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Abstract

Context The Sunda clouded leopard is vulnerable to

forest loss and fragmentation. Conservation of this

species requires spatially explicit evaluations of the

effects of landscape patterns on genetic diversity,

population size and landscape connectivity.

Objectives We sought to develop predictions of

Sunda clouded leopard population density, genetic

diversity and population connectivity across the state

of Sabah, Malaysian Borneo. We also wished to

quantify the differences in connectivity metrics from

an empirically optimized model of landscape resis-

tance with one based on expert opinion.

Methods We investigated connectivity metrics for

Sunda clouded leopards across Sabah, based on an

empirically optimised, movement based model, and an

expert-opinion derived model. We used simulation

modelling to predict and compare the patterns and

causes of differences in the local neighbourhood

population density, distribution, and genetic diversity
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across the two different resistance maps, at two

dispersal distances.

Results The empirical model produced higher esti-

mates of population size, population density, genetic

diversity and overall connectivity than the expert-

opinion model. The overall pattern of predicted

connectivity was similar between models. Both mod-

els identified a large patch of core habitat with high

predicted connectivity in Sabah’s central forest region,

and agreed on the location and extent of the main

isolated habitat fragments.

Conclusions We identified clear relationships

between landscape composition and configuration

and predicted distribution, density, genetic diversity

and connectivity of Sunda clouded leopard popula-

tions. Core areas are comprised of large and unfrag-

mented forest blocks, and areas of reduced forest cover

comprise barriers among patches of predicted remain-

ing habitat.

Keywords Clouded leopard � Connectivity �
UNICOR � CDPOP � Fragmentation � Habitat loss

Introduction

In the face of accelerating global habitat loss and

fragmentation there is an increasing need to predict

accurately how changes to landscape structure affect

the population connectivity of threatened species

(Spear et al. 2010; Zeller et al. 2012; Cushman et al.

2013a). Such insights can provide a foundation upon

which to develop effective conservation action

(Chetkiewicz et al. 2006). At its core, population

connectivity is the product of the movement of

individual organisms across a landscape, the surface

of which varies in its resistive qualities. Such move-

ments are shaped by the compounding influences of

the composition and structure of the landscape (Zeller

et al. 2013), the distribution and density of the

population (Cushman 2006), and the specific dispersal

traits of the species (e.g., Abrahms et al. 2017). Of

these, the complex interplay between a species’

dispersal characteristics and landscape features is

arguably the most important factor mediating land-

scape resistance and subsequent population connec-

tivity (Spear et al. 2010; Zeller et al. 2012). In most

populations, however, there is substantial uncertainty

about all of these parameters.

In the vast majority of applications expert-opinion

has been used to parameterize resistance surfaces

(Spear et al. 2010; Zeller et al. 2012). This has

potentially serious limitations given that expert-opin-

ion is of unknown quality and may often fail to reflect

accurately the resistance experienced by animals when

moving across the landscape (e.g., Shirk et al. 2010;

Wasserman et al. 2010; Shirk et al. 2015). This is

particularly true of many threatened species, for which

even a basic understanding of their ecology is often

lacking. A number of methods have been developed to

estimate landscape resistance empirically using

genetic (e.g., Cushman et al. 2006; Shirk et al. 2010;

Castillo et al. 2014) and movement (e.g., Blazquez-

Cabrera et al. 2016; Cushman et al. 2016; Zeller et al.

2017, 2018) data. These approaches have the advan-

tage that they are directly estimated using data from

the key processes of interest. Indeed, when compared

with expert-opinion or habitat suitability based mea-

sures, resistance surfaces directly estimated from

movement and genetic data have shown superior

performance (e.g., Shirk et al. 2010; Wasserman et al.

2010; Mateo Sánchez et al. 2014, 2015; Zeller et al.

2018). Movement and genetic data are often lacking

for many threatened species, however, and are typi-

cally very costly to acquire. In the absence of such

empirical data, expert opinion based estimates of

landscape resistance may therefore provide a useful

initial prediction of population connectivity, particu-

larly for those species for which a basic understanding

of habitat associations is available (e.g., Riordan et al.

2015; Moqanaki and Cushman 2016).

The forests of Borneo host one of the richest

biological assemblages on Earth, yet the island is also

a global hotspot of forest loss and degradation

(Gaveau et al. 2014; Cushman et al. 2017). These

anthropogenic driven changes to Borneo’s forests are

exemplified by the Malaysian state of Sabah, which

occupies the northern part of the island. In 2010, forest

accounted for 47.5% of the state’s land area

(35,006 km2), following a rapid decline from 78.6%

in 1973, representing the highest deforestation rate of

all the political units on Borneo during this period

(Gaveau et al. 2014). Selective logging activities have

been the primary driver of forest degradation through-

out the state, and the subsequent conversion of these

degraded forests to mono-culture plantations, chiefly
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that of oil palm (McMorrow and Talip 2001), remains

the principal driver of forest loss (Gaveau et al. 2014).

In 2015 oil palm plantations accounted for around

21% of land area (15,442 km2) in 2015 (Malaysian

Palm Oil Board 2016). Understanding the impact of

such changes to species of conservation concern

remains a research priority.

