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Abstract

Context Several initiatives seek to increase the pace

and scale of dry forest restoration and fuels reduction

to enhance forest resilience to wildfire and other

stressors while improving the quality and reliability of

key ecosystem services. Ecological effects models are

increasingly used to prioritize these efforts at the

landscape-scale based on simulated treatment

outcomes.

Objectives Treatments are often simulated using

uniform post-treatment target conditions or propor-

tional changes to baseline forest structure variables,

but do not account for the common objective of

restoration to mimic the complex forest structure that

was present historically which is thought to provide an

example of structural conditions that contributed to

ecosystem diversity and resilience.

Methods We simulate spatially homogenous fire

hazard reduction treatments along with heterogeneous

restoration treatments in dry conifer forests to inves-

tigate how spatial complexity affects ecological

indicators of (1) forest structural heterogeneity, (2)

forest and watershed vulnerability to high-severity

fire, and (3) feasibility of future prescribed fire use.

Results Our results suggest that spatially explicit

restoration treatments should produce similar wildfire

and prescribed fire outcomes as homogeneous fuels

reduction treatments, but with greater forest structural

heterogeneity. The lack of strong tradeoffs between

ecological objectives suggests the primary benefit of

spatially complex treatments is to increase forest
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structural heterogeneity which may promote

biodiversity.

Conclusions We show that landscape-scale prioriti-

zation to maximize ecological benefits can change

when spatially complex restoration treatments are

modeled. Coupling landscape-scale management sim-

ulations and ecological effects models offers flexible

decision support for conservation assessment, priori-

tization, and planning.

Keywords Spatial heterogeneity � Wildfire risk �
Conservation planning optimization � Forest
restoration � Ecological effects models

Introduction

Restoration is a top management priority for dry

forests in the western U.S. due to widespread threats

from wildfire, insects, and drought that challenge

forest resilience, and because of shifting social

expectations that place higher value on the quantity,

quality, and reliability of non-timber ecosystem ser-

vices. Changes in land use over the past century,

including logging, grazing, and fire suppression, have

led to high tree density in many dry conifer forests

(Allen et al. 2002). Many forests of the western US are

experiencing uncharacteristic wildfires, leading to

negative ecological and social consequences (Wester-

ling et al. 2006; Fornwalt et al. 2016). Forest

restoration and fuels reduction treatments that alter

forest structure and composition (e.g., thinning or

prescribed fire) are often implemented to increase

forest resilience to wildfire, insects, and anticipated

future climate (Agee and Skinner 2005; Fulé et al.

2012; Negrón-Juárez et al. 2014; Strahan et al. 2016).

Several federal initiatives support forest restoration

on public and private lands through focused invest-

ments in at-risk landscapes such as the Collaborative

Forest Landscape Restoration Program (CFLRP;

Schultz et al. 2012), Joint Chiefs’ Landscape Restora-

tion Partnership (JCLRP; Cyphers and Schultz 2019),

and the Regional Conservation Partnership Program

(RCPP; Villar and Seidl 2014). These programs all

have a common goal to improve outcomes for

ecological goals that transcend ownership boundaries,

such as water and air quality, wildlife habitat, and

ecosystem resilience to disturbance. They also aim to

increase the pace and scale of forest restoration and

fuels reduction to achieve meaningful outcomes at the

landscape-scale. This raises the need for tools to

evaluate and prioritize opportunities based on current

conditions and to monitor and report on program

accomplishments (Bestelmeyer et al. 2010; Schultz

et al. 2012).

Notable advancements in landscape assessment and

prioritization have been made in the field of wildfire

risk assessment, which has adopted flexible, quantita-

tive frameworks for estimating potential wildfire risks

to critical resources and infrastructure, terrestrial and

aquatic habitat, and timber (Ager et al. 2013; Thomp-

son et al. 2013a). Other studies have extended the risk

assessment framework to estimate the avoided

impacts from fuel treatment in terms of post-fire

erosion and sedimentation, smoke production, and

avian richness, among others (Stevens et al. 2016;

Jones et al. 2017; Gannon et al. 2019). These studies

often emphasize effects on landscape-scale processes

(e.g., fire, erosion, wildlife habitat) that depend on

treatment extent, placement, spatial configuration, and

type (Ager et al. 2013; Stevens et al. 2016; Jones et al.

2017; Gannon et al. 2019). A goal of many conser-

vation programs is to quantify the impact of invest-

ments in conservation efforts on a broad suite of

natural resources and consider the effects of spatial

scale and landscape context (Bestelmeyer et al. 2010;

Briske 2011; Cannon et al. 2019; Metz and Rewa

2019). Landscape-scale simulation studies can guide

prioritization, design and placement of conservation

treatments within large planning areas, and provide

information on potential ecological effects and trade-

offs (Bestelmeyer et al. 2010; Briske 2011; Thompson

et al. 2013a; Jones et al. 2017; Gannon et al. 2019;

Cannon et al. 2019).

Along with objectives to reduce the consequences

of wildfire, many restoration treatments in dry conifer

forests focus on diversifying forest structure, compo-

sition, and age classes to increase landscape resilience

to disturbance. High levels of structural heterogeneity,

a hallmark of many fire-frequent pine forests including

those dominated by Pinus ponderosa (Lawson & C.

Lawson), P. palustris (Mill.), and P. resinosa (Aiton),

drives many aspects of forest dynamics, diversity, and

resource availability (Platt and Rathburn 1993; Peck

et al. 2012; Matonis and Binkley 2016). Guidelines for

restoration of ponderosa pine-dominated forests, for

example, emphasize restoration of variability in forest
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structure including increasing horizontal spatial com-

plexity at both fine and coarse scales (Reynolds et al.

2013; Addington et al. 2018). Maintaining high

structural variability with mechanical treatments can

be relatively challenging, and outcomes can range

from heterogeneous to homogeneous depending on

implementation methods (Maher et al. 2019), initial

conditions (Ziegler et al. 2017), and logistical con-

straints (Cannon et al. 2018). However, studies of

treatment effects on landscape-scale wildfire risk and

other ecosystem characteristics typically simulate fuel

treatments with post-treatment target conditions (e.g.,

Thompson et al. 2013b; Stevens et al. 2016), or

proportional changes in fuel structure (Jones et al.

