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Samuel A. Cushman . Ewan A. Macdonald . Erin L. Landguth .

Yadvinder Malhi . David W. Macdonald

Received: 3 April 2016 / Accepted: 7 April 2017 / Published online: 18 May 2017

� The Author(s) 2017. This article is an open access publication

Abstract

Context The forests of Borneo have among the

highest biodiversity and also the highest forest loss

rates on the planet.

Objectives Our objectives were to: (1) compare

multiple modelling approaches, (2) evaluate the utility

of landscape composition and configuration as pre-

dictors, (3) assess the influence of the ratio of forest

loss and persistence points in the training sample, (4)

identify the multiple-scale drivers of recent forest loss

and (5) predict future forest loss risk across Borneo.

Methods We compared random forest machine

learning and logistic regression in a multi-scale

approach to model forest loss risk between 2000 and

2010 as a function of topographical variables and

landscape structure, and applied the highest perform-

ing model to predict the spatial pattern of forest loss

risk between 2010 and 2020. We utilized a naı̈ve

model as a null comparison and used the total

operating characteristic AUC to assess model

performance.

Results Our analysis produced five main results. We

found that: (1) random forest consistently outper-

formed logistic regression and the naı̈ve model; (2)

including landscape structure variables substantially

improved predictions; (3) a ratio of occurrence to non-

occurrence points in the training dataset that does not

match the actual ratio in the landscape biases the

predictions of both random forest and logistic regres-

sion; (4) forest loss risk differed between the three

nations that comprise Borneo, with patterns in Kali-

mantan highly related to distance from the edge of the

previous frontier of forest loss, while Malaysian

Borneo showed a more diffuse pattern related to the

structure of the landscape; (5) we predicted continuing
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very high rates of forest loss in the 2010–2020 period,

and produced maps of the expected risk of forest loss

across the full extent of Borneo.

Conclusions These results confirm that multiple-

scale modelling using landscape metrics as predictors

in a random forest modelling framework is a powerful

approach to landscape change modelling. There is

immense immanent risk to Borneo’s forests, with clear

spatial patterns of risk related to topography and

landscape structure that differ between the three

nations that comprise Borneo.

Keywords Borneo � Forest cover � Land-use
change � Forest loss � Random forest � Logistic
regression � Total operating characteristic

Introduction

Recent analysis of earth observation satellite data

suggested that approximately 230 million ha of forest

were lost due to disturbance globally in the period

between 2000 and 2012 (c.19 million ha per year) with

the greatest loss occurring in the tropics (Hansen et al.

2013). Rates of deforestation in South East Asia are

high and accelerating, with Indonesia showing the

largest recent increase in the rate of forest loss

globally, while Malaysia has the highest level of

forest loss in relation to land area (Hansen et al. 2013).

Harris et al. (2012) estimate that 32% of carbon

emissions from land-use change in the tropics arose in

South and South-east Asia, and Indonesia was the

second highest emitter, accounting for 13% of total

CO2 emissions from deforestation.

In light of these impacts and international commit-

ments to reduce carbon emissions from deforestation

and degradation (REDD?) in developing countries it

is important to understand the dynamics of land-use

change and predict which areas are at highest risk of

forest loss. Multiple studies have attempted to quantify

and predict future deforestation, most notably in the

Amazon basin (Soares-Filho et al. 2006; Rosa et al.

2013), and in other forests around the world (Rideout

et al. 2013; Vieilledent et al. 2013); however, to date

we know of no analyses that predict future forest loss

across the full extent of Borneo.

Published analyses of forest loss have employed a

range of statistical techniques including logistic

regression (Chowdhury 2006; Echeverria et al.

2008), genetic algorithms (Venema et al. 2005;

Soares-Filho et al. 2013), weights of evidence

(Soares-Filho et al. 2010; Maeda et al. 2011) and

cellular automata (Thapa et al. 2013). These models

are based on a number of environmental and anthro-

pogenic landscape features that are thought to drive

deforestation rates. Commonly, these include distance

to important features, as well as topography. Few

studies have rigorously compared the performance of

different approaches for modelling forest loss. To

rigorously compare different modelling approaches in

their performance in predicting forest loss Pontius

et al. (2008) argue that the methods being compared

must be applied to the same study landscape, but very

few published studies have done this.

Logistic regression is almost certainly the mod-

elling approach that has been most commonly used to

predict forest loss (e.g., Chowdhury 2006; Echeverria

et al. 2008), and has been the dominant method in

multi-scale landscape modelling (McGarigal et al.

2016). Random forest (RF; Breiman 2001) is increas-

ingly used in a range of applications including digital

soil mapping (Grimm et al. 2008), forest biomass

mapping (Baccini et al. 2012), species distribution

modeling (Evans and Cushman 2009) and others given

its often superior performance compared to other

methods (Evans et al. 2011). RF is also gaining

prominence in land-use classification (e.g., Aide et al.

2013; Grinand et al. 2013), where it outperforms

classification and regression trees (CART; Rodriguez-

Galiano et al. 2012) and maximum likelihood classi-

fiers (Schneider 2012). Nonparametric procedures like

RF are particularly effective at identifying complex

multivariate associations, such as those that affect

patterns of forest loss. Few analyses of forest loss have

employed random forest (but see Aide et al. 2013;

Grinand et al. 2013), and none to our knowledge

quantitatively compare the performance of random

forest to other commonly used modelling approaches,

such as logistic regression, or utilize multi-scale

optimization (sensu McGarigal et al. 2016).

Past applications of random forest have used

several approaches for selecting the number of occur-

rence and non-occurrence cells used to train the

model. For example, Chawla et al. (2003) and Chen

et al. (2004) found that imbalance between the

proportion of presence and absence classes can cause

bias in the prediction and model-fit. They found that
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when an imbalanced sample is present, the bootstrap

of the data is biased towards the majority class, thus

over-predicting the majority-class and under-predict-

ing the minority. The resulting model fit can be

deceptive, exhibiting very small overall error due to

very small errors in the majority as a result of

extremely high cross-classification error from the

minority class. An alternative solution that is often

used when there are many more absences than

presences in a classification dataset is to shift the

cutoff for the probability of present from the true ratio

to 0.5 or something smaller (Evans and Cushman

2009). Given that unbiased predictions are essential

for predictive models of forest loss to be reliable, it is

critical to evaluate the effect of sample ratio and find

the ratio that produces unbiased estimates of forest

loss risk.