Individual species responses to logging regimes

vary, but research is increasingly showing that selec-

tively logged Bornean forests can retain considerable

levels of pre-disturbance biodiversity (e.g., Meijaard

et al. 2005; Costantini et al. 2016), as well as the

capacity to serve as corridors for less disturbance

tolerant species moving between intact forest frag-

ments. The establishment of industrial scale planta-

tions of oil palm Elaeis guineensis, however, can lead

to dramatic declines in species richness (e.g., Fitzher-

bert et al. 2008) and greatly inhibit connectivity of

forest dependent species (e.g., Hearn et al. 2018).

Thus, for species of conservation concern on Borneo

there is an urgent need for connectivity modelling to

assess impacts of landscape change to inform the

development of effective conservation strategies.

The Sunda clouded leopard Neofelis diardi is the

apex carnivore on the Sundaic islands of Borneo and

Sumatra, where it is threatened with extinction (Hearn

et al. 2015). This felid is charismatic (Macdonald et al.

2015), wide-ranging (Hearn et al. 2013), and closely

associated with forest (Hearn et al. 2016, 2017), and

thus serves as a potential flagship species for Bornean

wildlife and a useful model with which to develop

predictions of connectivity. In the first study to explore

patterns of connectivity for the Sunda clouded leopard,

Brodie et al. (2015) used hierarchical modelling of

camera-trap data to assess and identify potential

dispersal and corridor routes within a transboundary

network of protected areas in Borneo. Hearn et al.

(2018) analysed movement data within a path-selec-

tion framework to develop the first multi-scale,

empirical connectivity predictions for a population

of Sunda clouded leopards in eastern Sabah, and

showed that movement is facilitated by forest canopy

cover and resisted by non-forest vegetation, particu-

larly plantation areas with low canopy closure. In the

only large-scale analysis of Sunda clouded leopard

connectivity, Macdonald et al. (2018) used spatially

synoptic modelling, combining resistant kernel and

factorial least cost path analysis (Cushman et al.

2013a, 2014), to predict patterns and changes in

connectivity across the entire island of Borneo. They

estimated that between 2000 and 2010 the proportion

of landscape connected by dispersal had fallen by

approximately 24% and the largest patch size had

declined by around 30%, leading to a 13% decline in

clouded leopard numbers. Macdonald et al.’s (2018)

analysis, however, was based on an expert-opinion

derived model of Sunda clouded leopard resistance to

movement, and so warrants empirical testing. In

addition, conservation is conducted at the regional

scale by state and provincial governments and thus

effective planning of such action requires the devel-

opment of connectivity predictions at these spatial

scales.

In this paper we had two main objectives. First, we

sought to extrapolate the Hearn et al. (2018) empirical

resistance model to predict population density, genetic

diversity and population connectivity for Sunda

clouded leopards across the full extent of Sabah.

Second, we wished to quantify the differences in

predicted population density, genetic diversity and

population connectivity obtained from the Hearn et al.

(2018) empirically optimized and the Macdonald et al.

(2018) expert-opinion resistance surfaces at the full

Sabah extent. We hypothesised that (H1) the empirical

resistance model would produce higher estimates of

population size, population density, genetic diversity

and overall connectivity than the expert-opinion

derived model, but that (H2) the overall pattern of

predicted connectivity would be the same in the two

analyses, identifying the same major core areas and

main areas of connectivity between them.

Methods

Study area

The Malaysian state of Sabah occupies an area of

73,631 km2 in the northernmost portion of Borneo

(Fig. 1). Akin with the rest of the island, Sabah is

characterised by a rugged topography, particularly in

central and western areas, which give way to coastal

alluvial plains.

Considerable areas of highly disturbed, regenerat-

ing forests, characterised by areas of scrub and

grassland are also present in the state. A number of

relatively small (280–1399 km2) patches of protected

primary forest remain in the state, including the
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Danum Valley, Maliau Basin and Imbak Canyon

Conservation Areas, and the Crocker Range, Kinabalu

and Tawau Hills Parks (Fig. 1), but the vast majority

of remaining forest has undergone one or more rounds

of selective logging (Reynolds et al. 2011). The state-

owned Permanent Forest Reserve, which includes

State Parks, Wildlife Reserves as well as commercial

Forest Reserves, now accounts for the majority of

remaining forest (Reynolds et al. 2011). The rugged

areas along the Crocker and Trusmadi mountain

ranges retain large areas of forest in the western and

southwestern parts of the state, and sizeable areas in

the central areas of the state remain forested, most

notably the 10,000 km2 Yayasan Sabah Forest Man-

agement area (YSFMA; Reynolds et al. 2011).

Deforestation rates have been significantly higher in

the eastern side of Sabah, however, and a number of

protected forest areas, including the Tabin Wildlife

Reserve, Lower Kinabatangan Wildlife Sanctuary and

Tawau Hills Park, are no longer contiguous with the

core forest regions.

