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Abstract

Context The importance of habitat connectivity for

wildlife is widely recognised. However, assessing the

movement of species tends to rely on radio-tracking or

GPS evidence, which is difficult and costly to gather.

Objectives To examine functional connectivity of

greater horseshoe bats (GHS, Rhinolophus ferrume-

quinum) at a local scale using Circuitscape software;

comparing our results against expert opinion ‘fly

ways’.

Methods Expert opinions were used to rank and

score five environmental layers influencing GHS

movement, generating resistance scores. The slope

and resistance scores of these layers were varied, and

validated against independent ground truthed GHS

activity data, until a unimodal peak in correlation was

identified for each layer. The layers were combined

into a multivariate model and re-evaluated. Radio-

tracking studies were used to further validate the

model, and the transferability was tested at other roost

locations.

Results Functional connectivity models could be

created using bat activity data. Models had the ability

to be transferred between roost locations, although

site-specific validation is strongly recommended. For

all other bat species recorded, markedly more (125%)

bat passes occurred in the top quartile of functional

connectivity compared to any of the lower three

quartiles.

Conclusion The model predictions identify areas of

key conservation importance to habitat connectivity

for GHS that are not recognised by expert opinion. By

highlighting landscape features that act as barriers to

movement, this approach can be used by decision-

makers as a tool to inform local management

strategies.

Keywords Barriers � Circuitscape � Citizen science �
Corridor � Fragmentation � GIS
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Introduction

Retaining the functional connectivity of landscapes is

a pressing issue for conservation (Goodwin and Fahrig

2002; Fahrig et al. 2011). Largely driven by urbani-

sation and agricultural change, increasing habitat

fragmentation has implications at an individual and

population level. The consequences include isolation

from habitats necessary for foraging, resting or gene

flow, resulting in population declines and greater

vulnerability to extinction (Pulliam 1988; Beier 1993;

Rossiter et al. 2000).

The identification of landscapes or habitats that

provide high functional connectivity for species of

conservation concern has the potential to focus

resources where they can be deployed most effectively

(Lawton et al. 2010). For some species, such habitats

are—at least in principle—legally protected because

they are vital to maintaining the integrity of key

populations [e.g. landscapes connecting a network of

Special Areas of Conservation of bats under the EU

Habitats Directive; 92/43/EEC (EC 1992)]. However,

in practical terms, trying to identify the exact locations

or the extent of these habitats can be extremely

challenging, with many habitat requirements being

species specific (Fagan and Calabrese 2006; Fahrig

2007). For example, important corridors may offer

relatively poor habitat quality in themselves, but may

offer the best—or only—available route to join areas

important for foraging, mating or resting.

One approach to exploring and visualising func-

tional connectivity within a landscape is to use circuit

theory (McRae 2006). In combination with random

walk theory (Doyle and Snell 1984; Chandra et al.

1996), these approaches allow for all available move-

ment possibilities to be considered and mapped using

resistance surfaces. These surfaces (landscapes) are

scored based on the cost incurred for an individual to

move between two nodes (habitats) (Wiens 2001),

with less resistance representing an increased proba-

bility of movement between nodes. Linking nodes

together creates cost paths that can be represented by a

cumulative resistance value or cost-weighted distance

(McRae et al. 2008). Thus, the probability of move-

ment between any two spatial locations can be

measured, whilst considering all other available

routes.

The application of this approach, using the software

Circuitscape (McRae et al. 2008), has been

successfully used to map barriers to gene flow and

species movement, and to identify landscape corridors

critical to the long term viability and stability of

populations (Belisle 2005; Le Roux et al. 2017; e.g.

Rayfield et al. 2016). However, most of this research

has focused on large spatial scales (e.g. country-level),

and has used direct measures of animal movement

(e.g. GPS tracks). In practice, barriers to connectivity,

as well as conservation actions, frequently operate at

much smaller spatial scales. For example, decisions

must be made about the probable effect of a single,

lane major road on the ability of a local population to

access parts of its habitat, and hence what, if any,

mitigation is required.

Considering the cost implications and the lack of

equipment to be able to GPS tag smaller bat species

safely and ethically we highlight the need to be able to

develop non-invasive methods for examining conser-

vation issues surrounding landscape fragmentation at a

local scale. This is of particular concern for the greater

horseshoe bat (GHS; Rhinolophus ferrumequinum)

which has suffered large worldwide declines and is of

particular conservation concern in Britain (Jones et al.

