golden cat, and Sunarto et al. (2015) for all

three species in Sumatra, and Hearn et al. (2018) for

clouded leopard and marbled cat in Borneo.

The results of our occupancy models support

several assessments of Southeast Asian small- and

medium-sized wild cats that indicate the sensitivity of

these cats to habitat disturbances (Rayan and Moha-

mad 2009; Sunarto et al. 2015; Brodie et al. 2015b;

Granados et al. 2016). In line with findings of previous

Fig. 4 Core areas and dispersal corridors overlap between the three felids for dispersal threshold of 125 k cost units (a), and prediction
map of future probability of deforestation (b)
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studies (Brodie et al. 2015a; Tan et al. 2017;

Macdonald et al. 2018a; Penjor et al. 2018; Hearn

et al. 2019; Haidir et al. 2020), our analysis revealed

that predicted habitat use for all three felids is confined

to densely forested areas and further from human

disturbances. Similarly, golden cat and marbled cat,

although found to be less sensitive to forest cover

changes, and not specifically confined to old-growth

forest, were highly associated with areas that have

increased tree/canopy cover, including agroforestry

land, forest plantations and selectively logged forest

(Wearn et al. 2013; McCarthy et al. 2015).

Population connectivity

The connectivity analysis revealed that the golden cat

population in our landscape was the most connected of

the three felid species, with large and strong core areas

representing meta-population strongholds, linked by a

diffused network of dispersal corridors (Fig. 4). The

largest golden cat core habitat stretches across the

western KSNP, with more than half of it being located

outside of the park boundary. The second core area

covers Batanghari Protection Forest. These two main

core areas are connected through a network of

corridors that are partially located in the northern

KSNP.

The clouded leopard population, although predicted

to be much less connected than that of the golden cat,

was also predicted to have two well-defined and

relatively robust core population strongholds (Fig. 3).

The largest one was located almost entirely inside

KSNP and the other in the Batanghari Protection

Forest. They are linked by a network of dispersal

corridors in northern KSNP, with the strongest (high-

est LCP values) corridor overlapping one of the golden

cat’s dispersal corridors, highlighting its high impor-

tance for conservation.

Clouded leopard landscape connectivity patterns

were spatially and quantitatively most similar to those

Fig. 5 Multi-species connectivity. Core areas overlap for the

three species for dispersal threshold 125 k CU (panels a, b and

c) and 250 k (panels d, e and f). Overlap of the binary core areas
defined by a resistant kernels threshold value (panels a and d),

sum of the 0–1 rescaled resistant kernels for the three species

(panels b and e), multiplication of the 0–1 rescaled resistant

kernels (panels c and f)
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of the marbled cat. The main marbled cat core area,

located in central KSNP, although much smaller than

that of the clouded leopard, overlapped with the

largest core area of the latter (Fig. 3). Our analysis

predicted the marbled cat population to be the least

connected amongst the three species, with small

patchy core habitats, which makes this species the

most susceptible to landscape disturbance.

Conservation effectiveness and future habitat loss

Our results showed that large parts of predicted core

areas are inside state forests but some are not legally

protected by any of the protection categories defined

by the IUCN, from 12% of the core habitats jointly

utilized by the three felids, up to 70% used by only two

species, and 79% used exclusively by one of the

species. This is similar for dispersal corridors, where

47% of corridors are jointly suitable for the three

species, 54% of corridors jointly suitable for two

species, and 68% of corridors used by only one of the

species, are located outside of the protected area

network. The analysis of overlap for core areas and

corridors identified areas of high conservation impor-

tance where core habitats of all three species over-

lap—one of them is central KSNP and the second is

Batanghari Protection Forest.

Batanghari Protection Forest and its surrounding

area also have a resident population of Sumatran tigers

(Dinata 2008). It is partly categorized under Indone-

sian law as ‘limited production forest’ and watershed

protection forest. However, the protection status of

this area is not recognized by the IUCN classification

scheme and, in practice, this status and limited

conservation attention have resulted in forest clear-

ance and the development of a local road network

(Sloan et al. 2019), which impacts the predicted core

habitats and corridors. The area between KSNP and

Batanghari was identified in our analysis as a network

of key corridors used by all three felid species and

connecting the most important core habitats. We

recommend, for future infrastructure development in

this area, the implementation of strategic environ-

mental assessments be conducted that take into

account the importance of this key area for population

connectivity of the three species.

Our deforestation risk model indicated that areas of

lower elevation and gentler slope, located close to

roads and villages were most susceptible to

deforestation. This trend is similar to findings from

deforestation modelling in Borneo (Cushman et al.

2017). Most importantly, our model showed that, over

the 10 years covered by our predictions, 335 km2

(equivalent to* 2% of the overall landscape) of high

deforestation risk in the 16,000 km2 Kerinci Seblat

landscape is predicted to take place within protected

areas, although the areas of the highest probability of

deforestation are mostly located outside the protected

areas network. Furthermore, up to 10% of the

predicted deforestation may occur within core habitats

and up to 5% of the deforestation is likely to be in the

dispersal corridors utilized by the three or two felid

species, which are the areas of the highest conserva-

tion priority.