The idea that ecological patterns and processes

interact across scales in space and time is a

fundamental tenant in landscape ecology (Wiens

1989; Levin 1992). Despite this widespread recog-

nition, a review of the current literature found that

most habitat ecology papers fail to address multiple

spatial pattern-process relationships, and less than

5% have optimized multi-scale relationships

(McGarigal et al. 2016). While many recent studies

of land-use change allude to spatial scales, they

typically do so implicitly by including distance to

various landscape features (roads, rivers, population

center, etc.) as a metric (e.g., (Rideout et al. 2013;

Rosa et al. 2013; Vieilledent et al. 2013), which is

not a true multi-scale analysis (sensu McGarigal

et al. 2016). To our knowledge there have been no

multi-scale optimization efforts applied to landscape

change modeling. Additionally, while several anal-

yses consider some element of landscape composi-

tion (e.g., Rosa et al. 2013; Vieilledent et al. 2013;

Rideout et al. 2013), we are aware of no studies that

have considered both the composition and configu-

ration of the multi-scale neighbourhood around a

point as a predictor variable.

There are six main goals of this study. First, we

evaluated the effects of varying the ratio of loss to

persistence cells in the training data set on the

predicted probability of forest loss in both logistic

regression and Random Forest. Second, as suggested

by Pontius et al. (2008), we sought to compare the

performance of three modelling methods (random

forest, logistic regression and a naı̈ve model) by

applying them in the same landscape in the same time

interval. Third, we sought to formally evaluate the

utility of using landscape structure as predictors by

computing models with and without landscape met-

rics. Fifth, we sought to identify variables and their

operative scales that best predicted forest loss or forest

persistence between 2000 and 2010 and compare them

between the three nations that comprise Borneo

(Kalimantan Indonesia, Malaysian Borneo and Bru-

nei). Sixth, we sought to apply the best multi-scale

models for each of these nations to predict the future

risk of forest loss across Borneo in the 2010–2020 time

period. We had several hypotheses. First, consistent

with Chawala et al. (2003) and Chen et al. (2004) we

expected that the probability map produced by random

forest would under predict loss when the ratio of loss

in the training sample was equal to that in the real

landscape, in which persisting forest cells far outnum-

ber forest loss cells. Second, we expected that random

forest would outperform logistic regression and the

naı̈ve model in each nation. Third, we expected that

models including landscape variables would have

substantially higher performance than models that

excluded them. Fourth, we predicted that risk of forest

loss would be related to predictor variables similarly

across the three nations. Fifth, we expected that forest

loss risk would be related to (a) topography, with high

risk at low elevations and flat areas, and low risk at

higher elevations and steep terrain, (b) past forest loss

in the surrounding region, (c) protected area status,

and (d) human population parameters such as distance

to large settlements and local population density, in

that order of influence.

Methods

Study area

The analysis extent is the entire island of Borneo, with

separate models constructed for Brunei, the Indone-

sian provinces of Kalimantan, and for Malaysian

Borneo (combining the provinces of Sabah and

Sarawak). The extent is 731,058 km2.

Land cover change data for 2000–2010

We used land cover maps produced for the years 2000

and 2010 by the Centre for Remote Imaging, Sensing
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and Processing (CRISP; Miettinen et al. 2011, 2012).

These maps were based onMODIS surface reflectance

product images (NASA 2010), Shuttle Radar Topog-

raphy Mission (SRTM) 90 m version 4 digital eleva-

tion information (Jarvis et al. 2006) and several

peatland distribution maps (Wahyunto and Subagjo

2003, 2004; Selvaradjou et al. 2005; Wahyunto et al.

2006). Miettinen et al. (2011) used a three step

classification process to classify the landscape into 13

categories: water, mangrove, peat swamp forest,

lowland forest, lower montane forest, upper montane

forest, plantation/regrowth, lowland mosaic, montane

mosaic, lowland open, montane open, urban and large

scale palm plantation. Accuracy assessment for these

maps found overall accuracies of 83% for 2000 and

85% for 2010, with class accuracies between 75 and

85% for the non-forest classes and up to 97% for the

forest classes (Miettinen et al. 2011, 2012). Overall,

the accuracy assessment of these maps compares

favourably to other studies (e.g., Clark et al. 2010:

79.3%; Friedl et al. 2010: 75%; Rozenstein and

Karnieli 2011: 81%; Rodriguez-Galiano et al. 2012:

92%). Our analysis is based on combining all forest

classes and non-forest classes into a binary forest/non-

forest map. Peat swamp forest, lowland forest, lower

montane forest and upper montane forest were reclas-

sified to forest, while all other areas were considered to

be non-forest for our analysis. Category aggregation

(Aldwaik et al. 2015) for the 2010 land cover map

presented in Miettinen et al. (2012) resulted in a

classification where forest has a producer’s accuracy

of 93.2% and a user’s accuracy of 91.9%, while not

forest has a producer’s accuracy of 93.9% and a user’s

accuracy of 94.9.

Response variable for analysis

The response variable in our analysis was a binary

GIS layer depicting areas of the study area that

were forest in 2000 and became non-forest or

regenerating forest in 2010 (value of 1 or ‘‘forest

loss’’), and areas that were forest in 2000 and

remained forest in 2010 (value of 0 or ‘‘persis-

tence’’). We produced maps of all pixels that were

loss or persistence in the 2000–2010 time-period

and used these as the source of the loss and

persistence cells for model training and model

assessment. Non Forest at 2000 was not part of the

model training or assessment.

Predictor variables for analysis

A priori, we proposed several environmental and

anthropogenic variables as predictors of recent forest

loss (Table 1). Anthropogenic variables included:

distance to large population centres, defined as areas

with greater than 100 people/km2; regional population

density, defined as the focal mean of population

density within a 100 km radius; local population

density defined as the point population density at the

pixel scale of 250 m; and a map of designated

protected areas.