2017; Gannon et al. 2019) to mimic completed,

planned, or hypothetical fuel mitigation treatments

without explicitly capturing spatial goals. Incorporat-

ing spatially complex treatment patterns is important

as it impacts fire intensity and effects (Cochrane et al.

2012), diversity of herbaceous communities (Matonis

and Binkley 2016), resource availability and succes-

sional trajectories (Sanchez Meador et al. 2009), and

wildlife habitat quality (Reynolds et al. 2013).

In addition to aims to reduce fire hazard and

enhance landscape heterogeneity, conservation prac-

tices in dry conifer forests can emphasize decreasing

the potential for post-fire erosion (Jones et al. 2017;

Gannon et al. 2019). Post-fire erosion is of particular

concern in watersheds that serve large population

centers and have soils with high erosion susceptibility

(Moody and Martin 2001; Graham 2003).

Design of forest conservation practices in pon-

derosa pine forests can vary dramatically, depending

on whether the focus is reducing crown fire potential

or restoring forest structure to within the historical

range of variability. Hazardous fuels reduction treat-

ments favor removal of small diameter ladder fuels

and retention of large trees of fire resistant species to

decrease crown fire potential and increase the odds of

residual tree survivorship in future fires (Agee and

Skinner 2005; Fulé et al. 2012; Ziegler et al. 2017).

Landscape-scale prioritization and effects assess-

ments may be improved by addressing these additional

goals of restoration. However, uncertainties remain

regarding the extent to which purported benefits of

various conservation approaches may differ when

spatial complexities of restoration treatments and

benefits are explicitly incorporated. Here we demon-

strate a framework for dry forests to (a) simulate forest

restoration, (b) assess how ecological effects of

restoration vary spatially, and (c) compare the effects

of two conservation practice scenarios. As an exam-

ple, we present an analysis of ecological effects on

multiple natural resources in the Upper South Platte

Watershed of Colorado (Fig. 1) in response to two

variations on forest thinning and fuels reduction: one

that simulates proportional reduction in fuels, and a

second that incorporates objectives to restore histor-

ical variation in forest structure. We also map

ecological outcomes and a composite outcome metric

to examine the effects of multiple conservation

practice scenarios for prioritization.

Methods

Study area

To inform landscape-scale conservation decisions, we

used catchments (small watersheds) from the medium

resolution National Hydrography Dataset Plus

(NHDPlus v2; USEPA and USGS 2012) as the

primary analysis units. A total of 1010 catchments

fall within the Upper South Platte Watershed (USP).

We included catchments in the analysis if they were

(1) C 75% forest cover (as mapped by LANDFIRE,

Rollins 2009), (2) within the upper and lower montane

zones (defined below), (3) unimpacted by the 2002

Hayman fire where forest thinning is unnecessary due

to widespread effects of high severity fire, and (4) C

40.5 ha (100 acres) in size. The final set of 300

catchments range in size from 41 to 5000 ha (mean =

570 ha; Fig. 1a). Montane forests in the study area are

primarily ponderosa pine and Douglas-fir (Pseudot-

suga menziesii (Mirb.) Franco) with minor compo-

nents of aspen (Populus tremuloides Michx.) and

lodgepole pine (Pinus contorta Douglas ex Loudon)

(Fig. 1b) (Rollins 2009). Because management of

lodgepole pine forests differs considerably from dry

conifer forests, we did not simulate treatments in

lodgepole pine forests, although they were included

when assessing landscape-scale metrics for hetero-

geneity, fire behavior, and erosion modeling.

Conservation practice scenarios

The framework for the analysis is to first simulate the

primary effects of management on forest and fuel
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structure and to then estimate treatment effects

on selected ecological metrics using process-specific

models (Fig. 2). Management activity and research in

ponderosa pine forests often centers around reducing

hazardous fuels (Fulé et al. 2012), yet more compre-

hensive restoration treatments which also aim to

simultaneously restore structural complexity are

increasingly included in desired restoration conditions

(Underhill et al. 2014). Thus, we compared three

scenarios including an untreated landscape (UNT) and

two forest management options: fuel hazard reduction

(FHR) and spatially complex restoration (RES)

(Fig. 2a).

Each scenario is represented by a set of raster forest

structure and fuel attributes that become the inputs to

an array of landscape heterogeneity, fire behavior, and

erosion models to estimate the associated ecological

effects (Fig. 2b and c). We used 30-m resolution forest

structure, fuel, and topography data representing 2014

landscape conditions from LANDFIRE (2016) to

characterize baseline conditions for assessing the

effects of fuel treatments (Fig. 2a). Forest structure

and fuels are described by canopy cover, canopy bulk

density, canopy base height, canopy height, and

categorical fire behavior fuel model (Scott and Burgan

2005). We adjusted the baseline data for lodgepole

pine by lowering the canopy base height by 20% and

changing the fire behavior fuel model from moderate

load conifer litter to high load conifer litter (Scott and

Burgan 2005) to better reflect recent fire behavior

observations (Moriarty et al. 2019). Starting with the

baseline fuelscape, we simulated each conservation

practice design by adjusting fuel structure data

according to the expected changes in fuel structure

for each treatment. This approach is commonly used to

explore landscape-scale impacts of management prac-

tices on fire behavior and risk (Scott et al. 2013;

Thompson et al. 2013a; Stevens et al. 2016; Jones et al.

2017; Gannon et al. 2019). To better understand the

hypothetical benefits of complete restoration at the

catchment-level, we make the simplifying assumption

that there are no feasibility constraints on treatment.

However, real-world application of this model for

prioritization will necessarily consider what areas are

suitable for treatment based on landownership, acces-

sibility, operability, budget, and regulatory

constraints.

