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Abstract

Context Landscape-scale conservation planning is

key to the protection of biodiversity globally. Central

to this approach is the development of multifunctional

rural landscapes (MRLs) that maintain the viability of

natural ecosystems and promote animal and plant

dispersal alongside agricultural land uses.

Objectives We investigate evidence that non-native

grasses (NNGs) in rangelands and other low-intensity

agricultural systems pose a critical threat to landscape

conservation initiatives in MRLs both in Australia and

globally.

Methods We first establish a simple socio-ecological

model that classifies different rural landscape ele-

ments within typical MRLs based on their joint

conservation and agro-economic value. We then

quantify the impacts of eight Australian NNGs

(Andropogon gayanus, Cenchrus ciliaris, Eragrostis

curvula, Hyparrhenia hirta, Nassella neesiana, Nas-

sella trichotoma, Phalaris aquatica and Urochloa

mutica) on different landscape elements and then

classify and describe the socio-ecological transforma-

tions that result at the MRL scale.

Results Our data indicate that two broad classes of

NNGs exist. The first reduces both conservation and

agro-economic value (‘co-degrading’ species) of

invaded landscapes, while the second improves agro-

economic value at the expense of conservation value

(‘trade-off’ species). Crucially, however, both classes

cause hardening of the landscape matrix, agricultural

intensification, reduced habitat connectivity, and the

loss of multi-value land use types that are vital for

landscape conservation.

Conclusions NNGs drive socio-ecological transfor-

mations that pose a growing threat to landscape-scale

connectivity and conservation initiatives in Australia

and globally. There is an urgent need for further

research into the impacts of NNGs on habitat connec-

tivity and biodiversity within multifunctional land-

scapes, and the socio-ecological goals that can be

achieved when landscape transformation and degra-

dation by these species is unavoidable.
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Introduction

The invasion of new habitats by non-native grasses

(NNGs) can have profound implications for commu-

nity dynamics, abiotic–biotic interactions, and the

structure and provision of ecosystem processes and

services (Strayer 2012). Some NNGs transform

otherwise intact ecosystems by altering the cycling

and composition of soil nutrients (Ehrenfeld 2003),

soil water regimes (Holmes and Rice 1996), geomor-

phology and sedimentation (Eamer et al. 2013), and

even fire regimes (Ehrenfeld 2010; Adie et al. 2011;

MacDougall et al. 2013). Others quickly colonise and

dominate disturbed systems (Firn et al. 2010; D’An-

tonio et al. 2011), and when coupled with anthro-

pogenic drivers that increase their dispersal and fitness

(e.g., MacDougall and Turkington 2005; MacDougall

et al. 2014), have become major degraders of agricul-

tural production systems. The role of such species as

drivers of global environmental change and biodiver-

sity decline is long recognised (Franklin et al. 2006;

Friedel et al. 2011; Firn et al. 2013).

Yet, we believe the potentially serious conse-

quences of these impacts for biodiversity conservation

and habitat connectivity at the landscape scale remains

poorly recognised. Impacts at this scale are critical,

since biodiversity conservation has rapidly shifted in

recent decades to embrace landscape-scale conserva-

tion planning which aims to support biodiversity

alongside agricultural and other human land uses

(Soulé et al. 2004; Worboys 2010; Doerr et al. 2011).

These multifunctional (or multiple-use) rural land-

scapes (MRLs; Moilanen et al. 2005; Argent 2011;

Polyakov et al. 2014) are ones in which native

ecosystems are fragmented by other land uses or

where agricultural use is extensive and mixed with

biodiversity values throughout. But the fundamental

tenet of landscape-scale conservation is that biodiver-

sity can still persist in these landscapes if the relative

composition of different land uses is carefully man-

aged and if connectivity among elements in frag-

mented landscapes supports dispersal and other

movement by a range of species (Crooks and Sanjayan

2006; Hilty et al. 2006; Smith et al. 2013).

Operationally, landscape-scale conservation initia-

tives involve three main activities (Whitten et al.

2011). First, additional protection is sought for areas

of high conservation value. In rural landscapes these

are usually areas that have not been subjected to

agricultural intensification and the biotic homogeni-

sation that accompanies the loss of specialist species in

high input systems (Doxa et al. 2012; Bredemeier et al.

2015). Second, management of human-dominated

areas is adjusted to create more of a balance between

conservation and human needs. These multifunctional

areas may be spatially planned to serve as buffers for

high conservation value areas or may be part of a

general mixed use ‘matrix’ (Mackey et al. 2010;

Stutter et al. 2012; Smith et al. 2013). Finally,

structural connectivity among areas of higher conser-

vation value may be managed or restored to facilitate

movement of species through the landscape (i.e.,

functional connectivity; Doerr et al. 2010). Contem-

porary conservation programs that include some or all

of these activities include the Wildlands and Yellow-

stone to Yukon projects of North America (Van Der

Windt and Swart 2008; Mattson et al. 2011), the Great

Eastern Ranges and Gondwana Link initiatives in

Australia (Whitten et al. 2011; Worboys and Pulsford

2011; Bradby 2013; Pulsford et al. 2013), and High

Nature Value (HNV) farmland projects in Europe

(Doxa et al. 2012; Aue et al. 2014).

There are three main reasons why we believe the

power of NNGs to diminish or negate the positive

work being done to generate and sustain MRLs is

underappreciated. First, many NNGs challenge the

pervasive environmental-agricultural weed dichotomy

(viz., Stone et al. 2008), and drive changes in the

biodiversity and economic value of recipient land-

scapes via multiple social and ecological (socio-

ecological; Mansergh et al. 2008) pathways. Yet the

integrated impacts of NNGs on the multifunctional

nature of rural landscapes are rarely considered, with

most studies focusing exclusively on either ecological

or agro-economic impacts within a restricted set of

landscape elements. Second, history seems to show

that efforts to control NNGs have been generally

ineffective at preventing either broad-scale spread or

the accumulation of serious direct and indirect impacts

in recipient socio-ecological systems, even when

targeted early in the invasion process. Societal conflict

over species value certainly impinges on the will and

ability of land managers to control grasses used for
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pasture improvement (Grice et al. 2012; Driscoll et al.

2014), but the same cannot be said for a growing

number of less-palatable species. Third, connectivity

is a core component of most landscape-scale conser-

vation initiatives, but it has proven easier to identify,

manage, and restore connections associated with

woody vegetation than those associated with grasses

and other ground-based vegetation (Doerr et al. 2010).

Yet it is the latter that dominate many MRLs and are

often most prone to invasion by NNGs.

