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Abstract

Context Landscape resistance is vital to connectivity

modeling and frequently derived from resource selec-

tion functions (RSFs). RSFs estimate relative proba-

bility of use and tend to focus on understanding habitat

preferences during slow, routine animal movements

(e.g., foraging). Dispersal andmigration, however, can

produce rarer, faster movements, in which case

models of movement speed rather than resource

selection may be more realistic for identifying habitats

that facilitate connectivity.

Objective To compare two connectivity modeling

approaches applied to resistance estimated from

models of movement rate and resource selection.

Methods Using movement data from migrating elk,

we evaluated continuous time Markov chain (CTMC)

and movement-based RSF models (i.e., step selection

functions [SSFs]). We applied circuit theory and

shortest random path (SRP) algorithms to CTMC, SSF

and null (i.e., flat) resistance surfaces to predict

corridors between elk seasonal ranges. We evaluated

prediction accuracy by comparing model predictions

to empirical elk movements.

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-018-0642-z) con-
tains supplementary material, which is available to authorized
users.

A. Brennan (&) � J. A. Merkle

Wyoming Cooperative Fish and Wildlife Research Unit,

Department of Zoology and Physiology, University of

Wyoming, Laramie, WY, USA

e-mail: angie_brennan@hotmail.com

E. M. Hanks

Department of Statistics, Pennsylvania State University,

State College, PA, USA

E. K. Cole

U.S. Fish and Wildlife Service, National Elk Refuge,

Jackson, WY, USA

S. R. Dewey

National Park Service, Grand Teton National Park,

Moose, WY, USA

A. B. Courtemanch

Wyoming Game and Fish Department, Jackson, WY,

USA

P. C. Cross

U.S. Geological Survey, Northern Rocky Mountain

Science Center, Bozeman, MT, USA

123

Landscape Ecol (2018) 33:955–968

https://doi.org/10.1007/s10980-018-0642-z

http://orcid.org/0000-0003-4360-0738
https://doi.org/10.1007/s10980-018-0642-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-018-0642-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-018-0642-z&amp;domain=pdf
https://doi.org/10.1007/s10980-018-0642-z


Results All connectivity models predicted elk

movements well, but models applied to CTMC

resistance were more accurate than models applied

to SSF and null resistance. Circuit theory models were

more accurate on average than SRP models.

Conclusions CTMC can be more realistic than SSFs

for estimating resistance for fast movements, though

SSFs may demonstrate some predictive ability when

animals also move slowly through corridors (e.g.,

stopover use during migration). High null model

accuracy suggests seasonal range data may also be

critical for predicting direct migration routes. For

animals that migrate or disperse across large land-

scapes, we recommend incorporating CTMC into the

connectivity modeling toolkit.

Keywords Migration �Movement models �Wildlife

corridors � Landscape connectivity � Resistance
modeling � Corridor conservation � Greater
Yellowstone area � Landscape conductance

Introduction

Connectivity modeling and corridor conservation are

aimed at predicting and preserving space for animal

movement, gene flow, and ecological processes to

occur across landscapes affected by habitat loss and

fragmentation (Chetkiewicz et al. 2006; Hilty et al.

2006). Corridors are also expected to support range

shifts for species responding to climate change (Hilty

et al. 2006; Heller and Zavaleta 2009). Thus, identi-

fying corridors and improving connectivity have

become important conservation tools to facilitate

climate change resiliency, improve population viabil-

ity, conserve biodiversity and uphold the ecological

value of protected areas (Bennett 2003; Hilty et al.

2006; Heller and Zavaleta 2009).

Recent studies argue, however, that corridors could

fail to protect rare, fast and directed movements that

can be important to ecological processes (e.g., disper-

sal and migration), because popular connectivity

modeling methods rely on weak relationships to these

types of movement behaviors (e.g., Elliot et al. 2014;

Zeller et al. 2014; Abrahms et al. 2016; Keeley et al.

2017). Circuit theory and cost-distance models, for

example, require gridded input describing landscape

resistance to movement (i.e., the cost of moving

through each cell in the landscape; Zeller et al. 2012),

but typically resistance is derived from subjective

relationships with habitat suitability (Beier et al. 2008;

Chetkiewicz and Boyce 2009). Resource selection

functions (RSFs) used to estimate habitat suitability

also tend to be biased towards understanding habitat

preferences during slow, routine movements where

more animal relocations are recorded (e.g., foraging

areas), instead of habitats associated with rarer, faster

and more directed movements (as suggested in Van

Dyck and Baguette 2005; Elliot et al. 2014; Zeller

et al. 2014; Blazquez-Cabrera et al. 2016). Conse-

quently, existing methods for estimating resistance

could result in conservative corridor predictions that

exclude areas important for connectivity.

A common framework for estimating resistance

follows three main steps: (1) parameterize a RSF

based on animal location data with gridded landscape

covariates x, (2) generate an index of habitat suitability

ŵ from the RSF by combining the estimated param-

eters b and covariates x : ŵ xð Þ ¼ expðb1x1 þ b2x2
þ � � � þ bjxj), and (3) calculate resistance r as a

negative linear or nonlinear function of habitat

suitability via r ¼ 1�ŵ xð Þ or r ¼ 1=ŵ xð Þ , respec-

tively (e.g., Chetkiewicz and Boyce 2009, Zeller et al.