2009). This species is highly dependent on linear

features, such as hedgerows, to facilitate movement

into the wider landscape (Duvergé and Jones 1994;

Froidevaux et al. 2017). Using an approached detailed

by Shirk et al. (2010), we use the GHS in southern

Britain to test whether (i) robust, high resolution

connectivity models suitable for informing conserva-

tion planning at local scales can be produced using

Circuitscape, (ii) non-invasive indicators of activity

can be used to populate models of functional connec-

tivity, and (iii) the optimal connectivity model output

corresponds with expert opinion ‘fly ways’.

Methods

Study area and GIS data

The study areas were defined as 3 km radii around four

GHS maternity roosts in Devon, southwest England

(supplementary material Fig. S1). These study areas

were restricted to 3 km due to computational limita-

tions regarding the trade-off between the extent of the

area covered and the resolution of the data. As GHS

are site-faithful (Rossiter et al. 2002), with limited

movement of females between sites during the
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maternity season, the data collected from these roosts

were treated as independent from each other during the

modelling process. In addition, the roosts were

between 13.5 and 89 km apart. The maximum

distance recorded by an individual during our radio

telemetry study was 9.1 km (mean: 5.4 km); this is in

line with Pinaud et al. (2018), who recorded a

maximum distance of 7.6 km (mean: 4.2 km). Each

study area contained a mosaic of habitats and

landscape features, including grazed and arable fields,

broadleaved woodland, coniferous woodland, hedge-

rows, riparian habitats, and occasional farm buildings

and residential houses (Supplementary material

Fig. S2–5). Numerous single-lane roads crossed the

landscape, and in two of the study areas there were

two-lane highways. Immediately surrounding three of

the roosts were small villages. Streetlights occurred in

these villages, as well as in isolated patchy locations

across the wider landscape.

One-metre resolution geographical information sys-

tem (GIS) raster data were obtained for each landscape

feature surrounding each of our roosts, resulting in five

different environmental layers (Table 1). The Light-

scape layers were created following the methodology

described by Bennie et al. (2014), using streetlight

position and height with Digital Terrain Models (DTM)

and Digital Surface Models (DSM) to create a light

irradiance GIS layer. These were used to predict the

direction and intensity of streetlight at different wave-

lengths,modelling thenight-time light environment.The

Distance to Roads layerswere created usingArcGIS and

ranked using the most current annual average daily

traffic volumes (AADT; rounded to the closest 10)

(Department of Transport 2015). In this case, lower

AADTmeant a lower rank value. TheDistance to Linear

Features layers defined ‘intensively managed hedge-

rows’ as those typically cut annually and which have a

median height\2m; ‘sympathetically managed hedge-

rows’ are defined as thosewith amedianheight[2mand

which typically included mature trees, had not been cut

the previous calendar year, and were managed, whether

intentionally or not, in ways that benefit wildlife.

Bat surveys

Acoustic surveys

The relative GHS activity was based on acoustic

surveys for bats that were conducted as part of a citizen

science project (Devon Greater Horseshoe Bat Project;

June–September 2016). Acoustic data were collected

at 205 survey points using full-spectrum static bat

detectors (SM2 and SM2? detectors with SMX-U1 or

SMX-US ultrasonic microphones that were sensitiv-

ity-tested prior to deployment, Wildlife Acoustics,

Maynard, Massachusetts, USA). Details of the acous-

tic detector settings are provided in Supplementary

material Table S2. Microphones were placed at a

height of at least 1 m above the ground and were

orientated horizontally. Recordings were made for up

to seven nights from 30 min before sunset to 30 min

after sunrise. Bat detectors were placed as close to

randomly as possible (depending on landowner per-

mission) in all available landscape features within

3 km of each roost. During the process of univariate

and multivariate model validation, no predictions

within the peripheral 300 m of the survey area were

used, as it is anticipated that the validity of the model

would decline at its outer extremities (Koen et al.

2010).

Acoustic records were analysed using Kaleido-

scope software (version 3.1.1; Bats of Europe classi-

fier version 3.0.0; Wildlife Acoustics, Maynard,

Massachusetts, USA) and were verified manually on

the basis of call frequency, shape and repetition rate.