In this paper, we combine a review of relevant

literature and investigation of Australian case studies

to better understand the ways that NNGs drive

biodiversity decline in multifunctional rural land-

scapes, and implications for landscape conservation.

We do this by first identifying and classifying the ways

that NNGs transform different rural landscape ele-

ments, and then link these changes to the overall

conservation value and functional connectivity of

MRLs in general. Specifically, our approach is to:

(1) Establish a simple, flexible model that defines

MRL land use elements in terms of agro-

economic and conservation values;

(2) Use this model to articulate the goals of

landscape-scale conservation initiatives con-

ducted in MRLs globally;

(3) Use eight Australian case studies and a brief

survey of the international literature to quantify

the direct and indirect mechanisms by which

NNGs transform MRLs; and

(4) Explore the losses in conservation value and

functional connectivity likely to result from

these changes in landscape composition and

management.

We then discuss the importance and intractability of

these processes in low intensity agricultural systems

both in Australia and globally, and identify gaps in

knowledge or capacity that influence our ability to

preserve or re-connect these systems when NNGs are

present.

A multifunctional rural landscape model

Many rural landscapes in Australia and other parts of

the world are undergoing a multifunctional rural

transition (Holmes 2006), in which biodiversity,

ecological function and social amenity values are

increasingly competing against traditional produc-

tivist agricultural land uses (McCarthy 2005). In these

landscapes, knowledge of the joint agro-economic and

conservation value of different landscape elements has

become central to modern environmental decision-

making (Moilanen et al. 2005; Whitten et al. 2011). It

is therefore no longer possible to isolate the study of

invasive or introduced species in these systems in a

way that treats them as purely ecological or economic

phenomena (Larson 2008), but as components of

broader socio-ecological systems (Bardsley and

Edwards-Jones 2007; Marshall et al. 2011) in which

NNG-driven changes in anthropogenic and biophys-

ical processes alter landscape function as a whole

(Bart 2006; Bart and Simon 2013).

A model representing a socio-ecological value

framework consistent with the structure of modern

multifunctional rural landscapes (MRLs) is shown in

Fig. 1a. For simplicity, and due to the pervasive lack

of information on the impacts of most NNGs on social

value and amenity, we specifically focus on core agro-

economic and conservation land use values, which

remain critical in virtually all lightly populated rural

landscapes in Australia and elsewhere. However, we

discuss the impact of the spread of amenity land-

scapes, in which lifestyle attributes are highly valued

(Klepeis et al. 2009), on NNG control below.

In this model, landscape elements can be classified

into four general types: conservation, agricultural,

degraded, and multi-value (Fig. 1a). Examples of

conservation landscape elements, which are corner-

stones of environmental planning (sensuMargules and

Pressey 2000), include areas of on-farm native veg-

etation with no or only very low intensity livestock

grazing (Fig. 1a), national parks, wildlife refuges,

bogs, wetlands, and significant roadside vegetation.

Areas withdrawn from agricultural production under

the US Conservation Reserve Program (Morefield

et al. 2016) or similar set-aside schemes (e.g., Van

Buskirk and Willi 2004), and through grants, tenders,

or other market-based instruments (Windle and Rolfe

2008; Cooke and Moon 2015) fall into this category.

Agricultural landscape elements with lower biodi-

versity value include irrigated and non-irrigated crops,

improved high-input non-native pastures, managed

intensive rotational grazing systems, exotic and native

forest industry tree plantations, woody or grassy crops

for biofuel production (e.g., willow, poplar, switch-

grass), and orchards. These roughly correspond to
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Fig. 1 A conceptual socio-ecological landscape model. aMul-

tifunctional landscape in central New South Wales (NSW)

containing elements that are of mainly single-value (green con-

servation; orange agricultural), little value (red degraded), or

with both biodiversity and agricultural value (blue). Biodiverse

mixed pastures (5), modified woodlands (6,7) and riparian

systems (8,9) are the main multi-value areas. b–d Landscapes

dominated by multi-value grazed native vegetation; b high

altitude rangeland in southern NSW; c grassy woodland in

central eastern NSW; d Subtropical grassland in south-eastern

Queensland. e–g Degraded landscapes. e eroded semi-arid

rangeland, western NSW; f degraded rangeland with some

remnant woody native vegetation in central NSW; g extensive

cropping in former native grassland (foreground); western

NSW. In (g) the landscape is polarised into discrete areas of high
conservation and high agronomic value. Photos Malcolm

Carnegie (a), R. Godfree (b, c, e–g), J. Stol (d). (Color

figure online)
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Holmes’ (2006) productivist mode of rural land use.

Globally, many productivist systems are expanding

rapidly: for example, total global crop area increased

by around ten million hectares per year between 2002

and 2011 (Grassini et al. 2013), while tree plantations

expanded by 48% between 1990 and 2010 (Kröger

2014). Degraded elements include eroded, scalded,

salinised or waterlogged soils, and overgrazed vege-

tation. It is estimated that land degradation hotspots

cover around 29% of the global land surface area, with

grasslands most severely affected (Le et al. 2014).

Of primary concern in this paper are managed,

multi-value landscape elements, in which agricultural

production and environmental conservation are both

important goals. Although many extensive landscape

elements potentially fall into this category (e.g., HNV

farmland, riparian systems, silvicultural areas), our

main focus here is on rangelands and pastures. These

are arguably the most geographically extensive land

use systems on earth (Asner et al. 2004), and perform

vital socio-ecological roles throughout central and

southwestern North America, southern and eastern

South America, Africa, southern Europe, central Asia

and Australia. Most consist of extensive, grassy or

shrubby ecosystems, especially prairies, steppe, pam-

pas, savannas, and open woodland.

In Australia, these systems are of exceptional

importance. Grazed natural or modified grasslands

and woodlands (Fig. 1b–d) cover 3.6 million km2

(ABARE–BRS 2010), generate in excess of AU $10

billion annual in livestock production, and contain

the majority of the continental native vegetation.

Historically, many have suffered significant degra-

dation (primarily as a result of overgrazing, often

combined with drought; Fig. 1e–f), and so modern

projects usually focus on converting single-use

agricultural or degraded production areas into con-

nected, multi-value or conservation-oriented land-

scape elements. This is achieved through improved

fencing and grazing management (O’Reagain et al.

2014), protection of remnant woodland and water-

courses, and in severely degraded areas (Fig. 1e–g),

through construction of water management features,

livestock exclusion, and revegetation (Ludwig and

Tongway 1996). Large multi-value areas can play a

vital role in preserving landscape biodiversity

(McIntyre and Hobbs 1999, Smith et al. 2013), but

even when spatially restricted they can buffer

remnant native vegetation and provide

supplementary habitat for native species, a process

known as ‘‘matrix softening’’ (Haddad et al. 2014).