2012, Squires et al. 2013, McClure et al. 2016). RSFs

are generally employed to compare habitat character-

istics at ‘used’ and ‘available’ animal locations to

quantify resource selection, map relative probability

of use and predict species distributions (Manly et al.

2002). In the framework described above, however,

RSFs are used to generate a gridded landscape

resistance surface following a linear or nonlinear

transformation of habitat suitability. Either transfor-

mation in this step will result in similar low and high

resistance values, but vastly different values of

intermediate resistance (Trainor et al. 2013; Keeley

et al. 2016, 2017). And while the transformation used

can be informed by targeted movement type (Trainor

et al. 2013; Keeley et al. 2016, 2017), ultimately which

is used remains subjective (Chetkiewicz et al. 2006;

Beier et al. 2008). Recent studies have evaluated the

effect of linear and multiple nonlinear transformations

of habitat suitability on connectivity model perfor-

mance, but typically the relationship to resistance is

not examined nor formally justified (Trainor et al.

2013; Keeley et al. 2016, 2017).
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Also when using RSFs, areas where animals make

rare, fast and directed movements (e.g., long distances

between relocations) may have fewer ‘used’ locations

and thus appear to have lower habitat suitability and

higher resistance compared to areas where routine,

slow or tortuous movements occur (e.g., short dis-

tances between relocations) (as in Johnson et al. 2002).

In other words, areas with fewer locations can appear

to have lower overall habitat suitability using a

RSF, even though they facilitate fast movement and

function as a conduit for migration or dispersal

(because faster movements can be an important

component of these processes; Johnson et al. 2002

and Van Dyck and Baguette 2005). Thus, landscape

resistance estimated from a RSF could bias connec-

tivity models toward routine movements, while an

analysis of movement speed could yield the opposite

conclusions about habitat effects on movement.

Parameterizing a RSF for different movement behav-

iors (e.g., dispersal versus foraging) can reduce bias

toward one type of movement, but it requires

additional steps or behavioral observations to separate

the data by a specific behavior (Chetkiewicz et al.

2006; Elliot et al. 2014; Zeller et al. 2014; Abrahms

et al. 2016; Blazquez-Cabrera et al. 2016). Explicitly

modeling movement rate on the other hand, may be an

alternative to RSFs for estimating resistance to rare,

fast and directed movements and help identify habitats

that facilitate connectivity.

The continuous time Markov chain model (CTMC)

was recently developed to model movement rate

across a gridded surface and examine location-based

and directional drivers of animal movement along a

pathway (Hanks et al. 2015). A CTMCmodel uses fine

scale animal location data converted into a continu-

ous-time discrete space path on a gridded surface. This

conversion compresses the data to a scale relevant to

the resolution of gridded landscape covariates, where

every grid cell along each individual’s path is

associated with a residence time s determined by the

number and fix rate of animal locations within each

cell. Using a latent variable representation of the

CTMC path (i.e., cells on path = 1 and cells neigh-

boring the path = 0) and s as the exposure term,

inference can be made about landscape covariate

effects on movement rate 1/s within a Poisson

generalized linear model framework (Hanks et al.

2015). Model parameters and gridded landscape

covariates can then be combined to estimate the rate

of transition between neighboring grid cells, where

larger transition rates correspond to faster movement

rates. Grid cell transition rates estimated using this

approach relate directly to conductance or 1/resistance

in electrical circuit theory (Hanks and Hooten 2013).

As CTMC models consider the effects of the path

on movement rate, they capture a fundamentally

different movement paradigm than RSFs and could

improve our understanding of resistance for rare, fast

and directed movements. In this study, we evaluated

CTMC as an alternative to RSFs for estimating

resistance and modeling connectivity, but rather than

use traditional RSFs for this comparison, we used a

movement-based RSF (i.e., step selection functions

[SSFs]) to estimate resource selection along the

movement pathway, conditional on local availability

estimated from empirical step lengths and angles

(Fortin et al. 2005). With an emphasis on resource

selection during movement and a more realistic

estimation of availability, SSFs are arguably more

appropriate than traditional RSFs (Zeller et al. 2012)

and are becoming preferred for estimating resistance

in connectivity model applications (e.g., Keeley et al.

2016, 2017, Panzacchi et al. 2016, Zeller et al. 2016).

We examined CTMC and SSFs in connectivity

models using GPS collar data from elk (Cervus

canadensis) that migrate during the spring from the

National Elk Refuge to Yellowstone National Park in

western Wyoming. Here, spring migration typically

extends 75–100 km, crossing national forest, some

private and agricultural land, roadways, strong eleva-

tional gradients, and variable forest cover, forage

quality and water availability. Such migrations sup-

port other important ecological processes (e.g., preda-

tor–prey interactions, competition and energy

transfer) (Houston 1982), but evidence suggests that

elk migratory patterns are shifting and that the

proportion of elk that migrate is shrinking (e.g.,

Middleton et al. 2013; Cole et al. 2015). Changing

migrations is also a concern for other ungulate species

across the globe (as summarized in Middleton et al.