Fig. 1 a Vegetation zones of the Upper South Platte study area
as defined by Kauffman (Kaufmann et al. 2006), and National

Hydrography Dataset Plus catchment delineations. b Delin-

eation of 300 forested catchments within the upper and lower

montane zones. Forest type is reclassified from existing

vegetation type (LANDFIRE; Rollins 2009). Coordinates are

in UTM Zone 13N (m)
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Simulating fuel hazard reduction (FHR) treatments

The primary goals of FHR treatments are to reduce fire

hazard by lowering tree density and surface fuels

coupled with increased canopy base height (Agee and

Skinner 2005). To simulate landscape-scale FHR

treatments, we multiplied baseline LANDFIRE

canopy fuel variables by adjustment factors based on

typical outcomes of fuel hazard reduction. We applied

an adjustment factor of 0.7 for canopy cover across the

study area (e.g., 30% reduction, Fulé et al. 2012).

Mechanical thinning typically removes small trees,

thus we applied an adjustment factor of 1.2 for canopy

height and canopy base height (20% increases, Ziegler

et al. 2017). We adjusted canopy bulk density using an

adjustment factor based on the reduction of canopy

cover [(CCfinal/CCinitial) 9 0.8 ? 0.18, based on

figures in Keane et al. 2005)]. To simulate changes in

surface fuel loads, we adjusted the fire behavior fuel

model (FBFM) to account for the addition of activity

fuels from thinning (Stephens et al. 2009; Fulé et al.

2012). Briefly, FBFMs are used to predict fire behav-

ior across a range of weather conditions for various

fuel complexes (Scott and Burgan 2005). For timber

litter and slash–blowdown FBFMs, we assumed fuel

models would transition to a similar model with a

higher flame length (Table S1). If thinning in a timber

litter model led to canopy cover reduction below 30%

cover, a significant understory response may be

expected (Jameson 1967); in these cases, we transi-

tioned fuels to a low load timber-grass-shrub model.

We assumed none of the treatments would alter fire

behavior in grass–shrub models, except for areas with

a very high load timber-shrub model, which is

expected to be reduced with thinning treatments. In

this case, FBFMs were transitioned to a low load

timber-grass-shrub model. For other grass–shrub,

grass, and non-burnable fuel types, we assumed that

none of the treatments would alter FBFMs. Transitions

between all FBFMs can be found in Table S1.

Simulating restoration (RES) treatments

Restoration objectives in ponderosa pine forests aim to

increase resilience to disturbances such as fire, insects,

and drought by reducing tree density and maintaining

Fig. 2 Schematic diagram demonstrating framework for

comparing conservation outcomes of two restoration

approaches. Landscape-scale data on forest fuel structure are

used as inputs to simulate restoration treatments by (a) adjusting
fuel traits based on empirical data or desired conditions.

Resulting simulated fuelscapes are then (b) used as inputs to

an array of ecological models to (c) estimate conservation

impacts on landscape heterogeneity, fire behavior, and soil

erosion. Figure adapted from Cannon et al. (2019)
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or increasing variability in forest structure (Addington

et al. 2018). Debates continue about the use of

historical range of variability (HRV) to define restora-

tion targets, especially where future climate conditions

are predicted to differ from historical ones. In many

circumstances, HRV is still a reasonable and objective

foundation for developing desired restoration condi-

tions (Keane et al. 2009). Furthermore, restoration of

historical conditions in fire suppressed systems are

generally consistent with objectives to reduce suscep-

tibility to catastrophic wildfire (Fulé 2008). Local

forest reconstructions suggest that current forest

densities are higher than they were historically, but

historical densities were varied and generally

increased with elevation (Battaglia et al. 2018).

Regional forest restoration planning guides also

emphasize maintaining a diversity of forest densities

across topographic moisture gradients (Addington

et al. 2018). Thus, we simulate RES treatments with

an algorithm that reduces tree density toward histor-

ical levels, while ensuring a historically appropriate

range of variability between and within topographic

and elevation gradients. We (1) classified catchments

within the study landscape based on physiographic

parameters (elevation and moisture gradients, dis-

cussed below), (2) developed desired forest structure

distributions by physiographic setting based on pub-

lished forest reconstructions (ca. 1860 from Brown

et al. 2015 and Battaglia et al. 2018) and regional

restoration guides (Addington et al. 2018), and (3)

simulated restoration treatments such that forest

structure and variability in each catchment approached

desired conditions for the physiographic setting.

We classified each catchment within the study area

as either upper montane or lower montane based on

elevation criteria (Kaufmann et al. 2007) (Fig. 1 left).

We then developed a simple soil moisture index (SMI)

that classifies pixels within catchments into wetter or

drier regions by combining standard topographic

metrics (contributing area and slope) and expected

solar insolation (Western et al. 1999), which can

predict patterns in soil moisture attributable to topog-

raphy. We calculated topographic wetness index

(Beven and Freer 2001) using the dynatopmodel

package in R. We calculated a raster model of solar

radiation (kW m-2) during the growing season (May–

September) using ArcGIS 10.3 (Fu and Rich 2002)

using a solar transmissivity of 0.625 (mean of Denver

and Colorado Springs during the growing season;

Knapp et al. 1980).We define an index of soil moisture

as

SMI ¼ R log TWIð Þð Þ � 1� R SRð Þð Þ; ð1Þ

where SMI is soil moisture index, TWI is topographic

wetness index, SR is solar radiation, and R is a

function to linearly rescale TWI and SR between the

ranges of 0 to 1. We classified areas above the study

area median (SWI = 0.2) as wet and areas below the

median as dry (Fig. 3a).

To develop landscape-scale prescriptions for the

RES treatment, we collated published data on histor-

ical density and estimated canopy cover from avail-

able literature (Tables 1 and 2 in Brown et al. 2015)

and developed a predictive equation linking estimated

canopy cover and stand density (r2 = 0.911).

%CC ¼ 0:1438 � d þ 6:9035; ð2Þ

where %CC is estimated canopy cover and d is tree

density in trees ha-1. We set mean desired catchment

scale canopy cover to 20% for the lower montane

region and 30% for the upper montane region corre-

sponding to historical (ca. 1860) densities of 97 and

163 trees ha-1 for the lower and upper montane

region, respectively, reported in Battaglia et al. (2018).