Following from this model, management practices

that increase the conservation and agro-economic

values of a given MRL simultaneously (Fig. 2a)

represent particularly attractive ‘win–win’ scenarios

[Fig. 2b; cf., the ‘marginalised agricultural mode’ of

land use in Holmes (2006)]. For example, improved

livestock management in degraded rangeland can

reduce erosion, increase production, and enhance

biodiversity (O’Reagain et al. 2014). Alternatively,

conservation value may also be increased at little or no

cost to agricultural profitability, for example by

exchanging non-native for functionally similar native

pasture species (‘conservation gain’; Fig. 2b). How-

ever, trade-offs (win-lose scenarios) may also be

necessary to protect high quality habitat from further

degradation by limiting or removing agricultural use

(‘conservation trade-off’; Fig. 2b), perhaps coupled

with the sacrifice of conservation value in other areas

(‘agricultural trade-off’; Fig. 2b; often termed ‘‘envi-

ronmental offset arrangements’’; Hayes andMorrison-

Sauders 2007). At the landscape level, some or all of

these trajectories contribute to a transformation pro-

cess (Fig. 2a) that generates landscapes composition-

ally capable of fulfilling multiple socio-ecological

functions.

NNGs in multifunctional rural landscapes

To understand the way that NNGs transformMRLs we

first need to identify the ways that they change the

agro-economic and conservation value of landscape

elements in which they occur. To achieve this we used

a case study approach, focusing on eight representa-

tive NNG species in Australia (Table 1). Four are

palatable pasture grasses (Andropogon gayanus,

Cenchrus ciliaris, Phalaris aquatica and Urochloa

mutica; authorities provided in Table 1), while the rest

are undesirable, mainly low palatability species (Era-

grostis curvula, Nassella neesiana, Nassella tri-

chotoma and Hyparrhenia hirta). All have broad

distributions in Australia (Fig. 3a–h), occur in multi-

value grazed native and modified vegetation that

represent a large proportion of the continental biota

(Table 1; Fig. 4), and have potential ranges that span

many of Australia’s most important ongoing land-

scape-scale conservation and corridor initiatives
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(Fig. 4). Many are also invasive outside of Australia

(e.g., Arriaga et al. 2004).

Table 2 summarises information on fourteen agro-

economic (1.1–1.7) and conservation (2.1–2.7) drivers

through which NNGs transform different landscape

elements, and the trajectories that lead to broader

landscape and socio-ecological change. These drivers,

which were selected on the basis of a review of the

relevant literature for each species (see Online

Appendices 1–8), act either directly (1.1 and 2.1) or

indirectly (1.2–1.7; 2.2–2.7) on recipient systems.

Because different sources varied greatly in methodol-

ogy, we simply scored the impact of each driver on

agro-economic or conservation value (see Fig. 2) as

negative (-), positive (?) or neutral (0), or a

combination of both (± or-[? if a clear difference

in importance). For example, N. trichotoma reduces

agro-economic value by reducing pasture production

(-score), C. ciliaris increases pasture value (?score),

and H. hirta reduces pasture production and hence

agro-economic value except under restricted circum-

stances (-[? scoring). Drivers of special impor-

tance were also noted for each species; for example

fire regime change is a key driver of conservation

value loss associated with A. gayanus (-*; Table 2).

Consensus socioecological trajectories were then

Agro-economic value

Co
ns

er
va

tio
n 

va
lu

e

Shelter belt plantings, erosion and salinity control, 
drought fodder reserves, rotational grazing

Win-win (W-W)

Fertilisation, introduced pastures, agricultural 
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Agricultural
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Conservation
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Land acquisition for National Parks, conservation 
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Lose-lose (L-L) Overstocking, soil compaction, salinity, 
weed invasion, feral animals

Win-win
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Lose-lose Trade-off
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Conservation gain (CG) Revegetation,  species reintroductions
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Fig. 2 Potential trajectories of socio-ecological change in

multifunctional landscapes. a Transformation of a landscape

from one dominated by single-use and degraded socio-

ecological values to a higher value multi-value state with

improved biodiversity conservation and connectivity. b Poten-

tial socio-ecological trajectories of a given landscape element

(labelled a) fall into four main scenarios: ‘win–win’, where

conservation and agricultural value both improve; ‘lose-lose’,

where both decline; ‘conservation trade-off’, where conserva-

tion value increases at the expense of agricultural value, and

‘agricultural trade-off’, where the reverse occurs. Four other

restricted scenarios in which change occurs in only one value are

also possible, involving agricultural gain or loss (dashed

arrows) or conservation gain or loss (solid arrows)
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constructed for each landscape element class

(Fig. 1). In the following discussion we refer to

only a selection of representative data to illustrate

these processes; readers are referred to Online

Appendices 1–8 which contain detailed, species-

specific notes and references.

Cenchrus ciliaris

Hyparrhenia hirta

Nassella neesiana

b

Nassella trichotoma Urochloa mu�ca

d

fe

hg

Eragros�s curvula

c

aFig. 3 Distribution of eight

case study non-native

grasses in Australia. Spatial

data obtained from the

Australia Virtual Herbarium

(Council of Heads of

Australasian Herbaria;

http://avh.chah.org.au/)
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Our data indicate that the eight NNGs transform

MRLs in two main ways. First, low palatability

species (N. trichotoma, N. neesiana, E. curvula and

H. hirta) typically drive landscape elements along

lose-lose, conservation loss or agricultural loss trajec-

tories (L-L, CL and AL; Fig. 2b), leaving the MRL in

an economically and ecologically degraded state.

These we term Type I or ‘‘co-degrading’’ transforma-

tions (Fig. 5a). In contrast, P. aquatica, C. ciliaris, U.

mutica and A. gayanus generally increase agricultural

production at the expense of conservation value (AT

trajectories; Fig. 2b) in all but the most degraded land

use types, which we call Type II or ‘‘trade-off’’

transformations (Fig. 5a). Landscapes altered by co-

degrading transformations are likely to contain an

extensive matrix of impoverished rangeland and

pasture surrounding smaller areas of intensive agri-

culture or remnant vegetation (Fig. 5b, c), while trade-

off transformations result in more agriculturally

productive landscapes of reduced conservation value

(Fig. 5d, e). Both transformations represent a signif-

icant shift away from the target multifunctional state

(Fig. 5a) and reverse gains made in landscape-scale

conservation initiatives.