2013), and thus understanding landscape attributes

important to movement and identifying movement

corridors are important steps toward preserving

migration potential.

We parameterized a CTMC and SSF with land-

scape attributes, expecting to reach opposite conclu-

sions regarding elk habitat preferences because elk

may move faster through relatively unsuitable terrain.
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We used these models to generate different resistance

surfaces and applied two connectivity model algo-

rithms (circuit theory and shortest random path [SRP])

to predict spring elk migration corridors. We used

circuit theory and SRP to model the flow of movement

through a resistance surface from a source to a target

node. Circuit theory is based on a random walk model

and thus assumes that individuals have no knowledge

of the landscape beyond their immediate surround-

ings. The SRP algorithm on the other hand uses a

parameter h to constrain random exploration so that

movement across a gridded landscape is neither a

random walk nor fully optimized as in cost-distance

methods which assume perfect knowledge of the

landscape (Panzacchi et al. 2016).

We evaluated corridor prediction accuracy by

comparing circuit theory and SRP model values to

elk locations from individuals held out of the models.

We expected connectivity models applied to CTMC

resistance (hereafter referred to as CTMC-informed

models) to predict elk migration corridors more

accurately than connectivity models applied to SSF

resistance (hereafter referred to as SSF-informed

models) because CTMC may better reflect habitat

use during migratory movements than a SSF based on

all movement types. Because elk movements during

migration suggest some knowledge of the landscape

(McClure et al. 2016), we also expected SRP models

to have higher prediction accuracy than circuit theory

models. Finally, we questioned whether corridors

could be predicted using models informed only by the

start and end of migration, and no information on

resistance. Therefore, we evaluated the added value of

landscape resistance in predicting elk migration cor-

ridors by comparing CTMC and SSF-informed con-

nectivity models to null models (i.e., flat resistance

surface, where all grid cells = 1).

Methods

Study dataset

We obtained elk relocation data (i.e., 555,256 GPS

locations from 119 GPS-collared adult female elk)

from the U.S. Fish and Wildlife Service, Grand Teton

National Park and Wyoming Game and Fish Depart-

ment. We focused our analysis on 17 elk that migrated

from the National Elk Refuge to Yellowstone National

Park (Fig. 1) during the spring as a way to focus our

analysis on one type of migration (e.g., spring) and on

long distance migrators with similar winter and

summer ranges. The full focal elk dataset contained

data collected during all months (104,913 locations;

data can be downloaded from Brennan et al. 2018), but

was subset to include data from only May and June for

most analyses. This spring dataset included 11,254

recorded locations and 25 elk-years from 2006 through

2015 (17 individuals monitored for 1–2 years), with

variable fix rates but with most relocations occurring

at two, four and 8 h intervals (see Online Resources 1

for details). We split the spring dataset into a model

training set (all spring locations for 13 randomly

selected elk) to build models and a model validation

set (all spring locations for the four remaining elk) to

examine connectivity model prediction accuracy.

Landscape covariates

We parameterized a continuous time Markov chain

model (CTMC) and step selection function (SSF) with

ten gridded landscape covariates hypothesized to

affect elk movement in western Wyoming including

three anthropogenic variables (agricultural land, pri-

vate land, and major roads) and seven natural variables

(forage quality, elevation, forest cover, aspect, slope,

terrain roughness, and distance to water) (e.g., Fortin

et al. 2005; Merkle et al. 2017a). We created grids of

agricultural land, forest cover and water from the

National Land Cover Database. We rasterized private

land polygons obtained from Surface Management

Agency spatial data. We created a grid of highways

from Topologically Integrated Geographic Encoding

and Referencing (TIGER) data to examine the effect

of major roads. For forage quality we calculated

normalized difference vegetation index (NDVI) (Pet-

torelli et al. 2005) from 8-day surface reflectance data

recorded by the Moderate Resolution Imaging Spec-

troradiometer (MODIS) at a 250-m resolution, and

then extracted NDVI values nearest in date to the date

of each GPS location. We used a digital elevation

model for elevation and to derive slope, terrain

roughness and aspect. Instead of using aspect directly,

we converted the grid into a continuous representation

of south-ness scaled from - 1 (north) to 1 (south)

using - cos ((aspect 9 p)/180). We resampled all

covariate grids from their original resolution to 500 m

for computational efficiency, and because 500 m was
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the median distance elk traveled over a relatively short

time frame (6–8 h). We converted binary categorical

variables to a continuous scale (e.g., new pixel

value = the average of focal pixel and four nearest

pixel values). Grid processing methods and references

for all covariates are described in Online Resources 2.

CTMC

We converted the full focal elk GPS dataset into a

compressed CTMC path for each elk (using all months

for the 17 focal migratory elk to avoid large jumps

across years). Grid cells along these CTMC paths were

associated with a residence time s determined by the

number and duration of GPS locations within each

cell. When the interval and distance between GPS

fixes result in skipped-over grid cells along the

pathway, path imputation or linear interpolation can

be employed to estimate the entire path between

occupied grid cells (Hanks et al. 2015; Scharf et al.