Relative bat activity was assessed as the average

number of bat passes per night per detector during the

survey period (e.g. Jung et al. 2012; Charbonnier et al.

2014). Any bat detectors that only functioned for a

single night owing to malfunction, and that did not

record GHS during that night, were excluded from

further analysis. GHS passes were defined as pulses of

sound, as described by (Russ 2012), recorded within a

single sound file. Sounds files were created by a rolling

two-second window: once the detectors were trig-

gered, recording continued until there was a two-

second window without sound of sufficient amplitude

to trigger recording. The average pass rates per night

per detector were used to validate all models.

Radio-tracking study

During May and June 2010 and 2012, 13 female GHS

were caught using mist nets and harp traps for radio-

tracking at Roost 2 in southern Devon, under licence

from the National Statutory Nature Conservation

Organisation (Natural England). Each of the bats

was weighed, and the largest parous females were
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selected for study. The transmitter (0.35 g) did not

exceed 5% of the bat’s body weight. A small area of

fur was clipped from between the scapulae, and VHS

radio-transmitters (Micro-pip, Biotrack Ltd., Ware-

ham, Dorset, UK) were attached using Torbot surgical

adhesive (Torbot Group Inc., Rhode Island, USA).

The female GHS were tracked nightly for up to ten

days, or until the tags dropped off or their batteries

failed. Bats were followed, as closely as possible

without causing a disturbance, by two teams of

observers, each equipped with radio receivers (Sika,

Biotrack Ltd., Wareham, Dorset, UK) connected to

hand-held directional three-element Yagi antennae; to

establish commuting routes and foraging grounds

in situ (White and Garrott 2012), fixes were taken

every 5 min. Alternatively, the general locations of the

bats were identified using an omni-directional magnetic

whip aerial mounted on the roof of a vehicle. Once the

teams homed in on the individual GHS they switched to

the hand-held equipment again, taking multiple timed

bearings of the location of each bat. From these

measurements, the position of the bats were then

biangulated after each survey night. Using a similar

approach, Pinaud et al. (2018) estimated the spatial

accuracy to be approximately 100 m. To eliminate

temporal correlation of our fixes, each fix was consid-

ered independent when at least 30 min separated two

consecutive locations (White and Garrott 2012).

Modelling approach

An underlying premise of our approach was that

relative GHS activity (in this case bat passes) are a

suitable proxy for more direct indices of connectivity

(e.g. genetic connectivity indices or animal movement

tracks collected by GPS). Doncaster and Rondinini

(2001), Braaker et al. (2014), Le Roux et al. (2017) and

Pinaud et al. (2018) all demonstrate, through field

Table 1 GIS data used to model the movement of greater horseshoe bats in the study site (average annual daily traffic—AADT)

Environmental layer Landscape feature Rank & AADT

score

References

Land cover Orchards Rank 1 EDINA (2016d)

Deciduous woodland Rank 2 Morton et al. (2011)

Scrub Rank 3 Morton et al. (2011)

Grassland Rank 4 Morton et al. (2011)

Coniferous woodland Rank 5 Morton et al. (2011)

Arable land Rank 6 Morton et al. (2011)

Lake Rank 7 Hughes et al. (2004)

Buildings Rank 8 EDINA (2016e)

Lightscape GPS coordinates of lights, column height, light

type

– Devon and Cornwall County

Council

LiDAR—DSM – EDINA (2016a)

LiDAR—DTM – EDINA (2016b)

Distance to river River – EDINA (2016d)

Distance to roads Single-lane local road Rank 1—AADT 660 EDINA (2016c)

Single-lane minor road Rank 2—AADT

3260

EDINA (2016c)

Single-lane major road Rank 3—AADT

15510

EDINA (2016c)

Two-lane major road Rank 4—AADT

41750

EDINA (2016c)

Distance to linear

features

Sympathetically managed hedgerow Rank 1 Broughton et al. (2017)

Treeline Rank 2 Broughton et al. (2017)

Woodland edge Rank 3 EDINA (2016d)

Intensively managed hedgerow Rank 4 Broughton et al. (2017)
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observations, static bat detectors, radio-tracking and

Geographical Positioning System (GPS) data, that in

general species, including the GHS, spend less time in

unfavourable habitats that have higher resistance

values. Additionally, the same individuals are more

likely to occur multiple times, and at higher activity

levels, in more favourable areas of low resistance

values, e.g. along commuting routes or at foraging

grounds (Doncaster and Rondinini 2001). To test this,

we compared the outputs of our Circuitscape models

with independent data gathered using both acoustic

surveys and from radio-tracking studies at our study

locations.