Topographical variables included elevation from

the ASTER DEM and several terrain complexity

measures produced using the Geomorphometry and

Gradient Metrics Toolbox (ArcGIS 10.0; Evans and

Oakleaf 2012). These included: topographical rough-

ness, which measures the topographical complexity of

the landscape within a defined focal extent

(Blaszczynski 1997; Riley et al. 1999), and relative

slope position, which measures the relative position of

the focal pixel within a defined extent on a gradient

from valley bottom to ridge top (Evans et al. 2014).

Given that topographical factors may be related to

deforestation at a range of spatial scales (Wiens 1989),

we calculated topographical roughness and relative

slope position at six spatial extents including focal

radii of 1, 10, 20, 30, 40 and 50 km. These were

chosen because 1 km is represents a single pixel and

its very near neighbours, while the other scales span a

range from local to regional neighbourhoods.

We also included FRAGSTATS metrics quantify-

ing the extent and configuration of different land cover

classes across a range of focal extents as predictor

variables. The classes used in the analysis include: (1)

water, (2) mangrove, (3) peat swamp forest, (4)

lowland forest, (5) lower montane forest, (6) upper

montane forest, (7) plantation or regrowth, (8) lowland

mosaic, (9) montane mosaic, (10) lowland open, (11)

montane open, (12) Urban (Miettinen et al.

2011, 2012). For each of these classes we used

FRAGSTATS 4.0 (McGarigal et al. 2012) to calculate

the percentage of the focal landscape covered by each

class within the six focal window extents (1, 10, 20,

30, 40 and 50 km). In addition to class-level percent-

age of the landscape in each cover class, we calculated

four landscape-level metrics quantifying the structure

of the full multi-class mosaic to assess how landscape

complexity was related to deforestation risk. These
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Table 1 Predictor variables used in the analysis

Variable name Description Rational Source

Anthropogenic variables

Local population

density

Local population density calculated

as the point population density at

the pixel scale of 250 m

Risk of forest loss hypothesised to

be greater with increased local

population due to increased

demand and infrastructure (Carr

2004; Vieilledent et al. 2013)

CIESIN, CIAT (2005): Gridded

Population of the World (year

2000), Version 3

Focal mean

population

density

Regional population density

calculated as the focal mean of

local population density within a

100 km radius

Risk of forest loss hypothesised to

be greater with increased regional

population due to increased

demand and infrastructure (Carr

2004; Vieilledent et al. 2013)

CIESIN, CIAT (2005): Gridded

Population of the World (year

2000), Version 3

Distance to large

population

centre

Distance to large population centre,

defined as areas with more than

100 people per square kilometre

Risk of forest loss hypothesised to

be greater with proximity to large

population centres population due

to increased demand and

infrastructure (Carr 2004; Mon

et al. 2012; Vieilledent et al.

2013)

CIESIN, CIAT (2005): Gridded

Population of the World (year

2000), Version 3

Protected areas Protected areas. A binary map with

protected areas classified as 1 and

other areas classified as 0

Risk of forest loss hypothesised to

be lower within protected areas

(although some studies have

reported no statistical difference

in deforestation between timber

concessions and protected areas

Gaveau et al. 2013)

IUCN, UNEP-WCMC (2014), The

World Database on Protected

Areas (year 2012)

Topographical variables

Elevation Point elevation from Aster DEM Risk of forest loss hypothesised to

decrease with elevation (Mon

et al. 2012)

NASA LPDAAC (2011) Advanced

Spaceborne Thermal Emission

and Reflection Radiometer

(ASTER) Global Digital

Elevation Model Version 2

(GDEM V2)

Roughness[x] Focal topographical roughness

within radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

decrease with increased

topographic roughness at a

moderate scale of 10–20 km

Geomorphology and Gradient

Metrics Toolbox, http://

evansmurphy.wix.com/

evansspatial#!arcgis-gradient-

metrics-toolbox/crro

Slope[x] Focal relative slope position within

radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

decrease with increased slope at a

moderate scale of 10–20 km

(Gaveau et al. 2013)

Geomorphology and Gradient

Metrics Toolbox, http://

evansmurphy.wix.com/

evansspatial#!arcgis-gradient-

metrics-toolbox/crro

Landscape metrics

Landuse[x] (e.g.

water[10])

Percentage of the landscape class

within radius 9 km

Landuse classes are: water,

mangrove, peat swamp forest,

lowland forest, lower montane

forest, upper montane forest,

plantation/regrowth, lowland

mosaic, montane mosaic, lowland

open, montane open, urban

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

increases with extent of

previously deforested (not forest)

cells area in the region

surrounding the pixel. We expect

that extremely local effects are

probably minimal so the impact

of previously deforested cells

expected to be greatest at the

scale of 10–30 km

FRAGSTATS analysis of

reclassified Miettinen et al.

(2011) land cover map
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landscape metrics were edge density (Edge[x]), patch

density (Patch[x]), aggregation index (Aggrega-

tion[x]; which measures the compaction or aggrega-

tion of cover types), and Shannon’s diversity index

(Shannon[x]; which measures the diversity of the

landscape mosaic within a window in terms of the

richness and evenness of the cover types present).

Each of these four metrics was also calculated for focal

windows at the six spatial extents. FRAGSTATS

metrics were calculated for the land-use maps in both

the year 2000 and 2010 (Miettinen et al. 2011, 2012),

the data from the year 2000 was used to calibrate the

models while the 2010 data was used to predict the risk

of future forest loss. All spatial layers were resampled

to a 500 m pixel size and projected to an Albers

conformal conic projection for analysis.

Modelling approaches

We used random forest machine learning and logistic

regression to predict forest loss risk in the 2000–2010

time period from landscape conditions in 2000,

separately for each nation within the study area

(Brunei, Malaysia, Indonesia), to assess how the

drivers of deforestation may differ between nations.