Development of resistance layers

We investigated connectivity metrics for Sunda

clouded leopards across the full extent of Sabah,

based on two resistant surfaces, each developed using

different methodological approaches. The two resis-

tance models consisted of Hearn et al’s (2018)

empirically optimised, movement based model, and

Macdonald et al.’s (2018) expert-opinion derived

model, hereafter referred to as the Empirical model

and Expert model, respectively. The Empirical model

resistance layer was developed by Hearn et al. (2018)

using conditional logistic regression in a path-selec-

tion context (e.g., Cushman et al. 2010; Cushman and

Lewis 2010), applied to movement data derived from

GPS tagged Sunda clouded leopards residing in an

approximately 4000 km2 study extent in eastern

Fig. 1 Map of the Malaysian state of Sabah, northern Borneo,

showing land use in 2010 (Gaveau et al. 2014). Fully protected

forest areas (National Parks, Wildlife Reserves and Conserva-

tion Areas) are outlined in solid black lines and include: (1)

Danum Valley and (2) Maliau Basin Conservation Areas, (3)

Crocker Range, (4) Kinabalu and (5) Tawau Hills Parks, (6)

Lower Kinabatangan Wildlife Sanctuary and (7) Tabin Wildlife

Reserve. Commercial Forest Reserves are outlined in dashed

black lines; key areas include (8) Ulu Kalumpang, (9) Sapulut,

(10) Trus Madi, (11) Tankulap-Piningah, (12) Deramakot and

(13) Segaliud Lokan Forest Reserves. The Yayasan Sabah

Forest Management Area is outlined in dark red. Polygons

represent the state owned, Permanent Forest Reserve system.

(Color figure online)
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Sabah, the Lower Kinabatangan Wildlife Sanctuary

and surrounding oil palm matrix. Hearn et al. (2018)

used a multiscale approach and evaluated three scales

of spatial shift to investigate relationships between

clouded leopard movement paths and a range of

landscape variables. To enable extrapolation of the

local-scale model to the entire state of Sabah, we

recomputed the path selection function based on

reclassified land cover data that was available at

Sabah scale. We assumed that all kinds of upland

forest were equivalent, reclassifying two classes of

montane forest to the same value as lowland tropical

forest which was present in the Hearn et al. (2018)

study area.

The expert model was developed by Macdonald

et al. (2018) who conducted a survey of the leading

experts on Sunda clouded leopard ecology to obtain

estimates of resistance values to be assigned to

different land cover types. The land cover classes

were derived from those developed in a 250 m

resolution 2010 land cover map of insular Southeast

Asia, by Miettinen et al. (2012). Lowland forest and

lower montane forest were ranked as the highest

quality habitat with mean scores of 4.50 and 4.25 out

of 5, respectively, and urban, water and large-scale

plantation were given the lowest quality scores of 1.0,

1.05 and 1.11, respectively. Lowland Open and

Montane Open were also given very low-quality

scores. These habitat suitability index scores were

translated into relative resistances by inverting and

scaling from a minimum of 1 to a maximum of 100,

and subsequently applied to the Miettinen et al. (2012)

map to produce a resistance surface, within the Sabah

extent.

Source points for connectivity modelling

For each of the two resistance layers we developed a

set of source points for use in connectivity modelling.

The resistance layers describe the local cost of moving

through any given pixel which is the foundation for

connectivity modelling; however, resistance surfaces

themselves are insufficient indicators of connectivity

(Cushman et al. 2009). Connectivity is a function of

the resistance surface and the density, distribution and

dispersal ability of the dispersing population (Cush-

man et al. 2010). Thus, source points that reflect a

realistic distribution and density of the population are

critical to reliable predictions of connectivity

(Cushman et al. 2014). We seeded each of the two

resistance layers with source points using the method

described in Macdonald et al. (2018), in which

clouded leopard habitat suitability is considered to

be directly proportional to the inverse of resistance to

movement. Specifically, we generated a raster of

identical pixel size and extent as the two resistance

layers, but with values randomly varying between 0

and 1. We then multiplied this uniform random map

with each of the two resistance layers, and selected all

pixels with value less than a constant chosen to

produce a set of 4540 points for the Empirical model

resistance layer, which also produced a set of 3811

points for the Expert resistance layer, since it had

higher overall resistance across Sabah and thus lower

average suitability for clouded leopard occurrence.

The true clouded leopard population size in Sabah is

likely 1/4 of that of our source point population (Hearn

et al. 2017). We chose to use a higher density of source

points to provide more spatial precision in the

estimates of connectivity, given spatial uncertainty

in the actual locations of clouded leopard home ranges

and the fact that they are mobile animals and may

utilize multiple locations in their lifetimes (e.g.,

Moqanaki and Cushman 2016).

Resistant Kernel connectivity modelling

We used the least-cost resistant kernel approach

(Compton et al. 2007; Cushman et al. 2010) imple-

mented in UNICOR v2.0 (Landguth et al. 2012) to

predict the extent of the landscape connected by

dispersal across a 250,000 cost unit kernel width. This

kernel width was chosen since it is approximately the

upper bound of the expected dispersal ability of

clouded leopards (Macdonald et al. 2018). The

implementation of the cumulative resistant kernel

used in this paper works by computing the cost-

distance kernel from each source location across the

resistance map and summing all such kernels to create

a cumulative resistant kernel surface that reflects the

incidence function of relative frequency of movement

of the species through each location. Thus, the model

calculates the expected relative density of each species

in each pixel around the source, given the dispersal

ability of the species, the nature of the dispersal

function, and the resistance of the landscape (Compton

et al. 2007; Cushman et al. 2010). The resistant kernel

method of modelling landscape provides a

123

Landscape Ecol (2019) 34:275–290 279



comprehensive assessment of connectivity from the

source locations to all locations (i.e., many to all) and

is computationally efficient, allowing implementation

at broad scales and across multiple scenarios (e.g.,

Cushman et al. 2012a, 2013a).