Landscape connectivity for GHS was hypothesized

to be influenced by local-scale landscape heterogene-

ity. To make predictions on this hypothesis, we used a

similar modelling framework to that outlined by Shirk

et al. (2010), and expert opinionmodelswere created as

raster resistance surfaces (spatial models) for each

environmental layer. Mathematical functions that

varied resistance scores and slope values were applied

(see below and supplementary material Fig. S6) to the

expert opinion model for each environmental layer,

evaluating and identifying the peak relationship

between the resistance surface parameters and the

independent activity data collected around a single

GHS roost (Roost 1). This process identified the

optimal univariate models for each environmental

layer. These optimal layers were combined into a

multivariate model, which were then reanalysed to find

the optimal multivariate model. In addition, we then

compared the Circuitscape model output for Roost 2

against data collected through radio-tracking studies.

To test the transferability of the multivariate model to

other locations, we applied the same resistance values

to the environmental layers at three other GHS roosts

(Roosts 2–4); using independent ground truthed GHS

activity data collected around each of those three roost

locations to assess the utility of the models.

Expert opinion model

Based on eight expert opinions and a literature reviewof

the movement and dispersal ability of GHS (Jones et al.

1995; Flanders and Jones 2009), 18 different landscape

features were selected and ranked, within their respec-

tive environmental layer groups (Table 1), based on the

likely resistance they posed to the movement of GHS.

The experts were from both academic and non-

governmental organizations, who specialise in, and

have extensive knowledge of, GHS ecology. Each

expert was sampled, via questionnaire, on the rank and

potential resistance values of each landscape feature.

These data were then combined to determine the initial

ranks and resistance values. A rank of one indicated the

least costly landscape feature for themovement ofGHS,

while higher ranks were associated with more costly

features. If there was only one landscape feature in a

given environmental layer, then no ranks were required

e.g. Rivers. However, if a layer had more than one

landscape feature, e.g. Roads, then the maximum rank

was the total number of features—in this case four; for

other layers, such as Land Cover, the maximum was

eight. Those landscape features with higher ranks have

greater weighting associated with them, relative to

others within the same layer, and as a result, they are

more resistance to species movement. Both resistance,

and subsequently cost surfaces, using expert opinion

data, were then created for each of the environmental

layers at Roost 1, before mathematical functions (see

below) were applied and analysed during the univariate

modelling process.

Mathematical functions

When examining an ecological system, the relation-

ships between environmental layers (or their resis-

tance values) and the functional response of the

species (e.g. animal movement) are rarely linear

(Etherington 2016). In addition, researchers do not

often account for interactions between multiple envi-

ronmental layers that can occur in real landscapes. For

example, a hedgerow with and without streetlights on

it will influence the movement of bat species in

different ways (Stone et al. 2009). To avoid these

issues, and to maximise the potential accuracy of the

models, we rescaled our raster data to permit a range of

slope values (x; ranged from 1 to 5) relating to our

resistance values. Additionally, we varied the maxi-

mum resistance value (Rmax), allowing for a range of

resistance values to be considered for each layer

(varied between resistance 1 and 1010; see below and

Supplementary material Fig. S6).

Land cover

The eight broad land cover features were ranked based

on expert opinion in order of lowest to highest
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resistance (Table 1). The ‘Buildings’ landscape fea-

ture was always set as the lowest permeability.

Resistance surfaces for Land Cover were created

using the following equation:

R ¼ Rank=Vmaxð Þx � Rmax

where R is the resistance for each raster pixel (each of

which consist of a single Land Cover type) and Vmax is

a constant that is the highest possible rank for that

feature type. For example, at three of our roost

locations there were seven landscape features (Or-

chards, Deciduous woodland, Scrub, Grassland,

Coniferous woodland, Arable land, Buildings; Vmax-

= 7), and at one we had eight, because Lakes were

only present for Roost 4 (Vmax = 8). This means that

as the expert opinion ranking moves nearer to the

highest resistance rank (Vmax), the overall resistance

increases towards Rmax at a rate controlled by the

response curve of the slope value (x) (Shirk et al.