2017). We used linear interpolation in this case

because distances between GPS fixes were short

relative to grid cell resolution (see Online Resources

1 for median distances). We created a latent variable

from the CTMC path, where cells on the path were

assigned a value of one and neighboring cells (using a

rook’s neighborhood) were assigned a value of zero.

We extracted landscape covariate values for all of

these cells and then subset the data to include locations

from only the months ofMay and June and for only the

13 elk identified in the model training set. With the

latent variable and residence time s as the exposure

term (used to convert count data into a rate via

count/exposure), we were able to use a Poisson

generalized linear model to evaluate covariate effects

on spring movement rate (1/s). We used the ‘CTMC-

MOVE’ package (Hanks 2017) in the R environment for

statistical computation (R Core Development Team

2017) to create the CTMC path and latent variable.

Prior to estimating CTMC parameters, we exam-

ined correlations between covariates, and excluded

slope and terrain roughness from the analysis because

they were strongly correlated with elevation (Pear-

son’s correlation coefficient r[ 0.60). The remaining

eight covariates were included in the Poisson gener-

alized linear model (Table 1).

We were also interested in examining the effect of

elevation and forest cover on directional bias of elk

movement, because elk in our study tend to migrate

toward higher elevation in the spring, but may also

move away from forested areas where deep snow can

persist into late summer. To model directional bias

using the ‘CTMCMOVE’ package in R (Hanks 2017), a

transition vector eij was created for each grid cell

transition between cell i and j that points in the

direction that the animal moved: eij = (xj - xi, yj-
- yi) (where x = longitude and y = latitude). A

gradient vector was also created for a particular

covariate of interest that points in the direction of the

steepest increase in that covariate at cell i (Hanks et al.

2011, 2015). The product of the transition and gradient

vectors indicates whether an animal is moving toward

(product is positive) or away (product is negative)

from the gradient, and can be added as a predictor in

the generalized linear model (Hanks et al. 2011, 2015).

Using this method, we examined the effect of direc-

tional bias from elevation and forest cover gradients

on elk movement rate. We also accounted for

Fig. 1 Map of the study

area and elk GPS locations

for 17 elk that migrated

between the National Elk

Refuge and Yellowstone

National Park (YNP). GTNP

Grand Teton National Park
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directional persistence (i.e., when the direction of

movement is influenced by the direction of the

previous move) in the CTMC model by including a

correlated random walk term created from the product

of the transition vector eij described above and a vector

that points in the direction of the previous move

(Hanks et al. 2011, 2015). Positive values indicate that

the animal’s current move is in the same direction as

the previous move.

With the addition of the directionality terms there

were eleven total predictors in the CTMCmodel: eight

landscape covariates, two covariates describing direc-

tional bias (referred to as ‘elevation gradient’ and

‘forest cover gradient’), and one correlated random

walk term (Table 1). We scaled and centered land-

scape and directional bias covariates (by subtracting

the mean and dividing by the standard deviation) to

compare the relative importance of the covariates to

spring elk movement, and then fit the Poisson

generalized linear model in R. We also estimated

CTMC model parameters without scaling and center-

ing the covariates to predict movement rate between

adjacent cells of the gridded landscape (equivalent to

conductance, or 1/resistance, in electrical circuit

theory; Hanks and Hooten 2013). We did not examine

random effects for individual elk here because we

were interested in estimating population-level resis-

tance to movement using point estimates of model

parameters, but CTMCmodels can be fit using Poisson

regression with random effects.

To prepare the 1/resistance surface from CTMC

parameters and covariates, we first created an

n 9 n matrix using the ‘CTMCMOVE’ package in R

(Hanks 2017) where each row and column in the

matrix represent a grid cell n (e.g., column 1 and row 1

correspond to grid cell 1; column 1 and row 2…
n correspond to all potential neighbors of grid cell 1).

We predicted movement rate m between each grid cell

and it’s eight adjacent neighbors k (i.e., king’s

neighborhood) by combining the unscaled parameters

d and gridded covariates x usingmk = exp(d1x1k ? d2-
x2k ?��� ? djxjk). We did not include the correlated

random walk parameter in this step because this

parameter was used to account for autocorrelation in

the relocation data and was not informed by landscape

characteristics. For the NDVI grid used in this step, we

used NDVI calculated from a MODIS 8-day, 250-m

surface reflectance panel for 17 May 2014 that was

resampled to a 500 m resolution. We chose this panel

because mid-May NDVI represents forage quality

during the time when most elk from the National Elk

Refuge will be migrating. The resulting movement

rate matrix (hereafter referred to as conductance

matrix) was used in the shortest random path (SRP)

connectivity model. For the circuit theory connectivity

model, we converted the conductance matrix into a

gridded conductance surface where the value of every

grid cell was calculated as the mean conductance

between that grid cell n and all of its adjacent

neighbors (i.e., mean of the non-zero entries in column

Table 1 Estimated

continuous time Markov

chain (CTMC) and step

selection function (SSF)