From an agro-economic perspective, co-degrading

species reduce profitability by forming unproductive,

often monocultural pastures (Fig. 6a; Campbell and

Vere 1995; Lodge et al. 2005; Firn 2009). Eragrostis

curvula, H. hirta and N. neesiana are occasionally

viewed positively as pasture species (McLaren et al.

EcoFire Project
Kimberley to Cape 
Ini�a�ve

Trans-Australia Eco-Link

Gondwana Link

Great Eastern 
Ranges Ini�a�ve

Birdsville to 
Bays

Great Eastern 
Ranges Ini�a�ve

Kanangra-Boyd to 
Wyangala Link

Kosciuszko to Coast 
Partnership

Slopes to Summit 
Partnership

Midlandscapes
Project

Habitat 141

Nature 
Links (SA)

Fig. 4 Spatial extent of current and proposed landscape

connectivity and corridor initiatives in Australia, along with

two multi-value grazing land use types that retain significant

native biodiversity. Connectivity and corridor initiatives are

fromWhitten et al. (2011) while land use data are from land use

of Australia 2005–06, Version 4 (ABARE–BRS 2010).
�Department of the Environment 2015
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2002; McArdle et al. 2004), but the consensus is that

all three species should be eradicated or controlled if

possible. Indeed, maximising their palatability using

fire (Fig. 6b), controlled stocking rates, mowing and/

or fertiliser application (Fig. 6c; Snell et al. 2007;

Osmond et al. 2008; Firn 2009; Grech et al. 2014) all

incur large infrastructure and equipment costs which

are often of marginal economic viability. They also

often require expensive broadacre chemical control

that generates phytotoxic effects on favourable species

(Osmond et al. 2008) and encourages other broadleaf

weeds (Fig. 6d). Pasture renovation and conversion to

rotational cropping are land use conversions (Table 2;

Online Appendices 3–6) that are costly to implement

and restricted to more productive areas. Nassella

neesiana seed also directly injures livestock and

Type I ‘co-degrading’

Landscape transforma�on categories

Mul�func�onal target Type II ‘trade-off’

W-W

CT

AG

L-LCL

CL

AL

L-L

CL

CL
L-L

CL

L-L

L-L

AT

CL AT

AG

W-W

AT

a

b Type I Eragros�s curvula c Type I Hyparrhenia hirta

d Type II Cenchrus ciliaris e Type II Andropogon gayanus

a

a
b

a

b

a

Fig. 5 Transformation of Australian rural landscapes by non-

native grasses. a Co-degrading and trade-off landscape trans-

formations compared with the multi-functional target. b Inva-

sion of the temperate pasture by Eragrostis curvula dominated

by conservation loss and lose–lose trajectories. Eragrostis

curvula is the light coloured grass on the lower slopes in the

background (a) and near the stock watering point (b). c Active
invasion of rangeland and remnant woodland in central NSW by

Hyparrhenia hirta. The invasion front rapidly moves away from

the road verge (a), with individual tussocks (b) establishing in

the semi-natural grassland to the left. d Cenchrus ciliaris in the

arid zone of central Australia. Tussocks of C. ciliaris (a) can

form dense monocultures. e Invasion of grazed savannah in

northern Australia by Andropogon gayanus. Dense stands can

develop under the native woody overstory, sometimes exceed-

ing 3 m in height (a). Photos R. Godfree (b, c); Kerrie Bennison
(d); Damien McMaster (e)
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downgrades wool, skins, hides and carcasses (Gar-

dener et al. 2003). WhileH. hirta, E. curvula and other

similar species have been used to rehabilitate degraded

land, they are normally detrimental in these settings

because they exclude the possibility of establishing

more favourable species, leaving them in a static,

degraded state (Table 2).

In comparison, the trade-off species A. gayanus, C.

ciliaris, P. aquatica and U. mutica have higher

production value and fill significant temporal or

spatial productivity gaps present in native pastures

(Table 2; Tothill et al. 2008; Reed 2014). Costs

associated with the establishment of these pasture

species (Table 2), such as removal of pre-existing

a

c

e f

b

d

a

a

a

b
a

a

bb

Fig. 6 Impacts of non-native grasses on landscape connectivity

and conservation value. a Hyparrhenia hirta invading derived

native grassland, Kanangra-Boyd to Wyangala Link (see

Fig. 4). Dense clumps are shown in the foreground (a) and

background (b). b Intense fires are characteristic of Eragrostis

curvula—dominated grasslands, Kosciuszko to Coast Initiative.

The image is of a heavily infested property being burnt to

improve grazing value. Flame heights exceeded 4 m in areas of

high standing E. curvula biomass. c Fertilisation and managed

grazing intended to increase palatability of E. curvula.Ungrazed

(a) and grazed (b) stands are indicated. d Phytotoxic effects of

herbicide use on non-target species in temperate grassland

infested by E. curvula. The area indicated (a) has suffered from

post-spray invasion by broadleaf weeds, especially Verbascum

thapsus, following the chemical treatment of invading E.

curvula. e Conversion of subtropical woodland to Cenchrus

ciliaris pasture (a). f Infestation of a revegetation site in the

slopes to summit partnership area by Phalaris aquatica. Dense

stands greatly reduce the vigour of planted trees and shrubs (a).

Photos R. Godfree (a, d), J. Firn (c, e), J. Stol (f), Roger Roach
(b)
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native vegetation (Fig. 6e; Tothill et al. 2008), con-

struction of artificial pondages (U. mutica; Wildin

1985), and cultivation and/or fertilization (Hill et al.

2005) are small relative to productivity gains, and so

their inclusion in grazing regimes is economically

attractive. They also sometimes drive agricultural gain

trajectories in degraded systems and only rarely drive

win–win trajectories (Fig. 5a). In some cases, notably

P. aquatica, they may also directly hinder restoration

goals (Fig. 6f). Some overlap occurs between co-

degrading and trade-off species in economic value: for

example, fast-growing tropical pasture grasses like A.

gayanus can have greatly reduced economic value if

not intensively managed for palatability, while the E.

curvula cultivar Consol is moderately palatable and

can add flexibility to some grazing enterprises (John-

ston et al. 2005).