Random forest is a classification and regression tree

(CART; De’ath and Fabricius 2000) based bootstrap

method that corrects many of the known issues in

CART, such as over-fitting (Breiman 2001; Cutler

et al. 2007), and provides very well-supported predic-

tions with large numbers of independent variables

(Cutler et al. 2007). We used a modelling approach

developed by Evans and Cushman (2009) to predict

occurrence probabilities of deforestation for each

nation using the random forest method (Breiman

2001; Cutler et al. 2007) as implemented in the

package ‘random Forest’ (Liaw andWiener 2002) in R

(R Development Core Team 2008). We conducted a

parallel set of analyses with logistic regression, for

each nation using the same training data and predictor

variable data set applied to the same landscape in the

same time period as in the random forest models,

enabling robust comparison of the performance of

random forest and logistic regression.

We conducted the random forest and logistic

regression analyses in two steps. First, we ran

Table 1 continued

Variable name Description Rational Source

Aggregation[x] Aggregation Index for the full

landscape mosaic within

radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

decrease with increased

aggregation. Low aggregation

index represents a highly

fragmented landscape that is

potentially more susceptible to

forest loss

FRAGSTATS analysis of

reclassified Miettinen et al.

(2011) land cover map

Edge[x] Edge density for the full landscape

mosaic within radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

increase with increased edge

density. High edge density

represents a highly fragmented

landscape that is potentially more

susceptible to forest loss

FRAGSTATS analysis of

reclassified Miettinen et al.

(2011) land cover map

Patch[x] Patch Density for the full landscape

mosaic within radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

increase with increased patch

density. High patch density

represents a highly fragmented

landscape that is potentially more

susceptible to forest loss

FRAGSTATS analysis of

reclassified Miettinen et al.

(2011) land cover map

Shannon[x] Shannon’s Diversity Index for the

full landscape mosaic within

radius 9 km

Values for 9 are: 1,10, 20, 30, 40,

50

Risk of forest loss hypothesised to

increase with increased

Shannon’s Diversity. High

Shannon’s diversity represents a

highly fragmented landscape that

is potentially more susceptible to

forest loss

FRAGSTATS analysis of

reclassified Miettinen et al.

(2011) land cover map
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univariate models across the multiple scales to identify

the scale at which each variable had the strongest

ability to predict forest loss in 2010 from the landscape

condition in 2000, as suggested by McGarigal et al.

(2016) as a robust approach for multi-scale model

optimization. To accomplish this, we ran a series

single random forest analyses for each variable across

the six scales in each nation and used the model

improvement ratio (MIR; Murphy et al. 2010) to

measure the relative predictive strength of each scale

of the variable. The MIR calculates the permuted

variable importance, represented by themean decrease

in out-of-bag error, standardized from zero to one. We

compared the MIR scores for all scales for each

variable, and retained the scale that had the highest

MIR score for further multivariate modelling. In the

logistic regression we used the same scales as

identified in the random forest model to ensure the

models were using identical input data, which is

essential for a strict comparison of performance.

In the second step we used random forest and logistic

regression to develop multivariate models predicting

probability of forest loss in each nation in the 2000–2010

time period as a function of landscape condition across

the suite of scale-optimized variables in the year 2000.

To identify the most parsimonious random forest model

for each nation we applied the Model Improvement

Ratio (MIR; Murphy et al. 2010). In model selection

using MIR, the variables are subset using 0.10 incre-

ments of MIR value, with all variables above the

threshold retained for each model. This subset is always

performed on the original model’s variable importance

to avoid over-fitting (Svetnik et al. 2004). We compared

each subset model and selected the model that exhibits

the lowest total out-of-bag error and lowest maximum

within-class error. To identify the most parsimonious

logistic regression model for each nation we used the

same training and predictor variable set as in the random

forest model for that nation, and employed all-subsets

logistic regression with model averaging, using the

‘‘Dredge’’ function in the R packing MuMIN (e.g.,

Timm et al. 2016; Chambers et al. 2016).

Model predictions for the random forest model

were created by using a ratio of the majority votes-

matrix to create a probability distribution. Random

Forest makes predictions based on the plurality of

votes across all bootstrap trees and not on a single rule

set. This votes matrix can be scaled and treated as a

probability given the error distribution of the model.

We used the function that (Evans and Cushman 2009)

added to GridAsciiPredict (Crookston and Finley

2008) which uses the votes-probability function to

write the probabilities to ASCII grid(s). Model

predictions for the logistic regression model were

created by calculating p = exp(z)/(1 ? exp(z)),

where p is the probability of forest loss, z is the linear

combination of the model averaged coefficients mul-

tiplied by the independent variables.

Effects of training ratio of loss and persistence

We assessed the effects of varying the ratio of loss and

persistence points by randomly choosing a relatively

large number of persistence points for each nation and

systematically varying the number of loss points,

refitting the random forest and logistic regression

models at each increment. For Kalimantan and

Malaysian Borneo we chose 20,000 persistence cells,

while in Brunei, which is much smaller, we chose

2311 persistence cells (25% of all persistence cells),

and varied the proportion of loss cells at four intervals

above and below the true ratio, rerunning the random

forest and logistic regression predictor models at each

ratio. To assess the effects of the ratio of loss to

persistence cells in the training sample we calibrated

the number of loss cells until the sum of the predicted

probability map matched the observed number of loss

cells in the nation over the 2000–2010 period. A

simple simulation demonstrated that when the sum of

predicted probability equals the number of actual loss

cells, the prediction is unbiased in terms of the amount

of predicted loss. We fit logarithmic regressions to the

relationship between ratio of persistence and loss cells

in the training dataset and bias in the predicted

probability map for each nation.

Naı̈ve model and model performance

Pontius et al. (2007) urges authors to compare any

statistical landscape change model to a naı̈ve model

applied to the same landscape. Comparison to random

allocation is not an appropriate naı̈ve model because

the factors driving forest loss are not random. For

example, a naı̈ve model could predict forest loss

simply near previous forest loss. We constructed such

a naı̈ve model by making risk of forest loss inversely

proportional to the distance from non forest at 2000 to

the 10th power. This creates a nonlinear relationship
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such that the risk of forest loss in the naı̈ve model is 1

at the edge of non forest at 2000, but drops nonlinearly

as one moves away from the edge into forest interior,

reflecting the observed pattern that deforestation risk

decreases faster than linearly with distance into

existing forest (Fig. 1).