coefficients and standard

errors

Bold values correspond to

p values\ 0.05

SE standard errors
aScaled and centered

covariates

Covariatesa CTMC SSF

Coefficient SE Coefficients SE

Intercept 0.830 0.010 – –

Agricultural land - 0.040 0.011 0.080 0.027

Elevation - 0.205 0.012 0.207 0.068

South-ness - 0.068 0.010 0.099 0.027

Forest cover 0.043 0.012 - 0.362 0.038

Major roads - 0.107 0.011 0.096 0.031

Distance to water 0.049 0.012 - 0.029 0.068

Private land - 0.028 0.011 - 0.135 0.033

NDVI 0.001 0.010 0.450 0.076

Elevation gradient - 0.088 0.133 – –

Forest cover gradient - 0.058 0.010 – –

Correlated random walk 0.253 0.014 – –

Step distance – – - 0.004 0.014
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n of the conductance matrix), and then we rescaled the

grid cell values to range between 0.001 and 1 (using

0.001 rather than 0 to avoid undefined resistances

when resistance = 1/conductance). Code to recreate

CTMC paths, conductance matrices and gridded

surfaces is provided in Online Resources 3.

For null model resistance, we created a grid with the

same spatial extent and resolution as the CTMC

conductance surface, but set all grid cell values equal

to 1 to create a flat surface with no variation in

resistance across the landscape. We included null

models in our analysis to examine corridor predictions

when only source and target nodes are known and

understand the added value of landscape resistance on

corridor predictions after comparison to models

informed by resistance.

Step selection functions

Step selection functions (SSFs) are used to explicitly

model correlation in successive GPS locations and

study resource selection by animals moving across the

landscape, conditional on local availability of

resources (Fortin et al. 2005; Thurfjell et al. 2014).

SSFs compare ‘used’ steps, representing pairs of

consecutive observed locations, to random ‘available’

steps from the same starting point (Fortin et al. 2005).

We rarefied the spring model training set of elk GPS

data (rarefied n = 2859) to obtain equal 8-h intervals

(i.e., step lengths), because the 8-h interval ensured

that the median distance moved between locations

(533 m) was roughly equivalent to the resolution of

the covariate data (Thurfjell et al. 2014). For each used

step we drew a random sample of 20 available steps

from the empirical distribution of step lengths and

turning angles. We identified ending coordinates of

used and available steps and extracted covariate values

for those locations. We used end points rather than

averaging covariate values along each step to create a

habitat suitability surface directly from multiplying

selection coefficients and landscape covariates (rather

than attempting to adjust surface values for how

covariates change along steps).

Prior to model fitting, we examined correlations

between all covariate values. As with the CTMC

analysis described above, we excluded slope and

terrain roughness because they were strongly corre-

lated with elevation (Pearson’s correlation coefficient

r[ 0.60). With the remaining covariates (Table 1),

we used conditional logistic regression to estimate

selection parameters in a matched case–control

design, where strata were assigned to each matched

set of used and available steps (Thurfjell et al. 2014).

We also included step length as a variable to reduce

potential bias in parameter estimates associated with

dependence between used and available steps (Fores-

ter et al. 2009). We conducted this analysis using the

‘CLOGIT’ function in the ‘SURVIVAL’ package in R

(Therneau 2017).

We created an index of habitat suitability ŵ by

combining the estimated SSF parameters b and

landscape covariates x using ŵ(x) = exp(b1x1 ? b2x2
?��� ? bjxj) (e.g., Squires et al. 2013). This surface

described population-level habitat suitability, as it is

related to the long-term average selection of resources,

assuming all terrain is available. We rescaled habitat

suitability surface values to range from 0 to 0.999 and

used a negative linear transformation to estimate

resistance: r ¼ 1�ŵ xð Þ (we used 0.999 as the upper

habitat suitability value instead of 1 to avoid resis-

tances of 0 when resistance = 1 - habitat suitability).

Connectivity models

We evaluated elk connectivity between winter and

summer range using circuit theory and shortest

random path (SRP) algorithms. Circuit theory has

been used to model connectivity as the flow of

electrical current across a resistance surface (McRae

et al. 2008) and is mathematically equivalent to the

flow of animals moving in a CTMC randomwalk, with

movement rate equal to 1/resistance. Circuit theory

predictions describe the probability of a random

walker moving between grid cells as it travels from a

source node to a ground node across a gridded

resistance surface, and are generated under the

assumption that travel route redundancy (i.e., multiple

travel routes) between nodes can improve flow (i.e.,

animal movement) and boost connectivity (McRae

et al. 2008).

We evaluated the SRP algorithm (Saerens et al.