Impacts on landscape conservation

Our data indicate that all case study species alter

landscape biodiversity on a scale that rivals that of

cropping or other broadacre agricultural activities. The

most obvious process is for infestations to form virtual

monocultures in which other ground layer species

(Ferdinands et al. 2005) are excluded from the

recipient assemblage. Most NNGs grow rapidly and

produce large amounts of standing biomass, which

generates intense competition for soil nutrients, water

and light with smaller understory or riparian plants

(e.g., McArdle et al. 2004; Perna et al. 2012). This can

occur on very extensive spatial scales (Table 1;

Figs. 5b, d, e; 6a, c, f), leaving whole landscapes

floristically impoverished, especially when other

forms of disturbance, such as grazing or drought,

affect the integrity of the existing native vegetation.

All case study NNGs have a demonstrated capacity to

directly exclude other vegetation, sometimes in the

absence of significant anthropogenic disturbance; H.

hirta, U. mutica and A. gayanus are outstanding

examples (Table 2).

In most rural landscapes, however, indirect pro-

cesses are probably more important drivers of native

vegetation decline. Fire regime change is arguably the

best example, with the dramatic ecosystem-transform-

ing effects of the grass/fire cycle associated with A.

gayanus threatening the long-term viability of much of

the tropical savanna belt of northern Australia

(Rossiter et al. 2003; Brooks et al. 2010; Setterfield

et al. 2010). There has been recent scientific debate

over whether C. ciliaris causes the same phenomenon

in semi-arid and arid ecosystems (Miller et al. 2010;

Fensham et al. 2013), but the capacity for this species

to modify fire regimes is also enormous (Grice 2006).

Unusually intense fires have also been observed in

stands of U. mutica, E. curvula, H. hirta and P.

aquatica, and it is likely that the ecosystem-trans-

forming effects of these species will increasingly be

seen as a major problem for landscape conservation.

Interestingly, awareness campaigns that highlight the

danger of E. curvula fires to humans, infrastructure

and livestock are currently underway in the Monaro

Tablelands region of NSW.

Hydrological and edaphic change can also be a key

transformative process when NNGs have seasonal

resource requirements or morphological adaptations

for soil water or nutrient extraction that differ from

sympatric native species. This is certainly true of A.

gayanus, which has an extended growing season

compared with native grasses (Rossiter-Rachor et al.

2009) and P. aquatica, which increases pasture water

use, reduces deep drainage (Johnston et al. 2003), but

increases soil water deficits in dry times. The photo-

synthetic pathways of E. curvula, N. neesiana and N.

trichotoma (Table 1) often differ significantly from

the dominant grasses that they displace (e.g., Hatter-

sley 1983), and so these species are also likely to alter

soil water regimes in infested areas. Both C. ciliaris

and U. mutica are major riparian weeds (Bunn et al.

1998; Marshall et al. 2012), with U. mutica drastically

altering river sediment accumulation, streambed mor-

phology and water discharge in infested catchments

(Bunn et al. 1998). These changes have very signif-

icant indirect effects on associated riparian vegetation.

Agricultural intensification, which usually involves

nutrient addition, pasture improvement, cropping, and

increased grazing pressure, has a long track record of

rapidly and dramatically altering rangeland and

grassland composition both across Australia (Moore

1970; Dorrough et al. 2011) and globally (Tilman

1999; Sullivan et al. 2010), leaving impoverished or

homogenised ecological systems. It is therefore cru-

cial to understand that practices designed to establish,

utilise or control NNGs often mimic, or even augment

the broader process of agricultural intensification, and

are probably the most important ways through which

NNGs transform MRLs. This is most obvious with
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palatable pasture species: for example, the establish-

ment of C. ciliaris in subtropical areas requires the

preparation of target areas by clearing, tilling and/or

fertilization, often followed by a significant increase in

livestock density (Fig. 6e ; Tothill et al. 2008). Such

practices can have a devastating impact on native

vegetation and associated fauna, and currently repre-

sent a key threat to the retention of brigalow (Acacia

harpophylla) and other woodland systems in northern

Australia. In southern Australia the establishment of

P. aquatica and other cool season perennial grasses

(Reed 2014) has played a key role in reducing lowland

temperate grassland to \1% of its original extent

(Groves and Whalley 2002).

Less recognized, however, is that unpalatableNNGs

also drive similar or greater intensification of land use.

For example, integrated control is often used to

manage infestations of co-degrading NNGs, including

N. neesiana (Snell et al. 2007), N. trichotoma

(Osmond et al. 2008) and more recently E. curvula

and H. hirta (Fig. 5b). This is usually based on

broadacre herbicide application followed by cultiva-

tion and establishment of non-native pastures or

annual crops, effectively removing large tracts of

native vegetation. In rough, sloping or infertile areas

normally considered unsuitable for cropping, such

practices can also drive further ecosystem degradation

via erosion, soil compaction, and loss of organic

matter. The fact that this process has received little

attention is surprising given that the conversion of

grazing lands to more intensive pasture or cropping

regimes on similar scales in response to other drivers

(e.g., Zhang et al. 2006) is a serious contemporary

threat to biodiversity conservation in Australian

rangelands and native pastures. The use of fire as a

management tool to maximise the palatability of

undesirable species (e.g., H. hirta and E. curvula) also

clearly has the potential to accelerate broad scale

biodiversity loss in Australian rangelands and pas-

tures, especially where the removal of NNG infesta-

tions is economically or biologically impossible (e.g.,

Lodge et al. 1994), and where native species have low

tolerance to changing fire regimes.

Finally, a range of feedback mechanisms can drive

further invasion and reinforcement of ecosystem

change, a process known as invasional meltdown

(Simberloff and Von Holle 1999). Few studies have

investigated this process in MRLs, but one example is

the provision of habitat to major pest fish species byU.

mutica (cites in Perna et al. 2012). The impact of

NNGs on fire, nutrient, water and light regimes may

also precipitate self-facilitation or invasion by new

species, as shown with A. gayanus and C. ciliaris

(Rossiter et al. 2003; Jordan et al. 2008; Schlesinger

et al. 2013). Another possible example is the planting

of legumes with high phosphorous requirements to

increase production of P. aquatica and other pasture

species, leading to cascading changes in soil fertility

that disadvantage native plants (Dorrough et al. 2011).

Other complex interactions between factors such as

competition, drought and grazing pressure can benefit

unpalatable species like N. trichotoma (Badgery et al.

2008) and synanthropic pasture species like C. ciliaris

(Marshall et al. 2012) at the expense of native species.

Loss of landscape connectivity

Given the capacity of NNGs to transform the structure

and function of landscape elements critical to biodi-

versity conservation, it is surprising that the interac-

tion between NNGs and landscape connectivity have

rarely been explored. Nonetheless, there are at least

three ways that NNGs are likely to erode functional

connectivity for a substantial proportion of native

species existing in MRLs.