We compared the predicted connectivity obtained

from the Empirical and Expert derived resistance

surfaces in several ways. First, we visually interpreted

the patterns of high and low resistance in each layer,

noting the major differences among them. Second, we

visually interpreted the patterns of cumulative kernel

connectivity value in each layer, noting the major

differences in predicted movement rates across the full

extent of Sabah. Third, we computed FRAGSTATS

(McGarigal et al. 2012) metrics on the mosaic of

patches predicted to be connected by dispersal in the

cumulative kernel results for each resistance surface,

across a range of connectivity thresholds (e.g.,

Wasserman et al. 2012). We chose two metrics to

compute, the percentage of the landscape (PLAND)

and the correlation length (GYRATE_AM) predicted

to be connected by dispersal at a given connectivity

threshold value. The percentage of the landscape is the

most basic metric of landscape composition, yet

provides a useful quantification of the area predicted

to be connected by dispersal. The correlation length

measures the distance an organism can travel when

placed at a random location in connected habitat and

assigned to move in a random direction before

reaching the edge of connected habitat (McGarigal

et al. 2012), and has been shown to be a strong

predictor of functional connectivity (Cushman et al.

2012b). We chose connectivity thresholds at a range of

cumulative resistant kernel values, including: 0, 10,

20, 40, 80, 160, 320 and 640, which span the range

from including all areas with any level of predicted

connectivity among them (0) to only those areas with

exceptionally high predicted rates of clouded leopard

incidence and movement (640). Finally, we computed

the intersection of the cumulative resistant kernel

maps for the Empirical and Expert resistance models

across a range of kernel density thresholds (Cushman

et al. 2013b). We calculated the extent of each of the

three intersection components (connected in Empiri-

cal only, Expert only, and connected in both.

Predicted population size and genetic diversity

We used simulation modelling (e.g. Shirk et al. 2012;

Wasserman et al. 2012) with an individual-based,

spatially explicit population dynamics and genetics

program (CDPOP version 1.0; Landguth and Cushman

2010) to predict and compare the patterns and causes

of differences in the local neighbourhood population

density, distribution, and genetic diversity across the

two different resistance maps, at two dispersal

distances. CDPOP simulates the birth, death, mating

and dispersal of individuals in heterogeneous land-

scapes as probabilistic functions of the cost of

movement through them. For each of the two

landscape resistance maps, we used the source cells

used in the resistant kernel analysis as locations of

simulated individual clouded leopards. We used

standard simulation parameters widely used in land-

scape genetics simulation modelling (e.g., Cushman

and Landguth 2010) and stipulated the population to

have 30 loci, with 10 alleles per locus, initially

randomly assigned among individuals, and a mutation

rate of 0.0005. We used an inverse square mating and

dispersal probability function, with maximum disper-

sal cost-weighted distances of 125,000 m and

250,000 m, which reflect the estimated upper and

lower range of expected clouded leopard dispersal

ability (Macdonald et al. 2018). Reproduction was

sexual with non-overlapping generations, and the

number of offspring was based on a Poisson proba-

bility draw, with mean of 2. We ran 10 Monte Carlo

runs in CDPOP for each of the two landscape

resistance maps to assess stochastic variability. We

simulated gene flow for 200 non-overlapping gener-

ations. Past studies have shown that this is sufficient

time to ensure spatial genetic equilibrium (Landguth

et al. 2010a, b). We extracted several global measures

of population genetic structure for the full study area at

generation 200, including total population size, num-

ber of alleles in the population, and observed and

expected heterozygosity (Macdonald et al. 2018). We

analysed the differences in these global measures of

genetic structure between the two dispersal abilities

using standard single factor analysis of variance

(ANOVA) implemented in the aov function of BASE

package of R.
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Results

Landscape resistance and resistant kernel

connectivity models

There were striking differences between the Empirical

and Expert resistance layers in predicted resistance to

clouded leopard movement across the full extent of

Sabah (Fig. 2—top row). Both maps predict low

resistance (dark blue) in areas of primary and selec-

tively logged forest, and both predict high resistance

(red-yellow) in areas of non-forest, which, in the

eastern half of the state, are characterised primarily by

oil palm plantations. The main difference between the

maps is related to how they treat areas, particularly in

the state’s western half, that are classified by Miettinen

et al. (2012) as Plantation/Regrowth and Lowland

Mosaic, and by Gaveau et al. (2014) as Agroforest/

Forest regrowth. The Expert model predicted these

areas to be relatively high resistance, while the

Empirical model predicted these areas to be relatively

low resistance (mid blue). Some areas classified as

Severely degraded and logged forest by Gaveau et al.

(2014), but as Plantation/Regrowth by Miettinen et al.

(2012), such as parts of south eastern Tabin Wildlife

Reserve, Ulu Kalumpang Forest Reserve (contiguous

with Tawau Hills Park) and the Bukit Pithon Forest

Reserve (north east of the YSFMA) were predicted as

Fig. 2 Landscape resistance (top row) and cumulative resistant

kernel (bottom row) maps for Sunda clouded leopard movement

applied to the full extent of the State of Sabah, Malaysia.