2009; Kivimäki et al. 2014) for modeling elk migra-

tion because this method combines properties of

optimized movement (e.g., cost-distance methods)

and random walk theory (Panzacchi et al. 2016; van

Etten 2017). The SRP approach estimates the proba-

bility of passage through each grid cell between source

and target nodes as a function of a transition matrix
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and parameter h used to control the balance of

optimization and random exploration (Panzacchi

et al. 2016; van Etten 2017). Here, transition matrices

describe the ease of moving between adjacent grid

cells and thus correspond to landscape conductance or

permeability. The SRP method operates similar to

optimizedmethods when h values are large and similar

to random walk methods when h = 0 (for details see

Panzacchi et al. 2016, van Etten 2017), but the overall

effect of h also depends on the number of grid cells and

the average conductance across the grid (Panzacchi

et al. 2016). In our case, we set all grids as equivalent

in size and resolution and we adjusted the magnitude

of h based on average conductance for comparability

among SRP models (e.g., when average conduc-

tance = 1, h was set to 0.001 and when average

conductance = 10, h was set to 0.01). We did not test

multiple values of h because our goal was to compare

predictions from models with some constraint on

random exploration to circuit theory models (but see

Panzacchi et al. 2016 for an example of calibrating h).
Both circuit theory and SRP algorithms model

connectivity between source and target nodes. In our

study, the source node described the centroid of elk

winter range on the National Elk Refuge and the target

node described the centroid of elk summer range in

Yellowstone National Park. We identified winter

range using an 80% minimum convex polygon of all

spring model training and validation elk locations in

February, and summer range using an 80% minimum

convex polygon of all elk locations in July.

We used Circuitscape (version 4.0; www.

circuitscape.org) to apply the circuit theory algo-

rithm to CTMC conductance, SSF resistance, and null

resistance surfaces. We did not convert CTMC con-

ductance into resistance because Circuitscape can be

modified to make this conversion internally (McRae

et al. 2013). We rescaled the resulting connectivity

maps to range between 0 and 100, and then reclassified

grid cell values into percentiles ranging from 1 to 99.

Percentiles describe the connectivity value below

which a given percentage of the values occurred (e.g.,

70% of the connectivity values occur below the 70th

percentile). We used percentiles to identify the ‘best’

habitats for spring elk movement (i.e., upper per-

centiles) and to effectively compare predictions

among the connectivity model scenarios (Morris et al.

2016) (but see Online Resources 4 for raw

probabilities).

We used the ‘PASSAGE’ function in the ‘GDISTANCE’

package in R (van Etten 2017) to apply the SRP

algorithm to the CTMC conductance matrix. We

assigned h to 0.001 to constrain random exploration

around the shortest path. For the SSF comparison, we

created a transition matrix (similar to CTMC conduc-

tance matrix) that describes the ease of transitioning

from one grid cell to another, where each row and

column in the n 9 nmatrix represented a grid cell n in

the habitat suitability surface. Transition values in the

matrix were calculated as the mean of habitat

suitability for each pair of adjacent cells in a king’s

neighborhood (e.g., column 1 and row 2 represents the

mean habitat suitability of grid cell 1 and adjacent grid

cell 2). We used this transition matrix to index

landscape permeability rather than conductance, as

there is no formal mathematical relationship between

habitat suitability and conductance. We applied the

SRP algorithm with h assigned to 0.01 and the

seasonal range nodes previously described. Here, we

used a h value of 0.01 instead of 0.001 because the

average landscape permeability value was an order of

magnitude larger than average CTMC conductance.

Code to replicate SRP models (with CTMC conduc-

tance as an example) is provided in Online Resources

3.

Following the method above, we created a null

model transition matrix from the null model resistance

surface, and then applied the SRP algorithm with h
assigned to 0.001. Transition matrices were created

using the ‘TRANSITION’ function in the ‘GDISTANCE’

package in R (van Etten 2017). We reclassified grid

cell values from all resulting SRP connectivity models

into percentiles ranging from 1 to 99. Finally, we

validated and compared all SRP and circuit theory

model predictions by quantifying the cumulative

percent of elk locations in each connectivity percentile

for each elk in the spring validation set. Similar

methods (and others) have been used elsewhere to

evaluate connectivity model prediction accuracy (e.g.,

McClure et al. 2016).

Results

Negative CTMC coefficients for landscape covariates

depict slower movement in grid cells with higher

covariate values, and for gradient covariates, negative

coefficients depict biased movement with preference
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for movement in the direction toward lower covariate

values. Positive CTMC coefficients depict the oppo-

site response in movement. CTMC coefficients sug-

gest elk moved slower through grid cells with higher

elevations and more agricultural land, major roads and

southerly aspects; and that elk moved faster through

grid cells with more forest cover and a further distance

from water (Table 1). Of these landscape covariates,

elevation had the largest effect on movement rate,

while private land and forage quality had the weakest

effects. The two coefficients describing directional

bias suggest elk were more likely to move in the

direction of decreasing elevation and forest cover, but

the 95% confidence intervals for elevation gradient

overlapped zero (- 0.088 [- 0.349, 0.173]; Table 1).

This lack of evidence for biased movement toward

increasing elevation was unexpected, but an example

CTMC path demonstrated that elk can move toward

and away from steep elevations while also migrating

to a higher elevation overall (Online Resources 5).

Positive SSF coefficients depict selection for a

particular variable (i.e., more suitable habitat) and

negative coefficients suggest avoidance (i.e., less

suitable habitat). SSF coefficients suggest elk selected

grid cells with higher elevations and forage quality,

and more agricultural land, southerly aspects and

major roads (Table 1). On the other hand, elk tended to

avoid grid cells with high values of forest cover and

private land, and grid cells far from water (but the

effect size of distance to water was small and 95%

confidence intervals overlapped zero; Table 1). Of

these variables, forage quality, forest cover and

elevation had the strongest effects on elk resource

selection, while agricultural land, south-ness, major

roads and distance to water had the weakest effects.

