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Abstract

Context Habitat suitability models (HSM) can

improve our understanding of a species’ ecology and

are valuable tools for informing landscape-scale

decisions. We can increase HSM predictive accuracy

and derive more realistic conclusions by taking a

multi-scale approach. However, this process is often

statistically complex and computationally intensive.

Objectives We provide an easily implemented, flex-

ible framework for sequential multi-level, multi-scale

HSM and compare it to two other commonly-applied

approaches: single-level, multi-scale HSM and their

post-hoc combinations.

Methods Our framework implements scale optimi-

sation and model tuning at each level in turn, from the

highest (population range) to the lowest (e.g. foraging

habitat) level, whilst incorporating output habitat

suitability indices from a higher level as a predictor.

We used MaxEnt and a species of conservation

concern in Britain, the lesser horseshoe bat (Rhinolo-

phus hipposideros), to demonstrate and compare

multi-scale approaches.

Results Integrating models across levels, either by

applying our framework, or by multiplying single-

level model predictions, improved predictive perfor-

mance over single-level models. Moreover, differ-

ences in the importance and direction of the species-

environment associations highlight the potential for

false inferences from single-level models or their post-

hoc combinations. The single-level summer range

model incorrectly identified a positive influence of

heathland cover, whereas sequential multi-level mod-

els made biological sense and underlined this species’

requirement for extensive broadleaf woodland cover,

hedgerows and access to buildings for roosting in rural

areas.

Conclusions We conclude that multi-level HSM

appear superior to single-level, multi-scale

approaches; models should be sequentially integrated

across levels if information on species-environment

relationships is of importance.
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Introduction

The ongoing rapid decline in biodiversity has been

called the sixth mass extinction (Barnosky et al. 2011)

and the need to reverse this trend has never been

greater. To be effective, efforts to protect and enhance

key habitats whilst mitigating against the effects of

environmental change must be informed by the best

available information on species ecology and distri-

butions (Loiselle et al. 2003). Habitat Suitability

Models (HSM) can inform environmental policy,

spatial planning and conservation practice by filling

in gaps around patchy, biased occurrence data with

landscape-scale information on predicted habitat suit-

ability and underlying environmental correlates (Gui-

san et al. 2013). However, poor models lead to

unreliable inferences; if low model performance or

high uncertainty go undetected, derived decisions can

be costly, ineffective or even damaging to conserva-

tion efforts (Loiselle et al. 2003). More transparent,

flexible frameworks that facilitate the implementation

of best practice HSM techniques are therefore

required, particularly for taxonomic groups with

limited species records.

A major parameter that can influence the predictive

accuracy and usefulness of an HSM is the spatial scale

at which predictors are considered (Guisan and

Thuiller 2005; De Knegt et al. 2010). Species respond

to their environment at different scales according to

their ecology and the spatial arrangement of the

resources and/or conditions they require (Wiens 1989;

Gehring and Swihart 2003; Mayor et al. 2009; Austin

and Van Niel 2011). Single-scale modelling using a

universal predictor grain and extent is widely adopted

(Vicente et al. 2014), despite the fact that multi-scale

HSMs that integrate predictors measured at their

‘scale(s) of effect’ (Holland et al. 2004) provide more

accurate predictions, give deeper ecological inference

and avoid spurious conclusions caused by scale

mismatches (Poizat and Pont 1996; De Knegt et al.

2010; Vicente et al. 2011; Bellamy et al. 2013; Timm

et al. 2016). However, multi-scale modelling is a

complex and computationally intensive process

(Scholes et al. 2013). Combining predictors measured

over a range of scales increases the likelihood of

multicollinearity (Lipsey et al. 2017), which breaks

statistical assumptions and confounds model inference

(Dormann et al. 2013; Bradter et al. 2013; Lipsey et al.

2017). The need for accessible technical solutions to

overcome these statistical challenges has recently

been called for (McGarigal et al. 2016, p. 1171).

To aid multi-scale HSM development and inter-

pretation, geographic or behavioural levels (hereafter

referred to as ‘levels’) can be ascribed to conceptualise

the hierarchical structuring of the processes driving

habitat selection (Johnson 1980; Wiens 1989; Lin-

denmayer 2000; Mayor et al. 2009; McGarigal et al.

2016). For example, the areas where an organism

forages are nested within its home range, which also

encompasses areas providing shelter, mating oppor-

tunities and other resources. This home range is nested

within the population’s geographic range. Distribu-

tions at higher levels are shaped by factors that vary

slowly across space, such as the influence of climate

on population ranges; more local scale, patchy

predictors influencing a species’ mobility, resource

distribution or biotic interactions are important at

lower levels (Pearson and Dawson 2003; Pearson et al.

2004; Vicente et al. 2014; Razgour et al. 2014). HSMs

that integrate drivers at their scale of effect across

multiple levels, and that encompass the full range of

conditions experienced across the population range,

provide a more complete characterisation of a species’

niche and prevent truncation of modelled species-

environment relationships (Barbet-Massin et al. 2010;

DeCesare et al. 2012; Fournier et al. 2017; Heisler

et al. 2017; Bauder et al. 2018; Mateo et al. 2019b).

Our sequential multi-level framework begins with

the user prescribing a series of nested geographic or

behavioural levels based on the ecology of the focal

taxonomic group; multi-scale models are built at each

of these levels in hierarchical (top-down) order and the

predictive suitability indices generated at each level

are fed into the subsequent level’s model(s) as a

predictor. This approach helps the user to understand

the influence of each candidate predictor and to select

their best performing scale, whilst simultaneously

enabling context dependency by providing regional,

higher level habitat suitability information and min-

imising multicollinearity between the multi-scale

predictors by splitting them across levels. Using a test

species and study area, we quantify the accuracy of
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these sequential multi-level models in comparison to

two other commonly-applied multi-scale approaches:

(i) Single-level, multi-scale—no integration of

models across levels; an approach taken by

18% of multi-scale habitat selection papers

reviewed by McGarigal et al. (2016).