2010).

Lightscape

The lightscape irradiance (IR) values were multiplied

by the slope values and maximum resistance:

R ¼ IRð Þx � Rmax

Distance layers

Each of the three continuous distance layer functions

were modified in different ways based on their

ecological relationship with GHS bats. Euclidean

distance to Rivers was calculated using the following

function:

R ¼ Det=Vdmaxð Þx � Rmax

where Det is the nearest distance of the raster pixel to

any river in the 3 km extent, and Vdmax is a constant

that is defined as the maximum distance possible from

Rivers within the extent of the 3 km. Based on

previous literature suggesting that GHS activity occurs

at close proximity to linear features, a maximum

distance of 10 m was set for both the Linear Features

and Rivers layers (Ransome 1996).

Distances, to Linear Features were modelled in a

similar way, except as there is more than one feature;

the rank order of the features were based on the

resistant values chosen by the expert opinion. The

lower the expert opinion resistance value the higher

the rank order of the feature, meaning that those

variables with higher rank order are more permeable

than those with a lower rank order. Vrmax is a constant

representing the highest rank value for each layer, in

this case four. Both the distance to each feature and its

rank carried equal weight within the function, and so

were multiplied by 0.5.

R ¼ Det=Vdmaxð Þ � 0:5þ 0:5� Rank=Vrmaxð Þð Þx
� Rmax

Landscape resistance values for distance to Roads

were classified using four ranks (660, 3260, 15510,

41750 AADT for each road types (Department of

Transport 2015); see Table 1 for rank order). Based on

examination of previous literature (Berthinussen and

Altringham 2012), a maximum distance of 200 m was

set for the Roads layer. As resistance was expected to

decline with increasing distance to Roads (the inverse

of the expectation for Linear Features), we used the

following function:

R ¼ 1� Det=Vdmaxð Þð Þ � 0:5þ 0:5ð
� Rank=Vrmaxð ÞÞx � Rmax

where Vrmax is a constant which represents the highest

number of ranks within the Roads layer, set to the

highest AADT (41750; rank 4).

Once each resistance surface was created, we used

Circuitscape (Version 4.0.5) to create current maps

(McRae et al. 2008). To identify the functional

connectivity for GHS at a local scale, we used a single

roost location as the source layer. Since the exact

movement patterns of the bats were unknown, e.g. the

locations of potential foraging grounds, we generated

a layer featuring concentric circles at 100 m intervals

from the roost to a maximum distance of 3 km, using

this as the target or ground layer. This enabled us to

model movement scenarios from 100 m to 3 km,

giving equal weight to each distance and direction.

Univariate and multivariate models

The optimal univariate models for each of the five

environmental layers were determined, following the

method detailed by Shirk et al. (2010). For each

environmental layer, the value for both parameter

functions, x and Rmax, were increased or decreased
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(favouring the direction of increasing correlation) and

revaluated after each iteration (100–161 variations per

environmental layer with varying x (1–5) and Rmax

(1–1010) values). This iterative process continued until

an optimal model was found by examining and

identifying the unimodal peak in the maximum

Spearman’s rank correlation coefficient between the

parameter functions (x and Rmax) output (Circuitscape

current map) and the relative GHS activity data at

Roost 1.

The resistance surfaces of the optimal univariate

environmental layers were then combined into a

multivariate model resistance surface for Roost 1. To

incorporate the interactions between layers into this

additive multivariate model, the parameter functions

(x and Rmax) of each layer were increased or decreased

independently, while keeping all other layers constant,

until a unimodal peak for each layer could be

identified. This started with the univariate environ-

mental layer with the highest correlation to GHS

activity. If the parameter functions of a layer with a

lower correlation value changed, then the iterative

process started again, beginning with the univariate

environmental layer with the highest correlation value,

testing each iteration against the ground-truthed GHS

activity data. The same parameter functions used in

the univariate optimisation were used during the

multivariate optimisation, and were increased or

decreased until a unimodal peak was identified. This

approach was taken because analysing every single

parameter variation for each variable in relation to

every other variable would have required an unfeasi-

bly large number of model tests.