Landscape resistance model based on multi-scale optimization

of a path-selection function; Resistance ranges from low (1) in

dark blue to high (100) in red; Cumulative resistant kernels

developed using a 250,000 cost unit dispersal threshold; Red

areas are predicted to have high density/frequency of utilization,

blue areas low, and black areas are predicted to not be utilized by

clouded leopards. (Color figure online)
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relatively low resistance in the Empirical map, but as

relatively high (yellow-orange) in the Expert map.

The cumulative resistant kernel prediction of

connectivity across Sabah differed substantially

between the two resistance models (Fig. 2, bottom

row). Both cumulative resistant kernel maps showed a

major core area of connectivity, which encompasses

the YSFMA and contiguous commercial Forest

Reserves of Deramakot, Tankulap-Piningah and

Segaliud Lokan, to the north, and Sapulut to the

southwest. Both approaches predicted losses of func-

tional connectivity between the YSFMA and the

Lower Kinabatangan Wildlife Sanctuary, Tabin Wild-

life Reserve and Tawau Hills Park. The two models’

main differences were in the western half of the State,

where the Expert resistance surface predicted much

less connectivity than the Empirical resistance surface.

This is a result of the differing resistance assigned to

areas classified as Plantation Regrowth and Lowland

Mosaic by Miettinen et al. (2012), and as primarily

Agroforest/Forest regrowth Plantation Regrowth by

Gaveau et al. (2014), as noted above. Despite these

differences, both models predicted that these western

and northern regions, which include the regionally

important Crocker Range and Kinabalu Parks,

remained functionally connected to the core areas of

connectivity in and around the YSFMA and adjacent

commercial Forest Reserves.

We computed FRAGSTATS metrics on the mosaic

of patches predicted to be connected by dispersal in the

cumulative resistant kernel results for the two resis-

tance surfaces, across a range of connectivity thresh-

olds. The percentage of Sabah predicted to be

connected by dispersal across cumulative kernel

density thresholds was substantially different between

the two resistance layers (Fig. 3a). At all dispersal

thresholds, cumulative resistant kernel surface

obtained from the Empirical model had higher exten-

siveness than that obtained from the Expert model.

The relative difference in the percentage of Sabah

connected by dispersal increased as the connectivity

threshold increased. At the most liberal threshold

(cumulative kernel value greater than 0) the Empirical

model cumulative resistant kernel surface had a 16%

greater area than the Expert model resistant kernel

surface. This difference increased at the higher levels

of cumulative kernel value, reaching a difference of

20% at cumulative kernel values greater than 320

(Fig. 3a). Both maps had low extents predicted to be

connected at the very highest connectivity values (less

than 10% at cumulative kernel values[ 640).

Correlation length of connected habitat was similar

between the Expert and Empirical models for all areas

connected with cumulative kernel value[ 0 (Fig. 3b).

There was a clear threshold at cumulative resistant

kernel value of approximately 20, above which the

two connectivity surfaces departed in correlation

length, with the Empirical kernel surface remaining

highly connected while the correlation length of the

Expert surface declined dramatically (decrease of

29.60 km correlation length, 37% less than the

correlation length of the Empirical model at a

connectivity threshold of[ 40 cumulative resistant

kernel value). This relative difference in correlation

length of connected habitat remained the same up to

cumulative resistant kernel threshold of[ 320, and

then declined substantially at the highest connectivity

threshold value ([ 640).

Intersection analysis

We computed the intersection of the cumulative

resistant kernel maps for the Empirical and Expert

resistance maps, across a range of kernel density

thresholds (Fig. 4). We calculated the extent of each of

the three intersection components [connected in the

Empirical map only, connected in the Expert map

only, and connected in both maps (Fig. 5)]. At low

cumulative kernel thresholds, the vast majority of the

area predicted to be connected in either map is

connected in both maps (Fig. 4a, 5). The proportion of

intersection declines as the cumulative resistant kernel

threshold increases, such that at high levels of

connectivity there is much less overlap between the

areas predicted to be connected in the two approaches

(Fig. 4e–g). At the very highest level of connectivity

value there is much less total area predicted to be

connected in either analysis, and only at this very high

level of connectivity value does the Expert analysis

predict connectivity in areas not also predicted to be

connected in the Empirical analysis.