(ii) Post-hoc multi-level—combinations of single-

level, multi-scale model outputs (e.g. Johnson

et al. 2004; Hattab et al. 2014; Fournier et al.

2017; Zeller et al. 2017; Bauder et al. 2018).

We hypothesised that, by integrating information

on drivers operating across all levels, the multi-level

approaches would provide more accurate predictions

compared to single-level models (Pearson et al. 2004;

Mateo et al. 2019b). Moreover, by allowing a species’

response to features of the lower level, local environ-

ment to vary according to wider, regional conditions

set at higher levels, we expected that our sequential

multi-level framework would provide more realistic

and nuanced information on species-environment

relationships and higher predictive accuracy com-

pared to the post-hoc combinations of single-level

models. Enabling these ‘cross-scale’ interactions

should help to account for local adaptation and

improve our ability to provide effective recommen-

dations (Swihart et al. 2003; Whittingham et al. 2007;

Lindenmayer et al. 2008; Scholes et al. 2013; Oliver

and Morecroft 2014; Spake et al. 2019). Our methods

build on the sequential multi-level models trialled by

Pearson et al. (2004) and Mateo et al. (2019b) by

incorporating multiple scales at each level; addition-

ally we outline steps for predictor and scale selection

at each level, as recommended by McGarigal et al.

(2016).

The framework we set out is flexible and can be

applied to a range of ecological responses using

various types of statistical models. Our example uses

presence-only species records collated from multiple

sources via local environmental record centres and

online databases, since such data are becoming

increasingly accessible and used for HSM (Graham

et al. 2004). Major challenges with these data include

sampling bias, poor metadata and low locational

precision (Guisan et al. 2006). We apply our frame-

work to a UK bat species that is of conservation

concern across Europe, Rhinolophus hipposideros

(lesser horseshoe bat). This woodland-adapted species

underwent a rapid decline across its range from the

1950s, becoming locally extinct in many areas (Bon-

tadina et al. 2002, 2008). Information on the fine-

grained habitat requirements of all woodland-special-

ist bats is scarce, largely because of difficulties in

detecting and surveying for these typically rare

animals in structurally complex woodland environ-

ments, impeding effective management.

Materials and methods

The model framework

Our sequential multi-level HSM framework is

straightforward and transferable. In short, following

Johnson’s hierarchy (1980), multiple geographically

nested model levels are defined for the focal species

based on the species’ ecology, modelling objectives

and species data availability. The top level should

comprise the entire population range, wherever pos-

sible. The response metrics (e.g. species presence or

abundance) are then sequentially modelled at each

prescribed level in hierarchical (top-down) order,

whilst incorporating predictions from a preceding

level as a predictor.

Our framework has five steps (Fig. 1); details of its

application to modelling R. hipposideros habitat

suitability in Britain are provided below. We used

MaxEnt (Phillips et al. 2006), a popular presence-only

statistical HSM algorithm that tends to perform well

compared to alternatives (e.g. Guisan et al. 2007).

Gridded environmental predictors were created in

ArcGIS (v. 10.2, www.esri.com). All other analyses

were carried out using R (v. 3.4.2; R Core Team 2017)

in R Studio (v.1.1.383; RStudio Team 2016). Data

output and R code for key steps are provided in an

online repository: https://bitbucket.org/chloebellamy

FR/sequential-multi-level-hsm-framework.

Step 1: selecting levels

Three geographically nested levels were defined for R.

hipposideros (Supplementary Information (SI),

Table SI1.1): British population range (level 1),

summer range (level 2) and local habitats (level 3, at

which separate models were produced for roosting and

foraging behaviours). Population and summer ranges

were modelled at the national extent in line with

species data availability. A smaller model extent was
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defined for the local habitat level, based on the current

R. hipposideros population range in Britain and wider

research objectives (Fig. 2). Roosting and foraging

habitats were modelled separately because these are

behavioural and spatial subsets of the summer range

for which we could assign many high resolution

(B 100 m) species records to using the metadata

provided (SI 1.1); bats require different habitat

features and environmental conditions for foraging

and roosting and so differentiating drivers and scales

of effects is critical for targeting management to meet

legal obligations for protecting bat roosts and foraging

habitats (Mitchell-Jones 2004; Bellamy and Altring-

ham 2015).

Step 2: selecting predictors and scales

Candidate predictors were chosen to reflect environ-

mental features and conditions likely to impact

temperate woodland bat species distributions at each

level (Table 1; Rebelo and Jones 2010; Boughey et al.

2011; Bellamy et al. 2013; Fuller et al. 2018). There is

a focus on climate at the population range level; at

lower levels, predictors provide mapped data on

landcover, landscape structure and land management.

Fig. 1 Framework flow chart. Details of the five steps involved in applying our sequential, multi-level approach to multi-scale habitat

suitability modelling for a focal species (or taxonomic group)

cFig. 2 Mapped logistic habitat suitability indices (HSI) for R.

hipposideros at each level according to the sequential, multi-

scale model. The extent boundary of the local habitat model is

overlaid onto the population and summer range output.