The univariate and multivariate processes were

undertaken twice. First they used all nightly data

collected during the acoustic surveys, illustrating

general GHS movement and activity around their

roost, over the entire night. Then secondly, they used

data specifically relating to GHS movement from their

roost to their initial foraging ground at the beginning

of the night, rather than movements during the entire

night (activity recorded within the first hour after

sunset), e.g. Pinaud et al. (2018). These two types of

data sets were used to examine whether different

environmental layers affected the GHS activity in

different ways, depending on the bats’ behaviour.

Statistical evaluation and transferability

All statistical analysis were completed in R (version

3.3.0) (R Core Team 2016). Spearman’s rank corre-

lations were used to examine the relationship between

relative bat activity recorded at each of the detector

locations and the subsequent current density produced

from the Circuitscape current maps for each model.

Unlike Shirk et al. (2010), Spearman’s rank correla-

tions, rather than Mantel’s correlations, were used

because our response variable (bat activity) was not a

matrix of distance based metrics (e.g. genetic dis-

tance). The univariate and multivariate models were

initially built using 93 bat detector locations in the

study area at Roost 1 (training roost). The successful

transferability of a model can be defined as the ability

for it to produce accurate predictions for areas outside

that used for the initial training model (Justice et al.

1999). The transferability of the optimal multivariate

model from Roost 1 was tested at Roost 2–4 by

examining it against independent datasets collected

within 3 km of each of these respective roost (between

33 and 38 bat detector locations). Using data that were

not used to train or develop the models allows for a

more stringent model testing, reducing the chances of

overfitting, and makes the model a more reliable

predictor of new data points (Xu and Liang 2001;

Urban et al. 2009).

Like Pinaud et al. (2018), we wanted to investigate

the accuracy of our connectivity models further by

testing whether there would be a greater likelihood of

GHS radio-tracking fixes occurring in more permeable

areas of higher Circuitscape current, or whether they

would be more randomly located in the landscape.

Following the methodology outlined in Driezen et al.

(2007), z-scores were created to examine whether the

cumulative sum of the cost of an individual reaching a

certain location (i.e. each radio-tracking fix) was less

than the mean cost of reaching all other points of equal

distance from the roost (equidistant cost). For exam-

ple, if the fix location was 1 km from the roost, we

calculated the current value at this fix location and

then compared it to the mean current value of all other

locations at equal distance from the roost, i.e. all

locations at 1 km from the roost. Thus, the analyses

took into account the travel route and cost by each

radio-tracked bat from the roost to each of their fix

locations. To create the standardized z-score for each

fix, we subtracted the mean equidistant cost from the
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Circuitscape current value at the fix location, and

divided this value by the standard deviation of that

mean cost. A positive value indicated that the fixes

were on a route of higher functional connectivity

(lower cost) than randomly selected locations. The

results of the 191 fix locations were then compared

with a normal distribution using a Shapiro–Wilk

(W) test to examine whether they were significantly

different from zero. As the radio-tracking data could

have been accurate up to approximately 100 m, we

resampled the final model output to a 100 m resolution

and examined whether this influenced the result. The

data were log transformed prior to analysis to achieve

normality.

In addition, the optimal multivariate model output

was compared against an expert opinion ‘fly ways’

dataset at Roost 1. This had previously been created, at

the request of the Local Planning Authority and the

Statutory Nature Conservation Organisation (Natural

England 2010), by experts with local knowledge of bat

activity in the region, who visually examined the

landscape and selected areas of expected high func-

tional connectivity for GHS. These ‘fly ways’ have

been given additional protection from future develop-

ments and were designed for both local and larger

scale movements. No radio-tracking data were used in

the creation of the ‘fly ways’ presented in this study.

To produce a comparison of the Circuitscape model

and the expert opinion ‘fly ways’, we overlaid the

optimal multivariate model output, and compared

inside and outside the flyways that had high current

(top 25%). The data were standardised by the distance

of each detector to the roost. We then examined the

relationship between the optimummultivariate model,

produced for GHS bats, with the median data from all

other bat species recorded on each bat detector at

Roost 1, to try to identify whether such a modelling

approach and conservation efforts for a single key

species would be beneficial for the entire bat

community.

Results

Multivariate connectivity models provided a better

description of the environmental layers around Roost

1 compared to any univariate model. The optimal

univariate model’s maximum per pixel resistance

values differed from the multivariate model for three

out of the five environmental layer types (Table 2).