Predicted population size and genetic diversity

We used the program CDPOP to predict and compare

differences in population size, distribution, and

genetic diversity across the two different resistance

maps. There was considerable local variation in

123

282 Landscape Ecol (2019) 34:275–290



simulated local neighbourhood population density of

clouded leopards across Sabah among the four

CDPOP scenarios (Fig. 6). The general pattern was

for broader distribution and larger populations in the

Empirical resistance map simulations than the Expert

resistance map simulations, and in the long versus

short dispersal ability simulations. We found that the

effect of resistance layer on simulated population size

across the full extent of Sabah was statistically

significant, whereas the effect of dispersal ability

was not (Table 1; Fig. 7a). All four simulations

predicted that population density was highest within

a core central area which encompassed the YSFMA

and adjacent Deramakot, Tankulap-Piningah and

Segaliud Lokan Forest Reserves. The Empirical model

scenarios also predicted relatively high population

densities in the highland areas of the Crocker and Trus

Madi mountain ranges and along the border with

Kalimantan and Sarawak, in south-western Sabah, but

these areas were predicted as only moderate density in

the Expert model scenarios. All four simulations show

populations persisting in the relatively isolated forest

patches of the Crocker Range and Kinabalu Parks, and

Tabin Wildlife Reserve. In contrast, only the simula-

tions on the Empirical resistance maps show the

population persisting in Tawau Hills Park, and Sunda

clouded leopards were predicted to persist in the

Fig. 3 a Percentage of the

landscape predicted to be

connected and b Correlation

length of connected habitat

across a range of cumulative

resistant kernel surface

thresholds, for the Hearn

et al. (2018) Empirical

model and Macdonald et al.

(2018) Expert-opinion

model
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Lower Kinabatangan Wildlife Sanctuary only in the

Empirical simulation with the high dispersal ability.

There were significant differences in the number of

alleles in the Sabah-wide clouded leopard population

among resistance maps, but not dispersal abilities or

their interaction (Table 1, Fig. 7b), with the simula-

tions on the Empirical resistance map producing

significantly higher allelic richness than simulations

on the Expert resistance map. There were significant

differences in the heterozygosity of the Sabah-wide

clouded leopard population among resistance maps

and dispersal abilities, but not their interactions

(Table 1, Fig. 7c). Specifically, heterozygosity was

significantly higher in the CDPOP simulations on the

Empirical resistance map than on the Expert resistance

map, and significantly higher in simulations with the

long dispersal distance than the short dispersal

distance.

Discussion

Our goals in this study were to predict the local

neighbourhood population density, genetic diversity

and map patterns of population connectivity for Sunda

clouded leopards across Sabah and compare the

differences in predictions obtained from expert-opin-

ion and empirically derived resistance maps. Consis-

tent with our first hypothesis, we found that the

Empirical resistance model produced higher estimates

of population size, population density, genetic diver-

sity and overall connectivity than the Expert model.

Fig. 4 Intersections between the cumulative resistant kernel

surfaces produced on the Expert model (Macdonald et al. 2018)

map only, Empirical model (Hearn et al. 2018) map only, and

both maps, across eight different cumulative kernel connectivity

values (shown in top left of each map)
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Fig. 5 Intersection analysis of areas predicted to be connected by

dispersal on the Empirical model (Hearn et al. 2018) map only,

Expert model (Macdonald et al. 2018) map only, and both maps,

across a range of cumulative resistant kernel surface thresholds:

([ 0,[ 10,[ 20,[ 40,[ 80,[ 160,[ 320,[ 640)

Fig. 6 Mean predicted local neighbourhood density of clouded

leopards across Sabah under four simulation scenarios: First

column: Macdonald et al. (2018) Expert-opinion model; second

column: Hearn et al. (2018) Empirical model; top row: Short

dispersal ability (250,000 cost unit dispersal threshold); bottom

row: Long dispersal ability (125,000 cost unit dispersal

threshold)
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The Expert based resistance layer produced by Mac-

donald et al. (2018) was based on relative suitability

estimates for different landcover types, and several

landcover types that are common in western Sabah

were absent in the Kinabatangan study area; thus the

two resistance layers and connectivity predictions

obtained from them may differ in areas where these

cover types are common. In addition, the Expert

resistance layer was based solely on the expert opinion

weights given to land cover classes, while the

Empirical model also included additional variables

related to canopy cover. Thus, the Empirical model

predicted relatively low resistance in some areas with

moderately high canopy cover, even if they were in

cover types given relatively high resistance in the

Expert model. For example, the Expert model pre-

dicted much higher resistance in a large region of

northern and western Sabah, specifically in areas

classified as Plantation/Regrowth and Lowland

Mosaic by Miettinen et al. (2012) and as Agroforest/

Forest regrowth by Gaveau et al. (2014). The differ-

ences in inferred resistance value in these areas

propagated to large differences in predicted popula-

tion density, genetic diversity and population connec-

tivity, with the Empirical model predicting higher

density, genetic diversity and connectivity in these

parts of Sabah. It is impossible to determine based on

existing data which resistance parameterization is

more accurate. Further work will be required to

document patterns of density, genetic diversity and

movement and/or genetic differentiation as a function

of landscape features in this region of Sabah where the

predictions described here differ.

Our second hypothesis proposed that, despite their

differences, the overall pattern of predicted connec-

tivity would be similar between the two models,

identifying the same major core areas and main areas

of connectivity between them. Additionally, we

expected that there would be higher similarity between

the connectivity predictions than between the resis-

tance surfaces themselves, since connectivity is a

spatially contagious spread process that smooths local

differences in resistance. Our results largely support

this hypothesis. Both analyses identified a large patch

Fig. 7 Boxplots of simulated mean a Sunda clouded population

size across Sabah, b number of alleles in the Sabah-wide

population of Sunda clouded leopards, c heterozygosity for the

Sabah-wide population of Sunda clouded leopards, for the

Empirical model (Hearn et al. 2018) and Expert-opinion model

(Macdonald et al. 2018) resistance maps, at 250,000 cost units

(High) and 125,000 cost units (Low) dispersal abilities. Error

bars represent 95% Confidence intervals and boxes represent

interquartile ranges (25–75%)