Predictions for only the southern part of this area are shown at

this local for illustrative purposes
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Table 1 Environmental predictors used at each level

Level Predictor (units) Statistic Data source

Population

range

Annual precipitation (mm) Mean WorldClim Version2, 1970–2000 (Fick and Hijmans 2017)

Maximum temperature of warmest

month (�C)

Mean

Minimum temperature of coldest

month (�C)

Mean

Cover of woodland (%) Mean Land cover map 2007 (1 km percentage aggregate class, GB)

v1.2 (Morton et al. 2014a)Cover of urban (%) Mean

Summer range Cover of ancient woodland (%) Mean Ancient woodland inventories (Scottish Natural Heritage 2010;

Natural Resources Wales 2011; Natural England 2018)

Cover of coniferous woodland (%) Mean National Forest Inventory Map (Forestry Commission 2007)

Cover of broadleaved woodland (%) Mean

Cover of woodland (%) Mean

Cover of heathland (%) Mean Landcover map 2007 (Morton et al. 2014b)

Cover of arable or improved

grassland (%)

Mean

Size of largest woodland (ha) Mean National Forest Inventory Map (Forestry Commission 2007)

Density of hedgerows (m/m2) Mean Woody linear features (Scholefield et al. 2016)

Proportion of broadleaf likely to be

managed for

biodiversity/conservation

Mean Broadleaf woodlands mapped by the National Forest Inventory

(Forestry Commission 2007) overlapping with terrestrial

protected sites (UNEP-WCMC and IUCN 2017) or land

owned/managed by the Royal Society for the Protection of

Birds, Woodland Trust, National Trust or Wildlife Trusts

Local foraging

or roost

habitat

Cover of ancient woodland (%) Mean Ancient woodland inventories (Scottish Natural Heritage 2010;

Natural Resources Wales 2011; Natural England 2018)

Cover of woodland (%) Mean National Forest Inventory Map (Forestry Commission 2007)

Cover of deciduous woodland (%) Mean

Cover of coniferous woodland (%) Mean

Cover of heathland (%) Mean Landcover map 2007 (Morton et al. 2014b)

Cover of arable/improved grassland

(%)

Mean

Size of largest woodland (ha) Max National Forest Inventory Map (Forestry Commission 2007)

Woodland patch shape compactness

(0–1)a
Mean

Euclidean distance to woodland edge

(negative values for interior; m)b
N/A

Euclidean distance to hedgerow (m)b N/A Woody linear features (Scholefield et al. 2016)

Euclidean distance to primary roads,

motorways & railways (m)b
N/A OS open roads (Ordnance Survey 2017)

Euclidean distance to buildings (m)b N/A OS open buildings (Ordnance Survey 2017)

Topographic Wetness Index Mean OS Terrain 50 (Ordnance Survey 2017)

A description of each predictor (units), the statistic measured within the moving window (larger predictor scale) and original data

sources are provided
aThe complexity of a patch shape is calculated using: 4pA

p2 where A is area and p is perimeter (Osserman 1978). Values closer to one

indicate a less complex, more compact patch shape. Perfectly circle shapes will have a value of 1
bDistance variables were always measured at the resolution of the gridded predictors, with no maximum search distance prescribed.

Distance to woodland edge was inverted within a woodland polygon to distinguish between the woodland interior and exterior

123

1006 Landscape Ecol (2020) 35:1001–1020



At each level, two candidate spatial scales were

selected to represent the distances or areas typically

covered by R. hipposideros according to published

radiotracking data (Table SI1.1), as species’ mobility

has been found to be a good indicator of likely scales

of effect (Jackson and Fahrig 2012). In the summer,

this species typically focusses feeding behaviour

500—600 m around the roost (often comprising of

building roof spaces; local habitat level), whilst

generally remaining a mean distance of 1–3 km, and

a maximum distance of around 5 km, from the roost

(summer range level; Table SI1.1). In the autumn, R.

hipposideros disperses to caves for hibernation.

Although there is a paucity of published data on this

dispersal behaviour, it is thought that these bats

typically travel around 5 km, but longer distances

have been recorded (H. Schofield, personal

communication).

The pixel size of the input data represented the

smaller scales of movement relevant to the population

range (5 km), summer range (1 km) and local (roost or

foraging) habitat (100 m) levels. To measure each

predictor at the level’s larger scale, a moving window

analysis measured focal statistics around each raster

pixel, using a circular window with a diameter set by

the larger scale (10 km, 3 km and 500 m, respec-

tively; Bellamy and Altringham 2015; Table 1). For

example, at the population level the percentage cover

of urban land use was measured within each 5 km

pixel (smaller scale) and mean urban cover was also

measured within a 10 km radius of each 5 km pixel

(larger scale). This resulted in a wide scale range

(100–10 km), that encompasses 30–50% of the max-

imum distances recorded at each level, whilst going

well above average dispersal distances, following

recommendations by Jackson and Fahrig

(2012, 2015).

Of the two scales, the optimal scale was then

identified for each predictor at each level by creating

univariate models (single predictors measured at a

single scale) using default settings with threshold

features disabled (‘dismo’ package; Hijmans et al.

2017). The scale which achieved the highest measure

of training gain, which can be interpreted as the

likelihood of the presence points (Merow et al. 2013),

was selected.

Step 3: processing species data and pseudoabsences

Rhinolophus hipposideros presence records were

collated from 2005 to 2016 from individual recorders,

the Bat Conservation Trust (BCT) database and the

National Biodiversity Network Gateway (NBN Gate-

way; https://www.nbn.org.uk/) (SI3). Datasets were

cross-checked for duplication. Records were cate-

gorised by date, locational precision and bat activity

(foraging or commuting; roosting; mating; hibernating

or unknown) using metadata (e.g. survey type) and

were filtered according to their relevance and relia-

bility at each level (SI 1.1). Records were only retained

at each level if their locational precision was equal to

or finer than the level’s pixel size. The population

range level model incorporated records of bats

throughout their annual cycle, whereas the summer

range and local level model only included records

made during May to August inclusively. A single

record per pixel was retained for modelling.

Many of the collated records were collected on an

ad hoc basis or originated from field surveys designed

using a variety of regional-scale sampling strategies.