Restoration guidelines often recommend lower densi-

ties, but relatively higher overstory retention in wetter

aspects, and lower retention in drier aspects, as

is congruent with soil moisture availability (Adding-

ton et al. 2018; Cannon et al. 2018). Canopy cover

variability is expected to be greater on wetter relative

to drier slopes due to interactions between moisture,

topography, and fire behavior (Addington et al. 2018).

To capture these desired conditions, we specified

desired canopy cover and variability by catchment

using a gamma distribution parameterized by physio-

graphic setting, and we selected parameters a and k to

obtain a distribution that results in patterns of canopy

cover and variability to parallel desired conditions

(Table 1 and Fig. S1). Desired conditions vary

dramatically by region, forest type, and management

objectives and constraints can be formulated and

modeled using this framework.

Restoration simulation (RestSim) algorithm

To simulate restoration of desired forest structure in

each catchment, we developed Restoration Simulation

R code functions (RestSim algorithm available online
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at https://github.com/jbcannon/landscape_

restoration_simulator). The RestSim algorithm aims

to reduce forest canopy cover to the specified distri-

bution by catchment and physiographic setting. The

algorithm first assigns each catchment to an elevation

zone using a majority pixel assignment (lower vs.

upper montane; Fig. 1). Pixels within the catchment

are then assigned into wet and dry categories based on

soil moisture index (wetter or drier) (see Eq. 1;

Fig. 3a). For each set of wet or dry pixels, RestSim

assigns a target canopy cover distribution using

gamma distribution parameters corresponding to the

elevation zone and moisture class for wet and dry

portions of each catchment individually (Table 1;

Fig. 3b).

To adjust LANDFIRE canopy cover pixels to target

levels, a target canopy cover distribution is generated

using the appropriate gamma distribution parameters,

and target canopy cover values from the gamma

distribution are assigned to pixels in each wet or dry

set of pixels by ranking the continuous SMI values

present in each set, and assigning the lowest canopy

cover pixels from the distribution to the lowest (driest)

SMI values. Likewise, the highest canopy cover pixels

are assigned to the highest (wetter) SWI pixels

(Fig. 3b). We imposed several basic silvicultural

constraints: mechanical restoration treatments can

only remove trees (not add them), and canopy cover

cannot be negative. In some cases, retention of canopy

cover in wet areas was not high enough to offset

reductions in drier areas, and prescription targets could

not be met. In these cases, we iteratively increased the

target mean canopy cover (i.e., increasing a by 2%

iteratively) until targets were achievable (Fig. 3c). In

some cases, existing mean canopy cover was lower

than target mean canopy cover before simulation, thus

some catchments remained untreated. Finally, we

merged canopy cover layers for wet and dry regions

for all catchments to generate simulated fuelscapes

(Fig. 3c). A comparison of simulated FHR and RES

treatments for one catchment is shown in Fig. 4. To

simulate changes in forest and fuel metrics besides

Fig. 3 Demonstration of restoration simulation (RestSim)

algorithm used to simulate landscape-scale thinning to achieve

desired levels of canopy cover mean and variability. a Classi-

fication of wetter and drier portions of catchments using soil

moisture index (SMI, Eq. 1). b Assignment of desired canopy

cover mean and variability to wet and dry portions of catchments

based on SMI. c Canopy reduction to meet target objectives and

incrementally increase target canopy cover as needed to meet

silvicultural constraints

Table 1 Parameterization of desired canopy cover conditions

for combinations of elevation and moisture gradients using a

gamma distribution to mimic landscape scale desired condi-

tions for canopy cover mean (± s.d.) based on Brown et al.

(2015), Battaglia et al. (2018), and Addington et al. (2018)

Elevation zone Moisture a k Canopy cover (%)

Lower montane Drier 1.6 10 16.0 (12.6)

Lower montane Wetter 1.6 8 20.0 (15.8)

Upper montane Drier 2.7 10 27.0 (16.4)

Upper montane Wetter 2.7 9 30.0 (18.3)

123

Landscape Ecol (2020) 35:2301–2319 2307

https://github.com/jbcannon/landscape_restoration_simulator
https://github.com/jbcannon/landscape_restoration_simulator


canopy cover, we used the same methods as for FHR

treatments.

Treatment effects on landscape-scale forest

structure

Restoration of variable landscape structure is gener-

ally thought to enhance biodiversity. For example,

Matonis and Binkley (2016) found higher herbaceous

cover and richness in the interior of large gaps

following restoration treatments in ponderosa pine

ecosystems. Landscape complexity can also benefit

avian species. For example, forest treatments that ben-

efit Northern Goshawk (Accipiter gentilis) emphasize

interspersion of closed canopy forests with open

herbaceous areas, and the retention of older tree

groups, to benefit the various organisms in the

goshawk’s food web (Reynolds et al. 2013). Such

benefits may apply more broadly to avian communi-

ties as Latif et al. (2020) found that avian richness

increased with measurements of forest complexity like

the perimeter-to-area ratio of open forests. To evaluate

the effects of each conservation approach on land-

scape-scale forest complexity, we quantified changes

in canopy cover, large gap cover, landscape complex-

ity, and contagion index from the canopy cover layers

resulting from each treatment simulation using the

raster package in R (Hijmans and van Etten 2016). We

quantified large gap cover by identifying all areas with

\ 10% canopy cover on patches with a radius of 30

m (0.3 ha) or more. To estimate landscape complex-

ity, we used the Shannon diversity index (Shannon and

Weaver 1963). This index is typically used to assess

diversity in species assemblages but can be applied to

other aspects of ecological communities to assess

complexity (Turner et al. 2001). We calculated

landscape complexity using proportions of each

catchment represented by ten classes of canopy cover

(e.g., 0–10%, 10–20%, etc.) using the following

equation.