As expected, CTMC and SSF coefficients for most

covariates were estimated to have opposite signs. This

was not the case for coefficients for private land and

NDVI, though these appear to be weak or poorly

estimated in the CTMC model (Table 1). The simi-

larity in sign for private land and NDVI, and potential

similarity for distance to water from the SSF (having

95% confidence intervals that overlapped zero), may

suggest some overlap in areas that elk preferred for

resource use and fast movement.

All connectivity models depicted high probabilities

of movement immediately surrounding source and

target nodes and relatively higher probability imme-

diately between the nodes (Fig. 2). CTMC and SSF-

informed connectivity models identified pinch points

and depicted more detail overall than null model maps

(Fig. 2). Overall, there was significant overlap in

prediction accuracy across all connectivity model

scenarios and the majority of validation elk locations

(greater than 60%) were found in the upper 30th

percentile grid cells (i.e., percentiles 70–99) (Figs. 3,

4). CTMC-informed models, however, were 7–10%

more accurate than SSF-informed and null models

when looking at the median number of elk locations

found in these upper percentiles (Fig. 4). Among

CTMC-informed models, circuit theory demonstrated

more consistent and higher overall accuracy than SRP

at predicting elk movement (Figs. 3, 4). The SSF-

informed and null models predicted elk locations with

similar accuracy (Figs. 3, 4).

Discussion

We examined continuous time Markov chain models

(CTMC) as an alternative to step selection functions

(SSFs) for understanding drivers of elk movement

during the spring migration, estimating landscape

resistance and predicting migration corridors. We

evaluated the CTMC approach because it predicts

animal movement rate between neighboring grid cells

and relates directly to conductance (or 1/resistance) in

electrical circuit theory (Hanks et al. 2015). The

relationship between SSFs and resistance, on the other

hand, is subjective and not formally supported

(Chetkiewicz et al. 2006; Beier et al. 2008). Our

comparison of CTMC and SSF coefficients revealed

opposite landscape effects on movement speed and

selection for most covariates in our analysis, providing

evidence that animals can move faster through terrain

identified by SSFs as ‘less-suitable’ and slower

through terrain identified as ‘suitable’. CTMC-in-

formed connectivity models were more accurate than

SSF-informed models at predicting areas where elk in

our study moved during the spring migration (Fig. 4).

This result suggests that studies of movement speed

could be used to understand habitats important for

rare, fast and directed movements to help identify

areas that facilitate connectivity.

Though CTMC-informed connectivity models per-

formed best at predicting elk migration corridors in

our study, SSF-informed models still predicted elk

locations with a high level of accuracy and with more
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corridor detail than null models (Fig. 2). SSFs are

frequently applied in studies of movement and

resource use (e.g., Fortin et al. 2005, Thurfjell et al.

2014) and have been used to estimate resistance and

inform connectivity models with relative success

(Squires et al. 2013; Abrahms et al. 2016; Panzacchi

et al. 2016; Zeller et al. 2016). The high level of

accuracy from SSF-informed connectivity models in

our study may be due to frequent bouts of stopping and

foraging during migration. Stopover locations, where

animals move slower and spend time foraging, have

been recognized as essential stepping stones in the

migration process (Sawyer and Kauffman 2011;

Aikens et al. 2017), and can result in increased fat

stores during the growing season (Middleton et al.

2018). Because such stopovers may result in valuable

predictions from SSFs, it is important that researchers

and practitioners consider both routine-slow and rare-

fast movements to understand the relative importance

of those behaviors to overall connectivity (Van Dyck

and Baguette 2005). It will also be important to test

CTMC and SSF approaches on other species and other

types of movement (e.g., dispersal) and use of

corridors (e.g., movement versus habitat) to fully

Fig. 2 a Continuous time

Markov chain (CTMC)

paths generated from 13

model training elk, b GPS

locations for four validation

elk, and c–h connectivity

maps predicting the

probability of elk movement

through each grid cell

between seasonal range

centroids. Connectivity

model values were binned

into percentiles from 1

through 99. Connectivity

maps depict model

predictions for c–e circuit
theory and f–h shortest

random path algorithms

applied to CTMC, step

selection function (SSF),

and null (NULL)

resistances. The southern

seasonal range centroid (elk

winter range) occurred on

the National Elk Refuge and

the northern seasonal range

centroid (elk summer range)

occurred in Yellowstone

National Park (YNP). GTNP

Grand Teton National Park
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appreciate the differences in speed versus selection in

studies of movement and connectivity.