The models were therefore calibrated to account for

the likely sampling bias of recorders towards acces-

sible and heavily sampled areas (Graham et al. 2004).

A ‘target group’ approach was used whereby 10,000

pseudoabsence data were selected according to esti-

mated survey effort for all bat species in Britain over

the same time period, as these records are presumed to

have been collected using similarly biased strategies

(Phillips et al. 2009) (see SI 1.1 for details; Fig. SI1.1).

Step 4: model nesting and tuning

Once the environmental and species data were

processed, the habitat suitability models were run for

each level in hierarchical order, starting with the

population range level. The gridded layer of logistic

habitat suitability indices (HSI) generated by each

model was disaggregated to the pixel size assigned to a

subsequent level using bilinear interpolation, and

these output data were included in the lower level

model’s set of candidate predictors. In this way,

information on the predicted population range was

used to help predict summer range suitability, and the

resulting summer range predictions were subsequently

fed into the local foraging and roosting models. The
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following processes were repeated for each model at

each level:

a. Multicollinearity: candidate predictors were com-

piled at their best performing scale alongside the

disaggregated HSI from any preceding higher-

level model. The variance inflation factor (VIF)

was calculated on this set of predictors. Highly

collinear predictors were removed using the

‘vifstep’ stepwise function, ‘usdm’ package

(Naimi et al. 2014) whereby predictors with a

VIF higher than the conservative threshold of

three were removed (Zuur et al. 2010).

b. Creating data folds: presence data were split into

three geographically-partitioned folds using k

means clustering (‘kmeans’ function, ‘stats’ pack-

age; R Core Team 2017) the minimum distance of

each pseudoabsence to the centroids of each

species data fold was then used to partition

pseudoabsences into corresponding spatial folds.

c. Model tuning: optimal MaxEnt model settings

were identified using the ‘ENMeval’ package

(Muscarella et al. 2014), which uses raw output

values at presence locations to provide sample-

size-adjusted Akaike information criterion (AICc;

Burnham and Anderson 2002, Warren and Seifert

2011). Combinations of feature types (predictor

transformations) were tested (linear (L), quadratic

(Q), product (P, enables interactions), and hinge

(H)): L, H, LQ, LQH, LQP and LQHP. Threshold

features were disabled to limit model complexity,

thereby reducing the potential for overfitting

(Shcheglovitova and Anderson 2013). The regu-

larisation multiplier was varied in steps of 0.5,

from 0.5–4.

Step 5: model validation and interpretation

The geographically-partitioned data folds were used

for three-fold cross validation. Outputs were first

validated using the mean Area under Receiver Oper-

ating Characteristic (ROC) curve (AUC) statistic. All

data were then entered into a final MaxEnt model

using the ‘dismo’ package and optimal settings to

produce model predictions. The Maximum Training

Sensitivity and Specificity (MTSS) occupancy rule

was used to partition HSI values into ‘suitable’ and

‘unsuitable’ categories (Liu et al. 2013). The propor-

tions of pseudoabsences falling inside pixels predicted

to be unsuitable (‘true (pseudo)absence rate’ or

‘pseudo-specificity’) were measured and a binomial

test calculated the statistical significance of the

proportion of presence records falling within the

suitable area (‘true presence rate’ or ‘sensitivity’).

Marginal response curves showing the predicted

probability of a species presence over a predictor’s

range were used to visualise species-environment

relationships. MaxEnt provides percentage contribu-

tion values as an indication of the relative influence of

each predictor, and a ‘lambdas file’ provides coeffi-

cients for the transformed features fitted (L, Q, H or P

type; Phillips et al. 2006). To facilitate understanding

of how much influence each environmental predictor

has in the presence of information on regional

suitability (sequential multi-level models) and without

this information (single-level models) at the summer

range and local levels, the sequential multi-level

model percentage contribution values were also

rescaled. This was done by summing the contribution

values for all environmental predictors within the

model, apart from the contribution value achieved by

the higher-level HSI predictor, and dividing each

environmental predictor’s contribution value by this

summed figure.

Comparisons with other approaches

Two alternative multi-scale HSM methods were

applied to explore differences in model performance,

output and interpretation at the summer range and

local habitat levels. Comparisons are only valid

between models of the same prevalence and extent

(i.e. intra-level, not inter-level).

(a) Single-level models models were run at both

lower levels (summer range and local) without

incorporating the disaggregated predictions

from the preceding level. Model fit and accuracy

were compared using three statistics: AICc,

AUC (resulting from the three-fold cross vali-

dation test) and the threshold-dependent mea-

sure of true presence. Response curves,

predictor contribution metrics and model coef-

ficients were used to investigate the influence of

the method on the species-environment rela-

tionships fitted.

(b) Post-hoc multi-level models HSI values from

each single-level model were overlaid,
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harmonised to the finest pixel size without

interpolation and multiplied on a pixel-by-pixel

basis (e.g. Johnson et al. 2004; Fournier et al.

2017; Zeller et al. 2017; Bauder et al. 2018). As

this approach involves using the product of the

outputs from two or more models using different

input data, measures of AICc and three-fold

AUC could not be calculated without relying on

the mean of these validation metrics across the

input models, which we believe to be largely

uninformative. A ‘non-independent AUC’ was

computed instead, using all the presence and

pseudoabsence data and the ‘evaluate’ function,

‘dismo’ package. This value is likely to be

falsely inflated compared to the ‘independent’

AUC statistics resulting from three-fold, geo-

graphically-partitioned cross validation (Veloz

2009; Bellamy et al. 2013; Radosavljevic and

Anderson 2014), but provides an alternative

metric for comparing performance between all

three approaches, alongside true presence and

(pseudo)absence statistics. The MTSS thresh-

olds were calculated for these outputs using the

‘SDMTools’ package (VanDerWal et al. 2012).