Similar results were obtained using early night, rather

than all night, data, except the maximum resistance

values of Land Cover and Linear Features for the

multivariate model were 10,000 and 50,000, respec-

tively (supplementary material Table S1).

The optimal multivariate model of general GHS

movement could be transferred from one roost loca-

tion to another, with all locations showing a significant

correlation (Table 3). Nevertheless, there are variation

between these locations.

The output Circuitscape current maps demonstrate

the importance of linear features for the movement of

GHS and highlight the impact of streetlights, while

additionally identifying ‘pinch points’ within the

landscape, allowing for spatial targeting of conserva-

tion measures in order to maximise conservation value

(Fig. 1). When comparing the raw data, we identify

that GHS activity is 7.6% higher in the top 25% of

predicted functional connectivity outside of the ‘fly

ways’ compared with within them (Fig. 2).

During the radio-tracking studies, 191 GHS fixes

were recorded within 3 km of Roost 2 in Devon. The

maximum fixes per individual was 31, with an average

of 15. The results of ground-truthing the model using

the 191 z-scores derived from the radio tracking data,

showed a significant positive relationship with the

Table 2 Per pixel resistance values for training roost location for both optimal univariate and multivariate models

Environmental layer Resistance values for the

optimal univariate model

Resistance values for the optimal

multivariate model

Land cover 1000 10

Lightscape 1000 108

Distance to rivers 1000 1000

Distance to linear features 10 25,000

Distance to roads 10 10
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Circuitscape current scores (mean z-score: 0.73, CI

0.69–0.78, p value: 0.016,W: 98). Similar results were

obtained when the model output was resampled at a

100 m resolution (mean z-score: 1.77, CI 1.72–1.82,

p-value: 0.003, W: 98).

Using GHS as an umbrella species and to explore

the value of the modelling approach for the entire bat

communities, we examined data for the other 10

species we recorded (Barbastella barbastellus, Myotis

spp., Eptesicus serotinus, Nyctalus noctula, Pipistrel-

lus nathusii, Pipistrellus pipistrellus, Pipistrellus

pygmaeus, Plecotus auritus, and Rhinolophus hip-

posideros). The results of the multivariate model

created (using all nightly data) for Roost 1, identified

that the median number of passes for all species

recorded within the top quartile (i.e. 76–100%) of the

observed Circuitscape current values (i.e. high cur-

rent), were at least 125% higher than any of the lower

three quartiles (Table 4).

Discussion

Urbanisation and agricultural intensification are well

documented to be causing a loss of connectivity within

our natural environment (Millennium Ecosystem

Fig. 1 Image depicting functional connectivity for greater

horseshoe bats (GHS), pinch points, and the barrier effects of

streetlights. Black triangles are streetlight locations, red

indicates high, and blue indicates low functional connectivity.

The inset map shows the locations of the GHS roost and area of

street lighting being depicted (black square)

Table 3 Spearman’s rank correlation, the number of ground-truthed bat detector locations and model type for each of the four roost

locations

Model type No. of ground-

truthed locations

Spearman rank

correlation

p-value Distance to training

roost (km)

Roost 1 Training model 93 0.562 \ 0.001 0

Roost 2 Transferred model 38 0.448 \ 0.01 13.5

Roost 3 Transferred model 36 0.336 0.03 76

Roost 4 Transferred model 33 0.360 0.03 31
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Assessment 2005). In increasingly fragmented land-

scapes, it is vital that connecting routes, as well as

habitat patches of high inherent value, are conserved.

For our focal study species, the greater horseshoe bat,

the results of our optimal multivariate model align

with our current knowledge of its movement beha-

viour (Pinaud et al. 2018). We demonstrate that the

characteristics in our Linear Features layer increase

permeability within the landscape, whereas artificial

night lighting decreases it (Duverge 1996; Stone et al.

2009; Day et al. 2015). However, the extent of the

influence on functional connectivity in the landscape

is unexpected. The final multivariate resistance value

for the Linear Features layer indicates a dramatic

decrease in the likelihood of relative GHS activity at

increasing distances from the feature. The converse is

true for the Lightscape layer, where streetlights were

found to have a high impact on the permeability of the

landscape for GHS, which is in line with current

literature relating to horseshoe ecology (Stone et al.