There are a multitude of ways to assess the

performance of predictions of forest loss, and most

previous studies have used the Kappa statistic (Cohen

1960) and similar measures of improvement of pre-

dicted classification compared to random assignment.

However, following Ponitus and Milones (2011), we

eschewed the use of the Kappa statistic given that it

does not report a meaningful statistical measure of

predictive success, even when corrected to address the

two different aspects of prediction related to predicted

amount and predicted allocation (Pontius and Si 2014).

In addition, the predictions produced by random forest

and logistic regression are in the form of predicted

probabilities, thus it is more meaningful to assess the

continuous pattern or predicted probability in compar-

ison to the actual observed changes than to cross-

tabulate observed versus a single Boolean predicted

change (Pontius and Si 2014). Cross tabulation requires

use of a single threshold to transform the predicted

probabilities into a Boolean response, which loses

information concerning the various probabilities. We

assessed the performance of the random forest and

logistic regression predictions using area under the total

operating characteristic curve, as suggested by Pontius

and Si (2014) and Pontius and Parmentier (2014). We

produced visualizations of the predicted probability of

forest loss compared to the actual distribution of forest

loss and persistence cells in which we overlaid the

forest loss points on the predicted probability surface to

visually display the association between predicted

probabilities and observed changes.

Prediction to the 2010–2020 time period

Once random forest and logistic regression models had

been produced for the 2000–2010 time period for each

nation (Brunei, Malaysia, Indonesia), we applied these

models to predict the risk of forest loss in the

2010–2020 time period by calculating the value of

the predictor variables in the year 2010 and applying

the models produced in the 2000–2010 time period to

them. Having computed the predicted probability of

forest loss in each cell over the 2010–2020 time

period, we then calculated the proportion of each

national territory in Borneo with forest loss risk

greater than 25, 50 and 75% between 2010 and 2020.

Results

Model calibration

The calibrations of the number of loss to persist points

used in the training sample for each of the three nations

revealed a very clear result. In both the random forest

calibration and the logistic regression calibration, the

predicted amount of forest loss was biased upward

when there were a higher proportion of loss points in

the training sample than the actual landscape (Fig. 2).

Conversely, predicted forest loss was biased downward

when there were a lower proportion of deforested

samples in the training data than in the actual

landscape. An unbiased prediction of the amount of

forest loss was obtained when the ratio of deforested to

not-deforested points in the training sample matched

that in the actual landscape, except in logistic regres-

sion when the actual proportion of deforested cells was

Fig. 1 Map of Borneo showing areas of forest loss between

2000 and 2010 in yellow, areas of forest persistence from 2000

to 2010 in green, and areas that were not forest in 2000 in black.

(Color figure online)
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very low (Brunei), in which case logistic regression

over-predicted forest loss at all ratios of deforested to

not-deforested points. In addition, there was a very

tight logarithmic relationship predicting the amount of

bias (Fig. 2). In all three nations, the logistic regression

calibration showed higher sensitivity to the ratio of loss

and persist cells, with larger coefficient to the

logarithmic equation leading to larger bias as the ratio

departed the true ratio.

Observed and predicted forest loss amount

in the 2000–2010 period

In the period between 2000 and 2010 the Miettinen

et al. (2011) maps report that 5.1% of Brunei, 23.76%

of Malaysian Borneo and 15.44% of the forest present

Kalimantan in 2000 was lost by 2010. The calibrated

random forest model predicted risk surfaces for these

nations that produced expected values of loss that were

within� of 1% of the actual observed amount of forest

loss in each case (Table 2).

Model performance

Across the three nations, the calibrated random forest

model out-performed the logistic regression and naı̈ve

models based on the TOC AUC value, which ranged

from 0.931 in Malaysian Borneo, to 0.928 in Kali-

mantan and 0.917 in Brunei (Table 3). In Malaysian

Borneo and Kalimantan the random forest model not

Fig. 2 Calibration of forest loss versus forest persistence points

for a Brunei, b Malaysian Borneo and c Kalimantan. The x-axis

reports the ratio of forest loss to forest persistence points in the

training sample. The vertical line reflects the actual ratio in

observed forest loss versus forest persistence points between

2000 and 2010. The y-axis reports the ratio of over/under

prediction of forest loss. Positive numbers reflect over prediction

of forest loss by that proportion, while negative numbers reflect

under prediction. The random forest calibration and trend line is

shown with circular markers, with a logarithmic fit. The logistic

regression calibration and trend line is shown with triangular

markers, with logarithmic fit
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including FRAGSTATS landscape variables was the

second highest performing model with AUC of 0.898

and 0.890 respectively. In contrast, in Brunei the

calibrated logistic regression and the naı̈ve models

both outperformed the random forest model not

including landscape metrics based on TOC AUC

(0.853 and 0.833 vs. 0.805). In the two large study

areas, Kalimantan and Malaysian Borneo, the naı̈ve

model based on a power function of distance into

forest from its edge performed weakest (Table 3).

The display of the TOC curves (Fig. 3) illustrate

several things not illustrated by the AUC table alone.

TOC shows for each threshold the hits, misses, false

alarms, and correct rejections (Pointius and Si 2014).