Scope and limitations

The validation of the occupancy models showed high

accuracy and high AUC and specificity values.

However, the sensitivity of these models was low,

indicating the good ability of our models to predict

non-occurrence of the three species but relatively low

capacity to predict their presence. This is most

probably due to the low detectability rate of these

three rare felids during our surveys, with marbled cat

probability of detection being the lowest. The low

detectability might constitute a potential limitation to

the habitat use predictions made by our models, and

further surveys with increased trapping effort and

improved sampling design should be carried out in the

Kerinci Seblat landscape.

Management implications

The current status of the Kerinci Seblat landscape as

one of 73 National Strategic Areas of importance to

regional sustainability should promote the integration

of a landscape-based development approach for wild-

life conservation (MoPWH 2017). The role of rem-

nant forests adjacent to KSNP in facilitating

population connectivity shows the need for such an

approach in maintaining viable populations of small-

and medium-sized felid species. Our multi-species

models offer suggestions on further designation of

core areas and both physical and functional corridors

within the national park and other protected area

management units. The results and maps produced in

this study provide information for national park
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managers in identifying priority areas for conserva-

tion, i.e. forest patrols and other support to areas that

are likely used for felid movement. The KSNP

authority, as the main government institution, is the

epicentre of future collaborations with local govern-

ment agencies and stakeholders in managing the

landscape.

Although, a relatively large portion of the predicted

small-and medium-sized cat dispersal corridors and

some of the most important core habitats, are located

in the protected area network, this conservation status

does not guarantee prevention of deforestation risks.

The majority of the remaining forest is currently

within the protected area network (67%) and an

additional * 30% is within state-owned forest areas,

therefore relatively little additional forest remains

outside of the protected forest network. Consequently,

our deforestation risk model predicts that one third of

the predicted deforestation may occur within the

boundaries of the protected area network. Poor et al.

(2019) found that the role of protected areas in

effectively curbing deforestation should be strength-

ened, although protected areas in Sumatra already

have the advantage of practical protection afforded by

its location at rather high elevation typified by rugged

slopes that discourage deforestation through the

expense of access.

With the current pace of infrastructure develop-

ment, managers of conservation areas face two

substantial challenges in (1) mitigating the impacts

of accelerated deforestation rates in central Sumatra;

and, (2) ensuring national policies and conservation

programs are well-communicated and integrated into

provincial and district government plans (Poor et al.

2019; Sloan et al. 2019). In the meantime, national

government restrictions on new road developments

and/or expansion of existing roads that transect

national park forests, e.g. those listed in the UNESCO

Tropical Rainforest Heritage of Sumatra sites (GoRI

2019), should be well-communicated to the local

authorities and stakeholders.

We propose that both the results and methodolog-

ical framework of this study serve as a guideline for

future development planning to achieve a smart and

scientifically-guided compromise between develop-

ment and wildlife conservation goals (Rayan and

Linkie 2015). The methodology applied here, and our

results, may be transferable to identify connectivity

corridors for other sensitive species of concern and/or

other areas where major infrastructure developments

are taking place (MoPWH 2017), e.g. where the trans-

Sumatra highway and major road upgrade projects are

being planned or have already begun (CMoEA 2011).
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Zeller KA, Quigley H (2018) Robust inference on large-

scale species habitat use with interview data: The status of

jaguars outside protected areas in Central America. J Appl

Ecol 55:723–734. https://doi.org/10.1111/1365-2664.

12972

Poor EE, Frimpong E, Imron MA, Kelly MJ (2019) Protected

area effectiveness in a sea of palm oil: a Sumatran

case&nbsp;study. Biol Conserv 234:123–130

Pusparini W, WIbisono HT, Reddy GV, TarmIzi, Bharata P

(2014) Small and medium sized cats in Gunung Leuser

National Park, Sumatra,&nbsp;Indonesi. CatNews 8:6

R Core Team (2017) R: a language and environment for sta-

tistical computing. R Foundation for Statistical Comput-

ing, Vienna

Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar

topography mission—a new class of digital elevation

models acquired by spaceborne radar. ISPRS J Pho-

togramm Remote Sens 57:241–262

Rayan DM,Mohamad SW (2009) The importance of selectively

logged forests for tiger Panthera tigris conservation: a

population density estimate in&nbsp;Peninsular Malaysia.

Oryx 43:48–51

Rhodes JR, McAlpine CA, Zuur AF, Smith GM, Ieno EN (2009)

GLMM applied on the spatial distribution of koalas in a

fragmented landscape. In: Zuur AF, Ieno EN, Walker N,

Saveliev AA, Smith GM (eds) Mixed effects models and

extensions in ecology with R. Springer, New York,

pp 469–492

Richards SA (2005) Testing ecological theory using the infor-

mation-theoretic approach&nbsp;examples cautionary

results. Ecology 86:2805–2814

Rustam R, Hearn A, Ross J, Alfred R, Samejima H, Heydon M,

Cheyne S, Brodie J, Giordano A, Bernard H, Boonratana R,

Loken B, Mohamed A, Mohd-Azlan J, Augeri D, Eaton J,

Hon J, Marshall A, Mathai J, Wilting A (2016) Predicted

distribution of the marbled cat Pardofelis marmorata

(Mammalia: Carnivora: Felidae) on Borneo. Raffles Bull

Zool 33:157

Sauer JR, Blank PJ, Zipkin EF, Fallon JE, Fallon FW (2013)