Results

Model performance

Sample sizes, optimal settings and validation results

for all models are presented in Table 2. For all models

at all levels, the optimal settings included a regular-

isation multiplier of 2.5 or 3, and LQH or LQHP

feature types. All models achieved statistically signif-

icant true presence rates (P\ 0.001). The population

range model (which, as the highest model level, is

inherently a single-level model and can’t be used to

compare the three modelling approaches) performed

well with an AUC of 0.79 ± 0.02 and 91% of presence

points falling within the 29% of 5 km resolution pixels

predicted to be suitable across Britain (and a true

(pseudo)absence rate of 61%).

At the lower levels, comparisons are possible

between model types within a level:

Sequential multi-level versus single-level models

In accordance with our hypothesis, the models created

using our sequential framework better fit the input data

(C 354 lower AICc) and provided more accurate

predictions compared to single-level models. At the

summer range level, although the true (pseudo)ab-

sence rates were similar across model types (circa

71%), the sequential multi-level model achieved 0.18

higher AUC values and over 20% more true presences,

despite a slightly smaller area (1.3%) classified as

‘suitable’. There were smaller gains for the sequential

multi-level models at the local level: the test statistics

were similar (AUC values 0.04 and 0.07 higher for

roosting and foraging models respectively) and,

although a smaller suitable area (9.0% and 7.1%

respectively) resulted in circa 5% fewer pseudoab-

sences falling into unsuitable pixels, true presence

rates were similar compared to single-level models.

Sequential versus post hoc multi-level models

Multiplying the single-level HSI values resulted in

similarly high levels of accuracy at the summer range

level. At the lower level, the post hoc model non-

independent AUC values were slightly lower (0.05)

and the areas predicted to be suitable were circa 10%

larger, resulting in higher true presence rates (almost

3% and 10% higher for the roosting and foraging

models respectively), but much lower (circa 20%) true

(pseudo)absence rates, indicating an overestimation of

suitable area.

Predicted R. hipposideros distributions

and species-environment associations

The estimated population range was characterised by

non-urban areas with relatively high precipitation and

maximum temperatures; all predictors were selected at

the 10 km scale (Table 3; Fig. SI2.1.1). These

conditions are concentrated within the current known

range of lowland Wales and South-West England,

although suitable habitat was forecasted to extend

beyond this, into lowland western England and

Scotland and some patches of eastern England

(Figs. 2, SI2.3).

At the summer range level, according to the

sequential multi-level model, areas within the pre-

dicted population range with around 40% broadleaf
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Table 3 Predictor contribution values

Model level Predictor Optimal scale (km) Predictor contribution values (%)

(a) Single-

level

(b) Sequential (rescaled) (c) Difference

Population

range

Maximum temperature 10 44.8 N/A N/A

Minimum temperature 10 3.0 N/A N/A

Precipitation 10 35.0 N/A N/A

Urban cover 10 16.3 N/A N/A

Woodland cover 10 0.9 N/A N/A

Summer range Ancient woodland cover 3 7.0 1.6 (7.0) 0.0

Arable cover 1 5.9 1.7 (7.6) 1.7

Broadleaf woodland cover 1 36.4 12.2 (54.8) 18.4

Building density 3 8.4 1.4 (6.2) - 2.2

Coniferous woodland cover 3 3.2 0.1 (0.6) - 2.6

Heathland cover 3 33.2 1.3 (5.9) - 27.3

Hedgerow density 1 0.7 0.6 (2.6) 1.9

Maximum woodland size 1 0.7 0.1 (0.4) - 0.3

Conservation woodland

cover

1 3.9 1.9 (8.6) 4.7

Woodland cover 1 0.6 1.4 (6.3) 5.7

Population range suitability N/A N/A 77.7 N/A

Roost habitat Ancient woodland cover 0.5 0.7 0.5 (0.7) 0.1

Arable cover 0.5 0.1 0.4 (0.6) 0.5

Broadleaf woodland cover 0.5 32.9 21.8 (32.0) - 0.9

Coniferous woodland cover 0.5 0.9 0.7 (1.0) 0.1

Distance major road/railway N/A 0.1 0.0 (0.0) - 0.1

Distance to woodland edge N/A 2.5 1.3 (1.9) - 0.6

Distance to buildings N/A 14.2 10.6 (15.5) 1.4

Distance to hedgerow N/A 6.4 4.8 (7.0) 0.6

Heathland cover 0.5 4.8 1.1 (1.6) - 3.1

Topographic Wetness Index 0.1 1.4 0.6 (0.9) - 0.6

Woodland compactness 0.5 35.5 26.1 (38.3) 2.8

Maximum woodland size 0.5 0.7 0.3 (0.4) - 0.2

Woodland cover 0.1 Removed due to multicollinearity

Summer range suitability N/A N/A 31.8 N/A

Foraging habitat Ancient woodland cover 0.5 1.2 0.1 (0.2) - 1.0

Arable cover 0.5 3.7 1.7 (3.4) - 0.3

Broadleaf woodland cover 0.1 40.2 24.1 (48.5) 8.3

Coniferous woodland cover 0.5 0.9 0.2 (0.4) - 0.5

Distance major road/railway N/A 0.7 0.6 (1.1) 0.5

Distance to woodland edge N/A 0.5 0.1 (0.2) - 0.4

Distance to buildings N/A 19.3 12.6 (25.3) 5.9

Distance to hedgerow 0.5 4.8 1.7 (3.5) - 1.3

Heathland cover 0.1 15.0 3.8 (7.7) - 7.3

Topographic Wetness Index 0.5 0.6 0.2 (0.4) - 0.2

Woodland compactness 0.5 2.3 0.7 (1.3) - 0.9
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woodland cover at the 1 km scale provided the most

suitable habitat (although care should be taken when

interpreting this model’s response curves due to the

interactions fitted). High cover of ancient and conser-

vation woodland within 3 km and low arable cover

within 1 km also appear to be associated with R.