LC ¼
Xn

i¼1

pilnpi
lnn

ð3Þ

where LC is landscape complexity, pi is the proportion

of a catchment with canopy cover within the range of

class i, and n represents the number of canopy cover

classes (n = 10). This metric results in an estimate of

landscape complexity ranging from 0 to 1, with 1

representing equal representation across each canopy

cover class. In addition, based on desired conditions

related to generating a landscape mosaic with

Fig. 4 Comparison of example catchment in the Upper South

Platte watershed showing (a) existing canopy cover, (b) canopy
cover following homogeneous fuel hazard reduction (FHR)

treatments, and (c) canopy cover following restoration (RES)

simulation with the goal of restoring historic canopy cover while

maintaining variability.

Table 2 Weather conditions used to run prescribed fire and extreme fire weather simulations

Weather conditions Fuel moisture (%) Wind speed (m s-1 at 6 m)

1-h 10-h 100-h Herbaceous Woody

Prescribed fire 9 10 11 60 90 4.5

Extreme 2 3 6 30 63 8.9
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variability of patch types, we assessed changes in

spatial configuration of landscape patches using a

contagion index (RC2 in Li and Reynolds 1993)

RC ¼ 1þ
Xn

i¼1

Xn

j¼1

PijlnPij=2lnn ð4Þ

where RC is relative contagion index, Pij is the

probability that two randomly chosen adjacent pixels

belong to canopy class i and j, respectively, and n is the

number of canopy cover classes (n = 10). The index

ranges from 0 to 1 and quantifies adjacency of

different combinations of patch types, and is sensitive

to the number of patch types and the spatial config-

uration (Li and Reynolds 1993). Larger values of RC

represent larger continuous patches of the same

canopy cover classes. We calculated RC using custom

functions (available at https://github.com/jbcannon/

spatial_heterogeneity_metrics).

Treatment effects on fire hazard

To quantify the influence of management on fire

metrics relevant in assessing ecological effects and

future potential for prescribed fire, we simulated fire

behavior for each management scenario under both

prescribed fire and extreme wildfire weather condi-

tions using FlamMap 6.0 (Finney et al. 2019). We

simulated prescribed fire weather conditions using a

scenario with moderate fuel moisture and fuels two-

thirds cured (D3L2 scenario, Scott and Burgan 2005)

and a 4.5 m s-1 wind speed based on input from

prescribed fire managers in the region. For simulating

extreme conditions, we processed weather data from

15 Remote Automated Weather Stations (RAWS)

from within and nearby (\ 20 km) the Upper South

Platte Watershed using FireFamilyPlus 4.1 (Bradshaw

and McCormick 2000) to characterize 97th percentile

(extreme) fire weather conditions for the April 01 to

October 31 fire season (Table 2). Given the uncertainty

in wind direction, we used the wind blowing uphill

option in FlamMap with a default wind direction of

225� to model a worst-case scenario. The 10 min

average 1 pm wind speeds from RAWS were

converted to 1 min average wind speeds to better

reflect potential fire behavior (Crosby and Chandler

1966), and we generated estimates of fireline intensity

and fire type (surface, passive crown fire, or active

crown fire; Scott and Reinhardt 2001).

Based on model outputs, we derived three ecolog-

ically relevant fire behavior metrics including an

integrated hazard index, an index of large high

severity patches, and the proportion of the landscape

expected to burn under surface fire conditions as a

proxy for the ease with which prescribed fire may be

incorporated into future management. We multiplied

spatially explicit estimates of fireline intensity under

extreme conditions (Table 2) (in kW m-1) from

FlamMap by modeled burn probability (Short et al.

2016) to produce an integrated measure of fire hazard

(Scott et al. 2012). To quantify changes in the

probability of large high severity burn patches, we

calculated a largest high severity patch index as the

size of the largest contiguous patch (in ha) modeled to

burn as active crown fire under extreme conditions

(Table 2) for each catchment and multiplied this by the

average burn probability for the catchment. Lastly, as

a proxy for the potential use of prescribed fire or

managed wildfire, we calculated the percent cover of

each catchment predicted to burn as surface fire under

prescribed fire conditions (Table 2).

Treatment effects on erosion hazard

Post-fire erosion was modeled using a spatial imple-

mentation of the Revised Universal Soil Loss Equa-

tion (Renard et al. 1997) following methods described

in Gannon et al. (2019). RUSLE predicts gross erosion

(Mg ha-1 yr-1) as the product of factors for rainfall

erosivity (R), soil erodibility (K), length and slope

(LS), cover (C), and support practices (P). Rainfall

erosivity is the product of storm kinetic energy per unit

area and maximum rainfall intensity (Renard et al.

1997). Here, we use the median annual rainfall

erosivity of 615 MJ mm ha-1 h-1 from weather stations

representative of the regional climate (Gannon et al.

2019). We summarized baseline K for the top 15 cm of

soil from the Soil Survey Geographic Database

(SSURGO) where available and the State Soil Geo-

graphic Database (STATSGO) as needed to fill gaps

(NRCS Soil Survey Staff 2016). LS was calculated

with terrain analysis of a 30-m resolution digital

elevation model (USEPA and USGS 2012) following

the methods of Winchell et al. (2008) with modifica-

tions to restrict hillslope length to 300 m and LS to

72.15 to not exceed the range of values suggested by

Renard et al. (1997). We assigned baseline C by

mapping previously reported values from the literature
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(Gannon et al. 2019) to existing vegetation type from

LANDFIRE (2016).

To estimate post-fire increase in erosion, C and K

factors were modified based on empirical observations

from fires in the region (Larsen and MacDonald 2007)

to reflect the large increase in erosion with burn

severity (Benavides-Solorio and MacDonald 2001).

Then, baseline and post-fire (pf) erosion were differ-

enced per Eq. 5 to predict the 1st-year post-fire

increase in erosion.

A ¼ R� LS� ðKpf � Cpf Þ � ðK � CÞ
� �

ð5Þ

Hillslope erosion is typically elevated for 2–5 years

after fire in the Colorado Front Range (Benavides-

Solorio and MacDonald 2001; Wagenbrenner et al.

2006; Robichaud et al. 2013a, b), so we multiplied the

1st year sediment yield by a factor of 2.1 to estimate

the total cumulative post-fire yield (Gannon et al.