The vertical distance from the horizontal axis to the

TOC curve equals Hits, while the vertical distance

from the TOC curve to the Hits ? Misses line equals

Misses. The maximum height of the TOC curve is

equal to Hits ? Misses, which indicates the size of the

forest loss. The horizontal distance from the bounding

parallelogram on the left to the TOC curve equals false

alarms, and the horizontal distance from the TOC

curve to the parallelogram on the right equals correct

rejections. The most notable is the compression of the

TOC curves in Kalimantan, with the naı̈ve model

performing quite close to the logistic regression

model, and the logistic regression model quite close

to the random forest models. This indicates that the

pattern of deforestation in Kalimantan is quite similar

to the naı̈ve model as a function of distance from the

edge of past deforestation. In contrast the higher

spread of the curves in Malaysian Borneo indicates

Table 2 Tabulation of number of forested pixels persisting and lost, and proportion loss between 2000 and 2010 for the three nations

in the Borneo area

Forest pixels

persisting 2000–2010

Forest pixels

lost 2000–2010

Proportion loss

2000–2010

Predicted

proportion loss

Brunei 15,123 812 0.051 0.059

Malaysian Borneo 334,489 104,221 0.238 0.234

Kalimantan 959,577 175,264 0.154 0.154

Predicted proportion Loss is the expected value of predicted loss obtained by averaging the probability of loss in the predicted

probability map for each nation

Table 3 Model performance assessed with the TOC for assessing accuracy of continuous predicted probability surfaces, relative to

the naı̈ve model

Logistic

regression

Random

forest

Random forest

excluding landscape

metrics

Naı̈ve

Brunei

maxAUC 0.866 0.927 0.823 0.845

AUC 0.852 0.917 0.805 0.833

minAUC 0.839 0.907 0.787 0.821

Malaysia

maxAUC 0.820 0.933 0.901 0.720

AUC 0.816 0.931 0.898 0.720

minAUC 0.811 0.925 0.894 0.720

Kalimantan

maxAUC 0.880 0.931 0.895 0.848

AUC 0.875 0.928 0.890 0.848

minAUC 0.870 0.925 0.886 0.848

Logistic Regression—calibrated logistic regression using the same variables as the calibrated random forest model; Random Forest

including landscape metrics—calibrated random forest model; RF(no FRAG)—calibrated random forest model excluding landscape

metrics calculated by FRAGSTATS. Naı̈ve—naı̈ve model expressing deforestation risk as a power function of distance from forest

edge. The TOC was run with 100 equal-interval thresholds
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that forest loss in this study area is driven by factors

not reflected well in the naı̈ve model. In addition, in

Malaysian Borneo there is a relatively large gap

between the logistic regression and the two random

forest models as well, indicating relatively higher

performance of random forest as compared to logistic

regression.

Model interpretation

Our analysis produced nine different predictive mod-

els, consisting of random forest with and without

landscape metrics, and logistic regression models for

each of the three nations comprising Borneo. In the

interest of space we briefly describe the highest

performing model (random forest with landscape

metrics) for each nation here, and present full infor-

mation on all nine models and their interpretation in

Appendix 1.

Brunei model

The ten most important variables in the calibrated

random forest Brunei model based on model improve-

ment ratio were aggregation index at 10 km radius,

edge density at 10 km radius, proportion of peat

swamp forest at 40 km radius, proportion of water at

50 km radius, proportion of plantation or regrowth at

1 km radius, proportion of lowland forest at 40 km

radius, Shannon Diversity at 10 km radius, Topo-

graphical Roughness at 40 km radius, Elevation and

proportion of lowland mosaic at 40 km radius

(Figure A1). Of the ten most influential variables in

the prediction of deforested vs not-deforested cells in

Brunei between 2000 and 2010, as judged by model

improvement ratio, five had positive monotonic rela-

tionships with increasing probability of deforestation

with increasing value of the variable (edge density at

10 km radius, proportion of peat swamp forest at

30 km radius, proportion of water at 50 km radius,

proportion of plantation or regrowth at 1 km radius,

Shannon Diversity Index at 10 km radius; Figure A2).

Two variables, including the most influential variable

(aggregation index at 10 km radius), had negative

monotonic relationships with deforestation risk, such

that deforestation risk decreases as the value of these

variables increase. Two variables had unimodal rela-

tionships such that the frequency of deforestation was

maximum at intermediate values (proportion of lower

montane forest at 40 km radius and Distance to

Population Centre). We produced visualization of

the pattern of predicted forest loss probability across

Brunei (Figure A3), with zoomed-in view of two areas

showing the pattern of observed loss in relation to the

predicted probability of loss (Figure A4).

Malaysian Borneo model

The ten most important variables, based on model

improvement ratio, in the calibrated Malaysian Bor-

neo model were proportion of lowland mosaic at

20 km radius, proportion of plantation or regrowth at

30 km radius, edge density at 20 km radius, Elevation,

proportion of montane mosaic at 50 km radius, patch

Fig. 3 TOC curves showing comparative model performance

among the logistic regression, random forest, random forest

without fragmentation variables, and the naı̈ve model. Higher

model performance is indicated by stronger convex curvature

toward the upper left corner of the plot space. a Brunei,

b Malaysian Boreno, c Kalimantan
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density at 30 km radius, proportion of lower montane

forest at 50 km radius, Shannon diversity index at

40 km radius, focal mean population density at

100 km radius and topographical roughness at

40 km radius (Figure A6). Of the ten most influential

variables in the calibrated random forest model in

Malaysian Borneo, six had positive monotonic rela-

tionships wherein frequency of forest loss increased as

the value of the variable increased (proportion of

lowland mosaic at 20 km radius, proportion of plan-

tation or regrowth at 30 km radius, edge density at

20 km radius, patch density at 30 km radius, Shannon

diversity at 40 km radius, and focal mean population

density at 100 km radius). All of these showed

strongly non-linear relationships with rapid initial rise

followed by asymptotic flattening (Figure A7). Four of

the ten most influential variables in the calibrated

Malaysian Borneo random forest model showed

monotonic negative relationships where frequency of

deforestation between 2000 and 2010 declined as the

value of the variable increased. These mostly showed

what appear to be negative exponential shapes, with

rapid decline at low values of 9 followed by flatten-

ing as the 9 variable increased (elevation, proportion

of montane mosaic at 50 km radius, proportion of

upper montane forest at 50 km radius, and topograph-

ical roughness at a 40 km radius; Figure A7). We

produced visualization of the pattern of predicted

forest loss probability across Brunei (Figure A8), with

zoomed-in view of two areas showing the pattern of

observed loss in relation to the predicted probability of

loss (Figure A9).