Table 1 Results of Two-way Analysis of Variance of differences between simulated populations, alleles, and heterozygosity as

function of dispersal ability and the resistance map used

Effect Analysis of variance P-values

Population size Alleles Heterozygosity

Dispersal ability 0.533 0.191 0.021

Resistance map 0.010 0.025 0.035

Interaction: dispersal ability—resistance map 0.323 0.369 0.730
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of core habitat with high predicted cumulative resis-

tant kernel connectivity value in the YSFMA and

contiguous commercial Forest Reserves. Importantly,

however, the analysis based on the Empirical model

predicted this core area to extend west along the border

with Kalimantan and Sarawak, in south-western

Sabah, and also westward, encompassing and linking

the mountainous areas of the Trus Madi Forest

Reserve and Crocker Range and Kinabalu Parks. In

contrast, the Expert based resistance model predicted

these areas to have low connectivity and low rates of

predicted movement of clouded leopards through

them. So while the models agreed in terms of the

location of the most important core area they differed

substantially in the extent of that core population.

Despite their differences, both models agreed on

the location and extent of the main isolated fragments

of internally connected habitat. Namely, they each

identified the Lower Kinabatangan Wildlife Sanctu-

ary, Tabin Wildlife Reserve and Tawau Hills Park as

patches of habitat predicted to have extant clouded

leopard populations, but predicted to be isolated from

other populations. Efforts should be made to explore

mechanisms to increase connectivity between these

areas and the main central forest, such as establish-

ment of riparian corridors, and identification and/or

creation of High Conservation Value forest areas

within plantations landscapes.

Scope and limitations

To apply the Hearn et al. (2018) resistance model to

the full extent of Sabah we assumed that all kinds of

upland forest were equivalent, reclassifying two

classes of montane forest to the same value as lowland

tropical forest (which was present in the Hearn et al.

(2018)) study area. Whilst there are no empirical

movement data to test these assumptions (e.g., the

movement data used in the empirical model was from

a part of Sabah where these upland forest types are

absent), occurrence data from camera trap studies

support the notion that clouded leopards are found in

these forested uplands at relatively high densities

(Hearn et al. 2017). However, in the absence of such

empirical movement data, and since the movement

model was based on data from a small number of

individuals, we should view this model as preliminary.

Further research should strive to improve ecolog-

ical understanding of how landscape conditions affect

clouded leopard occurrence and dispersal. The best

way to resolve the differences between the empirical

and expert predictions would be to obtain additional

data on clouded leopard occurrence patterns, genetic

structure and movement. Broad-scale monitoring of

occurrence patterns would enable empirical estimates

of distribution and abundance that could be used to

validate the two predictions presented here. In addi-

tion, further work with empirical modelling of resis-

tance based on telemetry in other parts of Sabah,

ideally targeting the range of different age/sex classes,

and focusing on habitat types not included in the

current model, would help to generalize the empirical

model across the broader extent, enabling more robust

comparison of the Empirical vs. Expert-opinion

models. This kind of meta-replicated study to gener-

alise ecological relationships across broad scales has

been highly useful for other carnivore species (e.g.,

Short Bull et al. 2011; Shirk et al. 2014), and has been

identified as one of the keys to reliable inferences

about pattern-process relationships at the landscape

level (McGarigal and Cushman 2002).

Future research should also focus on how different

landscape management approaches affect the conser-

vation of this felid. In this regard it would be valuable

to develop a scenario-based analysis that includes

likely development and conservation actions for the

region and use the modelling approach presented here

to quantitatively measure their relative impacts on

population size, connectivity and genetic diversity.

We hope that future work will help to close the gap in

understanding through a combination of occurrence,

genetics and movement modelling for this species

across its range.

Landscape connectivity predictions are the com-

bined result of three main things: (1) the density and

distribution of the source population, (2) landscape

resistance and (3) dispersal ability. Our goal was to

evaluate how the two different resistance maps, from

expert and empirical analysis, differ in their implica-

tions for connectivity. In our analysis the two resis-

tance maps affect both (1) density and distribution of

source points and (2) landscape resistance. It would be

good to isolate the effects of differential resistance by

holding density and distribution of source points

constant. However, source points must be located to

represent the density and distribution of the subject

population. The two resistance maps suggest quite

different things about clouded leopard habitat and
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movement selection, such that it would be incorrect to

use source points predicted by one to analyse connec-

tivity of the other. The locations of the points needs to

be proportional to predicted suitability, and the

suitability is different in the expert and empirical

analysis so the points are different and must be

different between the two analyses. As a result we

cannot separate source points and landscape resis-

tance, and thus our analysis is of the differences in the

predicted connectivity and population size implied by

the two maps in full, which includes both effects of

different source points and effects of different land-

scape resistance. Future work should assess the

independent and interactive effects of source points

and resistance on connectivity. That is a more

theoretical question than what this paper explored

and would best be addressed in a simulation study in

which neutral models (e.g., Cushman et al. 2013c;