2019). RUSLE can predict unrealistically high erosion

on very steep slopes, so we limit erosion predictions to

the maximum of 200 Mg ha-1 yr-1 observed at

hillslope scale in the western U.S. (Moody and Martin

2009). RUSLE predicts gross hillslope erosion, much

of which is captured in uplands and not delivered to

streams. We estimated the proportion of hillslope

erosion contributed to streams using an empirical

model of post-wildfire sediment delivery ratio (SDR)

from the western U.S. (annual length ratio model

in Wagenbrenner and Robichaud 2014). Streams were

defined as all pixels with a contributing area greater

than 10.8 ha (Henkle et al. 2011). Post-fire SDR was

estimated with Eq. 6 based on the flow path length

from each pixel to the nearest stream channel as the

‘‘catchment length’’ and the flow path length across

the pixel as the ‘‘plot length.’’ We calculated flow path

length from a 30-m resolution DEM (USEPA and

USGS 2012) in ArcGIS 10.3. The resulting catchment

net sediment yield predictions fell far short of post-fire

observations from the study watershed (Robichaud

et al. 2008, 2013b), so we doubled the predicted SDR

as a rough calibration to the limited field observations,

and we assigned channel pixels a SDR of 1.

log SDRð Þ ¼ �0:56� 0:0094

� Flow path length to nearest channel

Flow path length across pixel

� �

ð6Þ

The total mass of fire-related sediment (Mg)

delivered from a catchment to the stream network

(TS) is the sum product of the hillslope erosion rate

(A), multi-year empirical correction factor, and SDR

for burned pixels in the catchment (Eq. 7).

TS ¼
XN

i¼1
Ai � 2:1� SDRi � 0:09

ha

pixel
ð7Þ

Statistical methods

We used linear mixed models to examine the effects of

each conservation approach on variables related to

forest structural heterogeneity, fire hazard, and erosion

risk. For each model, we included the fixed effect of

the treatments (untreated, fuel hazard reduction, and

restoration) as well as a random effect for each

catchment using the lmerTest package in R. To test for

differences between individual treatment means, we

used post-hoc Tukey’s tests with a Bonferroni–Holm

correction to account for multiple comparisons using

the glht package (Holm 1979). To test whether

tradeoffs or complementary responses among ecolog-

ical variables differed among conservation practices,

we used a linear mixed model to examine whether the

relationship between the change in any two ecological

variables differed among conservation practices using

the following formula (Dvar2–Dvar1 9 treatment)

including a random effect for catchment. For all

analyses, an individual catchment was the unit of

observation.

Results

Effects of conservation practice designs on forest

structural heterogeneity, fire hazard, and erosion

risk

We found that both simulated fuel hazard reduction

(FHR) and restoration (RES) treatments significantly

affected several ecological variables related to forest

structure, fire behavior, and erosion risk. RES treat-

ments were more effective at moving forest structural

heterogeneity towards desired conditions; whereas

FHR treatments and RES were similar in their effects

on variables related to fire behavior and erosion risk

(Fig. 5). Treatment simulations reduced mean canopy
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cover from 41.9% in untreated catchments to 30.3%

(padj\ 0.001) and 23.9% (padj\ 0.001) in FHR and

RES treatments respectively (Fig. 5a). FHR treatments

had no discernable impact on gap cover relative to

untreated catchments (p = 0.999), whereas RES

treatments tripled gap cover from 2.3% in untreated

catchments to 7.0% (p\ 0.001) (Fig. 5b). Whereas

FHR treatments decreased landscape complexity from

0.69 to 0.55 (p\ 0.001), RES treatments increased

landscape complexity to 0.84 (p\0.001) (Fig. 5c). In

addition, FHR treatments increased relative contagion

index from 0.39 to 0.51 (p \ 0.001), while RES

decreased landscape contagion index to 0.21 (p \
0.001) (Fig. 5d).

FHR and RES treatments consistently differed in

their impacts on forest structural heterogeneity, but

treatment effects on fire behavior and post-fire erosion

potential were similar. Integrated fire hazard index

decreased from 102 in untreated catchments to 37.9 in

catchments treated with either FHR and RES (p \
0.001), yet there was no difference in percent cover of

high severity fire between treatments (p = 0.280)

(Fig. 5e). In a similar pattern, treatments reduced the

largest high severity patch index from 0.798 to 0.078 (p

\ 0.001), but there was no difference between

maximum high severity patch size between FHR and

RES treatments (p = 0.809) (Fig. 5f). Surface fire

potential increased from 40.5 to 73.4% in catchments

treated with either FHR or RES (p\0.001), yet there

was no difference between treatment types (p = 0.984).

Expected post-fire sediment delivery to streams

decreased from 25.5 to 13.3 Mg ha-1 in the FHR

treatment (p\0.001), and to 15.1 Mg ha-1 in the RES

treatment (p\0.001).

Tradeoffs among ecological responses

We found significant correlations among changes in

many simulated ecological outcomes indicating both

contrasts and similarities in effects of conservation

practice designs (Fig. 6 and Fig. S2). With greater

decreases in canopy cover, we found increases in gap

cover and landscape complexity, and greater potential

for prescribed fire use. Furthermore, greater decreases

in canopy cover were correlated with decreases in

relative contagion, integrated fire hazard, largest high

severity patch index, and post-fire erosion. In general,

changes among ecological outcomes were similar

where desired outcomes increased together (e.g.,

reductions in canopy cover were correlated with

reduced integrated fire hazard). However, the strength

of the correlations differed and in some cases tradeoffs

existed where one ecological benefit occured at the

expense of another as indicated by several

Fig. 5 Changes in modeled ecological variables after simulat-

ing conservation strategies on untreated (UNT) landscapes using

a fuel hazard reduction strategy (FHR), and a restoration

strategy (RES). Bars sharing a letter do not differ significantly at

the a = 0.05 level after Bonferroni–Holm correction.
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conservation practice design 9 variable interactions

(Fig. 6). For example, RES treatments generally had

greater reductions in canopy cover for a similar

reduction in integrated fire hazard, large high severity

patch size, and expected sedimentation (Fig. 6d, e and

g) relative to FHR treatments. Other ecological

variables showed a distinct tradeoff in FHR treatments

but were complementary in RES treatments (Fig. 6o,

q, and r). For example, with greater reductions in

integrated fire index and post-fire sedimentation,

Fig. 6 Scatterplot matrix visualizing correlations among

ecological response variables with each point representing the

change in an ecological response in untreated catchments and

treated catchments for FHR and RES. Plots with linear fits

indicate significant correlations between changes in ecological

variables. When interactions between response variables and

conservation practice designs were significant, linear fits are

shown separately for FHR treated catchments (in green) and

RES treated catchments (in blue). Axis values are omitted for

simplification but are included in Supplemental material

(Fig. S2).