Kalimantan model

The ten most important variables, based on model

improvement ratio, for Kalimantan were elevation,

patch density at 40 km radius, proportion of lowland

mosaic at 50 km radius, proportion of lower montane

forest at 20 km radius, proportion of plantation or

regrowth at 50 km radius, edge density at 10 km

radius, focal mean population density at 100 km

radius, topographical roughness at 50 km radius,

proportion of lowland open at 50 km radius and

Shannon’s diversity index at 40 km radius (Fig-

ure A11). Of the ten most important variables in the

calibrated random forest model predicting deforested

versus not-deforested cells between 2000 and 2010,

seven had positive monotonic relationships (patch

density at 40 km radius, proportion of lowland mosaic

at 50 km radius, proportion of plantation or regrowth

at 50 km radius, edge density at 10 km radius, focal

mean population density at 100 km radius, proportion

of lowland open at 50 km radius, and Shannon

diversity at 40 km radius; Figure A12). As in the

Malaysian Borneo model, many of these were

strongly nonlinear relationships. The remaining three

top variables all had negative monotonic relationships

(elevation, proportion of lower montane forest at

20 km, topographical roughness 50 km radius). As in

the Malaysian Borneo model, these were strongly

nonlinear, with most showing a negative exponential

shape (Figure A12). We produced visualization of the

pattern of predicted forest loss probability across

Kalimantan (Figure A13), with zoomed-in view of

two areas showing the pattern of observed loss in

relation to the predicted probability of loss

(Figure A14).

Predicted forest loss risk in 2010–2020

We produced a map of predicted forest loss risk in the

2010–2020 time period (Fig. 4) and calculated the

expected value of amount of forest loss and as

proportion of each nation by averaging the pixel

values of predicted forest loss risk across all pixels that

were forest in 2010 (Table 4). The rate of forest loss

predicted in the 2010–2020 period was substantially

higher in Malaysian Borneo than in Kalimantan or

Brunei (23.2 vs. 15.9%, Table 4). The predicted rate of

forest loss in 2010–2020 was quite similar into that

observed in 2000–2010 for Malaysian Borneo (23.2

vs. 23.3%) and Kalimantan (15.9 vs. 15.4%), while the

predicted amount of forest loss in Brunei increased to

15.9% from the observed amount of 5.9% in

2000–2010.

We calculated the proportion of each study region

in four bins of degree of risk (\25%, 25–50%, 50–75%

and[75% predicted probability of forest loss in the

2010–2020 period; Fig. 5). This analysis showed a

difference in the distribution of risk among study

regions, which is visually apparent from inspection of

Fig. 4. Specifically, Malaysian Borneo has a ‘‘flatter’’

distribution of proportion of pixels across the four risk

bins, indicating that a larger proportion of the land area

of Malaysian Borneo has moderate risk (33% of forest

has 25-50% predicted probability of forest loss in

2010–2020), and a lower proportion has low risk (60%
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has less than 25% probability of forest loss in

2010–2020), than the other two regions. In Fig. 4 this

is seen as a broader area of yellow, indicating

moderate risk, and less area of blue (low risk). In

contrast, Kalimantan shows a pattern with a high

proportion of the land area with low risk (75.5% less

than 25% probability of forest loss 2010–2020) and a

comparatively low proportion of area with intermedi-

ate risk (17.9% has between 25 and 50% probability of

forest loss between 2010 and 2020). Both Malaysian

Borneo and Kalimantan have similar proportion of

high risk, with 6.7 and 6.3% of forest area having

between 50 and 75% probability of forest loss in

2010–2020.

Discussion

The goal of this study was to identify the multi-scale

drivers of forest loss across Borneo, and then to apply

this model to predict and map the risk of forest loss

between 2010 and 2020. This appears to be the first

study to: (1) quantitatively compare the performance

of random forest and logistic regression in predicting

forest loss risk, (2) conduct formal multi-scale model

optimization to predict forest loss risk, (3) formally

evaluate the effect of the ratio of forest loss to

persistence cells on the predicted probability of forest

loss, and (4) evaluate the utility of including landscape

metrics quantifying the composition and configuration

of a landscape mosaic on predicted risk of future forest

loss.

We identified several hypotheses to help us explore

these relationships. Contrary to our first hypothesis

and the findings of Chawala et al. (2003) and Chen

et al. (2004), we found that the probability maps

produced by random forest do not under predict loss

when the ratio of loss in the training sample was equal

to that in the real landscape. On the contrary, our

calibration results showed that both logistic regression

and random forest produce unbiased predicted prob-

ability of forest loss only when the ratio of loss to

persisting forest in the training sample matches that in

the actual landscape. The bias increases substantially

when the ratio departs from that of the actual

landscape, with logistic regression substantially more

sensitive than random forest to this bias. There are a

number of implications of this observation that extend

beyond the present study. Following Chawala et al.

(2003) and Chen et al. (2004), most users of random

forest have purposefully skewed the ratio of training

points away from that of the actual population,

intending to avoid bias (e.g., Evans and Cushman

2009). Our results clearly show this actually intro-

duces bias and we advocate for future users of random

forest to carefully select training data that are repre-

sentative and proportional to the composition of actual

landscape.

Fig. 4 Predicted probability of deforestation in the period

2010–2020, obtained by applying the calibrated random forest

models developed in the 2000–2010 period to the landscape data

in 2010 for each of the three study nations (Brunei, Malaysian

Borneo, Kalimantan). Black represents areas of non-forest in

2010. (Color figure online)

Table 4 Expected number of pixels predicted to be deforested

in each of the three study regions in the period between 2010

and 2020 total and as a proportion of the amount of forest

existing in 2010

Expected number pixels

deforested 2010–2020

Expected proportion

deforested 2010–2020

Malaysia 77601 0.232

Kalimantan 152470 0.159

Brunei 2537 0.159
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Second, following other researchers who found that

random forest outperforms other methods for predic-

tion and classification (e.g., Cushman et al. 2010;

Evans et al. 2011; Rodriguez-Galiano et al. 2012;

Schneider 2012), we expected that random forest

would outperform logistic regression and the naı̈ve

model based on distance to forest edge. Consistent

with this hypothesis, random forest was the highest

performing method in all three nations comprising

Borneo. This confirms the utility of random forest as a

modelling tool for predicting forest loss, and we

suggest that future studies use this powerful technique,

with correct ratio of loss and persisting locations in the

training sample.