Using multi-species occupancy models in structured deci-

sion making on managed lands. J Wildl Manage

77:117–127

Schuette P,Wagner AP,WagnerME, Creel S (2013) Occupancy

patterns and niche partitioning within a diverse carnivore

community exposed to anthropogenic pressures. Biol

Conserv 158:301–312

Sloan S, Alamgir M, Campbell MJ, Setyawati T, Laurance WF

(2019) Development corridors and remnant-forest conser-

vation in Sumatra, Indonesia. Trop Conserv Sci. https://doi.

org/10.1177/1940082919889509

Smith JLD (1993) The role of dispersal in structuring the

Chitwan tiger population. Behaviour 124:165–195

Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S,

Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP

(2007) Putting the ‘landscape’ in landscape genetics.

Heredity 98:128–142

Struebig MJ, Linkie M, Deere NJ, Martyr DJ, Millyanawati B,

Faulkner SC, Le Comber SC, Mangunjaya FM, Leader-

Williams N, McKay JE, St. John FAV (2018) Addressing

human-tiger conflict using socio-ecological information on

tolerance and risk. Nat Commun 9:3455

Sunarto S, Kelly MJ, Parakkasi K, Hutajulu MB (2015) Cat

coexistence in central Sumatra: ecological characteristics,

spatial and temporal overlap, and implications for man-

agement. J Zool 296:104–114

Sunquist M, Sunquist F (2019) Ecological constraints on pre-

dation by large felids. Cornell University Press, Ithaca,

pp 283–301

Symonds M, Moussalli A (2011) A brief guide to model

selection, multimodel inference and model averaging in

behavioural ecology using AkaikeTMs&nbsp;information

criterion. Behav Ecol Sociobiol 65:13–21

Tan CKW, Rocha DG, Clements GR, Brenes-Mora E, Hedges

L, Kawanishi K, Mohamad SW, Rayan MD, Bolongon G,

Moore J, Wadey J, Campos-Arceiz A, Macdonald DW

(2017) Habitat use and predicted range for the mainland

clouded leopard Neofelis nebulosa in Peninsular Malaysia.

Biol Conserv 206:65–74

Thapa K, Manandhar S, Bista M, Shakya J, Sah G, Dhakal M,

Sharma N, Llewellyn B, Wultsch C, Waits LP, Kelly MJ,

Hero J-M, Hughes J, Karmacharya D (2018) Assessment of

genetic diversity, population structure, and gene flow of

tigers (Panthera tigris tigris) across Nepal’s Terai Arc

Landscape. PLoS ONE 13:e0193495

Wearn OR, Rowcliffe JM, Carbone C, Bernard H, Ewers RM

(2013) Assessing the status of wild felids in a highly-dis-

turbed commercial forest reserve in Borneo and the

implications for camera trap survey design. PLoS ONE.

https://doi.org/10.1371/journal.pone.0077598

Whitmee S, Orme CDL (2013) Predicting dispersal distance in

mammals: a trait-based approach. J Anim Ecol 82:211–221

Wikramanayake E, Dinerstein E, Seidensticker J, Lumpkin S,

Pandav B, Shrestha M, Mishra H, Ballou J, Johnsingh AJT,

Chestin I, Sunarto Thinley P, Thapa K, Jiang G,

Elagupillay S, Kafley H, Pradhan NMB, Jigme K, Teak S,

Cutter P, Aziz MA, Than U (2011) A landscape-based

123

494 Landscape Ecol (2021) 36:475–495

https://doi.org/10.1017/S0030605317001260
https://doi.org/10.1111/1365-2664.12972
https://doi.org/10.1111/1365-2664.12972
https://doi.org/10.1177/1940082919889509
https://doi.org/10.1177/1940082919889509
https://doi.org/10.1371/journal.pone.0077598


conservation strategy to double the wild tiger population.

Conserv Lett 4:219–227

Wong W-M, Leader-Williams N, Linkie M (2013) Quantifying

changes in sun bear distribution and their forest habitat

in&nbsp;Sumatra. Anim Conserv 16:216–223

Zeller KA, McGarigal K, Whiteley AR (2012) Estimating

landscape resistance to movement:&nbsp;a review. Landsc

Ecol 27:777

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Landscape Ecol (2021) 36:475–495 495


	Felids, forest and farmland: identifying high priority conservation areas in Sumatra
	Abstract
	Context
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study area
	Camera trap surveys
	Species habitat use
	Landscape connectivity models
	Deforestation risk

	Results
	Focal species habitat use
	Populations connectivity: core areas and dispersal corridors
	Patterns of connectivity and species overlap
	Deforestation risk

	Discussion
	Focal species habitat use
	Population connectivity
	Conservation effectiveness and future habitat loss
	Scope and limitations
	Management implications

	Acknowledgements
	References