123

2312 Landscape Ecol (2020) 35:2301–2319



landscape complexity decreased in FHR treatments,

but increased with RES treatments (Fig. 6o and r).

Similarly, increases in prescribed fire potential were

correlated with increases in landscape complexity

with RES treatments, yet landscape complexity was

reduced with increasing surface fire in FHR treatments

(Fig. 6q). These contrasts are important because they

indicate that more spatially complex treatments meet

landscape complexity objectives without strong trade-

offs in effectiveness of wildfire and erosion avoidance

objectives.

Ecological effects differ spatially by treatment

design, which has implications for prioritizing the type

and location of treatments. As an example, changes in

forest spatial complexity, integrated fire hazard, and

expected sedimentation (post-fire) for catchments of

the Upper South Platte watershed are shown in Fig. 7.

FHR treatments generally reduce forest complexity

across the watershed, while RES treatments increase

complexity, with the greatest gains clustered in

southern portions of lower montane forests (Fig. 7a

and b). Although study-wide changes in integrated fire

hazard were similar among treatments (Fig. 5e), RES

treatments showed larger reductions (more negative)

in lower montane forests and were less impactful (less

negative) in upper montane forests compared to FHR

treatments (Fig. 7c and d). This trend was also

observed for reductions in sedimentation (Fig. 7e

and f). Lastly, an example prioritization based on

equal weighting among these three ecological vari-

ables shows that spatial prioritization differs among

treatments. In FHR treatments, the largest effects can

be gained in the northern portions of the watershed

across both upper and lower montane regions

(Fig. 7g). However, for RES treatments, the most

impactful catchments for increasing potential benefits

are located in the southern and western portions of the

lower montane region (Fig. 7h).

Discussion

Unsurprisingly, our modeling results suggest that

simulated restoration treatments led to the greatest

increases in measures of spatial heterogeneity thought

to be important for animal and plant biodiversity, age

class diversity, and resilience to disturbance. How-

ever, both the fuel hazard reduction and the restoration

treatments achieved similar fire hazard and watershed

risk outcomes. Changes in forest structural hetero-

geneity were markedly different between modeled

conservation scenarios. RES treatments showed

greater reductions in canopy cover, and greater

effectiveness in enhancing spatial complexity with

larger increases in gap cover, landscape complexity,

and reductions in contagion (Fig. 5a–d). One striking

finding was that RES treatments increased gap cover

threefold, whereas gap cover was unchanged in FHR,

treatments (Fig. 5b). We note that our definition of

gaps allowed for areas with low canopy cover (\10%).

However, FHR treatments reduced canopy cover

proportionately, such that canopy removal was modest

in areas with the potential to reduce canopy cover

below the 10% threshold. By contrast, RES treatments

reduced canopy cover by as much as 35% in dry areas

with high canopy cover. Proportional reductions in

FHR treatments tended to homogenize forest structure

by reducing areas with high canopy cover by higher

absolute amounts than areas with low canopy cover.

This led to reductions in landscape complexity and

increases in contagion, whereas RES treatments

retained many areas of high cover while simultane-

ously increasing abundance of low cover, leading to

higher complexity and lower contagion. These find-

ings are somewhat unsurprising as the restoration

algorithm was designed to create such effects at the

landscape scale. However, it is valuable to understand

what unique effects these treatments have compared to

FHR. Several ecological attributes of interest are

expected to increase with landscape heterogeneity of

ponderosa pine forests, such as understory plant

diversity and use by some wildlife species (Matonis

and Binkley 2016; Stevens et al. 2016). Thus, it is

important to emphasize spatial heterogeneity in pro-

ject planning, as uniform FHR treatments will not

generally achieve these objectives. The spatial metrics

measured in this study are a first step towards linking

conservation practice design to spatially driven biodi-

versity outcomes, but there is a recognized need for

more research to make quantitative estimates of these

outcomes.

Outcomes related to fire hazard and post-fire

sedimentation were similar between the two conser-

vation approaches examined here. We found that both

approaches similarly attained goals to reduce fire

hazard, diminish large patches of potential high

severity fire, and increase prescribed fire suitability

(Fig. 5e and f). By contrast, Stevens et al. (2016) found
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Fig. 7 Changes in modeled

ecological effects following

simulated FHR (a, c,
e) treatments and RES

treatments (b, d, f) for
landscape complexity,

integrated fire hazard,

and expected post-fire

sedimentation. Prioritization

map (g, h) indicating
percentile rank for where

catchments with the greatest

modeled benefit summed

across three ecological

indicators. Expected

sedimentation (e, f) is
shown in Mg ha-1,

prioritization (g, h) is shown
as percentile rank with a

score of 1 indicating where

greatest benefits can be

achieved based on equal

weighting of the three

ecological indicators.

Landscape complexity (a,
b) and integrated fire hazard

(c, d) are unitless.
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that RES treatments were less effective at achieving

fire risk reductions relative to FHR treatments. This

difference may be attributable to the relatively aggres-

sive canopy removals specified for lower montane

forests in our study based on historical conditions for

the Colorado Front Range and the fact that all areas

within catchments were considered for treatment

based on historical conditions. Although reductions

in post-fire sedimentation were not as sizable in RES

treatments (-41%) relative to FHR treatments

(-48%), expected post-fire sedimentation exhibited

considerable reductions with both approaches. Factors

enhancing the risk of post-fire sedimentation are high

fuel loads, steep slopes, and close proximity to

streams. The RES approach reduces mean canopy

cover overall, but generally retains relatively higher

canopy cover specifically in areas with higher soil

moisture (e.g., north facing slopes) consistent with

restoration guidelines (e.g., Addington et al. 2018),

which may constrain treatment intensity in the highest

erosion risk locations. Together, these results indicate

that restoration treatments that explicitly incorporate

spatial objectives are similarly effective at achieving

objectives related to wildfire hazard reduction, without

the landscape homogenizing effects found for treat-

ments without explicit spatial objectives.