First, in many MRLs the grassy understory is

relatively continuous, even when associated woody

vegetation has been fragmented (Mott and Groves

1994). Thus, invasion by NNGs may introduce an

additional source of fragmentation, this time of the

ground layer. As shown previously (Tables 1, 2),

many NNGs have the capacity to form extensive

monocultures which may superficially resemble native

grasslands but more often vary both structurally and

floristically (Daehler 2003; Brooks et al. 2010). Such

habitat is likely to represent a significant barrier to

movement and a reduced resource base for exploita-

tion by native flora and fauna (e.g., Wolkovich et al.

2009). Concern has been raised that this process is

occurring in the Monaro Tablelands of south-eastern

NSW, where dense infestations of Eragrostis curvula

(Fig. 5b) have developed along a [50 km long

corridor between Cooma (S 36.24�, E 149.12�) and
Canberra (S 35.28�, E 149.13�). The expansion of

impoverished E. curvula grasslands is antithetical to

the goals of the landscape-scale Kosciuszko to Coast

(K2C) Partnership (Fig. 4), which is to protect and

1232 Landscape Ecol (2017) 32:1219–1242

123



reconnect forest, woodland and grassland ecosystems

in this region (Godfree and Stol 2015) while main-

taining rangeland grazing.

Second,NNGs in thematrix create harder boundaries

between the matrix and core reserves, thus increasing

edge effects and reducing effective conservation patch

size. This increases the distances between those patches,

which in turn reduces functional connectivity (Soons

et al. 2005). Third, fragmentation is likely to be greatly

exacerbated by the agricultural intensification that

accompanies the conversion of pasture land to more

productive use (Type II species), or efforts to control

low palatability (Type I) species (see above; Figs. 5, 6).

A detailed review of the plants most affected by habitat

fragmentation is beyond the scope of this paper (see

Henle et al. 2004), but in general they include species

that require frequent regeneration from seed, lack clonal

or vegetative reproduction, have lownatural abundance,

dependonmutualistic relationshipswith a small number

of pollinators or seed dispersers for reproduction, lack

sexual self-compatibility, and occur in restricted or

specialised habitats (Davies et al. 2000; Hobbs and

Yates 2003; Marvier et al. 2004; Hoffmeister et al.

2005).

Subordinate ground-based plants, especially those

with naturally short dispersal distances that require

fairly continuous distributions to retain functional

connectivity across the landscape, are likely to be

especially at risk (Murphy and Lovett-Doust 2004). In

Australia, these include perennial and annual forbs

that occur in the interstitial space between grass

tussocks and which comprise much of the floristic

diversity of grassland communities (Trémont and

McIntyre 1994; Williams et al. 2006). A similar

situation exists in European semi-natural grasslands,

where forbs generally suffer from greater dispersal

limitation than sympatric grass species (Diacon-Bolli

et al. 2013), ultimately suffering genetic erosion and

increased extinction risk following habitat fragmen-

tation (Broeck et al. 2015).

The extent to which NNGs directly disrupt or

provide connectivity for ground-dwelling fauna has

rarely been studied, and may often be highly species-

specific. Nonetheless, reptiles, amphibians, and inver-

tebrates can depend strongly on native grassy connec-

tions, even more than on woody connections (Brown

2000; Mac Nally and Brown 2001; de Castro and

Fernandez 2004), and there is abundant evidence that

the fragmentation of grassy ecosystems can affect

plant-pollinator, predator–prey, host-pathogen and

other critical ecological interactions (Steffan-Dewen-

ter and Tscharntke 2002). Again, species with natu-

rally small populations that occur in specialised

floristic habitats and have restricted dietary require-

ments are likely to be adversely affected by fragmen-

tation following NNG invasion due to increased

demographic stochasticity, genetic decline, and

impaired social function (Davies et al. 2000; Brady

et al. 2011). On the other hand, at least some species

appear resilient to fragmentation (Schutz and Driscoll

2008) and may even use NNGs as habitat (Richter

et al. 2013). A better understanding of the character-

istics of such species would greatly facilitate conser-

vation planning in natural systems prior to NNG

invasion.

As noted above, the impacts of NNG invasion on

native vegetation are not restricted to the ground layer.

New fire regimes (e.g., the grass-fire cycle) resulting in

mortality of woody vegetation, for example, have been

documented in A. gayanus and C. ciliaris, and are

likely be a factor in areas infestedwith the fast-growing

speciesH. hirta, E. curvula, U. mutica, and probablyP.

aquatica (Table 1). The result is significant changes to

connectivity of even woody vegetation and the fauna

that depend on it (e.g., Law et al. 1999; Hannah et al.

2007), particularly because smaller woody connecting

elements like scattered trees and corridors may be

disproportionately damaged by changes in fire inten-

sity. This is likely to be of extreme importance in

modified rural landscapes where fauna depend on

remnant woody cover or isolated trees for survival

(Crane et al. 2014), and where community engagement

in landscape conservation is motivated by concern for

woodland bird or mammal species (Amos et al. 2012;

Dickman 2013). The degradation of riparian systems

byNNGs (e.g., Low 1997) is also likely to be a growing

driver of fragmentation and loss of functional connec-

tivity at landscape scales for many species, since such

habitats play a vital role in species movement and

resource provision (e.g., Bentley and Catterall 1997;

Ward et al. 1999).

The management challenge

NNGs threaten the integrity of a large number of

Australian landscape connectivity and conservation

initiatives (Fig. 4). Yet their control is undoubtedly an
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area of chronic policy failure (Graham 2013; Downey

et al. 2010), and many appear to pose an exceptionally

difficult, and probably unique, problem for agricul-

tural and conservation land managers alike. Certainly,

effective management strategies for NNGs on a

sufficient scale remain elusive (Fensham et al. 2013),

and determined efforts to control or eradicate co-

degrading species like N. neesiana and E. curvula

(e.g., Gardener et al. 2005; Fox et al. 2009; Coutts

et al. 2013) have met with minimal success. Indeed,

the situation in most areas continues to deteriorate

(e.g., Godfree and Stol 2015). Even Nassella tri-

chotoma (Klepeis et al. 2009), often cited as a

management success story, is still locally expanding

its range and requires expensive, ongoing integrated

control (Osmond et al. 2008) just to maintain the status

quo. Why is this so?