hipposideros presence. The single-level model also

identified broadleaf cover as an important, positive

predictor but, in conflict with the sequential multi-

level model, this was closely followed by heathland

cover within 3 km as a positive predictor (Table 3;

Fig. SI2.1.2). Foraging habitats were best charac-

terised by areas close to buildings and hedges, with

high broadleaf cover within 100 m, small woodland

patches and low cover of heathland and arable within

500 m, according to both single- and multi-level

approaches (Fig. SI2.1.3). Roost habitats showed

similar strong associations to high broadleaf cover

(500 m scale) and areas close to buildings (typical R.

hipposideros roost structures) and hedges, although

areas with woodlands of medium shape compactness

(analogous to shape complexity) were also a strong

predictor of roost habitat suitability (Fig. SI2.1.3).

Disaggregated HSI values from preceding levels

were strong predictors at lower levels in the sequential

multi-level model, achieving percentage contributions

of 32–78% (Table 3). The nested nature of these

models is clear from examining the habitat suitability

surfaces; the imprint of the predicted population range

is maintained across the levels, but suitable areas are

further differentiated at lower levels according to fine

resolution species-environment associations (Figs. 2,

3). More areas were predicted to be of intermediate

suitability for foraging bats compared to roosting bats

(Figs. 2, SI2.1.3), which may be explained by the

higher contribution of summer range suitability on the

foraging model (Table 3). Similar predictive HSI maps

were provided by the post-hoc multi-level approach,

although a higher proportion of pixels were predicted

to be highly suitable (Table 2; Figs. 3, SI2.2.1–9). In

contrast, the single-level models forecasted a geo-

graphically wider distribution of suitable summer

range and foraging habitats and the differentiation in

suitability between the west and east of Britain was not

apparent (Figs. 3, SI2.2.1–9).

At the local level, environmental relationships were

very similar between multi- and single-level models;

distance to buildings and broadleaf cover were more

important in the multi-level foraging model than the

single-level model, but these differences were not

pronounced (Table 3). At the summer range level,

there were large disparities between the species-

environment relationships fitted between multi- and

single-level models (Table 3; Fig. SI2.1.2). This may

be because the optimum model settings incorporated

‘product’ feature settings at the summer range level,

enabling interactions between predictors (Table 3).

Predictors displaying large differences in their

response curves between single- and multi-level

approaches tended to be fitted as an interaction with

population range HSI (Table SI2.1). Broadleaf cover

was a stronger predictor of summer range suitability

according to the multi-level model, and heathland

cover had a much higher influence on the single-level

model (Table 3, rescaled percentage contribution

values). The direction of the relationships also some-

times switched; high building density and ancient

woodland cover had a negative influence on summer

Table 3 continued

Model level Predictor Optimal scale (km) Predictor contribution values (%)

(a) Single-

level

(b) Sequential (rescaled) (c) Difference

Maximum woodland size 0.5 10.7 4 (8.0) - 2.7

Woodland cover 100 Removed due to multicollinearity

Summer range suitability N/A N/A 50.2 N/A

A predictor’s optimal scale was selected according to univariate measures of training gain. To facilitate comparison of predictor

influence between modelling approaches, sequential multi-level model predictor contribution values were rescaled by summing the

contribution values for all environmental predictors within the model, apart from that of the higher-level HSI predictor, and dividing

each environmental predictor’s contribution value by this summed figure. Single-level predictor contribution values were then

subtracted from these rescaled values, so that predictors with negative ‘difference’ values (c) can be interpreted as having relatively

less of an impact in the sequential, multi-level model
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range suitability in the absence of information on

population range suitability but a positive influence in

the multi-level model (Fig. SI2.1.2).

Discussion

The benefits of a sequential, multi-scale approach

to HSM

We provide an easily implemented, flexible frame-

work for multi-level, multi-scale HSM that improves

on single-level and post-hoc multi-level HSM

approaches by nesting models across levels. Our

framework has three principle advantages. Firstly, by

integrating the HSI values obtained from models run at

higher levels as a predictor in models run at lower

levels, species-environment relationships are fitted

whilst accounting for predicted regional suitability,

echoing the hierarchical habitat selection process and

accounting for context dependency. Secondly, parti-

tioning predictors into separate model levels rather

than grouping them into a single analysis limits

multicollinearity, an issue prevalent in multi-scale

modelling (Lipsey et al. 2017). Thirdly, the approach

makes good use of species records commonly avail-

able at ‘coarse’ resolutions ([ 100 m), which are

usually rejected or downscaled prior to HSM (Graham

et al. 2015).

The framework can be easily adapted according to

aims and data availability; different statistical models

and geographic extents (providing these are nested)

can be fitted at each level. As well as varying

regionally, species’ relationships with local or land-

scape factors can also vary according to the response

metric (e.g. species abundance or fitness), between

individuals according to characteristics such as sex,

life cycle stage or genotype, and across time according

to seasonal factors (Martin 2018). Separate models can

therefore be used to investigate differences in habitat

use that manifest at lower levels between these

subcategories, whilst integrating universal higher

level model output (e.g. Rettie and Messier 2000;

Gabor et al. 2001; Bauder et al. 2018). By allowing

drivers operating at different scales to be disentangled,

regionally suitable areas without the local- or land-

scape-scale features required at lower levels can be

identified (Pearson et al. 2004; Vicente et al. 2011),

improving the prescription and spatial targeting of

management solutions (Lindenmayer 2000; Whitting-

ham et al. 2007; Zeller et al. 2017). This type of cross-

scale approach can be extended to other types of

ecological questions, given availability of spatially

explicit response data, such as where to focus

resources in support of ecosystem services (e.g. Spake

et al. 2019).