Modeling limitations

Though useful for providing information for land-

scape-scale decision making, there are several limita-

tions to landscape-scale effects assessment.

Restoration guidelines for dry conifer forests empha-

size goals of generating open-canopied forest with

high variability (e.g., Addington et al. 2018). How-

ever, the extent to which these goals are achieved in

practice varies widely, in part due to constraints of

land ownership, management restrictions, accessibil-

ity, operability, and economics (Underhill et al. 2014;

North et al. 2015; Colavito 2017). These factors

should be considered with our estimates of treatment

benefits to identify high priority areas that are

suitable for treatment. This framework offers a flexible

method of specifying desired conditions as treatment

input targets (e.g., Table 1) to allow evaluation of a

wider spectrum of possible outcomes. Second, for

simplification, our treatment simulation assumes that

conservation practices are implemented over entire

catchments averaging approximately 500 ha in size.

Although this size is somewhat large for a single

restoration treatment, it is within the size range of

long-term planning units and thus offers insight to

prioritization and planning at larger temporal and

spatial scales. Third, our analysis relies on a series of

coupled models (Fig. 2) andmay be subject to multiple

model and model linkage uncertainties. We used fire

modeling software that is routinely used in hazard

assessment and fuel treatment planning (Finney et al.

2019). The watershed model made reasonable predic-

tions of post-fire sediment yields. None of our

catchment mean hillslope erosion predictions for the

first year after fire (range 0.9–68.1 Mg ha-1) exceeded

the first year Buffalo Creek Fire average of 72.0 Mg

ha-1 (Moody and Martin 2001; assumed 1.6 Mg m-3

bulk density) and the study wide mean of 23.4 Mg ha-1

was is close to the 22.0 Mg ha-1 observed in the 1st

year after the Hayman Fire (Robichaud et al. 2013a).

The predicted 1st-year post-fire catchment mean net

sediment load to streams averaged 12.2 Mg ha-1 for

the study catchments and only the upper quartile of

study catchments (range 16.2–36.7 Mg ha-1)

approached the higher annual catchment sediment

yields of 22.2–38.6 Mg ha–1 from the Hayman Fire

(Robichaud et al. 2008, 2013a). The modular nature of

the assessment framework (Fig. 2) allows for integra-

tion of novel and process-based models as they

develop to further improve understanding of conser-

vation impacts. Fourth, our framework incorporates

current burn probability (Short et al. 2016) into our

estimate of integrated fire hazard and high severity

patch index, but it does not capture changes in local

and neighborhood burn probability from treatment.

Studies that estimate changes in burn probability as a

result of treatment are limited to a small set of

scenarios due to the computational expense of burn

probability models which account for fire spread

among neighboring cells (Ager et al. 2007, 2016;

Cochrane et al. 2012; Thompson et al. 2016). We

chose not to account for burn probability effects in this

study because it would be computationally impractical

to evaluate these effects independently for each

catchment, let alone combinations of treated catch-

ments. Future expansions of the effects assessment

framework would benefit from representation of fire

spread processes.
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Conclusions

Mapping modeled changes in ecological indicators

reveal how spatial prioritization of treatments may

vary when considering multiple outcomes and scenar-

ios (Fig. 7). Overall impacts of fire behavior and

erosion effects were similar among the treatment

approaches simulated here (Fig. 5e and h). However,

the treatment locations of greatest benefit varied

depending on the ecological indicator and treatment

approach under consideration. In some cases, resource

planners can utilize landscape scale treatment simu-

lations in developing alternatives for prioritization

(Huayhuaca 2016; Addington et al. 2018; Gannon

et al. 2019). Our results suggest that both the

ecological effects of restoration as well as the most

effective places for treatment vary based on the

conservation practices used. We note that our example

prioritization based on equal weighting of three

variables does not necessarily reflect agency and

public preferences for achieving these outcomes,

which should be incorporated into a multi-resource

prioritization.

A number of landscape assessments have been

developed to evaluate the potential ecological impacts

of various conservation scenarios that differ in the

treatment types simulated, ecological impacts mod-

eled, and geography considered. Our assessment

framework was influenced heavily by commonly used

wildfire risk assessment methods (Scott et al. 2013;

Thompson et al. 2013a), which integrate probabilistic

estimates of fire likelihood and intensity with relative

response functions for a broad range of resources.

Extensions of this framework have focused on

improving rigor of the effects assessment by replacing

relative response functions with quantitative models

and differencing baseline and post-treatment risk to

estimate management effects. For example, Gannon

et al. (2019) linked potential wildfire behavior to

quantitative erosion and sedimentation models to

estimate the avoided water supply impacts from

mechanical thinning and/or prescribed fire. Stevens

et al. (2016) conducted simulations of different

landscape configurations, including treatments de-

signed to uniformly reduce fuel hazards and protect

the wildland-urban interface, along with other com-

plex restoration treatments that varied by topography,

and showed how the different configurations impacted

a number of processes (wildlife diversity, fire

behavior, smoke production). Here we build on these

previous efforts by (1) developing a restoration

simulation algorithm that is flexible to parameterize

a wide range of conditions specified by canopy cover

distribution (Fig. 3, Table 1), and (2) quantifying non-

fire-related metrics of landscape heterogeneity to

explore potential tradeoffs with other ecological

processes. We include several categories of ecological

effects related to common objectives for dry forest

restoration including wildlife habitat improvement,

fire hazard reduction, and watershed protection.

Assessment frameworks that offer flexibility to sim-

ulate a wide range of treatment types and scenarios on

multiple ecological metrics can facilitate comparison

of potential treatment strategies for planning and

prioritization.
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