It appears that the intractability of many NNGs in

Australia can be traced to synergisms between the

morphological, genetic and ecological attributes of

invasive grasses and unique socio-ecological charac-

teristics of the Australian land mass. In short, the most

problematic NNGs tend to be difficult to recognise and

to be challenging or impossible to control, even on

small spatial scales. These difficulties are exacerbated

by the vast spatial scale of potential habitat, social and

agricultural processes that facilitate spread and estab-

lishment, and the financial constraints that arise from a

low rural population density (McArdle et al. 2004;

Laffan 2006; Coutts et al. 2013). More recently, the

ongoing expansion of amenity landscapes in Australia

(Mendham et al. 2012), in which large farming

properties are subdivided and sold to landowners that

value lifestyle, environmental and scenic attributes

over commercial interests, has increased the com-

plexity of organizing a coordinated, effective response

to invading NNGs and other broad scale environmen-

tal challenges (Klepeis et al. 2009).

While early recognition and intervention is crucial

to the control of invasive species (Westbrooks et al.

2014), grasses appear to be particularly prone to

oversight or misidentification, even by experienced

land managers. This is particularly true when sym-

patric native species have similar morphological

attributes (e.g., Godfree et al. 2013), or when the

production of floral parts has been affected by drought

or overgrazing. For example, it is common for new

populations of H. hirta, E. curvula, and especially

Nassella spp., which are morphologically similar to

Australian native Themeda, Cymbopogon, Poa, and

Austrostipa species, to go unrecognised for many

years. Remote sensing techniques viable for identify-

ing grasses, while promising (Peteinatos et al. 2014),

are still in only early stages of development, and not

yet widely deployed. At a broader scale, many NNGs

(e.g., Themeda quadrivalvis, Cenchrus polystachios,

Echinochloa polystachya) remain outside the scope of

legislation or scientific research when numbers are

small and control efforts would be most effective.

From an ecological perspective, the case can also be

made that Australia is especially susceptible to

incursion by NNGs, which severely penalizes any

lack of a coordinated detection and control effort.

First, the Australian land mass is dominated by grassy

ecosystems (Fig. 5), key species of which have

continental or sub-continental distributions (e.g.,

Themeda triandra). The potential range of many

NNGs, especially those sourced from genetically

diverse populations (Godfree et al. 2013) or bred for

enhanced fitness or niche breadth (e.g., Culvenor et al.

2007; Lavergne and Molofsky 2007) is correspond-

ingly large (Fig. 3c). Most invaders also encounter

few sharp topoedaphic or climatic boundaries during

the initial stages of spread, and any existing barriers

are often overcome by either intentional or uninten-

tional spread. For example, seed dispersal is aug-

mented by Australia’s network of travelling stock

reserves and the freight of live animals for hundreds of

kilometers or more (Hogan and Phillips 2011). Roads

in remote rural areas often receive little management,

and the construction and intensified use of transport

corridors for the growing resource and mining sector is

likely to exacerbate this problem.

The invasion process is also exacerbated by the

extreme variability of the Australian climate (Sivaku-

mar et al. 2014) and the development of agricultural

practices that promote the spread and establishment of

synanthropic non-native species. Australian grassy

ecosystems have evolved in the absence of large

herbivores since the megafaunal extinctions of *45

kyr BP, and are especially sensitive to both the

removal of ground-layer vegetation by livestock

during drought and to increased soil fertility. Selective

grazing favours less palatable Type I species, while

pulses in soil nutrient availability following drought

(Austin et al. 2004) or fertilizer application tend to

benefit fast-growing, nitrophilous NNGs in general.

Under these disturbance regimes, which are
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characteristic of low-intensity grazing practices over

most of the continent, the spread of synanthropic

NNGs often entails long periods of relative stasis

punctuated by rapid expansion. The invasion on the

Southern Tablelands of NSW by Nassella neesiana

during and following the prolonged 2000–2009

drought is an excellent example.

From a social perspective, the development of

amenity rural landscapes in Australia and elsewhere

(Mendham et al. 2012), and in particular the subdivi-

sion of properties and conversion into lifestyle blocks

(Klepeis et al. 2009), is also reducing the effectiveness

of broad-scale NNG control programs (Coutts et al.

2013). Many people purchasing rural land have non-

agricultural interests, tend to be less engaged in natural

resource management and extension programs (Mend-

ham et al. 2012), and often lack the skills necessary to

identify weed species on their properties. These

difficulties are exacerbated when remaining landhold-

ers, faced with heavy propagule pressure from

surrounding areas, choose to simply live with NNGs.

This renders the prospect of removing them from the

landscape remote. Control of tradeoff-type pasture

grasses like A. gayanus is even more challenging,

since social conflict over their value makes coordina-

tion of management difficult or impossible, and many

are at such advanced invasion state that broad scale

control is now not seriously considered (Kean and

Price 2003).

Finally, multi-trophic ecological interactions also

limit effectiveness and desirability of broad-scale

NNG control. For example, removal ofU. mutica from

aquatic systems can benefit other weeds such as

Hymenachne amplexicaulis (Grice et al. 2010) and

Mimosa pigra, or mobilise sediment which impacts

downstream ecosystems. Similarly, some endangered

species may depend on NNGs (e.g., the golden sun

moth Synemon plana and Nassella neesiana) as a

resource in otherwise degraded environments. Control

of feral animals (such as the Asian water buffalo,

Bubalus bubalis L.) may exacerbate the invasiveness

of NNGs (U. mutica; Pettit et al. 2011). While some

data exists on the multi-trophic effects of NNGs on

fauna (e.g., U. mutica, A. gayanus and C. ciliaris), the

consequences of the removal of most species, and the

restoration work required to re-establish native assem-

blages, remains essentially guesswork. The fact that

many areas now contain multiple NNGs with com-

plementary (e.g., U. mutica, H. amplexicaulis and E.

polystachya) or overlapping (E. curvula, H. hirta and

N. trichotoma) niches (Table 1; Fig. 3) further

increases the complexity of their control or

eradication.

Global significance

We have explored the ways that NNGs transform

landscapes and degrade biodiversity using Australian

case studies, and why they are difficult or impossible

to manage. However, invasive grasses have a strong

track record of invading rangelands and other rural

systems elsewhere that have much in common, both

ecologically and socially, with those in Australia (e.g.,

D’Antonio and Vitousek 1992; DiTomaso 2009;

Zenni and Ziller 2011).