Consistent with our third hypothesis we found that

models that included landscape variables had substan-

tially higher performance than models that excluded

them. In all three nations the random forest model that

included landscape variables outperformed the ran-

dom forest model that excluded them. One of the

central tenants of landscape ecology is that patterns

influence processes across a range of scales (Turner

1989; Wiens 1989). However, to our knowledge, this

paper is the first using multiple scale optimization

(sensu McGarigal et al. 2016) of the effects of risk of

forest loss, and the first to utilize landscape metrics

(e.g., FRAGSTATS, McGarigal et al. 2012). Our

analysis shows that landscape pattern variables were

important predictors, with the majority of the ten most

influential variables in each nation measuring aspects

of landscape composition or configuration.

In our fourth hypothesis we predicted that risk of

forest loss would be related to predictor variables

similarly across the three nations. Contrary to this

expectation we noted substantial differences between

the nations. Most notably, the pattern of forest loss risk

in Kalimantan appears to be driven primarily by

elevation and distance to the edge of previous forest

loss, while that in Malaysian Borneo is more diffuse,

less associated with proximity to previous forest loss,

and more driven by landscape heterogeneity at broad

scales. This likely reflects differences between the

socio-economic drivers of forest loss in these two

nations. We further explored this observation qualita-

tively by inspecting high resolution Google Earth

satellite imagery for several landscapes in Malaysian

Borneo and Kalimantan. We observed a general

pattern of difference between Malaysian Borneo and

Kalimantan, wherein forest landscapes in Malaysian

Borneo, particularly those in Sarawak at lower

Fig. 5 Proportion of forest

area existing in 2010 in each

of the three study regions

predicted to have risk of

deforestation in the

2010–2020 time period of

(1) less than 25%, (2)

between 25 and 50%, (3)

between 50 and 75%, and

(4) greater than 75%
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elevations, typically have large networks of logging

roads that permeate currently unlogged forest, pro-

viding diffuse access for future harvest that matches

the pattern of our prediction, while in Kalimantan we

observed few such diffuse road networks and in most

Kalimantan landscapes roads do not extend deeply

into currently unlogged forest, leading to the ‘‘nibbling

at the edge’’ pattern we observed and the similarity to

the distance to edge naı̈ve model.

Our fifth hypothesis proposed that forest loss risk

would be related to (a) topography, with high risk at

low elevations and flat areas, and low risk at higher

elevations and steep terrain, (b) past forest loss in the

surrounding region, (c) protected area status, and

(d) human population parameters such as distance to

large settlements and local population density, in that

order of influence. Our results were mixed regarding

these predictions. Only in Kalimantan were any of the

topographical variables the most important based on

Model Improvement Ratio, with elevation having the

largest effect, and topographical roughness having the

7th highest effect. In Malaysian Borneo elevation was

the fourth most influential variable and topographical

roughness was the 10th, while in Brunei topographical

roughness and elevation were the seventh and eighth

most influential variables. In Malaysian Borneo the

two most influential variables were extent of the local

landscape covered in areas that have had previous

forest loss (lowland mosaic and plantation/regrowth),

while in Kalimantan these were the third and fifth most

important predictors, which supports our expectation

that extent of previous forest loss in a local landscape

would be a strong predictor of future loss. In all three

nations, however, we found a strong effect of

landscape configuration metrics such as edge density

(#3 Malaysia, #2 Brunei, #8 Kalimantan), patch

density (#6 Malaysia, #2 Brunei, #2 Kalimantan) and

aggregation index (#1 Brunei) and Shannon landscape

diversity (#8 Malaysia, #7 Brunei, #10 Kalimantan).

In all three nations these landscape configuration

metrics, which measure the total heterogeneity and

fragmentation of the landscape, were more important

than either protected area status or human population

density or distance to population centers. This sug-

gests that heterogeneous landscape configurations

created by past forest loss are highly predictive of

future forest loss. Importantly, in none of the three

nations was protected area status selected by the

variable selection, suggesting that across Borneo

protected area effectiveness may be low in minimizing

forest loss and/or that most protected areas are in

locations of very low predicted risk based on other

factors (such as high elevation areas that have high

topographical roughens and high distance from past

forest loss).

Predicted rates and patterns of risk of forest loss

in 2020

We predicted that the rates and patterns of forest loss

in the 2010–2020 period are likely to be similar to

those seen in the 2000–2010 period. Forest loss in

Indonesian Borneo is predicted to continue to move

along fronts of contagious expansion from previously

logged areas, spreading into the forest and leaving

very few patches behind. Conversely, forest loss in

Malaysian Borneo we predict will continue to expand

more diffusely throughout the landscape, leading to

much more extensive and heterogeneous patterns of

forest loss. These differences reflect the differences in

these nations in the extensiveness of forest road

networks. We predicted very similar total amounts of

forest loss in the 2010–2020 period as observed in the

2000–2010 period in both Malaysian Borneo and

Kalimantan, with Malaysian Borneo continuing to

have one of the highest forest loss rates reported in the

world, and Kalimantan having a lower but still very

high rate of forest loss by global standards.

Conclusion

Our results have several important implications. We

confirm reports that random forest out-performs

logistic regression for prediction of forest loss in our

study areas. In doing so, and in contrast to common

practice, we demonstrate that unbiased results were

achieved only when the proportion of the loss class in

the training sample matched the proportion in the

actual landscape. We also confirm that multiple-scale

modelling using landscape metrics as predictors in a

random forest framework is a powerful approach to

landscape change modelling. There is immense

immanent risk to Borneo’s forests, with clear spatial

patterns of risk related to topography and landscape

structure that differ between the three nations that

comprise Borneo. There are substantial differences in

the spatial drivers and patterns of deforestation in
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Kalimantan compared to Malaysian Borneo, where in

the former forest loss is highly associated with the

edge of previous loss, and is a spatially contagious

‘‘nibbling’’ on the remaining forest patches, while in

the latter extensive road networks built along ridge-

tops lead to widespread, diffuse and highly fragment-

ing patterns of forest loss.
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