Shirk et al. 2018) are used to generate landscapes of

different patterns of resistance and different densities

and distributions of points, and then landscape

connectivity and landscape genetic analyses carried

out on combinations of resistance and source points,

enabling the separation of their effects.
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Domı́nguez A, Saura S (2015) A comparative framework

to infer landscape effects on population genetic structure:

are habitat suitability models effective in explaining gene

flow? Landscape Ecol 30(8):1405–1420

McGarigal K, Cushman SA (2002) Comparative evaluation of

experimental approaches to the study of habitat fragmen-

tation effects. Ecol Appl 12(2):335–345

McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4:

spatial pattern analysis program for categorical and con-

tinuous maps. Computer software program produced by the

authors at the University of Massachusetts, Amherst. http://

www.umass.edu/landeco/research/fragstats/fragstats.html

McMorrow J, Talip MA (2001) Decline of forest area in Sabah,

Malaysia: relationship to state policies, land code and land

capability. Glob Environ Change 11(3):217–230

Meijaard E, Sheil D, Nasi R, Augeri D, Rosenbaum B, Iskandar

D, Setyawati T, Lammertink M, Rachmatika I, Wong A,

Soehartono T, Stanley S, O’Brien T (2005) Life after

logging: reconciling wildlife conservation and production

forestry in Indonesian Borneo. Centre for International

Forestry Research, Bogor

Miettinen J, Shi C, Tan WJ, Liew SC (2012) 2010 land cover

map of insular Southeast Asia in 250-m spatial resolution.

Remote Sens Lett 3(1):11–20

Moqanaki EM, Cushman SA (2016) All roads lead to Iran:

predicting landscape connectivity of the last stronghold for

the critically endangered Asiatic cheetah. Anim Conserv

20(1):29–41

Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RPD (2011)

Changes in forest land use and management in Sabah,

Malaysian Borneo, 1990-2010, with a focus on the Danum

Valley region. Philos Trans R Soc B 366:3168–3176

Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2015)

Predicting global population connectivity and targeting

conservation action for snow leopard across its range.

Ecography 39(5):419–426

Shirk, AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI

(2010) Inferring landscape effects on gene flow: a new

model selection framework. Mol Ecol 19:3603–3619

Shirk AJ, Cushman SA, Landguth EL (2012) Simulating pat-

tern-process relationships to validate landscape genetic

models. International J Ecol. https://doi.org/10.1155/2012/

539109

Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal

variation in resource selection: insights from the American

marten (Martes americana). Ecol Appl 24(6):1434–1444

123

Landscape Ecol (2019) 34:275–290 289

https://doi.org/10.1017/S0030605317001065
https://doi.org/10.1017/S0030605317001065
https://doi.org/10.1371/journal.pone.0196974
http://bepi.mpob.gov.my/
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
https://doi.org/10.1155/2012/539109
https://doi.org/10.1155/2012/539109


Shirk AJ, Schroeder MA, Robb LA, Cushman SA (2015)

Empirical validation of landscape resistance models:

insights from the Greater Sage-Grouse (Centrocercus

urophasianus). Landscape Ecol 30(10):1837–1850

Shirk AJ, Landguth EL, Cushman SA (2018) A comparison of

regression methods for model selection in individual-based

landscape genetic analysis. Mol Ecol Resour 18(1):55–67

Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC,

Landguth EL, Schwartz MK, McKelvey K, Allendorf FW,

Luikart G (2011) Why replication is important in landscape

genetics: American black bear in the Rocky Mountains.

Mol Ecol 20(6):1092–1107

Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner KIM

(2010) Use of resistance surfaces for landscape genetic

studies: considerations for parameterization and analysis.

Mol Ecol 19(17):3576–3591

Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010)

Spatial scaling and multi-model inference in landscape

genetics: Martes americana in northern Idaho. Landscape

Ecol 25(10):1601–1612

Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell

JS (2012) Simulating the effects of climate change on

population connectivity of American marten (Martes

americana) in the northern Rocky Mountains, USA.

Landscape Ecol 27(2):211–225

Zeller KA, McGarigal K, Whiteley AR (2012) Estimating

landscape resistance to movement: a review. Landscape

Ecol 27(6):777–797

Zeller KA, Rabinowitz A, Salom-Perez R, Quigley H (2013)

The Jaguar corridor initiative: a range-wide conservation

strategy. In: Ruiz-Garcia M, Shostell JM (eds) Molecular

population genetics, evolutionary biology and biological

conservation of neotropical carnivores. Nova Science

Publishers, New York, pp 629–658

Zeller KA, Vickers TW, Ernest HB, Boyce WM, Pollinger J,

Ernest H (2017) Multi-level, multi-scale resource selection

functions and resistance surfaces for conservation plan-

ning: Pumas as a case study. PLoS ONE 12:e0179570

Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman

SA, Boyce WM (2018) Are all data types and connectivity

models created equal? Validating common connectivity

approaches with dispersal data. Divers Distrib 24:868–879

123

290 Landscape Ecol (2019) 34:275–290


	Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo
	Abstract
	Context
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study area
	Development of resistance layers
	Source points for connectivity modelling
	Resistant Kernel connectivity modelling
	Predicted population size and genetic diversity

	Results
	Landscape resistance and resistant kernel connectivity models
	Intersection analysis
	Predicted population size and genetic diversity

	Discussion
	Scope and limitations

	Data availability
	References