The SSF habitat suitability surface in our analysis

did not account for local changes in resource avail-

ability, and thus represented population-level habitat

suitability assuming all terrain was available. We did

not expect this to affect the comparison of CTMC and

SSFs because these two approaches model different

aspects of movement (e.g., speed vs. selection,

respectively), and areas that facilitate fast movement

were expected to be important for predicting elk

migration corridors. Several studies, however, have

mapped SSF habitat suitability in a way that accounts

for local changes in resource availability. One method

uses differences in the proportion of land cover types

between each pixel and an availability kernel centered

Fig. 3 Comparison of the cumulative percent of validation elk

GPS locations found within each percentile of a–c circuit theory
and d–f shortest random path algorithms applied to the

continuous time Markov chain (CTMC), step selection function

(SSF), and null (NULL) resistances. Solid lines beneath the

diagonal depict the median of four validation elk and shaded

regions depict the full range for those elk. Dotted vertical lines

indicate the 70th percentile
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Fig. 4 Comparison of the cumulative percent of elk points

found in the upper 30th percentiles (referred to as upper 30) of

a circuit theory and b shortest random path algorithms applied to

the continuous time Markov chain (CTMC), step selection

function (SSF), and null (NULL) resistances. Dots represent the

median of four validation elk and whiskers represent the full

range for those elk
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on that pixel to adjust gridded habitat suitability values

based on the local context of the landscape (Zeller

et al. 2016). However, this method may necessitate

multiple models with different kernel sizes to effec-

tively understand the scale that animals are responding

to the landscape (Zeller et al. 2014). Other methods

have involved simulating elk movement using the past

track of each animal and changes in local availability

(Signer et al. 2017) or using a master equation of space

use (Merkle et al. 2017a, b), but these are highly

computationally intensive (Avgar et al. 2016; Signer

et al. 2017) and to our knowledge they have not been

used to estimate landscape resistance.

In addition to testing differences in speed and

selection, we examined two connectivity modeling

algorithms that model movement differently. Previous

work suggests that elk move with some knowledge of

their landscape (Wolf et al. 2009; McClure et al.

2016), and therefore we expected shortest random path

(SRP) models used to constrain random movement

between grid cells to predict elk locations more

accurately than circuit theory algorithms based on

random walk theory. Contrary to this expectation, our

analysis found that circuit theory predicted elk loca-

tions better than SRP models, though there was

substantial overlap in the range of prediction accuracy

(Figs. 3, 4) suggesting that elk migration corridors are

explained by some degree of random walk (i.e.,

explorative) and optimized movement (i.e., minimizes

cost of traveling). As previous work found that

explorative movements can be necessary to maximize

foraging efficiency in bison (Merkle et al. 2017b), a

mix of movement types is not unexpected for migrat-

ing elk that also need to maximize efficiency while

foraging at various stopovers during the migration.

Although the accuracy of predictions from connec-

tivity models was high, it is important to note that elk

in this study followed a relatively direct route during at

least the first half of the migration (Fig. 2). This

pattern of direct migration over long distances (as a

broad scale pattern; different from fine scale fast,

directed movements between relocations) provides an

explanation for null model success, and highlights the

importance of knowledge about elk winter and sum-

mer range locations to studies of elk migration and

connectivity. Corridor prediction accuracy could

decline, however, for elk with less direct migratory

routes even for models informed by landscape resis-

tance. SSF resistance, for example, did little to

improve prediction accuracy of the less direct routes

compared to null model predictions (Fig. 2), and

CTMC resistance showed only moderate improve-

ments overall. Estimating a more informative resis-

tance surface may be difficult because elk can travel

across most habitat types, and their movement is also

likely to be affected by other factors not examined via

landscape resistance (i.e., predation risk; Fortin et al.

2005). In addition, ungulates can exhibit strong

memory capabilities (Merkle et al. 2014), and evi-

dence suggests that their past experience influences

future movements (Wolf et al. 2009). Indeed, elk

exhibit fidelity to traditional migration routes and

seasonal ranges, though with some plasticity over time

(Van Dyke et al. 1998; Eggeman et al. 2016).

Incorporating memory, however, is not trivial, in part

because the memory process is hidden and current

simulation methods extended to this process are highly

computationally intensive (Fagan et al. 2013; Merkle

et al. 2017b). While identifying source and target

nodes is a step toward explicitly incorporating mem-

ory into connectivity models, it may still be challeng-

ing to accurately simulate elk movement along less

direct migration routes. Future studies should examine

CTMC and SSF-informed connectivity models across

a range of species and migratory elk populations to

understand the effect that less direct migration routes

can have on prediction accuracy.

In conclusion, animals are likely to move faster

through undesirable habitats and slower in preferred

habitats. As a result, studies of movement rate and

resource selection are likely to reach opposite conclu-

sions regarding habitat preferences during movement.

Prediction of migration and dispersal corridors where

faster, more directed movements can occur is often

achieved using resistance surfaces derived from

studies of resource selection (e.g., Zeller et al. 2012;

Abrahms et al. 2016), but the focus on selection rather

than speed could affect our ability to accurately

predict where animals move and result in conservative

corridor predictions that exclude areas important for

connectivity. We found CTMC-informed connectivity

models to be a more realistic alternative to SSF-

informed connectivity models for studying elk migra-

tion corridors and connectivity in western Wyoming,

and thus recommend the addition of CTMC into the

methodological toolkit of connectivity modeling and

conservation.
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