We have demonstrated the superior predictive

performance and fit of models developed with our

framework compared to single-level methods using a

single species and region. Although multiplying

single-level outputs using the post-hoc multi-level

approach provided similar predictive habitat suitabil-

ity surfaces and levels of accuracy (apart from

appearing to overestimate the area of suitable habitat),

the fitted relationships differed at the summer range

level. This has important consequences for inference.

For example, the high contribution of heathland cover

within 3 km in the single-level model (and thus post-

hoc combinations of single level models) indicates a

strong, positive association with heathland areas,

which is contrary to expectations; R. hipposideros

wing shape and echolocation call structure mean it is

well-adapted to cluttered environments and avoids

large areas of open habitats (Bontadina et al. 2002;

Zahn et al. 2008; Dool et al. 2016). Heathlands are

mainly found in wetter regions in Britain and annual

rainfall had a strong influence on R. hipposideros

population range habitat suitability. This disparity is in

accordance with our hypothesis and demonstrates that

by focusing on a single level and disregarding drivers

operating at other levels, spurious relationships may

be identified when predictors are correlated. HSMs

should therefore always be ‘sense-checked’ for bio-

logical realism alongside statistical validation (Four-

cade et al. 2017).

It is also important to interpret results from the

sequential, multi-level approach in the context of the

relationships fitted at higher levels and any potential

interactions with the disaggregated HSI. For example,

building density was found to have an important,

positive association with R. hipposideros habitat

suitability at the summer range level using our

sequential framework, contrary to the single-level

model. However, this predictor was included as an

interaction with the population range HSI, which itself

was driven by a strong negative association with high

urban landcover within 10 km. This indicates that R.

hipposideros selects for rural areas with some built-

123

Landscape Ecol (2020) 35:1001–1020 1013



123

1014 Landscape Ecol (2020) 35:1001–1020



infrastructure, which can be explained by its depen-

dence on buildings for roosting (Dietz et al. 2009).

However, although the MaxEnt output indicates which

interactions were fitted, there is currently no function

available to visualise these, limiting interpretation. To

gain a better understanding of cross-scale interactions,

our framework could be followed by a more deliber-

ative approach, such as hierarchical General Linear

Modelling (GLM) (Spake et al. 2019).

Future framework refinements

Our use of pseudo-optimised scale selection (sensu

McGarigal et al. 2016), whereby univariate models are

used to identify the scale at which a predictor best fits

the response data at each level, improves upon

previous multi-level studies that focus on a single

scale at each level (e.g. Pearson et al. 2004; Mateo

et al. 2019b). However, the number of scales tested at

each level was limited to two and testing for scale

effects in isolation (disregarding covariates and

potential interactions) can inflate residual variance

and alter scale selection (Bradter et al. 2013; Spake

et al. 2019). Univariate methods are commonly

adopted in multi-scale studies due to the complexity

and computational memory requirements involved in

testing many permutations of predictors and scales

(McGarigal et al. 2016). Future research should focus

on integrating true scale optimisation processes that

identify a predictor’s scale of effect across a wider

breadth of scales (Jackson and Fahrig 2015; Miguet

et al. 2016) in the presence of other predictors, such

using the information-theoretic ‘dredge’ function

provided by the R package ‘Mumin’, (which does

not currently support MaxEnt models; Barton 2018) to

test between a hypothesis-driven selection of predictor

sets and interactions (e.g. Spake et al. 2019), or

recently developed Bayesian approaches (e.g. Stuber

et al. 2017, particularly when sample sizes are low

(Mateo et al. 2019a)). Other areas for potential

framework validation and refinement include the

application of a simulation experiment with well-

known correlation structures to better test the frame-

work’s robustness (Meynard et al. 2019) and exploring

the application of statistical approaches to classify

predictors into levels (e.g. Vicente et al. 2014).

Because lower level, fine-scale species-environment

relationships are usually constrained by factors oper-

ating at higher levels (Allen and Starr 1982) we used a

‘top-down’ approach to order the models; however,

comparisons with ‘bottom-up’ level sequences could

also be carried out.

Model inference: implications for woodland bat

conservation

This study demonstrates how the implementation of

our HSM approach can inform targeted site- to

landscape-scale decision making. A combination of

climate, land use and land management factors,

operating over a range of spatial scales, were found

to be associated with distribution of R. hipposideros in

Britain. Landscape-scale strategies should focus on

protecting and re-connecting important R. hip-

posideros hotspots in Wales and South-West England

and facilitating (re)colonisation of regions north and

east of the current known range that are predicted to be

suitable at the population range level. The models

suggest that actions in these areas should focus on

protecting and increasing surrounding broadleaf

woodland cover, providing accessible roost spaces

within appropriate buildings, and increasing hedgerow

provision for foraging and commuting. Furthermore,

ancient woodland and ‘conservation woodlands’

[those with a protected status or that are managed by

organisations with a large focus on species or habitat

conservation (Table 1)] appear to have a positive

impact on summer range suitability; this could be

further investigated if spatial data on the prescription

of woodland management actions in private wood-

lands were available. Many of these findings are

consistent with what we already know about the

species (e.g. Boughey et al. 2011; Tournant et al. 2013;

Froidevaux et al. 2017; Le Roux et al. 2017; Fuller

et al. 2018), demonstrating the reliability of the

approach and highlighting its potential to provide

useful information on other, less well-understood

woodland bat species for which reliable records are

bFig. 3 Predicted R. hipposideros logistic habitat suitability

indices (HSI) at each level below the population range (a-c)

according to each model type (1–3). HSI values range from 0

(unsuitable; pale yellow) to a maximum of 1.0 (highly suitable;

dark blue), apart from the post-hoc multi-level results, which are

multiplied across the levels. A rectangular inset map is provided

(at different extents for the summer range and local levels) to

enable comparisons of the finescale predictions. See Fig. SI2.2

for full-size images of individual model output

123

Landscape Ecol (2020) 35:1001–1020 1015



particularly limited (e.g. the cryptic small Myotis

species) (Pearson et al. 2006; Rebelo and Jones 2010).