2009, 2012; Day et al. 2015). Similar results were

obtained using only early night data, except that the

maximum resistance of both Land Cover and Linear

Features increased compared to the general move-

ment of GHS. This highlights that, within the first hour

after sunset, the activity of light sensitive bats, such as

GHS, will be more tightly constrained to hedgerows

and features that are more sheltered. At a local scale,

these types of considerations could play a part of the

success or failure of any future conservation action

plans or mitigation measures.

The ready availability of large-scale data on, for

example, weather and land cover means that macro-

scale models, which often are based on very course

resolution data about the target species, are commonly

generated. Whilst valuable, for example in identifying

Fig. 2 Circuitscape map centred on the greater horseshoe bat (GHS) training roost location. Image illustrating the flow of current

within the extent of the 3 km map boundary, with the expert opinion ‘fly way’ layer overlaid on top

Table 4 Median number of passes of all bat species recorded per night per bat detector location at Roost 1, between 0 and 100% of

observed Circuitscape current values

Percentage of observed current value 0–25% 26–50% 51–75% 76–100%

Median number of passes (interquartile range) 37.12 (89.16) 53.57 (125.88) 25.29 (0) 120.50 (1111.39)
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migration corridors or highlighting areas likely to be

most appropriate for a National Park (e.g. Roever et al.

2013), effective conservation also relies on fine-

resolution data relevant to local planning decisions

(Lechner et al. 2015), such as that provided here. Our

models are relevant for other species of conservation

concern, suggesting that the outputs can be of wider

general use for conservation planning if appropriate

umbrella species are selected. The numbers of records

for non-target bat species were at least 125% higher at

areas in the top quartile of the GHS Circuitscape

current values compared to any of the lower three

quartiles. We also demonstrate that spatially-targeted

approaches to connectivity modelling can help to

identify the locations of critical ‘pinch points’ within

the landscape. For example, individual streetlight

placements can have a major impact on the overall

functional connectivity of the study areas, with the

current passing through narrow corridors of suit-

able dispersal habitat (e.g. Figure 1). However, one

limitation of the current study was that only street-

lights, but not other lights e.g. vehicle headlights or

security lights, were taken into account, owing to the

lack of suitable spatial data. We highlight this as an

area that is a priority for future research.

We evaluated the extent to which the modelling

approach taken here represented an improvement over

simpler approaches for identifying key corridors in the

landscape. We found that although some of the

important local areas for connectivity fell within the

‘fly ways’ based on expert opinion, many of themwere

missed. Yet these expert-opinion ‘fly ways’ have

historically been given greater protection through the

Local Authority’s planning system than other regions.

Themodel also identified some linear features as being

important for functional connectivity that did not align

with current ideas of optimal habitat (Duverge 1996),

e.g. highly managed hedgerows surrounded by arable

fields. However, while our results indicate that models

can be successfully transferred from one area to

another, with significant results, a precautionary

approach should be taken. We therefore caution

against transferring models from a ‘training’ area

without any ground-truthing: where very different

environmental conditions prevail, new models should

be built (e.g. Roach et al. 2017). This will ensure that

the resultant maps incorporate the interactions and

non-linearity between predictor layers relevant to the

specific locality.

This study illustrates that a relatively simple

framework, and an iterative approach to connectivity

modelling, permits the influence of landscape features

to be visualised at a local scale. It therefore overcomes

many of the difficulties encountered when trying to

incorporate research into real-world decision-making

by local planners (Opdam et al. 2002). Our approach

has the potential to facilitate evidence-based policy

and management. The resultant models can help

planners and conservationists reduce human-wildlife

conflicts, by applying mitigation measures strategi-

cally at locations likely to be most sensitive to species

movement and future land-use change. Stakeholders

can also use the modelling technique described here as

a predictive tool. For example, the relative impacts of

alternative scenarios, such as the positioning of new

housing or lighting schemes, the creation of woodland

or the restoration of hedgerows, can be assessed

through this modelling process, helping to achieve

evidence-based wildlife conservation.

Environmental Impact Assessments are already

meant to give consideration to the landscape context of

a site, including the cumulative impacts of multiple

developments. In practice, most work is conducted on

a site-by-site basis. The approach outlined here

provides a tool to incorporate functional connectivity

into decision-making.
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