Probably the best examples of NNG transformation

ofMRLs come fromNorth America. Among these, the

invasion of 650 000 km2 of the Great Basin by Bromus

tectorum (cheatgrass) is most notorious, and shares

many transformational features with the case studies

addressed in this paper (Knapp 1996). As in Australia,

advent of the livestock grazing industry in the late

nineteenth century was probably instrumental in

facilitating the spread of B. tectorum through sage-

brush ecosystems, both through seed dispersal and the

destruction of native vegetation (Knapp 1996). Apart

from reducing grazing capacity, B. tectorum has the

capacity to radically alter nutrient flows and seasonal

water availability, and to drive the transition of

vegetation into alternative system states (sensu Bow-

man et al. 2015) in which re-establishment of native

species is impossible (Knapp 1996). The direct

ecological effects of B. tectorum invasion are exacer-

bated by an increase in the frequency of fire, even at

regional scales (Balch et al. 2013). Interestingly,

evidence is emerging that NNGs can also reduce the

size and intensity of fires, leading to different trajec-

tories of ecological change. An example is Festuca

arundinaceae (McGranahan et al. 2012), which, in

contrast to other NNGs, generates high-moisture fuel

loads; the lower rates of spread of fire in prairies

containing F. arundinceae ultimately result in succes-

sional change towards woodland vegetation. These

and a multitude of other examples (D’Antonio and

Vitousek 1992) indicate that pyrogeographical

changes caused by NNGs have immense potential to
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degrade the conservation value of MRLs on a global

scale.

Co-degrading NNGs appear to present land man-

agers with broadly similar challenges in MLRs

worldwide, with many species originally introduced

for erosion control, revegetation or pasture improve-

ment now degrading rangelands, remnant vegetation,

or both. For example, Bothriochloa ischaemum and

other old world bluestems, which are now prevalent in

Texas, have low grazing value, alter fire fuel loads,

exclude native vegetation, and are difficult to impos-

sible to control (Gabbard and Fowler 2007). As in

Australia, the use of intensive grazing, fire, and

fertilisation are used to enhance the productivity of

Eragrostis lehmanniana and other low quality species

in the southern USA and elsewhere (Williams and

Baruch 2000). In Brazil, private companies and

government bodies promote the use of Eragrostis

plana as a pasture species, despite the fact that it is

often unpalatable to cattle, and it now occupies[2

million hectares of degraded or overgrazed steppe

(citations in Zenni and Ziller 2011). These processes

directly displace native species and generate agricul-

tural intensification regimes that resemble those used

in eastern Australia to manage Eragrostis curvula

(e.g., Firn 2009).

Type I pasture species also appear to pose a major

challenge to landscape conservation in MRLs glob-

ally. Their adoption, usually to enhance agricultural

productivity, is often linked to direct and indirect loss

of high conservation-value vegetation in both agricul-

tural and non-target rangeland or grassland habitats,

with similar drivers to those identified in Australia

(Table 2). For example, Agropyron cristatum (Chris-

tian and Wilson 1999), Phalaris arundinaceae (Kel-

logg and Bridgham 2004) and Festuca arundinaceae

(McGranahan et al. 2012) are serious invaders of

native plant communities in North America, displac-

ing native species and reducing biodiversity. Perhaps

more importantly, however, the broad-scale clearing

or modification of native vegetation to establish Type I

NNG species appears to be an ongoing process

worldwide. For example, the uptake of C. ciliaris in

the Sonoran Desert region of Mexico has resulted in

the clearing of extensive tracts of desert scrub,

mesquite woodlands and tropical deciduous forest,

with remnant areas facing ongoing invasion (Arriaga

et al. 2004), even in the absence of the grass/fire cycle

typical of this species (Olsson et al. 2012).

A thorough review of the relevant literature is

beyond the scope of this paper, but similar case studies

exist in Africa (Arundo donax and other riparian

grasses; Nassella spp. and Pennisetum setaceum;

Milton 2004); South America (Andropogon gayanus;

Melinus minituflora; Dogra et al. 2010; Zenni and

Ziller 2011), New Zealand (Lamoureaux et al. 2011),

and elsewhere (Dogra et al. 2010).

Conclusions and future directions

The linkages between rural multifunctionality, land-

scape connectivity and invasive species are in only

early stages of investigation (With 2002; Haddad et al.

2014). This is surprising, given the obvious mecha-

nistic similarity between NNGs and other agents of

landscape fragmentation documented in this paper,

viz. their ability to generate a hostile landscape matrix

that is impermeable to native plants and animals while

simultaneously degrading core conservation areas. As

we have shown, impacts on biodiversity occur via two

distinct modes of socio-ecological transformation,

roughly aligning with palatability and agricultural

utility (‘‘trade-off’’ vs. ‘‘co-degrading’’ species). But

both are inimical to the goal of generating multifunc-

tional rural landscapes in which agricultural produc-

tion and biodiversity protection are integrated

(Holmes 2006) and (ideally) mutually beneficial.

The destruction of associated multi-value and conser-

vation landscape elements also poses a major threat to

broad-scale habitat connectivity initiatives, particu-

larly those dependent on market-based protection or

set-aside schemes (e.g., Windle and Rolfe 2008;

Cooke and Moon 2015).

The historical track record suggests that, due to a

suite of social, economic and ecological constraints,

the most damaging NNGs are likely to continue to

spread until new equilibria are reached (Marshall

et al. 2012). In many situations change is inevitable,

which makes it all the more important that we come

to better understand the species and landscape-traits

that underpin their impacts and which strategies, if

any, may reduce them in future. With this in mind,

several areas of research clearly warrant further

attention.

First, in situations where land managers simply

have to live with NNGs, understanding their utility in

multifunctional, connected landscapes will be of
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immediate practical value. While eco-physiological

distinctiveness is certainly a feature of NNGs, many

have morphological and ecological similarities to

native congeners or analogues (e.g., Godfree et al.

2013), and there may be substitutability among grasses

that would allow for a basic level of connectivity and

resource provision to be maintained, even in invaded

landscapes. Perhaps some trade-off species have a

smaller impact on conservation value than others, in

which case prioritising their use could help retain

multi-value landscape elements.

Second, we know little about the best way to design

and implement connectivity and conservation initia-

tives when invasive, intractable NNGs are present in

the landscape. This is especially true when co-

degrading species threaten the economic viability of

mixed value agricultural properties intended for

inclusion in these schemes. Perhaps a combination

of early identification and triage, aggressive, targeted

management of priority species and populations, and

funding for cross-initiative experiments into preven-

tion and control once they are established, may

succeed. How this would work for trade-off species

such as C. ciliaris is even less clear. In some cases, it

may be necessary to restrict the establishment of new

landscape-scale initiatives to areas where such NNGs

are not yet present.

Given the growing focus on connectivity within

multifunctional rural landscapes as central to the

success of continental-scale biodiversity conservation,

there is a need for robust solutions to these questions as

a matter of priority.
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