Opportunities for further model validation

and improvement

To prevent truncation of the R. hipposideros climatic

niche, the population range level model should have

encompassed its global range (Pearson et al. 2004;

Barbet-Massin et al. 2010; Heisler et al. 2017; El-

Gabbas and Dormann 2018), which extends south and

east from Ireland and Britain into North Africa and

Asia. However, bat records within this range were

patchy or unavailable via data portals such as the

Global Biodiversity Information Facility (https://data.

gbif.org). Furthermore, the R. hipposideros global

range has shrunk since the mid-twentieth century; in

Britain range contraction to the south-west has tracked

recent, rapid changes in land-use and agricultural

intensification (Robinson and Sutherland 2002; Bon-

tadina et al. 2008). This disequilibrium with the

environment may also skew models, a problem that is

relevant to many species (Araújo and Pearson 2005;

Guisan and Thuiller 2005), but for which we lack good

historical data to address.

Independent data are needed to better assess model

performance and reliability (Fielding and Bell 1997).

Alongside the HSM work we are trailing methods and

technologies for surveying woodlands for bats to

inform a new citizen science monitoring scheme, the

British Bat Survey, which is under development by the

Bat Conservation Trust. Rolling out a standardised

survey protocol to collect more precise, reliable field

data nationwide will enable independent model vali-

dation and will eventually provide a more accurate and

complete picture of bat species distributions. Used in

conjunction with emerging spatial datasets derived

from sources such as LIDAR, the influence of fine

scale woodland composition and structure on wood-

land specialist bats species activity could be analysed

(e.g. Carr et al. 2018). Our ability to model R.

hipposideros habitat suitability would probably

improve with the creation or wider accessibility of

relevant UK-wide spatial data on features such as

street lighting, agricultural intensity, trees outside

woodland and underground sites suitable for hiberna-

tion (Fuller et al. 2018).

Conclusions

This case study suggests that sequential multi-level

HSM frameworks incorporating within-level scale

optimisation procedures should be adopted in favour

of single-level models. This approach appears to

provide more accurate predictions and a more com-

plete understanding of the associations underlying a

species’ distribution with which to inform policy and

practice, although validation using simulation exper-

iments and other real word examples are required. Our

results indicate that, when predictive accuracy is the

sole priority of an HSM exercise, it may be justifiable

to use a post-hoc multi-level approach to overlay and

combine HSI outputs from multiple levels. Indeed,

other studies have demonstrated the utility of this

method for decision making (e.g. Johnson et al. 2004;

Hattab et al. 2014; Fournier et al. 2017; Zeller et al.

2017; Bauder et al. 2018). However, we suggest that

multi-level models should be sequentially integrated

to enable a species’ response to its environment to vary

according to regional suitability when information on

the underlying species-environment relationships is

key.
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A, Burke T, Dawson DA, Jones G (2014) Scale-dependent

effects of landscape variables on gene flow and population

structure in bats. Divers Distrib 20:1173–1185

Rebelo H, Jones G (2010) Ground validation of presence-only

modelling with rare species: a case study on barbastelles

Barbastella barbastellus (Chiroptera: Vespertilionidae).

J Appl Ecol 47:410–420

Rettie WJ, Messier F (2000) Hierarchical habitat selection by

woodland caribou: its relationship to limiting factors.

Ecography (Cop) 23:466–478

Robinson RA, Sutherland WJ (2002) Post-war changes in arable

farming and biodiversity in Great Britain. J Appl Ecol

39:157–176

Scholefield PA, Morton RD, Rowland CS, Henrys PA, Howard

DC, Norton LR (2016) Woody linear features framework,

Great Britain v.1.0. NERC Environmental Information

Data Centre, Wallingford

Scholes RJ, Reyers B, Biggs R, Spierenburg MJ, Duriappah A

(2013) Multi-scale and cross-scale assessments of social–

ecological systems and their ecosystem services. Curr Opin

Environ Sustain 5:16–25

Scottish Natural Heritage (2010) Ancient woodland inventory.

https://gateway.snh.gov.uk/natural-spaces/dataset.jsp?dsid=

AWI. Accessed 5 January 2019

Shcheglovitova M, Anderson RP (2013) Estimating optimal

complexity for ecological niche models: a Jackknife

approach for species with small sample sizes. Ecol Model

269:9–17

Spake R, Bellamy C, Graham LJ, Watts K, Wilson T, Norton

LR, Wood CM, Schmucki R, Bullock JM, Eigenbrod F

(2019) An analytical framework for spatially targeted

management of natural capital. Nat Sustain 2:90–97

Stuber EF, Gruber LF, Fontaine JJ (2017) A Bayesian method

for assessing multi-scale species-habitat relationships.

Landsc Ecol 32:2365–2381

Swihart RK, Gehring TM, Kolozsvary MB, Nupp TE (2003)

Responses of ‘‘resistant’’ vertebrates to habitat loss and
fragmentation: the importance of niche breadth and range

boundaries. Divers Distrib 9:1–18

Timm BC, Mcgarigal K, Cushman SA, Ganey JL (2016) Multi-

scale Mexican spotted owl (Strix occidentalis lucida) nest/

roost habitat selection in Arizona and a comparison with

single-scale modeling results. Landsc Ecol 31:1209–1225
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